1
|
Traetta ME, Vecchiarelli HA, Tremblay MÈ. Fundamental Neurochemistry Review: Lipids across microglial states. J Neurochem 2025; 169:e16259. [PMID: 39696753 DOI: 10.1111/jnc.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
The capacity of immune cells to alter their function based on their metabolism is the basis of the emerging field of immunometabolism. Microglia are the resident innate immune cells of the central nervous system, and it is a current focus of the field to investigate how alterations in their metabolism impact these cells. Microglia have the ability to utilize lipids, such as fatty acids, as energy sources, but also alterations in lipids can impact microglial form and function. Recent studies highlighting different microglial states and transcriptional signatures have highlighted modifications in lipid processing as defining these states. This review highlights these recent studies and uses these altered pathways to discuss the current understanding of lipid biology in microglia. The studies highlighted here review how lipids may alter microglial phagocytic functioning or alter their pro- and anti-inflammatory balance. These studies provide a foundation by which lipid supplementation or diet alterations could influence microglial states and function. Furthermore, targets modulating microglial lipid metabolism may provide new treatment avenues.
Collapse
Affiliation(s)
- Marianela E Traetta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Institute for Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada
- Département de médecine moléculaire, Université Laval, Québec City, Quebec, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, Quebec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Qin C, Yang S, Chen M, Dong MH, Zhou LQ, Chu YH, Shen ZX, Bosco DB, Wu LJ, Tian DS, Wang W. Modulation of microglial metabolism facilitates regeneration in demyelination. iScience 2023; 26:106588. [PMID: 37138776 PMCID: PMC10149336 DOI: 10.1016/j.isci.2023.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/28/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Microglia exhibit diverse phenotypes in various central nervous system disorders and metabolic pathways exert crucial effects on microglial activation and effector functions. Here, we discovered two novel distinct microglial clusters, functionally associated with enhanced phagocytosis (PEMs) and myelination (MAMs) respectively, in human patients with multiple sclerosis by integrating public snRNA-seq data. Microglia adopt a PEMs phenotype during the early phase of demyelinated lesions, predominated in pro-inflammatory responses and aggravated glycolysis, while MAMs mainly emerged during the later phase, with regenerative signatures and enhanced oxidative phosphorylation. In addition, microglial triggering receptor expressed on myeloid cells 2 (Trem2) was greatly involved in the phenotype transition in demyelination, but not indispensable for microglia transition toward PEMs. Rosiglitazone could promote microglial phenotype conversion from PEMs to MAMs, thus favoring myelin repair. Taken together, these findings provide insights into therapeutic interventions targeting immunometabolism to switch microglial phenotypes and facilitate regenerative capacity in demyelination.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhu-Xia Shen
- Department of Cardiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding author
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding author
| |
Collapse
|
3
|
Tanaka Y, Watanabe K, Miller AD, Matsumoto K, Kobayashi Y. Cholesterol granuloma associated with degenerative neuropathy in the cauda equina of a dog. J Vet Diagn Invest 2022; 34:1010-1014. [PMID: 35993288 PMCID: PMC9597343 DOI: 10.1177/10406387221120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An 8-y-old Labrador Retriever dog had mild ataxia of the hindlimbs 4 mo after lumbosacral dorsal laminectomy for intervertebral disk disease. Ataxia of the hindlimbs gradually worsened over the next 6 y. On autopsy, gross lesions were not recognized in the spinal cord. Histopathology revealed an intradural extraparenchymal cholesterol granuloma in the cauda equina associated with remnant nerve roots. Nerves associated with the cholesterol granuloma had axonal degeneration, myelin vacuolation, and edema. In those foci, macrophages were increased in number between nerve fibers. Immunohistochemistry for neurofilament protein and Luxol fast blue staining highlighted the presence of remnant axons and myelin sheaths within the granuloma. Inflammatory cell infiltrates in the granuloma were mainly macrophages and CD3- or CD20-immunopositive T or B lymphocytes, respectively. We conclude that the cholesterol granuloma likely formed subsequent to degenerative neuropathy in the cauda equina.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenichi Watanabe
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Andrew David Miller
- Section of Anatomic Pathology, Department of Biomedical
Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kotaro Matsumoto
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshiyasu Kobayashi
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
4
|
Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. PLoS One 2016; 11:e0153608. [PMID: 27088355 PMCID: PMC4835061 DOI: 10.1371/journal.pone.0153608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL), tubulin (TUBB2A, TUBA4A), microtubule-associated proteins (MAP1A, MAP1B), collagen (COL6A1, COL6A3) and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1), APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC), including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the involvement of several important molecular pathways. This will allow future identification of therapeutic targets for improving the visual consequences of r-mTBI.
