1
|
Yan X, Yu R, Wang J, Jiao Y. Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae. J Genet Genomics 2024:S1673-8527(24)00370-9. [PMID: 39746604 DOI: 10.1016/j.jgg.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops). The protogenes of MRCA of the Triticeae and the wheat lineage are 22,894 and 29,060, respectively, which were arranged in their ancestral order. By partitioning modern Triticeae chromosomes into sets of syntenic regions and linking each to the corresponding protochromosomes, we revisit the rye chromosome structural evolution and propose alternative evolutionary routes. The previously identified 4L/5L reciprocal translocation in rye and Triticum urartu are found to have occurred independently and are unlikely the result of chromosomal introgression following distant hybridization. We also clarify that the 4AL/7BS translocation in tetraploid wheat was a bidirectional rather than unidirectional translocation event. Lastly, we identify several breakpoints in protochromosomes that independently reoccur following Triticeae evolution, representing potential CR hotspots. This study demonstrates that these reconstructed ancestral genomes can serve as special comparative references and facilitate a better understanding of the evolution of structural rearrangements in Triticeae.
Collapse
Affiliation(s)
- Xueqing Yan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxian Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wang FH, Di AT, Wang JY, Yang NN, Deng WR, Chai TY. A highly potential Zn biofortification tool: MTP1 in Triticum aestivum. Int J Biol Macromol 2024; 282:136746. [PMID: 39454910 DOI: 10.1016/j.ijbiomac.2024.136746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
TaMTPs belong to metal tolerance proteins (MTPs) family in common wheat and have significant potential to address the "hidden hunger" caused by inadequate dietary intake of a key micronutrient (Zn). In this study, a total of 33 MTP members in Triticum aestivum were identified, among which six TaMTP1-likes were closely related to Arabidopsis thaliana MTP1 and were designated as TaMTP1-A/B/D and TaMTP1.1-A/B/D. When heterologously expressed in yeast mutants, TaMTP1-likes complemented their hypersensitivity to Zn and Co, and three of the most metal-resistant members, TaMTP1-A, TaMTP1-D and TaMTP1.1-B, were selected for further subcellular localization and functional experiment in Arabidopsis and rice. The results showed that all three proteins were localized in the vacuole membrane, that TaMTP1-D was more resistant to Zn and less resistant to Co than other TaMTP1-like members, and that TaMTP1-D was expressed at a higher level in the endosperm than other members. All results reveal that the use of TaMTP1-D for biofortification can substantially increase the content of Zn in the edible part of wheat and avoid the overaccumulation of Co, suggesting that TaMTP1-D is a potential Zn biofortifier / bioreinforcement.
Collapse
Affiliation(s)
- Fan-Hong Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - An-Ting Di
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jia-Ying Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Ning-Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wen-Rui Deng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Tuan-Yao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
3
|
Bruschi M, Bozzoli M, Ratti C, Sciara G, Goudemand E, Devaux P, Ormanbekova D, Forestan C, Corneti S, Stefanelli S, Castelletti S, Fusari E, Novi JB, Frascaroli E, Salvi S, Perovic D, Gadaleta A, Rubies-Autonell C, Sanguineti MC, Tuberosa R, Maccaferri M. Dissecting the genetic basis of resistance to Soil-borne cereal mosaic virus (SBCMV) in durum wheat by bi-parental mapping and GWAS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:213. [PMID: 39222129 PMCID: PMC11369050 DOI: 10.1007/s00122-024-04709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.
Collapse
Affiliation(s)
- Martina Bruschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Matteo Bozzoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Ellen Goudemand
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Pierre Devaux
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sandra Stefanelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sara Castelletti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elena Fusari
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Jad B Novi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elisabetta Frascaroli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institut (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Agata Gadaleta
- Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari 'Aldo Moro', 70126, Bari, Italy
| | - Concepcion Rubies-Autonell
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Maria Corinna Sanguineti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy.
| |
Collapse
|
4
|
Gawande ND, Sankaranarayanan S. Genome wide characterization and expression analysis of CrRLK1L gene family in wheat unravels their roles in development and stress-specific responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1345774. [PMID: 38595759 PMCID: PMC11002176 DOI: 10.3389/fpls.2024.1345774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) genes encode a subfamily of receptor-like kinases (RLK) that regulate diverse processes during plant growth, development, and stress responses. The first CrRLK1L was identified from the Catharanthus roseus, commonly known as Madagascar periwinkle. Subsequently, CrRLK1L gene families have been characterized in many plants. The genome of T. aestivum encodes 15 CrRLK1L genes with 43 paralogous copies, with three homeologs each, except for -2-D and -7-A, which are absent. Chromosomal localization analysis revealed a markedly uneven distribution of CrRLK1L genes across seven different chromosomes, with chromosome 4 housing the highest number of genes, while chromosome 6 lacked any CrRLK1L genes. Tissue-specific gene expression analysis revealed distinct expression patterns among the gene family members, with certain members exhibiting increased expression in reproductive tissues. Gene expression analysis in response to various abiotic and biotic stress conditions unveiled differential regulation of gene family members. Cold stress induces CrRLK1Ls -4-B and -15-A while downregulating -3-A and -7B. Drought stress upregulates -9D, contrasting with the downregulation of -7D. CrRLK1L-15-B and -15-D were highly induced in response to 1 hr of heat, and combined drought and heat stress, whereas -10-B is downregulated. Similarly, in response to NaCl stress, only CrRLK1L1 homeologs were induced. Fusarium graminearum and Claviceps purpurea inoculation induces homeologs of CrRLK1L-6 and -7. The analysis of cis-acting elements in the promoter regions identified elements crucial for plant growth and developmental processes. This comprehensive genome-wide analysis and expression study provides valuable insights into the essential functions of CrRLK1L members in wheat.
Collapse
Affiliation(s)
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
5
|
Zhai X, Wu D, Chen C, Yang X, Cheng S, Sha L, Deng S, Cheng Y, Fan X, Kang H, Wang Y, Liu D, Zhou Y, Zhang H. A chromosome level genome assembly of Pseudoroegneria Libanotica reveals a key Kcs gene involves in the cuticular wax elongation for drought resistance. BMC Genomics 2024; 25:253. [PMID: 38448864 PMCID: PMC10916072 DOI: 10.1186/s12864-024-10140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.
Collapse
Affiliation(s)
- Xingguang Zhai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chen Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xunzhe Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaobo Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuhan Deng
- Glbizzia Biosciences Co., Ltd, Liandong U Valley, Huatuo Road 50, Daxing, Beijing, 102600, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
7
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
9
|
Sertse D, You FM, Klymiuk V, Haile JK, N'Diaye A, Pozniak CJ, Cloutier S, Kagale S. Historical Selection, Adaptation Signatures, and Ambiguity of Introgressions in Wheat. Int J Mol Sci 2023; 24:ijms24098390. [PMID: 37176097 PMCID: PMC10179502 DOI: 10.3390/ijms24098390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.
