1
|
Chao M, Huang L, Dong J, Chen Y, Hu G, Zhang Q, Zhang J, Wang Q. Molecular characterization and expression pattern of Rubisco activase gene GhRCAβ2 in upland cotton (Gossypium hirsutum L.). Genes Genomics 2024; 46:423-436. [PMID: 38324226 DOI: 10.1007/s13258-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE To understand the biological function of the GhRCAβ2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAβ2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS The bioinformatics tools were used to analyze the sequence features of GhRCAβ2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAβ2 protein. The expression pattern of the GhRCAβ2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS The full-length CDS of GhRCAβ2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAβ2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAβ2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAβ2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA β-isoform. The GhRCAβ2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAβ2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAβ2 in comparison to the wild-type cotton plants. The GhRCAβ2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAβ2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAβ2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAβ2 gene. CONCLUSION Our findings will establish a basis for further understanding the function of the GhRCAβ2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.
Collapse
Affiliation(s)
- Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ling Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Chen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Genhai Hu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiufang Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochem Soc Trans 2023; 51:627-637. [PMID: 36929563 DOI: 10.1042/bst20221281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the release of inhibitory sugar phosphates from ribulose-1,6-biphosphate carboxylase/oxygenase (Rubisco) and can play an important role in biochemical limitations of photosynthesis under dynamic light and elevated temperatures. There is interest in increasing RCA activity to improve crop productivity, but a lack of understanding about the regulation of photosynthesis complicates engineering strategies. In this review, we discuss work relevant to improving RCA with a focus on advances in understanding the structural cause of RCA instability under heat stress and the regulatory interactions between RCA and components of photosynthesis. This reveals substantial variation in RCA thermostability that can be influenced by single amino acid substitutions, and that engineered variants can perform better in vitro and in vivo under heat stress. In addition, there are indications RCA activity is controlled by transcriptional, post-transcriptional, post-translational, and spatial regulation, which may be important for balancing between carbon fixation and light capture. Finally, we provide an overview of findings from recent field experiments and consider the requirements for commercial validation as part of efforts to increase crop yields in the face of global climate change.
Collapse
|
3
|
Qu Y, Mueller-Cajar O, Yamori W. Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:591-599. [PMID: 35981868 DOI: 10.1093/jxb/erac340] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The world's population may reach 10 billion by 2050, but 10% still suffer from food shortages. At the same time, global warming threatens food security by decreasing crop yields, so it is necessary to develop crops with enhanced resistance to high temperatures in order to secure the food supply. In this review, the role of Rubisco activase as an important factor in plant heat tolerance is summarized, based on the conclusions of recent findings. Rubisco activase is a molecular chaperone determining the activation of Rubisco, whose heat sensitivity causes reductions of photosynthesis at high temperatures. Thus, the thermostability of Rubisco activase is considered to be critical for improving plant heat tolerance. It has been shown that the introduction of thermostable Rubisco activase through gene editing into Arabidopsis thaliana and from heat-adapted wild Oryza species or C4Zea mays into Oryza sativa improves Rubisco activation, photosynthesis, and plant growth at high temperatures. We propose that developing a universal thermostable Rubisco activase could be a promising direction for further studies.
Collapse
Affiliation(s)
- Yuchen Qu
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agri-ecosystem Services, The University of Tokyo, Tokyo, Japan
| | | | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agri-ecosystem Services, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Harvey CM, Cavanagh AP, Kim SY, Wright DA, Edquilang RG, Shreeves KS, Perdomo JA, Spalding MH, Ort DR, Bernacchi CJ, Huber SC. Removal of redox-sensitive Rubisco Activase does not alter Rubisco regulation in soybean. PHOTOSYNTHESIS RESEARCH 2022; 154:169-182. [PMID: 36163583 DOI: 10.1007/s11120-022-00962-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rubisco activase (Rca) facilitates the catalytic repair of Rubisco, the CO2-fixing enzyme of photosynthesis, following periods of darkness, low to high light transitions or stress. Removal of the redox-regulated isoform of Rubisco activase, Rca-α, enhances photosynthetic induction in Arabidopsis and has been suggested as a strategy for the improvement of crops, which may experience frequent light transitions in the field; however, this has never been tested in a crop species. Therefore, we used RNAi to reduce the Rca-α content of soybean (Glycine max cv. Williams 82) below detectable levels and then characterized the growth, photosynthesis, and Rubisco activity of the resulting transgenics, in both growth chamber and field conditions. Under a 16 h sine wave photoperiod, the reduction of Rca-α contents had no impact on morphological characteristics, leaf expansion rate, or total biomass. Photosynthetic induction rates were unaltered in both chamber-grown and field-grown plants. Plants with reduced Rca-α content maintained the ability to regulate Rubisco activity in low light just as in control plants. This result suggests that in soybean, Rca-α is not as centrally involved in the regulation of Rca oligomer activity as it is in Arabidopsis. The isoform stoichiometry supports this conclusion, as Rca-α comprises only ~ 10% of the Rubisco activase content of soybean, compared to ~ 50% in Arabidopsis. This is likely to hold true in other species that contain a low ratio of Rca-α to Rca-ß isoforms.
Collapse
Affiliation(s)
- Christopher M Harvey
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA.
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | | - David A Wright
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ron G Edquilang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kayla S Shreeves
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan Alejandro Perdomo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven C Huber
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
6
|
Suganami M, Suzuki Y, Tazoe Y, Yamori W, Makino A. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. PLANT PHYSIOLOGY 2021; 185:108-119. [PMID: 33631807 PMCID: PMC8133551 DOI: 10.1093/plphys/kiaa026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 05/09/2023]
Abstract
Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%-44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C-36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.
Collapse
Affiliation(s)
- Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Youshi Tazoe
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Wataru Yamori
- Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Emerging research in plant photosynthesis. Emerg Top Life Sci 2020; 4:137-150. [PMID: 32573736 DOI: 10.1042/etls20200035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Photosynthesis involves capturing light energy and, most often, converting it to chemical energy stored as reduced carbon. It is the source of food, fuel, and fiber and there is a resurgent interest in basic research on photosynthesis. Plants make excellent use of visible light energy; leaves are ideally suited to optimize light use by having a large area per amount of material invested and also having leaf angles to optimize light utilization. It is thought that plants do not use green light but in fact they use green light better than blue light under some conditions. Leaves also have mechanisms to protect against excess light and how these work in a stochastic light environment is currently a very active area of current research. The speed at which photosynthesis can begin when leaves are first exposed to light and the speed of induction of protective mechanisms, as well as the speed at which protective mechanisms dissipate when light levels decline, have recently been explored. Research is also focused on reducing wasteful processes such as photorespiration, when oxygen instead of carbon dioxide is used. Some success has been reported in altering the path of carbon in photorespiration but on closer inspection there appears to be unforeseen effects contributing to the good news. The stoichiometry of interaction of light reactions with carbon metabolism is rigid and the time constants vary tremendously presenting large challenges to regulatory mechanisms. Regulatory mechanisms will be the topic of photosynthesis research for some time to come.
