1
|
Dahley C, Goss KU, Ebert A. Revisiting the pK a-Flux method for determining intrinsic membrane permeability. Eur J Pharm Sci 2023; 191:106592. [PMID: 37751809 DOI: 10.1016/j.ejps.2023.106592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Intrinsic membrane permeability is one of several factors that critically determine the intestinal absorption of a chemical. The intrinsic membrane permeability of a chemical is usually extracted from transwell experiments with Caco-2 or MDCK cells, preferably by the pKa-Flux method, which is considered the method of choice when aqueous boundary layer effects need to be excluded. The pKa-Flux method has two variants, the iso-pH method, where apical and basolateral pH are equal, and the gradient-pH method, where apical and basolateral pH are different. The most commonly used method is the gradient-pH method, as it is intended to reflect the pH-conditions in the gastrointestinal tract. However, concentration-shift effects caused by the applied pH-difference between apical and basolateral compartment in the gradient-pH method have not been considered in the evaluation of the experimental data in the past. Consequently, incorrect intrinsic membrane permeabilities have been determined. In this work, we present a revised method for extracting the intrinsic membrane permeability from gradient-pH data that considers concentration-shift effects in the basolateral aqueous boundary layer and filter as well as in the cytosol. Furthermore, we propose the use of the iso-pH method, where only concentration-shift effects in the cytosol need to be considered, as an alternative to the gradient-pH method. We use the five lipophilic bases amantadine, chloroquine, propranolol, venlafaxine and verapamil as examples to compare gradient-pH method and iso-pH method with regard to the extractability of the intrinsic membrane permeability. For lipophilic bases, the iso-pH method proves to be advantageous. All intrinsic membrane permeabilities determined in this work were substantially higher than the intrinsic membrane permeabilities reported in literature.
Collapse
Affiliation(s)
- Carolin Dahley
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany; Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Straße 2, Halle 06120, Germany
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| |
Collapse
|
2
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
3
|
Cruz-Rangel S, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J Physiol 2017; 595:1515-1531. [PMID: 27859335 DOI: 10.1113/jp273111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5 m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0 m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5 m, but 10-9.0 m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Iván A Aréchiga-Figueroa
- CONACYT-Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| |
Collapse
|
4
|
Ben-Dov N, Korenstein R. Enhancement of cell membrane invaginations, vesiculation and uptake of macromolecules by protonation of the cell surface. PLoS One 2012; 7:e35204. [PMID: 22558127 PMCID: PMC3340387 DOI: 10.1371/journal.pone.0035204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/10/2012] [Indexed: 01/04/2023] Open
Abstract
The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake.
Collapse
Affiliation(s)
- Nadav Ben-Dov
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
5
|
Urra J, Sandoval M, Cornejo I, Barros LF, Sepúlveda FV, Cid LP. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells. Pflugers Arch 2008; 457:233-42. [PMID: 18427834 DOI: 10.1007/s00424-008-0497-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/03/2008] [Accepted: 03/17/2008] [Indexed: 02/05/2023]
Abstract
Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.
Collapse
Affiliation(s)
- Javier Urra
- Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
6
|
Ribas-Salgueiro JL, Gaytán SP, Crego R, Pásaro R, Ribas J. Highly H+-sensitive neurons in the caudal ventrolateral medulla of the rat. J Physiol 2003; 549:181-94. [PMID: 12665611 PMCID: PMC2342924 DOI: 10.1113/jphysiol.2002.036624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ventral surface of the caudal ventrolateral medulla (cVLM) has been shown to generate intense respiratory responses after surface acid-base stimulation. With respect to their chemosensitive characteristics, cVLM neurons have been less studied than other rostral-most regions of the brainstem. The purpose of these experiments was to determine the bioelectric responses of cVLM neurons to acidic stimuli and to determine their chemosensitive properties. Using extracellular and microiontophoretic techniques, we recorded electrical activities from 117 neurons in an area close to the ventral surface of the cVLM in anaesthetised rats. All neurons were tested for their sensitivity to H+. The fluorescent probe BCECF was used to measure extracellular pH changes produced by the microiontophoretic injection of H+ in brainstem slices. This procedure provided an estimation of the local changes in pH produced by microiontophoretic H+ application in the anaesthetised rat. Neurons coupled to the respiratory cycle, R (n = 51), were not responsive to direct stimulation with H+. Sixty-six neurons that did respond to H+ stimulation were uncoupled from respiration, and identified as NR neurons. These neurons presented distinct ranges of H+ sensitivity. The neuronal sensitivity to H+ was mainly assessed by the slope of the stimulus-response curve, where the steeper the slope, the higher the H+ sensitivity. On this basis, NR neurons were classed as being either weakly or highly sensitive to H+. NR neurons with a high H+ sensitivity (n = 12) showed an average value of 34.17 +/- 7.44 spikes s-1 (100 nC)-1 (mean +/- S.D.) for maximal slope and an EC50 of 126.76 +/- 33 nC. Suprathreshold H+ stimulation of highly sensitive NR neurons elicited bursting pattern responses coupled to the respiratory cycle. The bursting responses, which were synchronised with the inspiratory phase and the early expiratory phase of the respiratory cycle, lasted for several seconds before returning to the steady state firing pattern characteristic of the pre-stimulus condition. These NR neurons, which possess the capacity to detect distinct H+ concentrations in the extracellular microenvironment, are excellent candidates to serve in a chemoreceptor capacity in the caudal medulla.