Collapse
Affiliation(s)
- Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Valentyna Klymiuk
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jemanesh K Haile
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
10
|
Liu B, Chen J, Yang Y, Shen W, Guo J, Dou Q. Single-gene FISH maps and major chromosomal rearrangements in Elymus sibiricus and E. nutans. BMC PLANT BIOLOGY 2023; 23:98. [PMID: 36800944 PMCID: PMC9936730 DOI: 10.1186/s12870-023-04110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chromosomal variations have been revealed in both E. sibiricus and E. nutans, but chromosomal structural variations, such as intra-genome translocations and inversions, are still not recognized due to the cytological limitations of previous studies. Furthermore, the syntenic relationship between both species and wheat chromosomes remains unknown. RESULTS Fifty-nine single-gene fluorescence in situ hybridization (FISH) probes, including 22 single-gene probes previously mapped on wheat chromosomes and other newly developed probes from the cDNA of Elymus species, were used to characterize the chromosome homoeologous relationship and collinearity of both E. sibiricus and E. nutans with those of wheat. Eight species-specific chromosomal rearrangements (CRs) were exclusively identified in E. sibiricus, including five pericentric inversions in 1H, 2H, 3H, 6H and 2St; one possible pericentric inversion in 5St; one paracentric inversion in 4St; and one reciprocal 4H/6H translocation. Five species-specific CRs were identified in E. nutans, including one possible pericentric inversion in 2Y, three possible pericentric multiple-inversions in 1H, 2H and 4Y, and one reciprocal 4Y/5Y translocation. Polymorphic CRs were detected in three of the six materials in E. sibiricus, which were mainly represented by inter-genomic translocations. More polymorphic CRs were identified in E. nutans, including duplication and insertion, deletion, pericentric inversion, paracentric inversion, and intra- or inter-genomic translocation in different chromosomes. CONCLUSIONS The study first identified the cross-species homoeology and the syntenic relationship between E. sibiricus, E. nutans and wheat chromosomes. There are distinct different species-specific CRs between E. sibiricus and E. nutans, which may be due to their different polyploidy processes. The frequencies of intra-species polymorphic CRs in E. nutans were higher than that in E. sibiricus. To conclude, the results provide new insights into genome structure and evolution and will facilitate the utilization of germplasm diversity in both E. sibiricus and E. nutans.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjie Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jialei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
| |
Collapse
|
11
|
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. MOLECULAR PLANT 2023; 16:432-451. [PMID: 36587241 DOI: 10.1016/j.molp.2022.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Tong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
12
|
Liu Y, Chen W, Liu L, Su Y, Li Y, Jia W, Jiao B, Wang J, Yang F, Dong F, Chai J, Zhao H, Lv M, Li Y, Zhou S. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat ( Triticum aestivum L.). PLANT SIGNALING & BEHAVIOR 2022; 17:2013646. [PMID: 35034573 PMCID: PMC8959510 DOI: 10.1080/15592324.2021.2013646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) genes are widely involved in plant growth and development and mediating plant stress tolerance. However, the whole genome scale studies about CaM and CML gene families have not been done in wheat, and the possible functions of most wheat CaM/CML gene members are still unknown. In this study, a total of 18 TaCaM and 230 TaCML gene members were identified in wheat genome. Among these genes, 28 TaCaM/CML gene members have 74 duplicated copies, while 21 genes have 48 transcript variants, resulting in 321 putative TaCaM/CML transcripts totally. Phylogenetic tree analysis showed that they can be classified into 7 subfamilies. Similar gene structures and protein domains can be found in members of the same gene cluster. The TaCaM/CML genes were spread among all 21 chromosomes with unbalanced distributions, while most of the gene clusters contained 3 homoeologous genes located in the same homoeologous chromosome group. Synteny analysis showed that most of TaCaM/CMLs gene members can be found with 1-4 paralogous genes in T. turgidum and Ae. Tauschii. High numbers of cis-acting elements related to plant hormones and stress responses can be observed in the promoters of TaCaM/CMLs. The spatiotemporal expression patterns showed that most of the TaCaM/TaCML genes can be detected in at least one tissue. The expression levels of TaCML17, 21, 30, 50, 59 and 75 in the root or shoot can be up-regulated by abiotic stresses, suggesting that TaCML17, 21, 30, 50, 59 and 75 may be related with responses to abiotic stresses in wheat. The spatiotemporal expression patterns of TaCaM/CML genes indicated they may be involved widely in wheat growth and development. Our results provide important clues for exploring functions of TaCaMs/CMLs in growth and development as well as responses to abiotic stresses in wheat in the future.
Collapse
Affiliation(s)
- Yongwei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Wenye Chen
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | | | - Yuhuan Su
- Handan Academy of Agricultural Sciences, Handan, China
| | - Yuan Li
- Hebei Seed Station, Shijiazhuang, China
| | - Weizhe Jia
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fan Yang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fushuang Dong
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jianfang Chai
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - He Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Mengyu Lv
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Yanyi Li
- NCPC GeneTech Biotechnology Co. Ltd, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
13
|
Wu D, Yang N, Xiang Q, Zhu M, Fang Z, Zheng W, Lu J, Sha L, Fan X, Cheng Y, Wang Y, Kang H, Zhang H, Zhou Y. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int J Mol Sci 2022; 23:ijms232314818. [PMID: 36499149 PMCID: PMC9737853 DOI: 10.3390/ijms232314818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Namei Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingkun Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyan Fang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiale Lu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| | - Yonghong Zhou
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| |
Collapse
|
14
|
Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, Meng D, Wang X, Song L, Sun L, Han J, Zhao H, Ji J, Wang Z, He X, Li R, Chi X, Liang C, Niu B, Xiao J, Li J, Ling HQ. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. MOLECULAR PLANT 2022; 15:1440-1456. [PMID: 35864747 DOI: 10.1016/j.molp.2022.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Studying the regulatory mechanisms that drive nitrogen-use efficiency (NUE) in crops is important for sustainable agriculture and environmental protection. In this study, we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism. By comparative analyses, we found that the high-affinity nitrate transporter gene family had expanded in Triticeae. Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility, providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats. To explore the genetic and molecular mechanisms of high NUE, we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204 (KN9204) and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high- and low-nitrogen conditions. Compared with Jing 411, KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds. Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411, whereas this suppression of gene expression was much lower in KN9204. In addition, KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity. Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411, especially at the reproductive stage. The high NUE of KN9204 is an integrated effect controlled at different levels. Taken together, our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xinyin Han
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haidong Zhu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhexin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jiajia Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoli Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Deyuan Meng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoyan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Liqiang Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Lijing Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jie Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Hui Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Jun Ji
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Zhiguo Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiaoyu He
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuebin Chi
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junming Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Yazhou Bay Seed Laboratory of Hainan Province, Sanya 572019, China.
| |
Collapse
|
15
|
Nagy I, Veeckman E, Liu C, Bel MV, Vandepoele K, Jensen CS, Ruttink T, Asp T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 2022; 23:505. [PMID: 35831814 PMCID: PMC9281035 DOI: 10.1186/s12864-022-08697-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily. Development of state-of-the-art genomic resources in species of the Poeae subfamily, which includes important crops like fescues and ryegrasses, is lagging behind the progress in the cereal species. RESULTS Here, we report a new chromosome-scale genome sequence assembly for perennial ryegrass, obtained by combining PacBio long-read sequencing, Illumina short-read polishing, BioNano optical mapping and Hi-C scaffolding. More than 90% of the total genome size of perennial ryegrass (approximately 2.55 Gb) is covered by seven pseudo-chromosomes that show high levels of collinearity to the orthologous chromosomes of Triticeae species. The transposon fraction of perennial ryegrass was found to be relatively low, approximately 35% of the total genome content, which is less than half of the genome repeat content of cultivated cereal species. We predicted 54,629 high-confidence gene models, 10,287 long non-coding RNAs and a total of 8,393 short non-coding RNAs in the perennial ryegrass genome. CONCLUSIONS The new reference genome sequence and annotation presented here are valuable resources for comparative genomic studies in grasses, as well as for breeding applications and will expedite the development of productive varieties in perennial ryegrass and related species.
Collapse
Affiliation(s)
- Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- Present address: DLF Seeds A/S, Denmark, Højerupvej 31, Store Heddinge, DK-4660 Denmark
| | - Chang Liu
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard Karls Universität, Auf der Morgenstelle 32, Tübingen, 72076 Germany
- Present address: Institut für Biologie, Universität Hohenheim, Garbenstr. 30, Stuttgart, 70599 Germany
| | - Michiel Van Bel
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | | | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| |
Collapse
|
16
|
King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:919519. [PMID: 35720607 PMCID: PMC9198554 DOI: 10.3389/fpls.2022.919519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
Triticum timopheevii (2n = 28, A t A t GG) is a tetraploid wild relative species with great potential to increase the genetic diversity of hexaploid wheat Triticum aestivum (2n = 42, AABBDD) for various important agronomic traits. A breeding scheme that propagated advanced backcrossed populations of wheat-T. timopheevii introgression lines through further backcrossing and self-fertilisation resulted in the generation of 99 introgression lines (ILs) that carried 309 homozygous segments from the A t and G subgenomes of T. timopheevii. These introgressions contained 89 and 74 unique segments from the A t and G subgenomes, respectively. These overlapping segments covered 98.9% of the T. timopheevii genome that has now been introgressed into bread wheat cv. Paragon including the entirety of all T. timopheevii chromosomes via varying sized segments except for chromosomes 3A t , 4G, and 6G. Homozygous ILs contained between one and eight of these introgressions with an average of three per introgression line. These homozygous introgressions were detected through the development of a set of 480 chromosome-specific Kompetitive allele specific PCR (KASP) markers that are well-distributed across the wheat genome. Of these, 149 were developed in this study based on single nucleotide polymorphisms (SNPs) discovered through whole genome sequencing of T. timopheevii. A majority of these KASP markers were also found to be T. timopheevii subgenome specific with 182 detecting A t subgenome and 275 detecting G subgenome segments. These markers showed that 98% of the A t segments had recombined with the A genome of wheat and 74% of the G genome segments had recombined with the B genome of wheat with the rest recombining with the D genome of wheat. These results were validated through multi-colour in situ hybridisation analysis. Together these homozygous wheat-T. timopheevii ILs and chromosome-specific KASP markers provide an invaluable resource to wheat breeders for trait discovery to combat biotic and abiotic stress factors affecting wheat production due to climate change.