Collapse
|
5
|
Piñeyro P, Sponenberg DP, Pancotto T, King RHM, Jortner BS. Chronic inflammatory demyelinating polyradiculoneuropathy with cholesterol deposits in a dog. J Vet Diagn Invest 2015; 27:762-6. [PMID: 26450833 DOI: 10.1177/1040638715610379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy occurred in an 11-year-old Labrador Retriever dog. Spinal cord compression resulted from massive radiculitis with prominent cholesterol granulomas. Cholesterol deposition and associated granuloma formation is unique in chronic inflammatory demyelinating polyradiculoneuropathy, in both its human and canine expressions.
Collapse
Affiliation(s)
- Pablo Piñeyro
- Departments of Biomedical Sciences and Pathobiology (Piñeyro, Sponenberg, Jortner), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VASmall Animal Clinical Sciences (Pancotto), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VADepartment of Clinical Neurosciences, Royal Free and University College Medical School, London, UK (King)
| | - D Philip Sponenberg
- Departments of Biomedical Sciences and Pathobiology (Piñeyro, Sponenberg, Jortner), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VASmall Animal Clinical Sciences (Pancotto), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VADepartment of Clinical Neurosciences, Royal Free and University College Medical School, London, UK (King)
| | - Theresa Pancotto
- Departments of Biomedical Sciences and Pathobiology (Piñeyro, Sponenberg, Jortner), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VASmall Animal Clinical Sciences (Pancotto), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VADepartment of Clinical Neurosciences, Royal Free and University College Medical School, London, UK (King)
| | - Rosalind H M King
- Departments of Biomedical Sciences and Pathobiology (Piñeyro, Sponenberg, Jortner), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VASmall Animal Clinical Sciences (Pancotto), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VADepartment of Clinical Neurosciences, Royal Free and University College Medical School, London, UK (King)
| | - Bernard S Jortner
- Departments of Biomedical Sciences and Pathobiology (Piñeyro, Sponenberg, Jortner), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VASmall Animal Clinical Sciences (Pancotto), Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VADepartment of Clinical Neurosciences, Royal Free and University College Medical School, London, UK (King)
| |
Collapse
|
6
|
Shimazawa M, Miwa A, Ito Y, Tsuruma K, Aihara M, Hara H. Involvement of endoplasmic reticulum stress in optic nerve degeneration following N-methyl-D-aspartate-induced retinal damage in mice. J Neurosci Res 2012; 90:1960-9. [PMID: 22674348 DOI: 10.1002/jnr.23078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 01/09/2023]
Abstract
We evaluated time-dependent optic nerve degeneration and the role of endoplasmic reticulum (ER) stress in this process following retinal ganglion cell death in mice. Retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Neurofilament heavy (NFH)- and phosphorylated NFH (pNFH)-positive axons were time-dependently decreased in optic nerves at 1, 3, 7, 14, and 28 days after NMDA injection. Expression of glial fibrillary acidic protein (GFAP)-positive astroglial cells and ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglial cells showed a significant increase in the optic nerve at 7, 14, and 28 days after NMDA injection. In contrast, expression of myelin basic protein (MBP)-positive oligodendrocytes showed a significant decrease in the optic nerve at 7, 14, and 28 days after NMDA injection. In quantitative RT-PCR analysis, expressions of glucose-regulated protein 78 (Grp78)/BiP, Grp94, Calreticulin, C/EBP homologous protein (Chop), and the ER degradation enhancer mannosidase alpha-like 1 (Edem1) genes were increased in the optic nerve at 14 days after NMDA injection. In addition, the Grp94 gene was increased at 7 days after NMDA injection, and the Edem1 gene was increased at 3, 7, and 28 days after NMDA injection. GRP78 and CHOP proteins were colocalized with MBP in the optic nerve after NMDA injection. These findings suggest that the axonal degeneration is dramatic until 7 days after NMDA injection and that glial cells may play some role in the degeneration of the optic nerve. Furthermore, ER stress may play a pivotal role in the decrease of MBP-positive oligodendrocytes after NMDA-induced retinal damage.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
7
|