Collapse
|
8
|
von Caemmerer S. Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153240. [PMID: 32707452 DOI: 10.1016/j.jplph.2020.153240] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 05/28/2023]
Abstract
Rubisco is the primary carboxylase of the photosynthetic process, the most abundant enzyme in the biosphere, and also one of the best-characterized enzymes. Rubisco also functions as an oxygenase, a discovery made 50 years ago by Bill Ogren. Carboxylation of ribulose bisphosphate (RuBP) is the first step of the photosynthetic carbon reduction cycle and leads to the assimilation of CO2, whereas the oxygenase activity necessitates the recycling of phosphoglycolate through the photorespiratory carbon oxidation cycle with concomitant loss of CO2. Since the discovery of Rubisco's dual function, the biochemical properties of Rubisco have underpinned the mechanistic mathematical models of photosynthetic CO2 fixation which link Rubisco kinetic properties to gas exchange of leaves. This has allowed assessments of global CO2 exchange and predictions of how Rubisco has and will shape the environmental responses of crop and global photosynthesis in future climates. Rubisco's biochemical properties, including its slow catalytic turnover and poor affinity for CO2, constrain crop growth and therefore improving its activity and regulation and minimising photorespiration are key targets for crop improvement.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
| |
Collapse
|
9
|
Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J 2020; 476:2725-2741. [PMID: 31654058 PMCID: PMC6792033 DOI: 10.1042/bcj20190134] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
In nature, light availability for photosynthesis can undergo massive changes on a very short timescale. Photosynthesis in such dynamic light environments requires that plants can respond swiftly. Expanding our knowledge of the rapid responses that underlie dynamic photosynthesis is an important endeavor: it provides insights into nature's design of a highly dynamic energy conversion system and hereby can open up new strategies for improving photosynthesis in the field. The present review focuses on three processes that have previously been identified as promising engineering targets for enhancing crop yield by accelerating dynamic photosynthesis, all three of them involving or being linked to processes in the chloroplast, i.e. relaxation of non-photochemical quenching, Calvin–Benson–Bassham cycle enzyme activation/deactivation and dynamics of stomatal conductance. We dissect these three processes on the functional and molecular level to reveal gaps in our understanding and critically discuss current strategies to improve photosynthesis in the field.
Collapse
|
10
|
De Souza AP, Wang Y, Orr DJ, Carmo-Silva E, Long SP. Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. THE NEW PHYTOLOGIST 2020; 225:2498-2512. [PMID: 31446639 PMCID: PMC7065220 DOI: 10.1111/nph.16142] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Sub-Saharan Africa is projected to see a 55% increase in food demand by 2035, where cassava (Manihot esculenta) is the most widely planted crop and a major calorie source. Yet, cassava yield in this region has not increased significantly for 13 yr. Improvement of genetic yield potential, the basis of the first Green Revolution, could be realized by improving photosynthetic efficiency. First, the factors limiting photosynthesis and their genetic variability within extant germplasm must be understood. Biochemical and diffusive limitations to leaf photosynthetic CO2 uptake under steady state and fluctuating light in 13 farm-preferred and high-yielding African cultivars were analyzed. A cassava leaf metabolic model was developed to quantify the value of overcoming limitations to leaf photosynthesis. At steady state, in vivo Rubisco activity and mesophyll conductance accounted for 84% of the limitation. Under nonsteady-state conditions of shade to sun transition, stomatal conductance was the major limitation, resulting in an estimated 13% and 5% losses in CO2 uptake and water use efficiency, across a diurnal period. Triose phosphate utilization, although sufficient to support observed rates, would limit improvement in leaf photosynthesis to 33%, unless improved itself. The variation of carbon assimilation among cultivars was three times greater under nonsteady state compared to steady state, pinpointing important overlooked breeding targets for improved photosynthetic efficiency in cassava.
Collapse
Affiliation(s)
- Amanda P. De Souza
- Carl R Woese Institute for Genomic Biology, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University,
Lancaster, LA1 4YQ, UK
| | | | - Stephen P. Long
- Carl R Woese Institute for Genomic Biology, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Lancaster Environment Centre, Lancaster University,
Lancaster, LA1 4YQ, UK
| |
Collapse
|
11
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Suganami M, Suzuki Y, Kondo E, Nishida S, Konno S, Makino A. Effects of Overproduction of Rubisco Activase on Rubisco Content in Transgenic Rice Grown at Different N Levels. Int J Mol Sci 2020; 21:ijms21051626. [PMID: 32120887 PMCID: PMC7084177 DOI: 10.3390/ijms21051626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
It has been reported that overproduction of Rubisco activase (RCA) in rice (Oryza sativa L.) decreased Rubisco content, resulting in declining photosynthesis. We examined the effects of RCA levels on Rubisco content using transgenic rice with overexpressed or suppressed RCA under the control of different promoters of the RCA and Rubisco small subunit (RBCS) genes. All plants were grown hydroponically with different N concentrations (0.5, 2.0 and 8.0 mM-N). In RCA overproduced plants with > 2-fold RCA content (RCA-HI lines), a 10%-20% decrease in Rubisco content was observed at 0.5 and 2.0 mM-N. In contrast, at 8.0 mM-N, Rubisco content did not change in RCA-HI lines. Conversely, in plants with 50%-60% increased RCA content (RCA-MI lines), Rubisco levels remained unchanged, regardless of N concentration. Such effects on Rubisco content were independent of the promoter that was used. In plants with RCA suppression to < 10% of the wild-type RCA content, Rubisco levels were increased at 0.5 mM-N, but were unchanged at 2.0 and 8.0 mM-N. Thus, the effects of the changes in RCA levels on Rubisco content depended on N supply. Moreover, RCA overproduction was feasible without a decrease in Rubisco content, depending on the degree of RCA production.
Collapse
Affiliation(s)
- Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan;
| | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Shinji Nishida
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - So Konno
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +81-22-757-4287
| |
Collapse
|
13
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
14
|
Learning RuBisCO's birth and subsequent environmental adaptation. Biochem Soc Trans 2018; 47:179-185. [PMID: 30559271 DOI: 10.1042/bst20180449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022]
Abstract
It is believed that organisms that first appeared after the formation of the earth lived in a very limited environment, making full use of the limited number of genes. From these early organisms' genes, more were created by replication, mutation, recombination, translocation, and transmission of other organisms' DNA; thus, it became possible for ancient organisms to grow in various environments. The photosynthetic CO2-fixing enzyme RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) began to function in primitive methanogenic archaea and has been evolved as a central CO2-fixing enzyme in response to the large changes in CO2 and O2 concentrations that occurred in the subsequent 4 billion years. In this review, the processes of its adaptation to be specialized for CO2 fixation will be presented from the viewpoint of functions and structures of RuBisCO.
Collapse
|
15
|
Zhang J, Li Q, Qi YP, Huang WL, Yang LT, Lai NW, Ye X, Chen LS. Low pH-responsive proteins revealed by a 2-DE based MS approach and related physiological responses in Citrus leaves. BMC PLANT BIOLOGY 2018; 18:188. [PMID: 30208853 PMCID: PMC6134590 DOI: 10.1186/s12870-018-1413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/31/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance. RESULTS Our results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively. CONCLUSIONS This is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.