Collapse
Affiliation(s)
- Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola Walter
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jack Walker
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Ian Phillip King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
17
|
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan HS, Gupta PK. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Salina E, Muterko A, Kiseleva A, Liu Z, Korol A. Dissection of Structural Reorganization of Wheat 5B Chromosome Associated With Interspecies Recombination Suppression. FRONTIERS IN PLANT SCIENCE 2022; 13:884632. [PMID: 36340334 PMCID: PMC9629394 DOI: 10.3389/fpls.2022.884632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.
Collapse
Affiliation(s)
- Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Alexander Muterko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Gawande ND, Hamiditabar Z, Brunetti SC, Gulick PJ. Characterization of the heterotrimeric G protein gene families in Triticum aestivum and related species. 3 Biotech 2022; 12:99. [PMID: 35463045 PMCID: PMC8938547 DOI: 10.1007/s13205-022-03156-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
This study characterizes the heterotrimeric G protein gene families in Triticum aestivum, their tissue-specific expression patterns during development and in response to biotic and abiotic stress conditions. There are three Gα genes, three Gβ and 12 Gγ genes, totaling 18 genes encoding heterotrimeric G proteins in the hexaploid wheat genome. Each haploid genome of the hexaploid T. aestivum has a single gene encoding the α subunit of the heterotrimeric G protein complex, GA1, a single Gβ and four Gγ genes. Each gene has three homeologous copies in the A, B and D genomes. The physical interaction between the Gβ (Gpb) and two Gγ subunits, Gpg1 and Gpg2, was shown through bimolecular fluorescence complementation (BiFC). The gene expression in response to biotic and abiotic stresses showed both up-regulation and down-regulation of members of the gene families. Gγ2-B and Gγ2-D are significantly upregulated during heat stress, GA1-D is upregulated by cold stress and Gγ1-A and Gγ1-D were upregulated by Fusarium graminearum inoculation in a F. graminearum resistant cultivar. This suggests that these members may play roles in biotic and abiotic signaling pathways and the roles of these genes within these pathways need further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03156-9.
Collapse
Affiliation(s)
- Nilesh D. Gawande
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QB H4B 1R6 Canada
| | - Zeynab Hamiditabar
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QB H4B 1R6 Canada
| | - Sabrina C. Brunetti
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QB H4B 1R6 Canada
| | - Patrick J. Gulick
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QB H4B 1R6 Canada
| |
Collapse
|
20
|
Grewal S, Coombes B, Joynson R, Hall A, Fellers J, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Chromosome-specific KASP markers for detecting Amblyopyrum muticum segments in wheat introgression lines. THE PLANT GENOME 2022; 15:e20193. [PMID: 35102721 DOI: 10.1002/tpg2.20193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∼38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | | | - Ryan Joynson
- Earlham Institute, Norwich Research Park, Norwich, UK
- Current address: Limagrain Europe, Clermont-Ferrand, France
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - John Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Cai-Yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Peter Isaac
- iDna Genetics Ltd., Norwich Research Park, Norwich, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| |
Collapse
|
21
|
Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance. Int J Mol Sci 2022; 23:ijms23052731. [PMID: 35269872 PMCID: PMC8910991 DOI: 10.3390/ijms23052731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Rye is the most important source for the genetic improvement of wheat. In this study, two stable wheat-rye primary 1RS.1BL translocation lines, RT855-13 and RT855-14, were selected and identified by acid polyacrylamide gel electrophoresis (A-PAGE), co-dominant PCR, and multi-color fluorescence in situ hybridization (MC-FISH) from the progeny of the crossing of the wheat cultivar Mianyang11 and a Chinese rye Weining. When more than two independent, simple reciprocal translocations are involved in a carrier, they are defined as complex chromosome translocations (CCT). The MC-FISH results also indicated that CCT occurred in RT855-13; namely that, besides 1RS.1BL translocation chromosomes, there are other two pairs of balanced reciprocal translocations. It was demonstrated that the interchange between a distal segment of 4B and long arm of 3D occurred in the RT855-13. The novel translocation chromosomes in wheat were recorded as 3DS.4BSDS and 3DL-4BSPS.4BL. Reports about CCT as a genetic resource in plant breeding programs are scarce. Both lines expressed high resistance to Puccinia striiformis f. sp. tritici, which are prevalent in China and are virulent on Yr9, and the CCT line RT855-13 retained better resistance as adult plants compared with RT855-14 in the field. Both lines, especially the CCT line RT855-13, exhibited better agronomic traits than their wheat parent, Mianyang11, indicating that both translocation lines could potentially be used for wheat improvement. The results also indicated that the position effects of CCT can lead to beneficial variations in agronomic and resistant traits, making them a valuable genetic resource to wheat breeding programs.
Collapse
|
22
|
Adonina IG, Timonova EM, Salina EA. Introgressive Hybridization of Common Wheat: Results and Prospects. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhai H, Jiang C, Zhao Y, Yang S, Li Y, Yan K, Wu S, Luo B, Du Y, Jin H, Liu X, Zhang Y, Lu F, Reynolds M, Ou X, Qiao W, Jiang Z, Peng T, Gao D, Hu W, Wang J, Gao H, Yin G, Zhang K, Li G, Wang D. Wheat heat tolerance is impaired by heightened deletions in the distal end of 4AL chromosomal arm. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1038-1051. [PMID: 33372381 PMCID: PMC8131055 DOI: 10.1111/pbi.13529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Heat stress (HS) causes substantial damages to worldwide crop production. As a cool season crop, wheat (Triticum aestivum) is sensitive to HS-induced damages. To support the genetic improvement of wheat HS tolerance (HST), we conducted fine mapping of TaHST1, a locus required for maintaining wheat vegetative and reproductive growth under elevated temperatures. TaHST1 was mapped to the distal terminus of 4AL chromosome arm using genetic populations derived from two BC6 F6 breeding lines showing tolerance (E6015-4T) or sensitivity (E6015-3S) to HS. The 4AL region carrying TaHST1 locus was approximately 0.949 Mbp and contained the last 19 high confidence genes of 4AL according to wheat reference genome sequence. Resequencing of E6015-3S and E6015-4T and haplotype analysis of 3087 worldwide wheat accessions revealed heightened deletion polymorphisms in the distal 0.949 Mbp region of 4AL, which was confirmed by the finding of frequent gene losses in this region in eight genome-sequenced hexaploid wheat cultivars. The great majority (86.36%) of the 3087 lines displayed different degrees of nucleotide sequence deletions, with only 13.64% of them resembling E6015-4T in this region. These deletions can impair the presence and/or function of TaHST1 and surrounding genes, thus rendering global wheat germplasm vulnerable to HS or other environmental adversities. Therefore, conscientious and urgent efforts are needed in global wheat breeding programmes to optimize the structure and function of 4AL distal terminus by ensuring the presence of TaHST1 and surrounding genes. The new information reported here will help to accelerate the ongoing global efforts in improving wheat HST.
