1
|
Li X, Yi M, Song Z, Ni T, Tu L, Yu M, Zhang L, Shi J, Gao W, Zhang Q, Yan W. A calcitonin gene-related peptide co-crosslinked hydrogel promotes diabetic wound healing by regulating M2 macrophage polarization and angiogenesis. Acta Biomater 2025; 196:109-122. [PMID: 40020959 DOI: 10.1016/j.actbio.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Delayed diabetic wound (DBW) healing is a severe complication of diabetes, characterized notably by peripheral sensory neuropathy. The underlying mechanism of sensory nerves and DBW remain unclear. Here, we demonstrate the role of calcitonin gene-related peptide (CGRP) in regulating epithelialization and angiogenesis in DBW. Subsequently, we design and synthesis a gelatin methacryloyl (GelMA-CGRP) hydrogel that slowly releases CGRP, and evaluated its effect on promoting DBW healing. The results show that CGRP is abnormally downregulated in DBW, and CGRP ablation further delays DBW healing. This is due to the reduced M2 polarization and decreased angiogenesis in the absence of CGRP, whereas local application of GelMA-CGRP accelerates DBW healing. Mechanistic studies indicate that CGRP promotes M2 macrophage polarization by inhibiting the p53 signaling pathway and enhances endothelial cell function, thereby accelerating DBW healing. These findings suggest that CGRP could provide a novel therapeutic approach for diabetic wound treatment. STATEMENT OF SIGNIFICANCE: Current methods for treating diabetic wounds have many limitations. Compared to conventional dressings, hydrogels combined with drugs or biological factors to promote diabetic wound healing have become an important research direction in recent years. This study reveals the key role of CGRP in the pathogenesis of diabetic wounds. The research found that CGRP promotes M2 macrophage polarization and angiogenesis by inhibiting the p53 signaling pathway, thereby promoting diabetic wound healing. We further utilized the carrier properties of GelMA hydrogel to develop a GelMA-CGRP hydrogel material that slowly delivers CGRP and effectively treats diabetic wounds. This material demonstrates strong biocompatibility and antimicrobial properties, offering a novel approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Min Yi
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Ziyan Song
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Tianyi Ni
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Liying Tu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Miao Yu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Lantian Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Weicheng Gao
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Wei Yan
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
2
|
Lu T, Cong L, Jiang T, Dong X, Song L. Neuropeptide Y Promotes the Treatment of Adipose Stem Cells on Type 2 Diabetic Wounds. Tissue Eng Regen Med 2023; 20:683-694. [PMID: 37084169 PMCID: PMC10352478 DOI: 10.1007/s13770-023-00540-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a common metabolic disorder. Due to insufficient insulin secretion or insulin resistance, increased blood glucose often leads to impaired wound healing in T2D patients. Our previous research showed that adipose-derived stem cells (ASCs) from normal mice and T2D mice improved the cutaneous wound healing of diabetic mice. We also found that the expression of neuropeptide Y (NPY) in T2D ASCs was significantly decreased. METHODS In order to explore the effects of NPY on ASCs and diabetic wound healing, we investigated the effects of NPY on ASCs proliferation and growth factors expression and secretion, the effects of NPY on skin fibroblasts, and the effects of NPY combined with ASCs on T2D wound healing. RESULTS The results showed that a certain concentration of NPY could promote the proliferation and the growth factors expression and secretion of ASCs, and promote the proliferation and migration of fibroblasts. At the same time, NPY and ASCs have a synergistic effect, which can promote wound healing and decrease inflammation in T2D wounds. NPY may regulate ASCs through the ERK pathway. These results are conducive to promoting ASCs and NPY in the treatment of diabetic wounds. CONCLUSIONS NPY can promote the effect of ASCs in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Tinghuan Lu
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Lu Cong
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Tong Jiang
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiao Dong
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| | - Lili Song
- College of Life Science, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
- School of Life Science, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
4
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
5
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
6
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
7
|
Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton Neurosci 2019; 223:102610. [PMID: 31790954 DOI: 10.1016/j.autneu.2019.102610] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
Lower extremity ulcerations represent a major complication in diabetes mellitus and involve multiple physiological factors that lead to impairment of wound healing. Neuropeptides are neuromodulators implicated in various processes including diabetic wound healing. Diabetes causes autonomic and small sensory nerve fibers neuropathy as well as inflammatory dysregulation, which manifest with decreased neuropeptide expression and a disproportion in pro- and anti- inflammatory cytokine response. Therefore to fully understand the contribution of autonomic nerve dysfunction in diabetic wound healing it is crucial to explore the implication of neuropeptides. Here, we will discuss recent studies elucidating the role of specific neuropeptides in wound healing.