Collapse
Affiliation(s)
- Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Qiang Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
| |
Collapse
|
16
|
Fukayama H, Mizumoto A, Ueguchi C, Katsunuma J, Morita R, Sasayama D, Hatanaka T, Azuma T. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice. PHOTOSYNTHESIS RESEARCH 2018; 137:465-474. [PMID: 29846871 DOI: 10.1007/s11120-018-0525-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/25/2018] [Indexed: 05/24/2023]
Abstract
The relationship between ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase (Rca) levels was studied using transgenic rice overexpressing maize Rca (OX-mRca) and knockdown transgenic rice expressing antisense Rca (KD-Rca). The ratio of Rubisco to total soluble protein was lower in OX-mRca, whereas it was higher in KD-Rca than in WT, indicating that Rca expression was negatively correlated with Rubisco content. The expressions of other Calvin-Benson-Bassham cycle enzymes such as sedoheptulose-1,7-bisphosphatase and phosphoribulokinase analyzed by immunoblotting did not show such a negative correlation with Rca, suggesting that the effect of Rca on protein expression may be specific for Rubisco. Although Rubisco content was decreased in OX-mRca, the transcript levels of the Rubisco large subunit (OsRbcL) and the Rubisco small subunit mostly increased in OX-mRca as well as in KD-Rca. Additionally, polysome loading of OsRbcL was slightly higher in OX-mRca than it was in WT, suggesting that the OsRbcL translation activity was likely stimulated by overexpression of Rca. 35S-methionine labeling experiments demonstrated that there was no significant difference in the stability of newly synthesized Rubisco among genotypes. However, 35S-methionine-labeled Rubisco was marginally decreased in OX-mRca and increased in KD-Rca compared to the WT. These results suggest that Rca negatively affects the Rubisco content, possibly in the synthesis step.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Akina Mizumoto
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Chiaki Ueguchi
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Jun Katsunuma
- Laboratory of Crop Science, Faculty of Agriculture, Kobe University, Kobe, 657-8501, Japan
| | - Ryutaro Morita
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Daisuke Sasayama
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Tomoko Hatanaka
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Tetsushi Azuma
- Laboratory of Tropical Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
17
|
Du H, Shi Y, Li D, Fan W, Wang G, Wang C. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One 2017; 12:e0188964. [PMID: 29211806 PMCID: PMC5718555 DOI: 10.1371/journal.pone.0188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fall dormancy (FD) determines the adaptation of an alfalfa variety and affects alfalfa production and quality. However, the molecular mechanism underlying FD remains poorly understood. Here, 44 genes regulating FD were identified by comparison of the transcriptomes from leaves of Maverick (fall-dormant alfalfa) and CUF101(non-fall-dormant), during FD and non-FD and were classified them depending on their function. The transcription of IAA-amino acid hydrolase ILR1-like 1, abscisic acid receptor PYL8, and monogalactosyldiacylglycerol synthase-3 in Maverick leaves was regulated by daylength and temperature, and the transcription of the abscisic acid receptor PYL8 was mainly affected by daylength. The changes in the expression of these genes and the abundance of their messenger RNA (mRNA) in Maverick leaves differed from those in CUF101 leaves, as evidenced by the correlation analysis of their mRNA abundance profiles obtained from April to October. The present findings suggested that these genes are involved in regulating FD in alfalfa.
Collapse
Affiliation(s)
- Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Defeng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Wenna Fan
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Abstract
Abstract
Since the discovery of its role in the CO2 fixation reaction in photosynthesis, RuBisCO has been one of the most extensively researched enzymes in the fields of biochemistry, molecular biology, and molecular genetics as well as conventional plant physiology, agricultural chemistry, and crop science. In addition, the RuBisCO and RuBisCO-like genes of more than 2000 organisms have been sequenced during the past 20 years. During the course of those studies, the origin of the RuBisCO gene began to be discussed. Recent studies have reported that the RuBisCO gene emerged in methanogenic bacteria long before photosynthetic organisms appeared. The origin of similar early genes might have allowed this gene to overcome changes in global environments during ancient and recent eras and to participate in the fixation of 200 GT of CO2 annually. In this review, I focus on several points that have not been discussed at length in the literature thus far.
Collapse
Affiliation(s)
- Akiho Yokota
- R & D Department, Plant Hi-Tech Institute, Ltd., Ikoma, Japan
- Yokota CREST Laboratory, c/o Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
19
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
20
|
Ji GC, Zheng BS, Li XQ, Zhu XT, Jin SH. Cloning and expression analysis of Rubisco activase genes in Carya cathayensis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1208060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Guo Cun Ji
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, PR China
| | - Bing Song Zheng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, PR China
| | - Xue Qin Li
- Department of Landscape Architecture and Horticulture, Jiyang College, Zhejiang A & F University, Zhuji, PR China
| | - Xiang Tao Zhu
- Department of Landscape Architecture and Horticulture, Jiyang College, Zhejiang A & F University, Zhuji, PR China
| | - Song Heng Jin
- Department of Landscape Architecture and Horticulture, Jiyang College, Zhejiang A & F University, Zhuji, PR China
| |
Collapse
|
21
|
Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ. Optimizing Rubisco and its regulation for greater resource use efficiency. PLANT, CELL & ENVIRONMENT 2015; 38:1817-32. [PMID: 25123951 DOI: 10.1111/pce.12425] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/19/2023]
Abstract
Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
Collapse
Affiliation(s)
| | - Joanna C Scales
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Pippa J Madgwick
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
22
|
Sudo E, Suzuki Y, Makino A. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures. PLANT & CELL PHYSIOLOGY 2014; 55:1905-1911. [PMID: 25231963 DOI: 10.1093/pcp/pcu119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content.
Collapse
Affiliation(s)
- Emi Sudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
23
|
Boex-Fontvieille E, Daventure M, Jossier M, Hodges M, Zivy M, Tcherkez G. Phosphorylation pattern of Rubisco activase in Arabidopsis leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:550-7. [PMID: 24119201 DOI: 10.1111/plb.12100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/20/2013] [Indexed: 05/09/2023]
Abstract
Rubisco activase (RCA) is an ancillary photosynthetic protein essential for Rubisco activity. Some data suggest that post-translational modifications (such as reduction of disulphide bridges) are involved in the regulation of RCA activity. However, despite the key role of protein phosphorylation in general metabolic regulation, RCA phosphorylation has not been well characterised. We took advantage of phosphoproteomics and gas exchange analyses with instant sampling adapted to Arabidopsis rosettes to examine the occurrence and variations of phosphopeptides associated with RCA in different photosynthetic contexts (CO2 mole fraction, light and dark). We detected two phosphopeptides from RCA corresponding to residues Thr 78 and Ser 172, and show that the former is considerably more phosphorylated in the dark than in the light, while the latter show no light/dark pattern. The CO2 mole fraction did not influence phosphorylation of either residue. Phosphorylation thus appears to be a potential mechanism associated with RCA dark inactivation, when Rubisco-catalysed carboxylation is arrested. Since Thr 78 and Ser 172 are located in the N and Walker domains of the protein, respectively, the involvement of phosphorylation in protein-protein interaction and catalysis is likely.