Collapse
Affiliation(s)
- Huijie Zhai
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyHenan Institute of Science and TechnologyXinxiangChina
| | - Congcong Jiang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yue Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shuling Yang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Kunfang Yan
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Shuyu Wu
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Bingke Luo
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Yi Du
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanbin Zhang
- Crop Breeding InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | | | - Xingqi Ou
- School of Life Science and TechnologyHenan Institute of Science and TechnologyXinxiangChina
| | - Wenchen Qiao
- Dryland Farming InstituteHebei Academy of Agricultural and Forestry SciencesHengshuiHebeiChina
| | - Zhikai Jiang
- Xinxiang Academy of Agricultural SciencesXinxiangHenanChina
| | - Tao Peng
- Jiyuan Academy of Agricultral SciencesJiyuanHenanChina
| | - Derong Gao
- Yangzhou Academy of Agricultural SciencesYangzhouJiangsuChina
| | - Wenjing Hu
- Yangzhou Academy of Agricultural SciencesYangzhouJiangsuChina
| | - Jiangchun Wang
- Yantai Academy of Agricultural SciencesYantaiShandongChina
| | - Haitao Gao
- Luoyang Academy of Agricultral and Forestry SciencesLuoyangHenanChina
| | - Guihong Yin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Grewal S, Guwela V, Newell C, Yang CY, Ashling S, Scholefield D, Hubbart-Edwards S, Burridge A, Stride A, King IP, King J. Generation of Doubled Haploid Wheat- Triticum urartu Introgression Lines and Their Characterisation Using Chromosome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:643636. [PMID: 34054892 PMCID: PMC8155260 DOI: 10.3389/fpls.2021.643636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 05/07/2023]
Abstract
Wheat is one of the most important food and protein sources in the world and although, in recent years wheat breeders have achieved yield gains, they are not sufficient to meet the demands of an ever-growing population. Development of high yielding wheat varieties, resilient to abiotic and biotic stress resulting from climate change, has been limited by wheat's narrow genetic base. In contrast to wheat, the wild relatives of wheat provide a vast reservoir of genetic variation for most, if not all, agronomic traits. Previous studies by the authors have shown the transfer of genetic variation from T. urartu into bread wheat. However, before the introgression lines can be exploited for trait analysis, they are required to have stable transmission of the introgressions to the next generation. In this work, we describe the generation of 86 doubled haploid (DH) wheat-T. urartu introgression lines that carry homozygous introgressions which are stably inherited. The DH lines were characterised using the Axiom® Wheat Relative Genotyping Array and 151 KASP markers to identify 65 unique T. urartu introgressions in a bread wheat background. DH production has helped accelerate the breeding process and facilitated the early release of homozygous wheat-T. urartu introgression lines. Together with the KASP markers, this valuable resource could greatly advance identification of beneficial alleles that can be used in wheat improvement.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Veronica Guwela
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Claire Newell
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Alex Stride
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- *Correspondence: Julie King,
| |
Collapse
|
25
|
Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A Collinearity-Incorporating Homology Inference Strategy for Connecting Emerging Assemblies in the Triticeae Tribe as a Pilot Practice in the Plant Pangenomic Era. MOLECULAR PLANT 2020; 13:1694-1708. [PMID: 32979565 DOI: 10.1016/j.molp.2020.09.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 05/18/2023]
Abstract
Plant genome sequencing has dramatically increased, and some species even have multiple high-quality reference versions. Demands for clade-specific homology inference and analysis have increased in the pangenomic era. Here we present a novel method, GeneTribe (https://chenym1.github.io/genetribe/), for homology inference among genetically similar genomes that incorporates gene collinearity and shows better performance than traditional sequence-similarity-based methods in terms of accuracy and scalability. The Triticeae tribe is a typical allopolyploid-rich clade with complex species relationships that includes many important crops, such as wheat, barley, and rye. We built Triticeae-GeneTribe (http://wheat.cau.edu.cn/TGT/), a homology database, by integrating 12 Triticeae genomes and 3 outgroup model genomes and implemented versatile analysis and visualization functions. With macrocollinearity analysis, we were able to construct a refined model illustrating the structural rearrangements of the 4A-5A-7B chromosomes in wheat as two major translocation events. With collinearity analysis at both the macro- and microscale, we illustrated the complex evolutionary history of homologs of the wheat vernalization gene Vrn2, which evolved as a combined result of genome translocation, duplication, and polyploidization and gene loss events. Our work provides a useful practice for connecting emerging genome assemblies, with awareness of the extensive polyploidy in plants, and will help researchers efficiently exploit genome sequence resources.
Collapse
Affiliation(s)
- Yongming Chen
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wanjun Song
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Beijing Geek Gene Technology Co Ltd, Beijing 100193, China
| | - Xiaoming Xie
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Panfeng Guan
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Zhang M, Zhang W, Zhu X, Sun Q, Yan C, Xu SS, Fiedler J, Cai X. Dissection and physical mapping of wheat chromosome 7B by inducing meiotic recombination with its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3455-3467. [PMID: 32930833 DOI: 10.1007/s00122-020-03680-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
27
|
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 2020; 46:107659. [PMID: 33259907 DOI: 10.1016/j.biotechadv.2020.107659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| |
Collapse
|
28
|
Wang X, Zhang H, Nyamesorto B, Luo Y, Mu X, Wang F, Kang Z, Lagudah E, Huang L. A new mode of NPR1 action via an NB-ARC-NPR1 fusion protein negatively regulates the defence response in wheat to stem rust pathogen. THE NEW PHYTOLOGIST 2020; 228:959-972. [PMID: 32544264 PMCID: PMC7589253 DOI: 10.1111/nph.16748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
NPR1 has been found to be a key transcriptional regulator in some plant defence responses. There are nine NPR1 homologues (TaNPR1) in wheat, but little research has been done to understand the function of those NPR1-like genes in the wheat defence response against stem rust (Puccinia graminis f. sp. tritici) pathogens. We used bioinformatics and reverse genetics approaches to study the expression and function of each TaNPR1. We found six members of TaNPR1 located on homoeologous group 3 chromosomes (designated as TaG3NPR1) and three on homoeologous group 7 chromosomes (designated as TaG7NPR1). The group 3 NPR1 proteins regulate transcription of SA-responsive PR genes. Downregulation of all the TaNPR1 homologues via virus-induced gene co-silencing resulted in enhanced resistance to stem rust. More specifically downregulating TaG7NPR1 homeologues or Ta7ANPR1 expression resulted in stem rust resistance phenotype. By contrast, knocking down TaG3NPR1 alone did not show visible phenotypic changes in response to the rust pathogen. Knocking out Ta7ANPR1 enhanced resistance to stem rust. The Ta7ANPR1 locus is alternatively spliced under pathogen inoculated conditions. We discovered a new mode of NPR1 action in wheat at the Ta7ANPR1 locus through an NB-ARC-NPR1 fusion protein negatively regulating the defence to stem rust infection.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717‐3150USA
| | - Hongtao Zhang
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717‐3150USA
| | - Bernard Nyamesorto
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717‐3150USA
| | - Yi Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiaoqian Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fangyan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Evans Lagudah
- CSIRO Agriculture & FoodGPO Box 1700CanberraACT2601Australia
| | - Li Huang
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717‐3150USA
| |
Collapse
|
29
|
Shah R, Keeble-Gagnère G, Whan A. Accurate calling of homeoallelic genotypes of iSelect markers using inbred structured populations. Bioinformatics 2020; 36:4240-4247. [PMID: 32374818 DOI: 10.1093/bioinformatics/btaa295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Genetic map construction is a foundational step in the analysis of structured experimental populations. For markers that hybridize to several genetically similar locations, or where several alleles are present (such as in multiparental populations), current methods often discard the marker or incorrectly call the genotypes. These errors result in information loss, or incorrect genotypes that can corrupt map construction. RESULTS We present a new approach for simultaneously performing genetic map construction and marker calling. Our new approach allows the calling of a larger number of markers, a larger number of unique alleles per marker and the correct use of markers which hybridize to multiple genetically similar locations. We demonstrate our new approach using simulations, a biparental wheat population and an eight-parent population of spring bread wheat. Applying our method to the eight-parent population increased the number of mapped markers by 71%. We show that the new genetic map allows the investigation of synteny in ways that were not previously possible in that dataset. AVAILABILITY AND IMPLEMENTATION The method described in this article has been incorporated into R package mpMap2. It is available from CRAN and also from https://github.com/rohan-shah/mpMap2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rohan Shah
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia.,ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - Alex Whan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Jordan KW, He F, de Soto MF, Akhunova A, Akhunov E. Differential chromatin accessibility landscape reveals structural and functional features of the allopolyploid wheat chromosomes. Genome Biol 2020; 21:176. [PMID: 32684157 PMCID: PMC7368981 DOI: 10.1186/s13059-020-02093-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Our understanding of how the complexity of the wheat genome influences the distribution of chromatin states along the homoeologous chromosomes is limited. Using a differential nuclease sensitivity assay, we investigate the chromatin states of the coding and repetitive regions of the allopolyploid wheat genome. Results Although open chromatin is found to be significantly enriched around genes, the majority of MNase-sensitive regions are located within transposable elements (TEs). Chromatin of the smaller D genome is more accessible than that of the larger A and B genomes. Chromatin states of different TEs vary among families and are influenced by the TEs’ chromosomal position and proximity to genes. While the chromatin accessibility of genes is influenced by proximity to TEs, and not by their position on the chromosomes, we observe a negative chromatin accessibility gradient along the telomere-centromere axis in the intergenic regions, positively correlated with the distance between genes. Both gene expression levels and homoeologous gene expression bias are correlated with chromatin accessibility in promoter regions. The differential nuclease sensitivity assay accurately predicts previously detected centromere locations. SNPs located within more accessible chromatin explain a higher proportion of genetic variance for a number of agronomic traits than SNPs located within more closed chromatin. Conclusions Chromatin states in the wheat genome are shaped by the interplay of repetitive and gene-encoding regions that are predictive of the functional and structural organization of chromosomes, providing a powerful framework for detecting genomic features involved in gene regulation and prioritizing genomic variation to explain phenotypes.