Collapse
|
8
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Quattrini C, Jeziorska M, Malik RA. Small Fiber Neuropathy in Diabetes: Clinical Consequence and Assessment. INT J LOW EXTR WOUND 2016; 3:16-21. [PMID: 15866784 DOI: 10.1177/1534734603262483] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent findings have shed new light on the role of peripheral nerves in the skin and have established a modern concept of cutaneous neurobiology. There is bidirectional rather than unidirectional (conveying information from the periphery) signaling between central and peripheral nerves and the endocrine and immune systems. This interaction is mediated principally by cutaneous small nerve fibers and will influence a variety of physiologic and pathophysiologic functions central to wound healing, which include cellular development, growth, differentiation, immunity, vasoregulation, and leukocyte recruitment. Thus, disease of the small fibers in diabetic patients is frequent and may have a considerable impact on the predisposition and subsequent wound-healing response to foot ulceration. The authors review the basic pathophysiology, clinical consequences, and current methods to evaluate somatic and autonomic nerve fiber dysfunction and damage.
Collapse
Affiliation(s)
- C Quattrini
- Department of Medicine, Manchester Royal Infirmary, UK
| | | | | |
Collapse
|
10
|
Saraf R, Mahmood F, Amir R, Matyal R. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. Eur J Pharmacol 2016; 776:64-70. [PMID: 26875634 DOI: 10.1016/j.ejphar.2016.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/27/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
In diabetic cardiomyopathy, there is altered angiogenic signaling and increased oxidative stress. As a result, anti-angiogenic and pro-inflammatory pathways are activated. These disrupt cellular metabolism and cause fibrosis and apoptosis, leading to pathological remodeling. The autonomic nervous system and neurotransmitters play an important role in angiogenesis. Therapies that promote angiogenesis may be able to relieve the pathology in these disease states. Neuropeptide Y (NPY) is the most abundantly produced and expressed neuropeptide in the central and peripheral nervous systems in mammals and plays an important role in promoting angiogenesis and cardiomyocyte remodeling. It produces effects through G-protein-coupled Y receptors that are widely distributed and also present on the myocardium. Some of these receptors are also involved in diseased states of the heart. NPY has been implicated as a potent growth factor, causing cell proliferation in multiple systems while the NPY3-36 fragment is selective in stimulating angiogenesis and cardiomyocyte remodeling. Current research is focusing on developing a drug delivery mechanism for NPY to prolong therapy without having significant systemic consequences. This could be a promising innovation in the treatment of diabetic cardiomyopathy and ischemic heart disease.
Collapse
Affiliation(s)
- Rabya Saraf
- Department of Surgery, Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rabia Amir
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Kazamel M, Dyck PJ. Sensory manifestations of diabetic neuropathies: anatomical and clinical correlations. Prosthet Orthot Int 2015; 39:7-16. [PMID: 25614497 DOI: 10.1177/0309364614536764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes mellitus is among the most common causes of peripheral neuropathy worldwide. Sensory impairment in diabetics is a major risk factor of plantar ulcers and neurogenic arthropathy (Charcot joints) causing severe morbidity and high health-care costs. OBJECTIVE To discuss the different patterns of sensory alterations in diabetic neuropathies and their anatomical basis. STUDY DESIGN Literature review. METHODS Review of the literature discussing different patterns of sensory impairment in diabetic neuropathies. RESULTS The different varieties of diabetic neuropathies include typical sensorimotor polyneuropathy (lower extremity predominant, length-dependent, symmetric, sensorimotor polyneuropathy presumably related to chronic hyperglycemic exposure, and related metabolic events), entrapment mononeuropathies, radiculoplexus neuropathies related to immune inflammatory ischemic events, cranial neuropathies, and treatment-related neuropathies (e.g. insulin neuritis). None of these patterns are unique for diabetes, and they can occur in nondiabetics. Sensory alterations are different among these prototypic varieties and are vital in diagnosis, following course, treatment options, and follow-up of treatment effects. CONCLUSIONS Diabetic neuropathies can involve any segment of peripheral nerves from nerve roots to the nerve endings giving different patterns of abnormal sensation. It is the involvement of small fibers that causes positive sensory symptoms like pain early during the course of disease, bringing subjects to physician's care. CLINICAL RELEVANCE This article emphasizes on the fact that diabetic neuropathies are not a single entity. They are rather different varieties of conditions with more or less separate pathophysiological mechanisms and anatomical localization. Clinicians should keep this in mind when assessing patients with diabetes on the first visit or follow-up.