David S, López-Vales R, Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:485-502. [PMID: 23098732 DOI: 10.1016/b978-0-444-52137-8.00030-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spinal cord injury (SCI) results in immediate damage followed by a secondary phase of tissue damage that occurs over a period of several weeks. The mechanisms underlying this secondary damage are multiple and not fully understood. A number of studies suggest that the local inflammatory response in the spinal cord that occurs after SCI contributes importantly to secondary damage. This response is mediated by cells normally found in the central nervous system (CNS) as well as infiltrating leukocytes. While the inflammatory response mediated by these cells is required for efficient clearance of tissue debris, and promotes wound healing and tissue repair, they also release various factors that can be detrimental to neurons, glia, axons, and myelin. In this chapter we provide an overview of the inflammatory response at the cell and molecular level after SCI, and review the current state of knowledge about its contribution to tissue damage and repair. Additionally, we discuss how some of this work is leading to the development and testing of drugs that modulate inflammation to treat acute SCI in humans.
Collapse
Affiliation(s)
- Samuel David
- McGill University Health Centre, Montreal, Canada.
| | | | | |
Collapse
|
8
|
Saggu SK, Chotaliya HP, Blumbergs PC, Casson RJ. Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study. BMC Neurosci 2010; 11:97. [PMID: 20707883 PMCID: PMC2930628 DOI: 10.1186/1471-2202-11-97] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
Background Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS), could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA) receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the "downstream" effect of isolated excitotoxic perikaryal injury on central nervous system (CNS) axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders. Herein, we provide ultrastructural information about the retinal ganglion cell (RGC) somata and their axons, both unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at 0 h, 24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group). Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining, ultrathin sections of eyes and proximal (intraorbital) and distal (intracranial) optic nerve segments were evaluated by transmission electron tomography (TEM). Results TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration and demyelination. Conclusion NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like degeneration of the optic nerve. Since axonal degeneration associated with perikaryal excitotoxic injury is an active, regulated process, it may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sarabjit K Saggu
- Ophthalmic Research Laboratories, Hanson Institute, and The University of Adelaide, SA 5000, Australia
| | | | | | | |
Collapse
|
9
|
Miotke JA, MacLennan AJ, Meyer RL. Immunohistochemical localization of CNTFRalpha in adult mouse retina and optic nerve following intraorbital nerve crush: evidence for the axonal loss of a trophic factor receptor after injury. J Comp Neurol 2007; 500:384-400. [PMID: 17111380 DOI: 10.1002/cne.21174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is important for the survival and outgrowth of retinal ganglion cells (RGCs) in vitro. However, in vivo adult RGCs fail to regenerate and subsequently die following axotomy, even though there are high levels of CNTF in the optic nerve. To address this discrepancy, we used immunohistochemistry to analyze the expression of CNTF receptor alpha (CNTFRalpha) in mouse retina and optic nerve following intraorbital nerve crush. In normal mice, RGC perikarya and axons were intensely labeled for CNTFRalpha. At 24 hours after crush, the immunoreactivity normally seen on axons in the nerve was lost near the lesion. This loss radiated from the crush site with time. At 2 days postlesion, labeled axons were not detected in the proximal nerve, and at 2 weeks were barely detectable in the retina. In the distal nerve, loss of axonal staining progressed to the optic chiasm by 7 days and remained undetectable at 2 weeks. Interfascicular glia in the normal optic nerve were faintly labeled, but by 24 hours after crush they became intensely labeled near the lesion. Double labeling showed these to be both astrocytes and oligodendrocytes. At 7 days postlesion, darkly labeled glia were seen throughout the optic nerve, but at 14 days labeling returned to normal. It is suggested that the loss of CNTFRalpha from axons renders RGCs unresponsive to CNTF, thereby contributing to regenerative failure and death, while its appearance on glia may promote glial scarring.