Collapse
Affiliation(s)
- E Boex-Fontvieille
- Institut de biologie des plantes, CNRS UMR 8618, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
24
|
Zhu XG, Wang Y, Ort DR, Long SP. e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. PLANT, CELL & ENVIRONMENT 2013; 36:1711-27. [PMID: 23072293 DOI: 10.1111/pce.12025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photosynthesis is arguably the most researched of all plant processes. A dynamic model of leaf photosynthesis that includes each discrete process from light capture to carbohydrate synthesis, e-photosynthesis, is described. It was developed by linking and extending our previous models of photosystem II (PSII) energy transfer and photosynthetic C3 carbon metabolism to include electron transfer processes around photosystem I (PSI), ion transfer between the lumen and stroma, ATP synthesis and NADP reduction to provide a complete representation. Different regulatory processes linking the light and dark reactions are also included: Rubisco activation via Rubisco activase, pH and xanthophyll cycle-dependent non-photochemical quenching mechanisms, as well as the regulation of enzyme activities via the ferredoxin-theoredoxin system. Although many further feedback and feedforward controls undoubtedly exist, it is shown that e-photosynthesis effectively mimics the typical kinetics of leaf CO₂ uptake, O₂ evolution, chlorophyll fluorescence emission, lumen and stromal pH, and membrane potential following perturbations in light, [CO₂] and [O₂] observed in intact C3 leaves. The model provides a framework for guiding engineering of improved photosynthetic efficiency, for evaluating multiple non-invasive measures used in emerging phenomics facilities, and for quantitative assessment of strengths and weaknesses within the understanding of photosynthesis as an integrated process.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.
| | | | | | | |
Collapse
|
25
|
Tcherkez G. Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. PLANT, CELL & ENVIRONMENT 2013; 36:1586-96. [PMID: 23305122 DOI: 10.1111/pce.12066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 05/20/2023]
Abstract
Although ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was discovered nearly 60 years ago, the associated chemical mechanism of the reaction is still incompletely understood. The catalytic cycle consists of four major steps: ribulose-1,5-bisphosphate binding, enolization, CO₂ or O₂ addition and hydration, and cleavage of the intermediate. The use of individual rate constants for these elemental steps yields mathematical expressions for usual kinetic constants (k(cat), K(m)), CO₂ versus O₂ specificity (S(c/o)) as well as other chemical parameters such as the ¹²C/¹³C isotope effect. That said, most of them are not simple and thus the interpretation of experimental and observed values of kcat , Km and Sc/o may be more complicated than expected. That is, Rubisco effective catalysis depends on several kinetic parameters that are influenced by both the biological origin and the cellular medium (which, in turn, can vary with environmental conditions). In this brief review, we present the basic model of Rubisco kinetics and describe how subtle biochemical changes (which may have occurred along Evolution) can easily modify Rubisco catalysis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR 8618, Université Paris-Sud, 91405 Orsay Cedex, France.
| |
Collapse
|
26
|
Ullmann-Zeunert L, Muck A, Wielsch N, Hufsky F, Stanton MA, Bartram S, Böcker S, Baldwin IT, Groten K, Svatoš A. Determination of ¹⁵N-incorporation into plant proteins and their absolute quantitation: a new tool to study nitrogen flux dynamics and protein pool sizes elicited by plant-herbivore interactions. J Proteome Res 2012; 11:4947-60. [PMID: 22905865 DOI: 10.1021/pr300465n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herbivory leads to changes in the allocation of nitrogen among different pools and tissues; however, a detailed quantitative analysis of these changes has been lacking. Here, we demonstrate that a mass spectrometric data-independent acquisition approach known as LC-MS(E), combined with a novel algorithm to quantify heavy atom enrichment in peptides, is able to quantify elicited changes in protein amounts and (15)N flux in a high throughput manner. The reliable identification/quantitation of rabbit phosphorylase b protein spiked into leaf protein extract was achieved. The linear dynamic range, reproducibility of technical and biological replicates, and differences between measured and expected (15)N-incorporation into the small (SSU) and large (LSU) subunits of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) and RuBisCO activase 2 (RCA2) of Nicotiana attenuata plants grown in hydroponic culture at different known concentrations of (15)N-labeled nitrate were used to further evaluate the procedure. The utility of the method for whole-plant studies in ecologically realistic contexts was demonstrated by using (15)N-pulse protocols on plants growing in soil under unknown (15)N-incorporation levels. Additionally, we quantified the amounts of lipoxygenase 2 (LOX2) protein, an enzyme important in antiherbivore defense responses, demonstrating that the approach allows for in-depth quantitative proteomics and (15)N flux analyses of the metabolic dynamics elicited during plant-herbivore interactions.
Collapse
|
27
|
Yamori W, Masumoto C, Fukayama H, Makino A. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:871-80. [PMID: 22563799 DOI: 10.1111/j.1365-313x.2012.05041.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of Rubisco activase in steady-state and non-steady-state photosynthesis was analyzed in wild-type (Oryza sativa) and transgenic rice that expressed different amounts of Rubisco activase. Below 25°C, the Rubisco activation state and steady-state photosynthesis were only affected when Rubisco activase was reduced by more than 70%. However, at 40°C, smaller reductions in Rubisco activase content were linked to a reduced Rubisco activation state and steady-state photosynthesis. As a result, overexpression of maize Rubisco activase in rice did not lead to an increase of the Rubisco activation state, nor to an increase in photosynthetic rate below 25°C, but had a small stimulatory effect at 40°C. On the other hand, the rate at which photosynthesis approached the steady state following an increase in light intensity was rapid in Rubisco activase-overexpressing plants, intermediate in the wild-type, and slowest in antisense plants at any leaf temperature. In Rubisco activase-overexpressing plants, Rubisco activation state at low light was maintained at higher levels than in the wild-type. Thus, rapid regulation by Rubisco activase following an increase in light intensity and/or maintenance of a high Rubisco activation state at low light would result in a rapid increase in Rubisco activation state and photosynthetic rate following an increase in light intensity. It is concluded that Rubisco activase plays an important role in the regulation of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | | | | | | |
Collapse
|
28
|
Way DA, Pearcy RW. Sunflecks in trees and forests: from photosynthetic physiology to global change biology. TREE PHYSIOLOGY 2012; 32:1066-81. [PMID: 22887371 DOI: 10.1093/treephys/tps064] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sunflecks are brief, intermittent periods of high photon flux density (PFD) that can significantly improve carbon gain in shaded forest understories and lower canopies of trees. In this review, we discuss the physiological basis of leaf-level responses to sunflecks and the mechanisms plants use to tolerate sudden changes in PFD and leaf temperature induced by sunflecks. We also examine the potential effects of climate change stresses (including elevated temperatures, rising CO(2) concentrations and drought) on the ability of tree species to use sunflecks, and advocate more research to improve our predictions of seedling and tree carbon gain in future climates. Lastly, while we have the ability to model realistic responses of photosynthesis to fluctuating PFD, dynamic responses of photosynthesis to sunflecks are not accounted for in current models of canopy carbon uptake, which can lead to substantial overestimates of forest carbon fixation. Since sunflecks are a critical component of seasonal carbon gain for shaded leaves, sunfleck regimes and physiological responses to sunflecks should be incorporated into models to more accurately capture forest carbon dynamics.