Collapse
Affiliation(s)
- Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Monica Fernandez de Soto
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA.,Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
31
|
Coulton A, Edwards KJ. AutoCloner: automatic homologue-specific primer design for full-gene cloning in polyploids. BMC Bioinformatics 2020; 21:311. [PMID: 32677889 PMCID: PMC7364506 DOI: 10.1186/s12859-020-03601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 12/02/2022] Open
Abstract
Background Polyploid organisms such as wheat complicate even the simplest of procedures in molecular biology. Whilst knowledge of genomic sequences in crops is increasing rapidly, the scientific community is still a long way from producing a full pan-genome for every species. Polymerase chain reaction and Sanger sequencing therefore remain widely used as methods for characterizing gene sequences in many varieties of crops. High sequence similarity between genomes in polyploids means that if primers are not homeologue-specific via the incorporation of a SNP at the 3’ tail, sequences other than the target sequence will also be amplified. Current consensus for gene cloning in wheat is to manually perform many steps in a long bioinformatics pipeline. Results Here we present AutoCloner (www.autocloner.com), a fully automated pipeline for crop gene cloning that includes a free-to-use web interface for users. AutoCloner takes a sequence of interest from the user and performs a basic local alignment search tool (BLAST) search against the genome assembly for their particular polyploid crop. Homologous sequences are then compiled with the input sequence into a multiple sequence alignment which is mined for single-nucleotide polymorphisms (SNPs). Various combinations of potential primers that cover the entire gene of interest are then created and evaluated by Primer3; the set of primers with the highest score, as well as all possible primers at every SNP location, are then returned to the user for polymerase chain reaction (PCR). We have successfully used AutoCloner to clone various genes of interest in the Apogee wheat variety, which has no current genome sequence. In addition, we have successfully run the pipeline on ~ 80,000 high-confidence gene models from a wheat genome assembly. Conclusion AutoCloner is the first tool to fully-automate primer design for gene cloning in polyploids, where previously the consensus within the wheat community was to perform this process manually. The web interface for AutoCloner provides a simple and effective polyploid primer-design method for gene cloning, with no need for researchers to download software or input any other details other than their sequence of interest.
Collapse
Affiliation(s)
- Alexander Coulton
- Biological Sciences Department, The University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Keith J Edwards
- Biological Sciences Department, The University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
32
|
Buffagni V, Vurro F, Janni M, Gullì M, Keller AA, Marmiroli N. Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:891. [PMID: 32719694 PMCID: PMC7350509 DOI: 10.3389/fpls.2020.00891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Global climate change, its implications for agriculture, and the complex scenario presented by the scientific community are of worldwide concern. Drought is a major abiotic stress that can restrict plants growth and yields, thus the identification of genotypes with higher adaptability to drought stress represents one of the primary goals in breeding programs. During abiotic stress, metabolic adaptation is crucial for stress tolerance, and accumulation of specific amino acids and/or as secondary metabolites deriving from amino acid metabolism may correlate with the increased tolerance to adverse environmental conditions. This work, focused on the metabolism of branched chain-amino acids (BCAAs) in durum wheat and the role of branched-chain amino acid aminotransferases (BCATs) in stress response. The role of BCATs in plant response to drought was previously proposed for Arabidopsis, where the levels of BCAAs were altered at the transcriptional level under drought conditions, triggering the onset of defense response metabolism. However, in wheat the role of BCAAs as a trigger of the onset of the drought defense response has not been elucidated. A comparative genomic approach elucidated the composition of the BCAT gene family in durum wheat. Here we demonstrate a tissue and developmental stage specificity of BCATs regulation in the drought response. Moreover, a metabolites profiling was performed on two contrasting durum wheat cultivars Colosseo and Cappelli resulting in the detection of a specific pattern of metabolites accumulated among genotypes and, in particular, in an enhanced BCAAs accumulation in the tolerant cv Cappelli further supporting a role of BCAAs in the drought defense response. The results support the use of gene expression and target metabolomic in modern breeding to shape new cultivars more resilient to a changing climate.
Collapse
Affiliation(s)
- Valentina Buffagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Filippo Vurro
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Michela Janni
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Arturo A. Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
33
|
Baker L, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2213-2226. [PMID: 32313991 PMCID: PMC7311493 DOI: 10.1007/s00122-020-03591-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.
Collapse
Affiliation(s)
- Lauren Baker
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Cai-Yun Yang
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Amanda J Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Paul A Wilkinson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ian P King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
34
|
Zhou C, Dong Z, Zhang T, Wu J, Yu S, Zeng Q, Han D, Tong W. Genome-Scale Analysis of Homologous Genes among Subgenomes of Bread Wheat ( Triticum aestivum L.). Int J Mol Sci 2020; 21:ijms21083015. [PMID: 32344734 PMCID: PMC7215433 DOI: 10.3390/ijms21083015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Determining the distribution and correspondence of genome-scale homologous genes in wheat are effective ways to uncover chromosome rearrangement that has occurred during crop evolution and domestication, which can contribute to improvements in crop breeding. High-resolution and comprehensive analysis of the wheat genome by the International Wheat Genome Sequencing Consortium (IWGSC) revealed a total of 88,733 high-confidence homologous genes of four major types (1:1:1, 1:1:0, 0:1:1 and 1:0:1) among the A, B and D subgenomes of wheat. This data was used to compare homologous gene densities among chromosomes, clarify their distribution and correspondence relationship, and compare their functional enrichment. The average density of 1:1:1 homologous genes was about 10 times more than the density of the other three types of homologous genes, although the homologous gene densities of the various chromosomes were similar within each homologous type. Three regions of exceptional density were detected in 1:1:1 homologous genes, the isolate peak on the tail of chromosome 4A, and the desert regions at the start of chromosome 7A and 7D. The correspondence between homologous genes of the wheat subgenomes demonstrated translocation between the tail segments of chromosome 4A and 5A, and the inversion of the segment of original 5A and 7B into the tail of 4A. The homologous genes on the inserting segments of 5A and 7B to 4A were highly enriched in nitrogen, primary metabolite and small molecular metabolism processes, compared with genes on other regions of the original 4A chromosome. This study provides a refined genome-scale reference of homologous genes for wheat molecular research and breeding, which will help to broaden the application of the wheat genome and can be used as a template for research on other polyploid plants.
Collapse
Affiliation(s)
- Caie Zhou
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhaonian Dong
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ting Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jianhui Wu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shizhou Yu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Dejun Han
- College of Agronomy, Northwest A&F University, Yangling 712100, China
- Correspondence: (D.H.); (W.T.); Tel.: +86-29-87081317 (D.H.); Fax: +86-29-87081317 (D.H.)
| | - Wei Tong
- College of Agronomy, Northwest A&F University, Yangling 712100, China
- Correspondence: (D.H.); (W.T.); Tel.: +86-29-87081317 (D.H.); Fax: +86-29-87081317 (D.H.)
| |
Collapse
|
35
|
Bariah I, Keidar-Friedman D, Kashkush K. Identification and characterization of large-scale genomic rearrangements during wheat evolution. PLoS One 2020; 15:e0231323. [PMID: 32287287 PMCID: PMC7156093 DOI: 10.1371/journal.pone.0231323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Following allopolyploidization, nascent polyploid wheat species react with massive genomic rearrangements, including deletion of transposable element-containing sequences. While such massive rearrangements are considered to be a prominent process in wheat genome evolution and speciation, their structure, extent, and underlying mechanisms remain poorly understood. In this study, we retrieved ~3500 insertions of a specific variant of Fatima, one of the most dynamic gypsy long-terminal repeat retrotransposons in wheat from the recently available high-quality genome drafts of Triticum aestivum (bread wheat) and Triticum turgidum ssp. dicoccoides or wild emmer, the allotetraploid mother of all modern wheats. The dynamic nature of Fatima facilitated the identification of large (i.e., up to ~ 1 million bases) Fatima-containing insertions/deletions (indels) upon comparison of bread wheat and wild emmer genomes. We characterized 11 such indels using computer-assisted analysis followed by PCR validation, and found that they might have occurred via unequal intra-strand recombination or double-strand break (DSB) events. Additionally, we observed one case of introgression of novel DNA fragments from an unknown source into the wheat genome. Our data thus indicate that massive large-scale DNA rearrangements might play a prominent role in wheat speciation.