Collapse
Affiliation(s)
- Mohamed Kazamel
- Neuromuscular Pathology Laboratories, Department of Neurology, Mayo Clinic, Rochester, USA
| | - Peter J Dyck
- Peripheral Neuropathy Research Laboratory, Department of Neurology, Mayo Clinic, Rochester, USA
| |
Collapse
|
12
|
Boric M, Jelicic Kadic A, Puljak L. Cutaneous expression of calcium/calmodulin-dependent protein kinase II in rats with type 1 and type 2 diabetes. J Chem Neuroanat 2014; 61-62:140-6. [PMID: 25266254 DOI: 10.1016/j.jchemneu.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
Abstract
Changes in calcium-calmodulin protein kinase II (CaMKII) have been well demonstrated in nervous tissue of diabetic animal models. Skin shares the same ectodermal origin as nervous tissue and it is often affected in diabetic patients. The goal of this study was to analyze expression of CaMKII in rat foot pad 2 weeks and 2 months after induction of diabetes type 1 and 2. Forty-two Sprague-Dawley rats were used. Diabetes mellitus type 1 (DM1) was induced with intraperitoneally (i.p.) injected 55 mg/kg of streptozotocin (STZ) and diabetes mellitus type 2 (DM2) with a combination of high-fat diet (HFD) and i.p. injection of low-dose STZ (35 mg/kg). Two weeks and two months following diabetes induction rats were sacrificed and skin samples from plantar surface of the both hind paws were removed. Immunohistochemistry was performed for detection of total CaMKII (tCaMKII) and its alpha isoform (pCaMKIIα). For detection of intraepidermal nerve fibers polyclonal antiserum against protein gene product 9.5 (PGP 9.5) was used. The results showed that CaMKII was expressed in the skin of both diabetic models. Total CaMKII was uniformly distributed throughout the epidermis and pCaMKIIα was limited to stratum granulosum. The tCaMKII and pCaMKIIα were not expressed in intraepidermal nerve fibers. Two weeks after induction of diabetes in rats there were no significant differences in expression of tCaMKII and pCaMKIIα between DM1 and DM2 compared to respective controls. In the 2-month experiments, significant increase in epidermal expression of tCaMKII and pCaMKIIα was observed in DM1 animals compared to controls, but not in DM2 animals. This study is the first description of cutaneous CaMKII expression pattern in a diabetic model. CaMKII could play a role in transformation of skin layers and contribute to cutaneous diabetic changes. Further research on physiological role of CaMKII in skin and its role in cutaneous diabetic complications should be undertaken in order to elucidate its function in epidermis.
Collapse
Affiliation(s)
- Matija Boric
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia.
| | - Antonia Jelicic Kadic
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Livia Puljak
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
13
|
Abstract
As ensheathing and secretory cells, Schwann cells are a ubiquitous and vital component of the endoneurial microenvironment of peripheral nerves. The interdependence of axons and their ensheathing Schwann cells predisposes each to the impact of injury in the other. Further, the dependence of the blood-nerve interface on trophic support from Schwann cells during development, adulthood, and after injury suggests these glial cells promote the structural and functional integrity of nerve trunks. Here, the developmental origin, injury-induced changes, and mature myelinating and nonmyelinating phenotypes of Schwann cells are reviewed prior to a description of nerve fiber pathology and consideration of pathogenic mechanisms in human and experimental diabetic neuropathy. A fundamental role for aldose-reductase-containing Schwann cells in the pathogenesis of diabetic neuropathy, as well as the interrelationship of pathogenic mechanisms, is indicated by the sensitivity of hyperglycemia-induced biochemical alterations, such as polyol pathway flux, formation of reactive oxygen species, generation of advanced glycosylation end products (AGEs) and deficient neurotrophic support, to blocking polyol pathway flux.