Collapse
Affiliation(s)
- Danielle A Way
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
29
|
Fukayama H, Ueguchi C, Nishikawa K, Katoh N, Ishikawa C, Masumoto C, Hatanaka T, Misoo S. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing rubisco content in rice leaves. PLANT & CELL PHYSIOLOGY 2012; 53:976-86. [PMID: 22470057 DOI: 10.1093/pcp/pcs042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of overexpression of Rubisco activase on photosynthesis were studied in transgenic rice expressing barley or maize Rubisco activase. Immunoblot and SDS-PAGE analyses showed that transgenic lines from both gene constructs expressed the foreign Rubisco activase at high levels. The activation state of Rubisco in transgenic lines was slightly higher than that in non-transgenic plants (NT). In addition, light activation of Rubisco was significantly more rapid in transgenic lines compared with NT. These findings indicate that the overexpression of Rubisco activase can enhance Rubisco activation. However, despite enhanced activation of Rubisco in these transgenic plants, the CO(2) assimilation rate at ambient CO(2) conditions was decreased. This decrease in CO(2) assimilation rate was observed in both young developing and mature leaves independent of nitrogen nutrition. The contents of nitrogen and Chl did not differ significantly between transformants and NT; however, Rubisco content was substantially decreased in transgenic lines. There was no evidence for reduced transcription of RbcS or RbcL in these transgenic lines; in fact, transcript levels were marginally increased compared with NT. These results indicate that the overexpression of Rubisco activase leads to a decrease in Rubisco content, possibly due to post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Yamori W, Nagai T, Makino A. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species. PLANT, CELL & ENVIRONMENT 2011; 34:764-77. [PMID: 21241332 DOI: 10.1111/j.1365-3040.2011.02280.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Effects of nitrogen (N) supply on the limiting step of CO(2) assimilation rate (A) at 380 µmol mol(-1) CO(2) concentration (A(380) ) at several leaf temperatures were studied in several crops, since N nutrition alters N allocation between photosynthetic components. Contents of leaf N, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) increased with increasing N supply, but the cyt f/Rubisco ratio decreased. Large leaf N content was linked to a high stomatal (g(s) ) and mesophyll conductance (g(m) ), but resulted in a lower intercellular (C(i) ) and chloroplast CO(2) concentration (C(c) ) because the increase in g(s) and g(m) was insufficient to compensate for change in A(380) . The A-C(c) response was used to estimate the maximum rate of RuBP carboxylation (V(cmax) ) and chloroplast electron transport (J(max) ). The J(max) /V(cmax) ratio decreased with reductions in leaf N content, which was consistent with the results of the cyt f/Rubisco ratio. Analysis using the C(3) photosynthesis model indicated that A(380) tended to be limited by RuBP carboxylation in plants grown at low N concentration, whereas it was limited by RuBP regeneration in plants grown at high N concentration. We conclude that the limiting step of A(380) depends on leaf N content and is mainly determined by N partitioning between Rubisco and electron transport components.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | | | | |
Collapse
|
32
|
Cai B, Zhang A, Yang Z, Lu Q, Wen X, Lu C. Characterization of photosystem II photochemistry in transgenic tobacco plants with lowered Rubisco activase content. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1457-65. [PMID: 20576317 DOI: 10.1016/j.jplph.2010.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 05/13/2023]
Abstract
Rubisco activase plays an important role in the regulation of CO(2) assimilation. However, it is unknown how activase regulates photosystem II (PSII) photochemistry. To investigate the effects of Rubisco activase on PSII photochemistry, we obtained transgenic tobacco (Nicotiana tabacum) plants with 50% (i7), 25% (i28), and 5% (i46) activase levels as compared to wild type plants by using a gene encoding tobacco activase for the RNAi construct. Both CO(2) assimilation and PSII activity were significantly reduced only in transgenic i28 and i46 plants, suggesting that activase deficiency led to decreased PSII activity. Flash-induced fluorescence kinetics indicated that activase deficiency resulted in a slow electron transfer between Q(A) (primary quinine electron acceptor of PSII) and Q(B) (secondary quinone electron acceptor of PSII). Thermoluminescence measurements revealed that activase deficiency induced a shift of S(2)Q(A)(-) and S(2)Q(B)(-) recombinations to higher temperatures in parallel, and a decrease in the intensities of the thermoluminescence emissions. Activase deficiency also dampened the period-four oscillation of the thermoluminescence B-band. Protein gel blot analysis showed that activase deficiency resulted in a significant decrease in the content of D1, D2, CP43, CP47, and PsbO proteins. Transmission electron microscopy analysis demonstrated that activase deficiency induced a significant decrease in the number of grana stacks per chloroplast and discs per grana stack. Our results suggest that activase plays an important role in maintaining PSII function and chloroplast development.
Collapse
Affiliation(s)
- Bin Cai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD, Ndimba B, Orellano EG, Ottado J, Gehring C. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC PLANT BIOLOGY 2010; 10:51. [PMID: 20302677 PMCID: PMC2923525 DOI: 10.1186/1471-2229-10-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/21/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.
Collapse
Affiliation(s)
- Betiana S Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario, Rosario, Argentina
| | - Ludivine Thomas
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Tamara Zimaro
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Lucas D Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Bongani Ndimba
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Elena G Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- CBRC, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Yamori W, Evans JR, Von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves. PLANT, CELL & ENVIRONMENT 2010; 33:332-43. [PMID: 19895395 DOI: 10.1111/j.1365-3040.2009.02067.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effects of growth light intensity on the temperature dependence of CO(2) assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO(2) diffusion (g(m)) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO(2) assimilation rate to chloroplast CO(2) concentration (C(c)) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (V(cmax)) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 micromol electrons mol(-1) cyt f s(-1) at 25 and 40 degrees C, respectively). The chloroplast CO(2) concentration (C(trans)) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO(2) assimilation rate at 380 micromol mol(-1) CO(2) concentration and high light was limited by RuBP carboxylation above 32 degrees C and by RuBP regeneration below 32 degrees C.