Collapse
Affiliation(s)
- Jill A Miotke
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697-2305, USA.
| | | | | |
Collapse
|
10
|
De S, Trigueros MA, Kalyvas A, David S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci 2004; 24:753-65. [PMID: 14664823 DOI: 10.1016/s1044-7431(03)00241-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) hydrolyzes phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The former can induce myelin breakdown and the latter, via eicosanoids, can stimulate inflammatory responses. Immunohistochemical analysis of secreted (sPLA(2)) and cytosolic (cPLA(2)) forms of the enzyme was assessed in the injured adult rat sciatic and optic nerves. sPLA(2) and cPLA(2) are expressed in the first 2 weeks in the injured sciatic nerve, which correlates with rapid Wallerian degeneration in peripheral nerves. In contrast, both forms of PLA(2) were not expressed in the optic nerve for the first 3 weeks after crush injury, which correlates with slow Wallerian degeneration in the central nervous system (CNS). In addition, PLA(2) is not expressed in the lesioned sciatic nerve of C57BL/Wld(s) mutant mice in which Wallerian degeneration is severely retarded. Blocking cPLA(2) in the transected sciatic nerve of C57BL/6 mice, which have a naturally occurring null mutation for the major from of sPLA(2), resulted in a marked slowing of myelin and axonal degradation and phagocytosis in the distal nerve segment. These results provide direct evidence of an important role for cPLA(2) in Wallerian degeneration.
Collapse
Affiliation(s)
- Susna De
- Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
11
|
Levine RL, Evans MDC. The source of reactive cells during central Wallerian degeneration in the goldfish: a differential irradiation protocol. Exp Neurol 2002; 173:136-44. [PMID: 11771946 DOI: 10.1006/exnr.2001.7821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have used a partial irradiation paradigm to examine the provenance of cells that participate in Wallerian cellular responses in the goldfish visual system. Animals which received 50 Gy whole-body gamma-irradiation showed virtually complete inhibition of the proliferative burst usually seen after optic nerve section. These animals did, however, show a robust hyperplastic response in the optic tract that we believe represents the migration of nearby microglial cells into the affected tract. When only the postcephalic body was irradiated, proliferating cells in the major hematopoietic organs of the fish, the kidney and pronephros, were substantially inhibited. Despite this, the Wallerian cellular response in the visual paths was essentially normal. Thus, there is no obligate requirement for peripheral proliferative cells to participate in central Wallerian degeneration in the fish. However, when only the head was irradiated, and the hematopoietic organs were spared, there was a proliferative response in the visual system. We believe this represents the invasion of the visual pathways by peripheral blood cells through the optic nerve lesion and blood vessels in the nerve itself. This invasion, however, is not sufficient to generate substantial hyperplasia. In summary, although we find evidence for a small contribution by exogenous cells, the major source of reactive cells during central Wallerian degeneration in the fish is the endogenous microglia. Our data underscore the importance of elucidating the mechanisms by which microglial cells are activated and the role that they play in regeneration.
Collapse
Affiliation(s)
- R L Levine
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada.
| | | |
Collapse
|
12
|
|
13
|
|
14
|
Abstract
Transection of an optic nerve (ON) is followed by slow removal of myelin. We studied microglia for the expression of molecules that characterize activated myelin phagocytosing macrophages: MAC-1, Fc gamma II/III receptor (FcR), MAC-2 and F4/80. In-vitro, microglia expressed all molecules and phagocytosed myelin. In-vivo, intact ON displayed high levels of MAC-1, little FcR and F4/80, and no MAC-2. The expression of these molecules was upregulated differentially in in-vivo degenerating ON: MAC-1 uniformly, FcR and F4/80 variably, and MAC-2 sporadically. The distribution of MAC-2 expression correlated best with a pattern of sporadic structural degeneration. Thus in-vivo, ON injury is followed by deficient microglia activation, which we suggest contributes significantly to the slow clearance of myelin.
Collapse
Affiliation(s)
- F Reichert
- Department of Anatomy and Cell Biology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
15
|
|