Collapse
Affiliation(s)
- Andrew P Mizisin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
15
|
Matyal R, Sakamuri S, Wang A, Mahmood E, Robich MP, Khabbaz K, Hess PE, Sellke FW, Mahmood F. Local infiltration of neuropeptide Y as a potential therapeutic agent against apoptosis and fibrosis in a swine model of hypercholesterolemia and chronic myocardial ischemia. Eur J Pharmacol 2013; 718:261-70. [PMID: 24051270 DOI: 10.1016/j.ejphar.2013.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/23/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
While the angiogenic effects of Neuropeptide Y (NPY) in myocardial ischemia and hypercholesterolemia have been studied, its effects on altering oxidative stress, fibrosis and cell death are not known. We hypothesized that local infiltration of NPY in a swine model of chronic myocardial ischemia and hypercholesterolemia will induce nerve growth and cell survival, while reducing oxidative stress and fibrosis. Yorkshire mini-swine (n=15) were fed a high cholesterol diet for 5 weeks. Three weeks after surgical induction of focal myocardial ischemia, an osmotic pump was implanted, which delivered NPY (n=8, high cholesterol treated, HCT) or the vehicle (n=7, high cholesterol control, HCC) for 5 weeks. Then myocardium was harvested for analysis. Assessment of myocardial function and perfusion was made the last intervention. Immunoblotting demonstrated significantly decreased levels of MMP-9 (p=0.001) and TGF-β (p=0.05) and significantly increased levels of Ang-1 (p=0.002), MnSOD (p=0.006) and NGF (p=0.01) in HCT. Immunohistochemistry results revealed significantly decreased TUNEL staining (p=0.005) and GLUT4 translocation (p=0.004) in HCT. The functional data showed significantly improved blood flow reserve (p=0.02) and improved diastolic function -dP/dt (p=0.009) in the treated animals. Local infiltration of NPY results in positive remodeling in ischemic myocardium in the setting of hypercholesterolemia. By initiating angio and neurogenesis, NPY infiltration improves blood flow reserve and restoration of fatty acid metabolism. The associated increased cell survival and decreased fibrosis result in improved myocardial diastolic function. NPY may have a potential therapeutic role in patients with hypercholesterolemia associated coronary artery disease.
Collapse
Affiliation(s)
- Robina Matyal
- Beth Israel Deaconess Medical Center, Department of Anesthesia and Critical Care, CC-454, 1 Deaconess Road, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khalil Z, Ogrin R, Darzins PJ. The effect of sensory nerve stimulation on sensory nerve function in people with peripheral neuropathy associated with diabetes. Neurol Res 2013; 29:743-8. [PMID: 17588310 DOI: 10.1179/016164107x208095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To assess the effect of sensory nerve stimulation in older people with peripheral neuropathy associated with diabetes (DPN). MATERIALS AND METHODS A randomized, placebo controlled, double blind trial was used to assess the effect of 12 weeks of low frequency sensory nerve stimulation (LF-SNS) in the lower limb [International Patent Application No. PCT/AU2004/001079: 'nerve function and tissue healing' (Z. Khalil)]. Response to capsaicin, basal microvascular blood flow, electric cutaneous threshold and oxygen tension were assessed pre- and post-treatment and between limbs. PARTICIPANTS People 55 years of age or older diagnosed with DPN: 35 active and 31 placebo participants. RESULTS Between groups comparisons: no significant differences occurred between stimulation groups. Within subject comparisons: in the active LF-SNS group, comparing stimulated to contralateral legs, there were significant increases in size of capsaicin flare [t(1,33)=3.65, p<0.05] and capillary blood flow [t(1,34)=-0.33, p<0.05]. There was a trend to improvement in time to initial flare response [t(1,34)=-1.86, p=0.07]. No changes were evident in the placebo group. RESPONDER ANALYSES: In a group of 'responders', the time to initial flare response (p<0.05, r=0.64), size of capsaicin flare (p<0.05 r=1.0) and microvascular blood flow (p<0.05, r=0.60) improved significantly after LF-SNS. CONCLUSIONS The observed data suggest that LF-SNS improves nerve function in a subset of people with DPN. Targeting toward probably 'responders' may deliver the greatest benefit from short-term therapy. Testing optimal application in others seems warranted.