Collapse
|
7
|
Chu J, Chu S, Montrose MH. Apical Na+/H+ exchange near the base of mouse colonic crypts. Am J Physiol Cell Physiol 2002; 283:C358-72. [PMID: 12055105 DOI: 10.1152/ajpcell.01380.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Colonic crypts can absorb fluid, but the identity of the absorptive transporters remains speculative. Near the crypt base, the epithelial cells responsible for vectorial transport are relatively undifferentiated and often presumed to mediate only Cl- secretion. We have applied confocal microscopy in combination with an extracellular fluid marker [Lucifer yellow (LY)] or a pH-sensitive dye (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) to study mouse colonic crypt epithelial cells directly adjacent to the crypt base within an intact mucosal sheet. Measurements of intracellular pH report activation of colonocyte Na+/H+ exchange in response to luminal or serosal Na+. Studies with LY demonstrate the presence of a paracellular fluid flux, but luminal Na+ does not activate Na+/H+ exchange in the nonepithelial cells of the lamina propria, and studies with LY suggest that the fluid bathing colonocyte basolateral membranes is rapidly refreshed by serosal perfusates. The apical Na+/H+ exchange in crypt colonocytes is inhibited equivalently by luminal 20 microM ethylisopropylamiloride and 20 microM HOE-694 but is not inhibited by luminal 20 microM S-1611. Immunostaining reveals the presence of epitopes from NHE1 and NHE2, but not NHE3, in epithelial cells near the base of colonic crypts. Comparison of apical Na+/H+ exchange activity in the presence of Cl- with that in the absence of Cl- (substitution by gluconate or nitrate) revealed no evidence of the Cl--dependent Na+/H+ exchange that had been previously reported as the sole apical Na+/H+ exchange activity in the colonic crypt. Results suggest the presence of an apical Na+/H+ exchanger near the base of crypts with functional attributes similar to those of the cloned NHE2 isoform.
Collapse
Affiliation(s)
- Jingsong Chu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
8
|
Lucas ML. A reconsideration of the evidence for Escherichia coli STa (heat stable) enterotoxin-driven fluid secretion: a new view of STa action and a new paradigm for fluid absorption. J Appl Microbiol 2001; 90:7-26. [PMID: 11155118 DOI: 10.1046/j.1365-2672.2001.01225.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A review of the evidence for Escherichia coli STa causing fluid secretion in vito leads to the conclusion that the concept of STa acting through enhanced chloride secretion in order to derange intestinal function is unproven. However, a consistent effect of STa in the small intestine is on Na+/H+ exchange, leading to interruption of luminal acidification. A model for the action of STa, involving inhibition of Na+/H+ exchange, is proposed which explains the ability of STa to reduce absorption in vito but its inability to cause secretion in vito in contrast to its apparent secretory effect in vitro. The apparent ability to demonstrate secretion in vitro is shown to derive from methodologies which do not involve measurement of mass transport of water but instead, infer it from in vitro and in vivo proxy measurements. The in vitro demonstration of notional secretion after STa exposure can be reconciled with the proposed new model for fluid absorption in that cell swelling is argued to arise as a transient consequence of STa challenge followed by regulatory volume decrease. Evidence for this derangement model is presented in the form of observations derived from acute in vivo physiological studies and clinical studies on patients without the exchanger. This process of appraisal of the evidence for the mechanism of action of STa has led to a new model for fluid absorption. This is based on the formation of hypotonicity at the brush border luminal surface rather than hypertonicity within the lateral spaces as required by the present standing gradient model of fluid absorption. Evidence from the literature is presented for this new paradigm of water absorption, which may only be relevant for small intestine and other tissues that have Na+/H+ exchangers in contact with HCO-3-containing solutions but which may also be generalizable to all mammalian absorbing epithelial membranes.