Collapse
Affiliation(s)
- Wataru Yamori
- Molecular Plant Physiology Group, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia.
| | | | | |
Collapse
|
35
|
Yin Z, Meng F, Song H, Wang X, Xu X, Yu D. Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. PLANT PHYSIOLOGY 2010; 152:1625-37. [PMID: 20032079 PMCID: PMC2832260 DOI: 10.1104/pp.109.148312] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in photosynthesis. However, until now, little was known about the molecular genetics of RCA in soybean (Glycine max), one of the most important legume crops. Here, we cloned and characterized two genes encoding the longer alpha -isoform and the shorter beta -isoform of soybean RCA (GmRCA alpha and GmRCA beta, respectively). The two corresponding cDNAs are divergent in both the translated and 3 ' untranslated regions. Analysis of genomic DNA sequences suggested that the corresponding mRNAs are transcripts of two different genes and not the products of a single alternatively splicing pre-mRNA. Two additional possible alpha -form RCA-encoding genes, GmRCA03 and GmRCA14, and one additional beta -form RCA-encoding gene, GmRCA11, were also isolated. To examine the function and modulation of RCA genes in soybean, we determined the expression levels of GmRCA alpha and GmRCA beta, Rubisco initial activity, photosynthetic rate, and seed yield in 184 soybean recombinant inbred lines. Correlation of gene expression levels with three other traits indicates that RCA genes could play an important role in regulating soybean photosynthetic capacity and seed yield. Expression quantitative trait loci mapping revealed four trans-expression quantitative trait loci for GmRCA alpha and GmRCA beta. These results could provide a new approach for the modulation of RCA genes to improve photosynthetic rate and plant growth in soybean and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement (Z.Y., F.M., H.S., X.W., D.Y.), and Photosynthesis Research Laboratory, College of Life Sciences (X.X.), Nanjing Agricultural University, Nanjing 210095, China; and JIANGSU Yanjiang Institute of Agricultural Sciences, Nantong 226541, China (Z.Y.)
| |
Collapse
|
36
|
Yamori W, von Caemmerer S. Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. PLANT PHYSIOLOGY 2009; 151:2073-82. [PMID: 19837817 PMCID: PMC2786000 DOI: 10.1104/pp.109.146514] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/14/2009] [Indexed: 05/18/2023]
Abstract
The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. To elucidate its role in maintaining CO(2) assimilation rate at high temperature, we examined the temperature response of CO(2) assimilation rate at 380 microL L(-1) CO(2) concentration (A(380)) and Rubisco activation state in wild-type and transgenic tobacco (Nicotiana tabacum) with reduced Rubisco activase content grown at either 20 degrees C or 30 degrees C. Analyses of gas exchange and chlorophyll fluorescence showed that in the wild type, A(380) was limited by ribulose 1,5-bisphosphate regeneration at lower temperatures, whereas at higher temperatures, A(380) was limited by ribulose 1,5-bisphosphate carboxylation irrespective of growth temperatures. Growth temperature induced modest differences in Rubisco activation state that declined with measuring temperature, from mean values of 76% at 15 degrees C to 63% at 40 degrees C in wild-type plants. At measuring temperatures of 25 degrees C and below, an 80% reduction in Rubisco activase content was required before Rubisco activation state was decreased. Above 35 degrees C, Rubisco activation state decreased slightly with more modest decreases in Rubisco activase content, but the extent of the reductions in Rubisco activation state were small, such that a 55% reduction in Rubisco activase content did not alter the temperature sensitivity of Rubisco activation and had no effect on in vivo catalytic turnover rates of Rubisco. There was a strong correlation between Rubisco activase content and Rubisco activation state once Rubisco activase content was less that 20% of wild type at all measuring temperatures. We conclude that reduction in Rubisco activase content does not lead to an increase in the temperature sensitivity of Rubisco activation state in tobacco.
Collapse
Affiliation(s)
- Wataru Yamori
- Molecular Plant Physiology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
37
|
Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. PLANTA 2009; 230:1185-96. [PMID: 19760261 DOI: 10.1007/s00425-009-1016-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/04/2009] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are a new group of plant growth substances that promote plant growth and productivity. We showed in this study that improved growth of cucumber (Cucumis sativus) plants after treatment with 24-epibrassinolide (EBR), an active BR, was associated with increased CO(2) assimilation and quantum yield of PSII (Phi(PSII)). Treatment of brassinazole (Brz), a specific inhibitor for BR biosynthesis, reduced plant growth and at the same time decreased CO(2) assimilation and Phi(PSII). Thus, the growth-promoting activity of BRs can be, at least partly, attributed to enhanced plant photosynthesis. To understand how BRs enhance photosynthesis, we have analyzed the effects of EBR and Brz on a number of photosynthetic parameters and their affecting factors, including the contents and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Northern and Western blotting demonstrated that EBR upregulated, while Brz downregulated, the expressions of rbcL, rbcS and other photosynthetic genes. In addition, EBR had a positive effect on the activation of Rubisco based on increased maximum Rubisco carboxylation rates (V (c,max)), total Rubisco activity and, to a greater extent, initial Rubisco activity. The accumulation patterns of Rubisco activase (RCA) based on immunogold-labeling experiments suggested a role of RCA in BR-regulated activation state of Rubisco. Enhanced expression of genes encoding other Calvin cycle genes after EBR treatment may also play a positive role in RuBP regeneration (J (max)), thereby increasing maximum carboxylation rate of Rubisco (V (c,max)). Thus, BRs promote photosynthesis and growth by positively regulating synthesis and activation of a variety of photosynthetic enzymes including Rubisco in cucumber.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Panda A, Bhattacharyya S, Datta SN. Pressure effect on rate of production of glucose-equivalent in plant cells. J CHEM SCI 2009. [DOI: 10.1007/s12039-009-0065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Kumar S, Singh B. Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:281-6. [PMID: 23572938 PMCID: PMC3550359 DOI: 10.1007/s12298-009-0032-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon isotope discrimination (CID) has been suggested as an indirect tool for selection of water use efficiency in wheat. This study evaluates the role of Rubisco activity in regulating carbon isotope discrimination (CID) and discriminate the response of durum (PDW-233) and bread (C-306, HD-2329) wheat genotypes for carbon isotope discrimination and Rubisco activity under induced water stress hydroponically created by using different concentrations of PEG. In C-306, a well known drought tolerant genotype, CID was positively correlated with Rubisco activity. In C-306 CID was positively correlated with both Rubisco activity (r = 0.588* at 5). A positive but not a strong correlation was observed between Rubisco activity and CID (r = 0.418) in durum type PDW-233. Although in HD-2329 the Rubisco activity (r = 0.303) was positively correlated with CID, the correlations were not significant. We show that carbon isotope discrimination technique is a potential tool for selection of lines with high Rubisco activity in the wheat breeding program.