Collapse
|
17
|
Arimura A, Deguchi T, Sugimoto K, Uto T, Nakamura T, Arimura Y, Arimura K, Yagihashi S, Nishio Y, Takashima H. Intraepidermal nerve fiber density and nerve conduction study parameters correlate with clinical staging of diabetic polyneuropathy. Diabetes Res Clin Pract 2013; 99:24-9. [PMID: 23006635 DOI: 10.1016/j.diabres.2012.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/09/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
Abstract
AIM AND METHODS To assess the usefulness of the diagnostic and staging criteria for diabetic polyneuropathy (DP) by the Diabetic Neuropathy Study Group in Japan (DNSGJ) we examined clinical features, intraepidermal nerve fiber densities (IENFD) and nerve conduction studies (NCS) and coefficient of variation of the R-R intervals (CVR-R) in 44 patients with diabetes. RESULTS The patients were classified into stage I (n=20), II (n=6), III+IV (n=12), and V (n=6) according to the staging criteria by DNSGJ. IENFD decreased as stages progressed (13.8±7.1 fiber/mm in stage I to 0.8±1.3 fiber/mm in stage V). Compound motor and sensory action potential and motor and sensory nerve conduction velocity decreased with progressing stage. F-wave latency prolonged as stages progressed. CVR-R decreased with progressing stage (4.41%±2.65% in stage I to 1.33%±0.57% in stage V). IENFD correlated with the various parameters of NCS (r=0.378-0.636, p<0.05) and CVR-R (r=0.399, p=0.007). CONCLUSIONS Clinical staging for DP by DNSGJ reflects the results of small and large fiber neuropathy.
Collapse
Affiliation(s)
- Aiko Arimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Homs J, Ariza L, Pagès G, Verdú E, Casals L, Udina E, Chillón M, Bosch A, Navarro X. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice. J Peripher Nerv Syst 2012; 16:213-27. [PMID: 22003936 DOI: 10.1111/j.1529-8027.2011.00345.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice.
Collapse
Affiliation(s)
- Judit Homs
- Department of Biochemistry and Molecular Biology and Centre de Biotecnologia i Teràpia Gènica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matyal R, Mahmood F, Robich M, Glazer H, Khabbaz K, Hess P, Bianchi C, Hagberg R, Hu SX, Sellke FW. Chronic type II diabetes mellitus leads to changes in neuropeptide Y receptor expression and distribution in human myocardial tissue. Eur J Pharmacol 2011; 665:19-28. [PMID: 21549702 PMCID: PMC3281191 DOI: 10.1016/j.ejphar.2011.04.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y is one of the most abundant neurotransmitters in the myocardium, and is known to influence cardiovascular remodeling. We hypothesized that diabetic neuropathy could possibly be associated with altered neuropeptide Y and its receptor expression levels in myocardium and plasma. Plasma neuropeptide Y levels in diabetic (n=24, HgbA1c 7.9 ± 1.1%) and non-diabetic (n=27, HgbA1c 5.8 ± 0.5%) patients undergoing cardiac surgery utilizing cardiopulmonary bypass were analyzed. Right atrial tissue of these patients was used to determine the expression of neuropeptide Y, the receptors 1-5, and leptin by immunoblotting, real-time PCR and immunofluorescence. Apoptosis signaling and endostatin and angiostatin were measured to determine the effects of leptin. Plasma neuropeptide Y levels were significantly increased in patients with Type II diabetes mellitus as compared to non-diabetic patients (P=0.026). Atrial tissue neuropeptide Y mRNA levels were lower in diabetic patients (P=0.036). There was a significant up-regulation of myocardial Y(2) and Y(5) receptors (P=0.009, P=0.01 respectively) in the diabetic patients. Leptin, involved with apoptosis and angiogenesis, was down regulated in diabetic patients (P=0.05). The levels of caspase-3, endostatin and angiostatin were significantly elevated in diabetic patients (P=0.003, P=0.008, P=0.01 respectively). Y(1) receptors were more likely to be localized within the nuclei of cardiomyocytes and vascular smooth muscle cells. Neuropeptide expression is altered differentially in the serum and myocardium by diabetes. Altered regulation of this system in diabetics may be in part responsible for the decreased angiogenesis, increased apoptosis, and increased vascular smooth muscle proliferation leading to coronary artery disease and heart failure in this patient population.