Collapse
Affiliation(s)
- Inbar Bariah
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
36
|
Xu J, Wang L, Deal KR, Zhu T, Ramasamy RK, Luo MC, Malvick J, You FM, McGuire PE, Dvorak J. Genome-wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1227-1241. [PMID: 31980837 DOI: 10.1007/s00122-020-03544-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
We introgressed wheatgrass germplasm from the octoploid amphiploid Triticum aestivum× Lophopyrum elongatum into wheat by manipulating the wheat Ph1 gene and discovered and characterized 130 introgression lines harboring single or, in various combinations, complete and recombined L. elongatum chromosomes. Diploid wheatgrass Lophopyrum elongatum (genomes EE) possesses valuable traits for wheat genetics and breeding. We evaluated several strategies for introgression of this germplasm into wheat. To detect it, we developed and validated multiplexed sets of Sequenom MassARRAY single nucleotide polymorphism (SNP) markers, which differentiated disomic and monosomic L. elongatum chromosomes from wheat chromosomes. We identified 130 introgression lines (ILs), which harbored 108 complete and 89 recombined L. elongatum chromosomes. Of the latter, 59 chromosomes were recombined by one or more crossovers and 30 were involved in centromeric (Robertsonian) translocations or were telocentric. To identify wheat chromosomes substituted for or recombined with L. elongatum chromosomes, we genotyped the ILs with the wheat 90-K Infinium SNP array. We found that most of the wheat 90-K probes correctly detected their targets in the L. elongatum genome and showed that some wheat SNPs are ancient and had originated prior to the divergence of the wheat and L. elongatum lineages. Of the 130 ILs, 52% were homozygous for Ph1 deletion and thus are staged to be recombined further. We failed to detect in the L. elongatum genome the 4/5 reciprocal translocation that has been reported in Thinopyrum bessarabicum and several other Triticeae genomes.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Julia Malvick
- Veterinary Genetics Laboratory, University of California, Davis, CA, 95616, USA
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BBH, Uauy C. A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. eLife 2020; 9:e55646. [PMID: 32208137 PMCID: PMC7093151 DOI: 10.7554/elife.55646] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023] Open
Abstract
Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Jemima Brinton
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | | | | | - William D Bovill
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and BioinformaticsFiorenzuola d'ArdaItaly
| | | | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Brett Ford
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Sreya Ghosh
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | - Sadiye Hayta
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandSt LuciaAustralia
| | | | - Julie King
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington CampusLoughboroughUnited Kingdom
| | - Marco Maccaferrri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna (University of Bologna)BolognaItaly
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Curtis J Pozniak
- Crop Development Centre, University of SaskatchewanSaskatoonCanada
| | | | | | - Ben Trevaskis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luzie U Wingen
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Brande BH Wulff
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
38
|
Pascual L, Ruiz M, López-Fernández M, Pérez-Peña H, Benavente E, Vázquez JF, Sansaloni C, Giraldo P. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genomics 2020; 21:122. [PMID: 32019507 PMCID: PMC7001277 DOI: 10.1186/s12864-020-6536-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background One of the main goals of the plant breeding in the twenty-first century is the development of crop cultivars that can maintain current yields in unfavorable environments. Landraces that have been grown under varying local conditions include genetic diversity that will be essential to achieve this objective. The Center of Plant Genetic Resources of the Spanish Institute for Agriculture Research maintains a broad collection of wheat landraces. These accessions, which are locally adapted to diverse eco-climatic conditions, represent highly valuable materials for breeding. However, their efficient use requires an exhaustive genetic characterization. The overall aim of this study was to assess the diversity and population structure of a selected set of 380 Spanish landraces and 52 reference varieties of bread and durum wheat by high-throughput genotyping. Results The DArTseq GBS approach generated 10 K SNPs and 40 K high-quality DArT markers, which were located against the currently available bread and durum wheat reference genomes. The markers with known locations were distributed across all chromosomes with relatively well-balanced genome-wide coverage. The genetic analysis showed that the Spanish wheat landraces were clustered in different groups, thus representing genetic pools providing a range of allelic variation. The subspecies had a major impact on the population structure of the durum wheat landraces, with three distinct clusters that corresponded to subsp. durum, turgidum and dicoccon being identified. The population structure of bread wheat landraces was mainly biased by geographic origin. Conclusions The results showed broader genetic diversity in the landraces compared to a reference set that included commercial varieties, and higher divergence between the landraces and the reference set in durum wheat than in bread wheat. The analyses revealed genomic regions whose patterns of variation were markedly different in the landraces and reference varieties, indicating loci that have been under selection during crop improvement, which could help to target breeding efforts. The results obtained from this work will provide a basis for future genome-wide association studies.
Collapse
Affiliation(s)
- Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Magdalena Ruiz
- National Plant Genetic Resources Centre, National Institute for Agricultural and Food Research and Technology, Alcalá de Henares, Spain
| | - Matilde López-Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Helena Pérez-Peña
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Francisco Vázquez
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carolina Sansaloni
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Texcoco, Mexico
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
39
|
Hu W, Gao D, Wu H, Liu J, Zhang C, Wang J, Jiang Z, Liu Y, Li D, Zhang Y, Lu C. Genome-wide association mapping revealed syntenic loci QFhb-4AL and QFhb-5DL for Fusarium head blight resistance in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2020; 20:29. [PMID: 31959107 PMCID: PMC6971946 DOI: 10.1186/s12870-019-2177-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We conducted a genome-wide association study (GWAS) using the high-density wheat 90 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. RESULTS The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90 K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. CONCLUSION The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.
Collapse
Affiliation(s)
- Wenjing Hu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 45002, Henan, China
| | - Derong Gao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Hongya Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Jian Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Chunmei Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
| | - Junchan Wang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Zhengning Jiang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yeyu Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Dongsheng Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yong Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China.
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
| | - Chengbin Lu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China.
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China.
| |
Collapse
|
40
|
Yang J, Zhou Y, Zhang Y, Hu W, Wu Q, Chen Y, Wang X, Guo G, Liu Z, Cao T, Zhao H. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genet 2019; 20:98. [PMID: 31852431 PMCID: PMC6921503 DOI: 10.1186/s12863-019-0800-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
Background Grain weight is an important yield component. Selection of advanced lines with heavy grains show high grain sink potentials and strong sink activity, which is an increasingly important objective in wheat breeding programs. Rice OsGS3 has been identified as a major quantitative trait locus for both grain weight and grain size. However, allelic variation of GS3 has not been characterized previously in hexaploid wheat. Results We cloned 2445, 2393, and 2409 bp sequences of the homologs TaGS3-4A, TaGS3-7A, and TaGS3-7D in wheat ‘Changzhi 6406’, a cultivar that shows high grain weight. The TaGS3 genes each contained five exons and four introns, and encoded a deduced protein of 170, 169, and 169 amino acids, respectively. Phylogenetic analysis of plant GS3 protein sequences revealed GS3 to be a monocotyledon-specific gene and the GS3 proteins were resolved into three classes. The length of the atypical Gγ domain and the cysteine-rich region was conserved within each class and not conserved between classes. A single-nucleotide polymorphism in the fifth exon (at position 1907) of TaGS3-7A leads to an amino acid change (ALA/THR) and showed different frequencies in two pools of Chinese wheat accessions representing extremes in grain weight. Association analysis indicated that the TaGS3-7A-A allele was associated with higher grain weight in the natural population. The TaGS3-7A-A allele was favoured in global modern wheat cultivars but the allelic frequency varied among different wheat-production regions of China, which indicated that this allele is of potential utility to improve wheat grain weight in certain wheat-production areas of China. Conclusions The novel molecular information on wheat GS3 homologs and the KASP functional marker designed in this study may be useful in marker-assisted breeding for genetic improvement of wheat.