Collapse
Affiliation(s)
- Shailesh Kumar
- />Division of Plant Physiology, New Delhi, India
- />Department of Botany and Plant Physiology, FBSH, Rajendra Agricultural University, Pusa, Samastipur, Bihar 848 125 India
| | - Bhupinder Singh
- />Nuclear Research Laboratory, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
40
|
Eichelmann H, Talts E, Oja V, Padu E, Laisk A. Rubisco in planta kcat is regulated in balance with photosynthetic electron transport. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4077-88. [PMID: 19661266 PMCID: PMC2755028 DOI: 10.1093/jxb/erp242] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/08/2009] [Accepted: 07/13/2009] [Indexed: 05/22/2023]
Abstract
Site turnover rate (k(cat)) of Rubisco was measured in intact leaves of different plants. Potato (Solanum tuberosum L.) and birch (Betula pendula Roth.) leaves were taken from field-growing plants. Sunflower (Helianthus annuus L.), wild type (wt), Rubisco-deficient (-RBC), FNR-deficient (-FNR), and Cyt b(6)f deficient (-CBF) transgenic tobacco (Nicotiana tabacum L.) were grown in a growth chamber. Rubisco protein was measured with quantitative SDS-PAGE and FNR protein content with quantitative immunoblotting. The Cyt b(6)f level was measured in planta by maximum electron transport rate and the photosystem I (PSI) content was assessed by titration with far-red light. The CO(2) response of Rubisco was measured in planta with a fast-response gas exchange system at maximum ribulose 1,5-bisphosphate concentration. Reaction site k(cat) was calculated from V(m) and Rubisco content. Biological variation of k(cat) was significant, ranging from 1.5 to 4 s(-1) in wt, but was >6 s(-1) at 23 degrees C in -RBC leaves. The lowest k(cat) of 0.5 s(-1) was measured in -FNR and -CBF plants containing sufficient Rubisco but having slow electron transport rates. Plotting k(cat) against PSI per Rubisco site resulted in a hyperbolic relationship where wt plants are on the initial slope. A model is suggested in which Rubisco Activase is converted into an active ATP-form on thylakoid membranes with the help of a factor related to electron transport. The activation of Rubisco is accompanied by the conversion of the ATP-form into an inactive ADP-form. The ATP and ADP forms of Activase shuttle between thylakoid membranes and stromally-located Rubisco. In normal wt plants the electron transport-related activation of Activase is rate-limiting, maintaining 50-70% Rubisco sites in the inactive state.
Collapse
Affiliation(s)
| | | | | | | | - A. Laisk
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
41
|
Kubien DS, Sage RF. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco. PLANT, CELL & ENVIRONMENT 2008; 31:407-18. [PMID: 18182015 DOI: 10.1111/j.1365-3040.2008.01778.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The reasons for the decline in net CO2 assimilation (A) above its thermal optimum are controversial. We tested the hypothesis that increasing the ratio of Rubisco activase to Rubisco catalytic site concentration would increase the activation state of Rubisco at high temperatures. We measured photosynthetic gas exchange, in vivo electron transport (J) and the activation state of Rubisco between 15 and 45 degrees C, at 38 and 76 Pa ambient CO2, in wild-type (WT) and anti-rbcS tobacco. The Rubisco content of the anti-rbcS lines was 30% (S7-1) or 6% (S7-2) of WT, but activase levels were the same in the three genotypes. Anti-rbcS plants had lower A than WT at all temperatures, but had a similar thermal optimum for photosynthesis as WT at both CO2 levels. In WT plants, Rubisco was fully activated at 32 degrees C, but the activation state declined to 64% at 42 degrees C. By contrast, the activation state of Rubisco was above 90% in the S7-1 line, between 15 and 42 degrees C. Both A and J declined about 20% from T(opt) to the highest measurement temperatures in WT and the S7-1 line, but this was fully reversed after a 20 min recovery at 35 degrees C. At 76 Pa CO2, predicted rates of RuBP regeneration-limited photosynthesis corresponded with measured A in WT tobacco at all temperatures, and in S7-1 tobacco above 40 degrees C. Our observations are consistent with the hypothesis that the high temperature decline in A in the WT is because of an RuBP regeneration limitation, rather than the capacity of Rubisco activase to maintain high Rubisco activation state.
Collapse
Affiliation(s)
- David S Kubien
- Department of Biology, University of New Brunswick, 10 Bailey Dr., Fredericton, NB, Canada.
| | | |
Collapse
|
42
|
Sage RF, Way DA, Kubien DS. Rubisco, Rubisco activase, and global climate change. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1581-95. [PMID: 18436544 DOI: 10.1093/jxb/ern053] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2.
| | | | | |
Collapse
|
43
|
Makino A, Sage RF. Temperature Response of Photosynthesis in Transgenic Rice Transformed with ‘Sense’ or ‘Antisense’ rbcS. ACTA ACUST UNITED AC 2007; 48:1472-83. [PMID: 17804480 DOI: 10.1093/pcp/pcm118] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The responses of chlorophyll fluorescence, gas exchange rate and Rubisco activation state to temperature were examined in transgenic rice plants with 130 and 35% of the wild-type (WT) Rubisco content by transformation with rbcS cDNA in sense and antisense orientations, respectively. Although the optimal temperatures of PSII quantum efficiency and CO(2) assimilation were found to be between 25 and 32 degrees C, the maximal activation state of Rubisco was found to be between 16 and 20 degrees C in all genotypes. The Rubisco flux control coefficient was also the highest between 16 and 20 degrees C in the WT and antisense lines [>0.88 at an intercellular CO(2) pressure (Ci) of 28 Pa]. Gross photosynthesis at Ci = 28 Pa per Rubisco content in the WT between 12 and 20 degrees C was close to that of the antisense lines where high Rubisco control is present. Thus, Rubisco activity most strongly limited photosynthesis at cool temperatures. These results indicated that a selective enhancement of Rubisco content can enhance photosynthesis at cool temperatures, but in the sense line with enhanced Rubisco content Pi regeneration limitation occurred. Above 20 degrees C, the Rubisco flux control coefficient declined. This decline was associated with a decline in Rubisco activation. The activation state of Rubisco measured at each temperature decreased with increasing Rubisco content, and the slope of activation to Rubisco content was independent of temperature. We discuss the possibility that the decline in Rubisco activation at intermediate and high temperatures is part of a regulated response to a limitation in other photosynthetic processes.
Collapse
Affiliation(s)
- Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan.
| | | |
Collapse
|
44
|
Schrader SM, Kleinbeck KR, Sharkey TD. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. PLANT, CELL & ENVIRONMENT 2007; 30:671-8. [PMID: 17470143 DOI: 10.1111/j.1365-3040.2007.01657.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heat stress in leaves under natural conditions is characterized by rapid fluctuations in temperature. These fluctuations can be on the order of 10 degrees C in 7 s. By using a specially modified gas-exchange chamber, these conditions were mimicked in the laboratory to analyse the biochemical response to heat spikes. The decline in ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity during prolonged heat stress is generally associated with an increase in ribulose 1,5-bisphosphate (RuBP) levels. However, rapid heating caused an initial decline in RuBP which was subsequently followed by a small decline in Rubisco carbamylation. The ratio of RuBP to Rubisco sites declined from a saturating concentration to a sub-saturating concentration, providing a possible mechanism for the decarbamylation of Rubisco. If RuBP is saturating (>1.8 RuBP Rubisco site(-1)), it acts as a cap on the catalytic site and keeps Rubisco activated. Measurements of triose-phosphate levels and NADP-malate dehydrogenase activation (a stromal redox proxy) indicated that the regeneration of RuBP by the Calvin cycle was limited by the availability of redox power.