Collapse
Affiliation(s)
- Robina Matyal
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, Nolano M, Merkies ISJ, Polydefkis M, Smith AG, Sommer C, Valls-Solé J. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 2011; 17:903-12, e44-9. [PMID: 20642627 DOI: 10.1111/j.1468-1331.2010.03023.x] [Citation(s) in RCA: 574] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Revision of the guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy, published in 2005, has become appropriate owing to publication of more relevant articles. Most of the new studies focused on small fiber neuropathy (SFN), a subtype of neuropathy for which the diagnosis was first developed through skin biopsy examination. This revision focuses on the use of this technique to diagnose SFN. METHODS Task force members searched the Medline database from 2005, the year of the publication of the first EFNS guideline, to June 30th, 2009. All pertinent articles were rated according to the EFNS and PNS guidance. After a consensus meeting, the task force members created a manuscript that was subsequently revised by two experts (JML and JVS) in the field of peripheral neuropathy and clinical neurophysiology, who were not previously involved in the use of skin biopsy. RESULTS AND CONCLUSIONS Distal leg skin biopsy with quantification of the linear density of intraepidermal nerve fibers (IENF), using generally agreed upon counting rules, is a reliable and efficient technique to assess the diagnosis of SFN (Recommendation Level A). Normative reference values are available for bright-field immunohistochemistry (Recommendation Level A) but not yet for confocal immunofluorescence or the blister technique. The morphometric analysis of IENF density, either performed with bright-field or immunofluorescence microscopy, should always refer to normative values matched for age (Recommendation Level A). Newly established laboratories should undergo adequate training in a well-established skin biopsy laboratory and provide their own stratified for age and gender normative values, intra- and interobserver reliability, and interlaboratory agreement. Quality control of the procedure at all levels is mandatory (Good Practice Point). Procedures to quantify subepidermal nerve fibers and autonomic innervated structures, including erector pili muscles, and skin vessels, are under development but need to be confirmed by further studies. Sweat gland innervation can be examined using an unbiased stereologic technique recently proposed (Recommendation Level B). A reduced IENF density is associated with the risk of developing neuropathic pain (Recommendation Level B), but it does not correlate with its intensity. Serial skin biopsies might be useful for detecting early changes of IENF density, which predict the progression of neuropathy, and to assess degeneration and regeneration of IENF (Recommendation Level C). However, further studies are warranted to confirm its potential usefulness as an outcome measure in clinical practice and research. Skin biopsy has not so far been useful for identifying the etiology of SFN. Finally, we emphasize that 3-mm skin biopsy at the ankle is a safe procedure based on the experience of 10 laboratories reporting absence of serious side effects in approximately 35,000 biopsies and a mere 0.19% incidence of non-serious side effects in about 15 years of practice (Good Practice Point).
Collapse
Affiliation(s)
- G Lauria
- Neuromuscular Diseases Unit, IRCCS Foundation, 'Carlo Besta' Neurological Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-Tooth disease. Vet J 2010; 188:274-85. [PMID: 20638305 DOI: 10.1016/j.tvjl.2010.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 12/15/2022]
Abstract
Canine inherited neuropathies form a group of degenerative diseases affecting motor and/or sensory and autonomic peripheral nerves. There is now a large number of inherited motor and sensory neuropathies (IMSN) reported in the veterinary literature, for which clinical, electrophysiological, histopathological and mode of inheritance data are available. Their resemblance with Charcot-Marie-Tooth disease in humans is suggested, although direct comparison is difficult due to the small number of cases described in each breed and the lack of genetic knowledge in dogs. Charcot-Marie-Tooth disease forms a wide group of hereditary neuropathies for which a genetic mutation is recognised in more than 70% of patients. In dogs, no genetic mutation has so far been identified and the knowledge available for human hereditary neuropathies may be useful to identify genetic mutations in dogs. This review provides an update on data available on inherited neuropathy in Leonberger dogs and three new degenerative neuropathies are briefly described in two Russian Black terriers, two Cocker Spaniels and a Podhale Shepherd dog.
Collapse
|
22
|
European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Ner. J Peripher Nerv Syst 2010; 15:79-92. [DOI: 10.1111/j.1529-8027.2010.00269.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Fromy B, Sigaudo-Roussel D, Gaubert-Dahan ML, Rousseau P, Abraham P, Benzoni D, Berrut G, Saumet JL. Aging-Associated Sensory Neuropathy Alters Pressure-Induced Vasodilation in Humans. J Invest Dermatol 2010; 130:849-55. [DOI: 10.1038/jid.2009.279] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Diabetic foot disease and ulceration is a major complication that may lead to the amputation of the lower limbs. Microangiopathy may play a significant role in the pathogenesis of tissue breakdown in the diabetic foot. However, the precise mechanisms of this process remain unclear and poorly understood. Microvasculature in the skin is comprised of nutritive capillaries and thermoregulatory arteriovenous shunt flow. It is regulated through the complex interaction of neurogenic and neurovascular control. The interplay among endothelial dysfunction, impaired nerve axon reflex activities, and microvascular regulation in the diabetic patient results in the poor healing of wounds. Skin microvasculature undergoes both morphologic changes as well as functional deficits when parts of the body come under stress or injury. Two important theories that have been put forward to explain the abnormalities that have been observed are the haemodynamic hypothesis and capillary steal syndrome. With advances in medical technology, microvasculature can now be measured quantitatively. This article reviews the development of microvascular dysfunction in the diabetic foot and discusses how it may relate to the pathogenesis of diabetic foot problems and ulceration. Common methods for measuring skin microcirculation are also discussed.