Collapse
Affiliation(s)
- Jian Yang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yanjie Zhou
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yu'e Zhang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Weiguo Hu
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xicheng Wang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tingjie Cao
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Hong Zhao
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| |
Collapse
|
41
|
Cseh A, Megyeri M, Yang C, Hubbart-Edwards S, Scholefield D, Ashling SS, King IP, King J, Grewal S. Development of a New A m -Genome-Specific Single Nucleotide Polymorphism Marker Set for the Molecular Characterization of Wheat-Triticum monococcum Introgression Lines. THE PLANT GENOME 2019; 12:1-7. [PMID: 33016586 DOI: 10.3835/plantgenome2018.12.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 06/11/2023]
Abstract
We identified 1247 polymorphic single nucleotide polymorphisms between Triticum monococcum and wheat. We identified 191 markers validated across all seven chromosomes of T. monococcum. Detected a T. monococcum introgression in leaf-rust-resistant lines. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum, 2n = 2x = 14, Am Am ) and its wild relative T. monococcum subsp. aegilopoides are important sources of economically useful genes that can be exploited for wheat (Triticum aestivum L.) breeding. Einkorn has excellent resistance to fungal diseases and gene transfer is relatively simple via standard breeding methods. To fulfill the growing demand by modern prebreeding programs for a cost-effective high-throughput procedure for accurately detecting introgressed chromosomes or chromosome segments from T. monococcum into wheat, we used the Axiom Wheat-Relative Genotyping Array and developed a set of Am genome-specific exome-based single nucleotide polymorphism (SNP) markers suitable for rapid identification of T. monococcum chromatin in a wheat background. We identified 1247 polymorphic SNPs between T. monococcum and wheat. We identified 191 markers across all seven chromosomes of T. monococcum that are also present on an existing Triticum urartu Thum. ex Gandil. genetic map and potentially ordered them on the basis of the high macrocollinearity and conservation of marker order between T. monococcum and T. urartu. The marker set has been tested on leaf-rust-resistant BC3 F4 progenies of wheat-T. monococcum hybrids. Two markers (AX-94492165, AX-95073542) placed on the distal end of the chromosome arm 7AL detected a T. monococcum introgression into wheat. The SNP marker set thus proved highly effective in the identification of T. monococcum chromatin in a wheat background, offering a reliable method for screening and selecting wheat-T. monococcum introgression lines, a procedure that could significantly speed up prebreeding programs.
Collapse
Affiliation(s)
- Andras Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462, Martonvasar, Hungary
| | - Maria Megyeri
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, PO Box 19, 2462, Martonvasar, Hungary
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Stephen S Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, Univ. of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
42
|
Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H. Genome-Wide Identification and Analysis of the AP2 Transcription Factor Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1286. [PMID: 31681381 PMCID: PMC6797823 DOI: 10.3389/fpls.2019.01286] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/23/2023]
Abstract
The AP2 transcription factors play important roles in regulating plant growth and development. However, limited data are available on the contributions of AP2 transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 62 AP2 genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat AP2 genes into 3 clusters, euAP2, euANT, and basalANT. Chromosomal distribution, gene structure and duplication, and motif composition were subsequently investigated. The 62 TaAP2 genes were unevenly distributed on 21 chromosomes. Twenty-four homologous gene sets among A, B, and D sub-genomes were detected, which contributed to the expansion of the wheat AP2 gene family. The expression levels of TaAP2 genes were examined using the WheatExp database; most detected genes exhibited tissue-specific expression patterns. The transcript levels of 9 randomly selected TaAP2 genes were validated through qPCR analyses. Overexpression of TaAP2-10-5D, the most likely homolog of Arabidopsis ANT gene, increased organ sizes in Arabidopsis. Our results extend our knowledge of the AP2 gene family in wheat, and contribute to further functional characterization of AP2s during wheat development with the ultimate goal of improving crop production.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Renyi Ma
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huihui Bi
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Yu K, Liu D, Chen Y, Wang D, Yang W, Yang W, Yin L, Zhang C, Zhao S, Sun J, Liu C, Zhang A. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4671-4688. [PMID: 31226200 PMCID: PMC6760303 DOI: 10.1093/jxb/erz247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/15/2019] [Indexed: 05/12/2023]
Abstract
Understanding the genetic architecture of grain size is a prerequisite to manipulating grain development and improving the potential crop yield. In this study, we conducted a whole genome-wide quantitative trait locus (QTL) mapping of grain-size-related traits by constructing a high-density genetic map using 109 recombinant inbred lines of einkorn wheat. We explored the candidate genes underlying QTLs through homologous analysis and RNA sequencing. The high-density genetic map spanned 1873 cM and contained 9937 single nucleotide polymorphism markers assigned to 1551 bins on seven chromosomes. Strong collinearity and high genome coverage of this map were revealed by comparison with physical maps of wheat and barley. Six grain size-related traits were surveyed in five environments. In total, 42 QTLs were identified; these were assigned to 17 genomic regions on six chromosomes and accounted for 52.3-66.7% of the phenotypic variation. Thirty homologous genes involved in grain development were located in 12 regions. RNA sequencing identified 4959 genes differentially expressed between the two parental lines. Twenty differentially expressed genes involved in grain size development and starch biosynthesis were mapped to nine regions that contained 26 QTLs, indicating that the starch biosynthesis pathway plays a vital role in grain development in einkorn wheat. This study provides new insights into the genetic architecture of grain size in einkorn wheat; identification of the underlying genes enables understanding of grain development and wheat genetic improvement. Furthermore, the map facilitates quantitative trait mapping, map-based cloning, genome assembly, and comparative genomics in wheat taxa.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wei Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Lixin Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shancen Zhao
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence: and
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Correspondence: and
| |
Collapse
|
44
|
Yu K, Liu D, Chen Y, Wang D, Yang W, Yang W, Yin L, Zhang C, Zhao S, Sun J, Liu C, Zhang A. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. JOURNAL OF EXPERIMENTAL BOTANY 2019. [PMID: 31226200 DOI: 10.1101/377820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the genetic architecture of grain size is a prerequisite to manipulating grain development and improving the potential crop yield. In this study, we conducted a whole genome-wide quantitative trait locus (QTL) mapping of grain-size-related traits by constructing a high-density genetic map using 109 recombinant inbred lines of einkorn wheat. We explored the candidate genes underlying QTLs through homologous analysis and RNA sequencing. The high-density genetic map spanned 1873 cM and contained 9937 single nucleotide polymorphism markers assigned to 1551 bins on seven chromosomes. Strong collinearity and high genome coverage of this map were revealed by comparison with physical maps of wheat and barley. Six grain size-related traits were surveyed in five environments. In total, 42 QTLs were identified; these were assigned to 17 genomic regions on six chromosomes and accounted for 52.3-66.7% of the phenotypic variation. Thirty homologous genes involved in grain development were located in 12 regions. RNA sequencing identified 4959 genes differentially expressed between the two parental lines. Twenty differentially expressed genes involved in grain size development and starch biosynthesis were mapped to nine regions that contained 26 QTLs, indicating that the starch biosynthesis pathway plays a vital role in grain development in einkorn wheat. This study provides new insights into the genetic architecture of grain size in einkorn wheat; identification of the underlying genes enables understanding of grain development and wheat genetic improvement. Furthermore, the map facilitates quantitative trait mapping, map-based cloning, genome assembly, and comparative genomics in wheat taxa.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wei Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Lixin Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shancen Zhao
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids. Sci Rep 2019; 9:12298. [PMID: 31444367 DOI: 10.1038/s41598-019-48639-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Avena (oats) contains diploid, tetraploid and hexaploid species that evolved through hybridization and polyploidization. Four genome types (named A through D) are generally recognized. We used GBS markers to construct linkage maps of A genome diploid (Avena strigosa x A. wiestii, 2n = 14), and AB genome tetraploid (A. barbata 2n = 28) oats. These maps greatly improve coverage from older marker systems. Seven linkage groups in the tetraploid showed much stronger homology and synteny with the A genome diploids than did the other seven, implying an allopolyploid hybrid origin of A. barbata from distinct A and B genome diploid ancestors. Inferred homeologies within A. barbata revealed that the A and B genomes are differentiated by several translocations between chromosomes within each subgenome. However, no translocation exchanges were observed between A and B genomes. Comparison to a consensus map of ACD hexaploid A. sativa (2n = 42) revealed that the A and D genomes of A. sativa show parallel rearrangements when compared to the A genomes of the diploids and tetraploids. While intergenomic translocations are well known in polyploid Avena, our results are most parsimoniously explained if translocations also occurred in the A, B and D genome diploid ancestors of polyploid Avena.
Collapse
|
46
|
Larson S, DeHaan L, Poland J, Zhang X, Dorn K, Kantarski T, Anderson J, Schmutz J, Grimwood J, Jenkins J, Shu S, Crain J, Robbins M, Jensen K. Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2325-2351. [PMID: 31172227 DOI: 10.1007/s00122-019-03357-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/14/2023]
Abstract
Allohexaploid (2n = 6x = 42) intermediate wheatgrass (Thinopyrum intermedium), abbreviated IWG, is an outcrossing perennial grass belonging to the tertiary gene pool of wheat. Perenniality would be valuable option for grain production, but attempts to introgress this complex trait from wheat-Thinopyrum hybrids have not been commercially successful. Efforts to breed IWG itself as a dual-purpose forage and grain crop have demonstrated useful progress and applications, but grain yields are significantly less than wheat. Therefore, genetic and physical maps have been developed to accelerate domestication of IWG. Herein, these maps were used to identify quantitative trait loci (QTLs) and candidate genes associated with IWG grain production traits in a family of 266 full-sib progenies derived from two heterozygous parents, M26 and M35. Transgressive segregation was observed for 17 traits related to seed size, shattering, threshing, inflorescence capacity, fertility, stem size, and flowering time. A total of 111 QTLs were detected in 36 different regions using 3826 genotype-by-sequence markers in 21 linkage groups. The most prominent QTL had a LOD score of 15 with synergistic effects of 29% and 22% over the family means for seed retention and percentage of naked seeds, respectively. Many QTLs aligned with one or more IWG gene models corresponding to 42 possible domestication orthogenes including the wheat Q and RHT genes. A cluster of seed-size and fertility QTLs showed possible alignment to a putative Z self-incompatibility gene, which could have detrimental grain-yield effects when genetic variability is low. These findings elucidate pathways and possible hurdles in the domestication of IWG.