Collapse
Affiliation(s)
- M L Lucas
- Division of Neuroscience and Biomedical Sciences, Institute of Biomedical & Life Sciences, Glasgow University, UK
| |
Collapse
|
9
|
Maouyo D, Chu S, Montrose MH. pH heterogeneity at intracellular and extracellular plasma membrane sites in HT29-C1 cell monolayers. Am J Physiol Cell Physiol 2000; 278:C973-81. [PMID: 10794671 DOI: 10.1152/ajpcell.2000.278.5.c973] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the colonic mucosa, short-chain fatty acids change intracellular pH (pH(i)) and extracellular pH (pH(e)). In this report, confocal microscopy and dual-emission ratio imaging of carboxyseminaphthorhodofluor-1 were used for direct evaluation of pH(i) and pH(e) in a simple model epithelium, HT29-C1 cells. Live cell imaging along the apical-to-basal axis of filter-grown cells allowed simultaneous measurement of pH in the aqueous environment near the apical membrane, the lateral membrane, and the basal membrane. Subapical cytoplasm reported the largest changes in pH(i) after isosmotic addition of 130 mM propionate or 30 mM NH(4)Cl. In resting cells and cells with an imposed acid load, lateral membranes had pH(i) values intermediate between the relatively acidic subapical region (pH 6.3-6.9) and the relatively alkaline basal pole of the cells (pH 7.4-7.1). Transcellular pH(i) gradients were diminished or eliminated during an induced alkaline load. Propionate differentially altered pH(e) near the apical membrane, in lateral intracellular spaces between adjacent cells, and near the basal membrane. Luminal or serosal propionate caused alkalinization of the cis compartment (where propionate was added) but acidification of the trans compartment only in response to luminal propionate. Addition of NH(4)Cl produced qualitatively opposite pH(e) excursions. The microscopic values of pH(i) and pH(e) can explain a portion of the selective activation of polarized Na/H exchangers observed in HT29-C1 cells in the presence of transepithelial propionate gradients.
Collapse
Affiliation(s)
- D Maouyo
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
10
|
Stewart RE, Lyall V, Feldman GM, Heck GL, DeSimone JA. Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C227-38. [PMID: 9688854 DOI: 10.1152/ajpcell.1998.275.1.c227] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HCl- and NaCl-induced hamster chorda tympani nerve responses were recorded during voltage clamp of the lingual receptive field. Voltage perturbations did not influence responses to HCl. In contrast, responses to NaCl were decreased by submucosal-positive and increased by submucosal-negative voltage clamp. Responses to HCl were insensitive to the Na+ channel blockers, amiloride and benzamil, and to methylisobutylamiloride (MIA), an Na+/H+ exchange blocker. Responses to NaCl were unaffected by MIA but were suppressed by benzamil. Microfluorometric and imaging techniques were used to monitor the relationship between external pH (pHo) and the intracellular pH (pHi) of fungiform papilla taste receptor cells (TRCs) following 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein loading. TRC pHi responded rapidly and monotonically to changes in pHo. This response was unaffected by Na+ removal or the presence of amiloride, benzamil, or MIA. The neural records and the data from isolated TRCs suggest that the principal transduction pathway for acid taste in hamster is similar to that in rat. This may involve the monitoring of changes in TRC pHi mediated through amiloride-insensitive H+ transport across TRC membranes. This is an example of cell monitoring of environmental pH through pH tracking, i.e., a linear change in pHi in response to a change in pHo, as has been proposed for carotid bodies. In taste, the H+ transport sites may be concentrated on the basolateral membranes of TRCs and, therefore, are responsive to an attenuated H+ concentration from diffusion of acids across the tight junctions.
Collapse
Affiliation(s)
- R E Stewart
- Department of Physiology, Virginia Commonwealth University, Richmond Virginia 23298, USA
| | | | | | | | | |
Collapse
|
11
|
Kovbasnjuk O, Leader JP, Weinstein AM, Spring KR. Water does not flow across the tight junctions of MDCK cell epithelium. Proc Natl Acad Sci U S A 1998; 95:6526-30. [PMID: 9601000 PMCID: PMC27849 DOI: 10.1073/pnas.95.11.6526] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Accepted: 03/23/1998] [Indexed: 02/07/2023] Open
Abstract
Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.