Collapse
Affiliation(s)
- Clare Y L Chao
- Physiotherapy Department, Queen Elizabeth Hospital, Hong Kong SAR, China
| | | |
Collapse
|
25
|
Alves de Medeiros M, Startin CM, Jeffery ND. Innervation of canine skin: an immunohistochemical study. Vet Rec 2009; 165:314-8. [DOI: 10.1136/vr.165.11.314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M. Alves de Medeiros
- Department of Physiological Sciences; Universidade Federal Rural do Rio de Janeiro; BR 465 KM 7 23890 000 Rio de Janeiro Brazil
| | - C. M. Startin
- School of Biomedical Sciences; Institute of Neuroscience; University of Nottingham; Queen's Medical Centre; Nottingham NG7 2UH
| | - N. D. Jeffery
- Department of Veterinary Medicine; University of Cambridge; Madingley Road Cambridge CB3 0ES
| |
Collapse
|
26
|
Romana-Souza B, Nascimento AP, Monte-Alto-Costa A. Propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009; 611:77-84. [DOI: 10.1016/j.ejphar.2009.03.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/02/2009] [Accepted: 03/11/2009] [Indexed: 01/13/2023]
|
27
|
Peltier A, Smith AG, Russell JW, Sheikh K, Bixby B, Howard J, Goldstein J, Song Y, Wang L, Feldman EL, Singleton JR. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle Nerve 2009; 39:529-35. [PMID: 19260066 DOI: 10.1002/mus.21210] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reproducible neurophysiologic testing paradigms are critical for multicenter studies of neuropathy associated with impaired glucose regulation (IGR), yet the best methodologies and endpoints remain to be established. This study evaluates the reproducibility of neurophysiologic tests within a multicenter research setting. Twenty-three participants with neuropathy and IGR were recruited from two study sites. The reproducibility of quantitative sudomotor axon reflex test (QSART) and quantitative sensory test (QST) (using the CASE IV system) was determined in a subset of patients at two sessions, and it was calculated from intraclass correlation coefficients (ICCs). QST (cold detection threshold: ICC=0.80; vibration detection threshold: ICC=0.75) was more reproducible than QSART (ICC foot=0.52). The performance of multiple tests in one setting did not improve reproducibility of QST. QST reproducibility in our IGR patients was similar to reports of other studies. QSART reproducibility was significantly lower than QST. In this group of patients, the reproducibility of QSART was unacceptable for use as a secondary endpoint measure in clinical research trials.
Collapse
Affiliation(s)
- Amanda Peltier
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Abnormal wound healing is a major complication of both type 1 and type 2 diabetes, with nonhealing foot ulcerations leading in the worst cases to lower-limb amputation. Wound healing requires the integration of complex cellular and molecular events in successive phases of inflammation, cell proliferation, cell migration, angiogenesis and re-epithelialisation. A link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30-50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. Indeed, a bidirectional connection between the nervous and the immune systems and its role in wound repair has emerged as one of the focal features of the wound-healing dogma. This review provides a broad overview of the mediators of this connection, which include neuropeptides and cytokines released from nerve fibres, immune cells and cutaneous cells. In-depth understanding of the signalling pathways in the neuroimmune axis in diabetic wound healing is vital to the development of successful wound-healing therapies.
Collapse
|
29
|
Kamei J, Ohsawa M, Miyata S, Endo K, Hayakawa H. Effects of cytidine 5'-diphosphocholine (CDP-choline) on the thermal nociceptive threshold in streptozotocin-induced diabetic mice. Eur J Pharmacol 2008; 598:32-6. [PMID: 18834878 DOI: 10.1016/j.ejphar.2008.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/01/2008] [Accepted: 09/10/2008] [Indexed: 01/26/2023]
Abstract
Neuropathy accompanied by abnormal sensory perception is the most common complication in insulin-dependent and -independent diabetes mellitus. Since there are very few effective therapeutic regimens for sensory abnormalities in diabetes, we examined the effect of cytidine 5'-diphosphocholine (CDP)-choline on the thermal nociceptive threshold in streptozotocin-induced diabetic mice using the tail-flick test. Diabetic mice showed a shorter tail-flick latency at 1-4 weeks after streptozotocin treatment and a longer tail-flick latency after 8-12 weeks. This hyper- and hypoalgesia in diabetic mice was almost completely inhibited by daily treatment with CDP-choline (100 mg/kg/day, p.o.) beginning on the day of streptozotocin treatment. Daily treatment with CDP-choline beginning 5 weeks after streptozotocin treatment attenuated the development of hypoalgesia. Diabetic mice showed a significant increase in Na(+)-K(+)-ATPase activity at 3 weeks after streptozotocin treatment, whereas Na(+)-K(+)-ATPase activity was decreased at 12 weeks after treatment. These alterations were normalized by daily treatment with CDP-choline (100 mg/kg/day, p.o.) beginning the day of streptozotocin treatment. These results provide evidence to support the therapeutic potency of CDP-choline on the development of thermal hyper- and hypoalgesia and the progression of thermal hypoalgesia in diabetic mice. Moreover, these effects of CDP-choline may result from the normalization of Na(+)-K(+)-ATPase activity.