Collapse
Affiliation(s)
- Stephen M Schrader
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
45
|
Schrader SM, Kane HJ, Sharkey TD, von Caemmerer S. High temperature enhances inhibitor production but reduces fallover in tobacco Rubisco. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:921-929. [PMID: 32689302 DOI: 10.1071/fp06059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/24/2006] [Indexed: 06/11/2023]
Abstract
High temperature inhibits photosynthesis by several mechanisms including reduction in Rubisco activity. While the initial reaction velocity of purified, fully carbamylated, inhibitor-free Rubisco increases with temperature in vitro, over time, the reaction velocity slowly declines (fallover) because of the enzymatic and non-enzymatic production of inhibitors from the substrate ribulose-1,5-bisphosphate. We tested whether fallover could contribute to the decline in Rubisco activity observed in leaf extracts at high temperature. Production of d-xylulose-1,5-bisphosphate (XuBP), an inhibitor of Rubisco, was greater at 35 and 45°C than at 25°C but fallover was less severe at 35 and 45°C than at 25°C, both in rate and extent under saturating CO2 and ambient O2. This apparent dichotomy is consistent with the catalytic site of Rubisco loosening at higher temperatures and releasing inhibitors more easily. The loosening of the catalytic site was supported by the observation that RuBP and XuBP were released from their complexes with uncarbamylated, Mg2+-free Rubisco faster at 35 and 45°C than at 25°C. We conclude that, although XuBP production increased relative to catalytic throughput at higher temperatures, this was more than compensated for by its faster release, resulting in less fallover inhibition at higher temperatures.
Collapse
Affiliation(s)
- Stephen M Schrader
- Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Heather J Kane
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | - Thomas D Sharkey
- Department of Botany, University of Wisconsin - Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Susanne von Caemmerer
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| |
Collapse
|
46
|
McNevin D, von Caemmerer S, Farquhar G. Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3883-900. [PMID: 17046981 DOI: 10.1093/jxb/erl156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The forward and reverse rate constants involved in carbamylation, activation, carboxylation, and inhibition of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) have been estimated by a new technique of simultaneous non-linear regression of a differential equation kinetic model to multiple experimental data. Parameters predicted by the model fitted to data from purified spinach enzyme in vitro included binding affinity constants for non-substrate CO2 and Mg2+ of 200+/-80 microM and 700+/-200 microM, respectively, as well as a turnover number (k(cat)) of 3.3+/-0.5 s(-1), a Michaelis half-saturation constant for carboxylation (K(M,C)) of 10+/-4 microM and a Michaelis constant for RuBP binding (K(M,RuBP)) of 1.5+/-0.5 microM. These and other constants agree well with previously measured values where they exist. The model is then used to show that slow inactivation of RuBisCO (fallover) in oxygen-free conditions at low concentrations of CO2 and Mg2+ is due to decarbamylation and binding of RuBP to uncarbamylated enzyme. In spite of RuBP binding more tightly to uncarbamylated enzyme than to the activated form, RuBisCO is activated at high concentrations of CO2 and Mg2+. This apparent paradox is resolved by considering activation kinetics and the fact that while RuBP binds tightly but slowly to uncarbamylated enzyme, it binds fast and loosely to activated enzyme. This modelling technique is presented as a new method for determining multiple kinetic data simultaneously from a limited experimental data set. The method can be used to compare the properties of RuBisCO from different species quickly and easily.
Collapse
Affiliation(s)
- Dennis McNevin
- Molecular Plant Physiology Group, Research School of Biological Sciences, Building 46, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
47
|
Kim K, Portis AR. Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. PLANT & CELL PHYSIOLOGY 2005; 46:522-30. [PMID: 15695447 DOI: 10.1093/pcp/pci052] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Net photosynthesis (Pn) is reversibly inhibited at moderately high temperature. To investigate this further, we examined the effects of heat stress on Arabidopsis plants in which Rubisco activase or thylakoid membrane fluidity has been modified. During heating leaves from 25 to 40 degrees C at 250 ppm CO2 and 1% O2, the wild-type (WT), plants expressing the 43 kDa isoform only (rwt43), and plants accumulating activase 40% of WT (R100) exhibited similar inhibitions in the Pn and Rubisco activation state. Despite better membrane integrity than WT, plants having less polyunsaturation of thylakoid lipids (fad7/8 double mutant) failed to maintain greater Pn than the WT. Plants expressing the 46 kDa isoform only (rwt46) exhibited the most inhibition, but plants expressing a 46 kDa isoform incapable of redox regulation (C411A) were similar to the WT. The null mutant (rca) exhibited a continuous decline in Pn. As measured by fluorescence, electron transport activity decreased concomitantly with Pn but PSII was not damaged. Following a quick recovery to 25 from 40 degrees C, whereas most lines recovered 90% Pn, the rwt46 and rca lines recovered only to 59 and <10%, respectively. As measured by NADP-malate dehydrogenase activation, after an initial increase at 30 degrees C, stromal oxidation in the WT and rwt46 plants did not increase further as Pn decreased. These results provide additional insight into the role of Rubisco activation and activase in the reversible heat inhibition of Pn.
Collapse
Affiliation(s)
- Kangmin Kim
- Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Urbana, IL 61801, USA
| | | |
Collapse
|
48
|
von Caemmerer S, Hendrickson L, Quinn V, Vella N, Millgate AG, Furbank RT. Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. PLANT PHYSIOLOGY 2005; 137:747-55. [PMID: 15665240 PMCID: PMC1065374 DOI: 10.1104/pp.104.056077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/12/2004] [Accepted: 12/13/2004] [Indexed: 05/19/2023]
Abstract
To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, thereby influencing carbamylation. In C3 species, Rubisco operates in a low CO2 environment, which is suboptimal for both catalysis and carbamylation. In C4 plants, Rubisco is located in the bundle sheath cells and operates in a high CO2 atmosphere close to saturation. To explore the role of Rubisco activase in C4 photosynthesis, activase levels were reduced in Flaveria bidentis, a C4 dicot, by transformation with an antisense gene directed against the mRNA for Rubisco activase. Four primary transformants with very low activase levels were recovered. These plants and several of their segregating T1 progeny required high CO2 (>1 kPa) for growth. They had very low CO2 assimilation rates at high light and ambient CO2, and only 10% to 15% of Rubisco sites were carbamylated at both ambient and very high CO2. The amount of Rubisco was similar to that of wild-type plants. Experiments with the T1 progeny of these four primary transformants showed that CO2 assimilation rate and Rubisco carbamylation were severely reduced in plants with less than 30% of wild-type levels of activase. We conclude that activase activity is essential for the operation of the C4 photosynthetic pathway.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Pollock SV, Colombo SL, Prout DL, Godfrey AC, Moroney JV. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. PLANT PHYSIOLOGY 2003; 133:1854-61. [PMID: 14605215 PMCID: PMC300738 DOI: 10.1104/pp.103.032078] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 09/02/2003] [Accepted: 09/09/2003] [Indexed: 05/20/2023]
Abstract
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.
Collapse
Affiliation(s)
- Steve V Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|