Collapse
Affiliation(s)
- O Kovbasnjuk
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
The mechanism of fluid transport by leaky epithelia and the route taken by the transported fluid are in dispute. A consideration of current mathematical models for coupling of solutes and water, as well as the methodologies for the study of fluid transport, shows that local osmosis best accounts for water movement. Although it seems virtually certain that the tight junctions are water permeable, the fraction of absorbed fluid that crosses the tight junction cannot yet be determined with confidence.
Collapse
Affiliation(s)
- K R Spring
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-1603, USA.
| |
Collapse
|
13
|
Montrose MH, Chu S. Transepithelial SCFA gradients regulate polarized Na/H exchangers and pH microdomains in colonic epithelia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:389-93. [PMID: 9366077 DOI: 10.1016/s0300-9629(96)00326-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Short chain fatty acids (SCFAs) stimulate electroneutral sodium absorption by activation of apical Na/H exchange in colonocytes. It is often assumed that activation of Na/H exchange is via an intracellular acidification caused by SCFA uptake. These lecture notes review shortcomings in this model of SCFA-stimulated sodium absorption, revealed by recent reports in the literature. This is supplemented by information generated in our laboratory using both a tissue culture model of colonocytes (HT29-C1 cells) and a native tissue preparation (mouse distal colonic mucosa). In both preparations, evidence suggests that physiologic SCFA gradients may generate pH heterogeneity in aqueous microdomains near the plasma membrane of colonocytes. Finally, direct observation of such extracellular microdomains with confocal microscopy is used to support a new model, in which pH microdomains play an important role in regulating both SCFA fluxes and sodium absorption.
Collapse
Affiliation(s)
- M H Montrose
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Xia P, Persson BE, Spring KR. The chloride concentration in the lateral intercellular spaces of MDCK cell monolayers. J Membr Biol 1995; 144:21-30. [PMID: 7541081 DOI: 10.1007/bf00238413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We measured the Cl concentration of the lateral intercellular spaces (LIS) of MDCK cell monolayers, grown on glass coverslips, by video fluorescence microscopy. Monolayers were perfused at 37 degrees C either with HEPES-buffered solutions containing 137 mM Cl or bicarbonate/CO2-buffered solutions containing 127 mM Cl. A mixture of two fluorescent dyes conjugated to dextrans (MW 10,000) was microinjected into domes and allowed to diffuse into the nearby LIS. The Cl-sensitive dye, ABQ-dextran, was selected because of its responsiveness at high Cl concentrations; a Cl-insensitive dye, Cl-NERF-dextran, was used as a reference. Both dyes were excited at 325 nm, and ratios of the fluorescence intensity at spectrally distinct emission wavelengths were obtained from two intensified CCD cameras, one for ABQ-dextran the other for Cl-NERF-dextran. LIS Cl concentration was calibrated in situ by treating the monolayer with digitonin or ouabain and varying the perfusate Cl between 0 and 137 mM (HEPES buffer) or between 0 and 127 mM (bicarbonate/CO2 buffer). LIS Cl in HEPES-buffered solutions averaged 176 +/- 19 mM (n = 12), calibrated with digitonin, and 170 +/- 9 mM (n = 12), calibrated with ouabain. LIS Cl in bicarbonate/CO2-buffered solutions averaged 174 +/- 10 mM (n = 7) using the ouabain calibration. The Cl concentration of MDCK cell domes, measured with Cl-sensitive microelectrodes and by microspectrofluorimetry, did not differ significantly. Images of the LIS at 3 focal planes, near the tight junction, midway and basal, failed to reveal any gradients in Cl concentration along the LIS. LIS Cl changed rapidly in response to perfusate Cl with characteristic times of 0.8 +/- 0.1 min (n = 21) for Cl decrease and 0.3 +/- 0.04 min (n = 21) for Cl increase. In conclusion, (i) Cl concentration is higher in the LIS than in the bathing medium, (ii) no gradients of Cl along the depth of LIS are detectable, (iii) junctional Cl permeability is high.
Collapse
Affiliation(s)
- P Xia
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1598, USA
| | | | | |
Collapse
|