Collapse
Affiliation(s)
- Steve Larson
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA.
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Xiaofei Zhang
- Department of Horticultural Science, North Carolina State University, 212 Kilgore Hall, 2721 Founders Drive, PO Box 7609, Raleigh, NC, 27607, USA
| | - Kevin Dorn
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Traci Kantarski
- American Association for the Advancement of Science, Science and Technology Policy Fellow at the United States Department of Agriculture, Animal and Plant Health Inspection Service, 4700 River Road, Riverdale, MD, 20737, USA
| | - James Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Buford Circle, St. Paul, MN, 55108, USA
| | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Shengqiang Shu
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Jared Crain
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton, Manhattan, KS, 66506, USA
| | - Matthew Robbins
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Jensen
- United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
47
|
Yu X, Han J, Wang E, Xiao J, Hu R, Yang G, He G. Genome-Wide Identification and Homoeologous Expression Analysis of PP2C Genes in Wheat ( Triticum aestivum L.). Front Genet 2019; 10:561. [PMID: 31249596 PMCID: PMC6582248 DOI: 10.3389/fgene.2019.00561] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Plant protein phosphatase 2Cs (PP2Cs) play crucial roles in phytohormone signaling, developmental processes, and both biotic and abiotic stress responses. However, little research has been conducted on the PP2C gene family in hexaploid wheat (Triticum aestivum L.), which is an important cereal crop. In this study, a genome-wide investigation of TaPP2C gene family was performed. A total of 257 homoeologs of 95 TaPP2C genes were identified, of which 80% of genes had all the three homoeologs across A, B, and D subgenomes. Domain analysis indicated that all the TaPP2C homoeologs harbored the type 2C phosphatase domains. Based on the phylogenetic analysis, TaPP2Cs were divided into 13 groups (A-M) and 4 single branches, which corresponded to the results of gene structure and protein motif analyses. Results of chromosomal location and synteny relationship analysis of TaPP2C homoeologs revealed that known chromosome translocation events and pericentromeric inversions were responsible for the formation of TaPP2C gene family. Expression patterns of TaPP2C homoeologs in various tissues and under diverse stress conditions were analyzed using publicly available RNA-seq data. The results suggested that TaPP2C genes regulate wheat developmental processes and stress responses. Homoeologous expression patterns of TaPP2C triad homoeologs from A, B, and D subgenomes, revealed expression bias within triads under the normal condition, and variability in expression under different stress treatments. Quantitative real-time PCR (qRT-PCR) analysis of eight TaPP2C genes in group A revealed that they were all up-regulated after abscisic acid treatment. Some genes in group A also responded to other phytohormones such as methyl jasmonate and gibberellin. Yeast two-hybrid assays showed that group A TaPP2Cs also interacted with TaSnRK2.1 and TaSnRK2.2 from subclass II, besides with subclass III TaSnRK2s. TaPP2C135 in group A was transformed into Arabidopsis and germination assay revealed that ectopic expression of TaPP2C135 in Arabidopsis enhanced its tolerance to ABA. Overall, these results enhance our understanding of the function of TaPP2Cs in wheat, and provide novel insights into the roles of group A TaPP2Cs. This information will be useful for in-depth functional analysis of TaPP2Cs in future studies and for wheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Michikawa A, Yoshida K, Okada M, Sato K, Takumi S. Genome-wide polymorphisms from RNA sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat. Mol Genet Genomics 2019; 294:1327-1341. [PMID: 31187273 DOI: 10.1007/s00438-019-01581-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
A survey of genome-wide polymorphisms between closely related species is required to understand the molecular basis of the evolutionary differentiation of their genomes. Two wild diploid wheat species, namely Triticum monococcum ssp. aegilopoides and T. urartu, are closely related and harbour the Am and A genomes, respectively. The A-genome donor of tetraploid and common wheat is T. urartu, and T. monococcum ssp. monococcum is the cultivated form derived from the wild einkorn wheat subspecies aegilopoides. Although subspecies aegilopoides has been a useful genetic resource in wheat breeding, genome-wide molecular markers for this subspecies have not been sufficiently developed. Here, we describe the detection of genome-wide polymorphisms such as single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) from RNA sequencing (RNA-seq) data of leaf transcripts in 15 accessions of the two diploid wheat species. The SNPs and indels, detected using the A genome of common wheat as the reference genome, covered the entire chromosomes of these species. The polymorphism information facilitated a comparison of the genetic diversity of einkorn wheat with that of two related diploid Aegilops species, namely, Ae. tauschii and Ae. umbellulata. Cleaved amplified polymorphic sequence (CAPS) markers converted from the SNP data were efficiently developed to confirm the addition of aegilopoides subspecies chromosomes to tetraploid wheat in nascent allohexaploid lines with AABBAmAm genomes. In addition, the CAPS markers permitted linkage map construction in mapping populations of aegilopoides subspecies accessions. Therefore, these RNA-seq data provide information for further breeding of closely related species with no reference genome sequence data.
Collapse
Affiliation(s)
- Asami Michikawa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
| | - Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
49
|
Devi U, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge A, King IP, King J. Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC PLANT BIOLOGY 2019; 19:183. [PMID: 31060503 PMCID: PMC6501383 DOI: 10.1186/s12870-019-1785-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/17/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Triticum timopheevii (2n = 4x = 28; AtAtGG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. RESULTS A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the At and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the At and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the At and G genomes of T. timopheevii that have been previously only detected through cytological techniques. CONCLUSIONS In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.
Collapse
Affiliation(s)
- Urmila Devi
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Surbhi Grewal
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Cai-Yun Yang
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stephen Ashling
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Amanda Burridge
- Cereal Genomics Lab, Life Sciences Building, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ian P King
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Julie King
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.
| |
Collapse
|
50
|
Cseh A, Yang C, Hubbart-Edwards S, Scholefield D, Ashling SS, Burridge AJ, Wilkinson PA, King IP, King J, Grewal S. Development and validation of an exome-based SNP marker set for identification of the St, J r and J vs genomes of Thinopyrym intermedium in a wheat background. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1555-1570. [PMID: 30767030 PMCID: PMC6476854 DOI: 10.1007/s00122-019-03300-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/02/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Cytogenetic analysis and array-based SNP genotyping of wheat- Th. intermedium introgression lines allowed identification of 634 chromosome-specific SNP markers across all twenty-one chromosomes of Th. intermedium (StJ r J vs , 2 n = 6 x = 42). Thinopyrum intermedium (2n = 6x = 42, StJrJvs) is one of the most promising reservoirs of useful genes including tolerance to abiotic stresses, perenniality and disease resistance not available in the cultivated bread wheat. The transfer of genetic diversity from wild species to wheat offers valuable responses to the effects of climate change. The new array-based single-nucleotide polymorphism (SNP) marker technology provides cheap and easy-to-use molecular markers for marker-assisted selection (MAS) in wheat breeding programmes. Here, we focus on the generation of a new chromosome-specific SNP marker set that can be used to characterize and identify the Th. intermedium chromosomes or chromosome segments transferred into wheat. A progressive investigation of marker development was conducted using 187 various newly developed wheat-Th. intermedium introgression lines and the Axiom® Wheat-Relative Genotyping array. We employed molecular cytogenetic techniques to clarify the genome constitution of the Th. intermedium parental lines and validated 634 chromosome-specific SNPs. Our data confirmed the allohexaploid nature of Th. intermedium and demonstrated that the St genome-specific GISH signal and markers are present at the centromeric regions of chromosomes 1Jvs, 2Jvs, 3Jvs and 7Jvs. The SNP markers presented here will be introduced into current wheat improvement programmes, offering a significant speed-up in wheat breeding and making it possible to deal with the transfer of the full genetic potential of Th. intermedium into wheat.
Collapse
Affiliation(s)
- Andras Cseh
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stephen S Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | | | - Ian P King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|