Collapse
Affiliation(s)
- Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
30
|
Lauria G, Lombardi R, Camozzi F, Devigili G. Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology 2008; 54:273-85. [PMID: 18637969 DOI: 10.1111/j.1365-2559.2008.03096.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin biopsy has become an accepted tool for investigating small nerve fibres, which are invisible to conventional neurophysiological tests even though they are affected early on in peripheral neuropathies of varying aetiology. Morphometric analysis of epidermal and dermal nerves has proved to be reliable, reproducible and unaffected by the severity of neuropathy, making skin biopsy useful for diagnosing small fibre neuropathy (SFN) in clinical practice. The possibility of obtaining skin biopsy specimens from different sites of the body, to repeat them within the area of the same sensory nerve, to distinguish between somatic and autonomic nerves and to investigate the expression of nerve-related proteins has widened the potential applications of this technique to clinical research. Skin biopsy performed using a minimally invasive disposable punch is a safe and painless procedure. Using specific antibodies with bright-field immunohistochemistry or immunofluorescence technique, it is possible to investigate unmyelinated fibres innervating the epidermis of hairy and glabrous skin, large myelinated fibres supplying specialized corpuscles in glabrous skin, and autonomic fibres innervating sweat glands, blood vessels and arrector pilorum muscles. This review discusses the features of skin innervation in hairy and glabrous skin, the functional properties of skin nerve fibres and their changes in peripheral neuropathies.
Collapse
Affiliation(s)
- G Lauria
- Neuromuscular Diseases Unit, National Neurological Institute Carlo Besta, Milan, Italy.
| | | | | | | |
Collapse
|
31
|
Scott JR, Tamura RN, Muangman P, Isik FF, Xie C, Gibran NS. Topical substance P increases inflammatory cell density in genetically diabetic murine wounds. Wound Repair Regen 2008; 16:529-33. [PMID: 18638272 PMCID: PMC2497437 DOI: 10.1111/j.1524-475x.2008.00400.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neuropeptide substance P (SP) is a known inflammatory mediator released from cutaneous peripheral nerve terminals. SP effects on cellular composition in the cutaneous response to injury remain unclear. Based on our previous observations about SP effects on wound repair, we hypothesized that topical SP increases inflammatory cell density infiltration early after injury. A full-thickness 1.5 x 1.5 cm(2) wound was created on the dorsum of 8-9-week-old C57BL/6J-m+Lepr(db) mice (db/db). Wounds were treated daily with 300 muL of either normal saline (0.9% NaCl) or 10(-9) M SP for 7 days. Three wounds from each group were harvested at 2, 3, 7, 14, and 28 days. Samples underwent enzymatic digestion and were incubated with fluorescent-labeled antibodies. Using flow cytometry, cellular content and density for each sample was derived. Masson Trichrome stained histology specimens were prepared to confirm results. Cell density in the SP-treated wounds (11.3 x 10(7) cells/g tissue, standard deviation [SD]+/-1.5 x 10(7)) was greater than in NaCl-treated wounds (7 x 10(7) cells/g tissue, SD+/-2.3 x 10(7), p<0.05) at day 7 postwounding. SP significantly increased the density of leukocytes (2.1 x 10(7), SD +/-3.6 x 10(6) vs. 1.8 x 10(7), SD+/-4.9 x 10(5), p<0.02) 3 days after wounding and the density of macrophages (2.9 x 10(7), SD+/-7.5 x 10(6) vs. 1.3 x 10(7), SD+/-1.4 x 10(6), p<0.05) 7 days after wounding. There were no significant differences in endothelial cell, leukocyte, or macrophage density at later time points. Topical SP treatment increases early inflammatory density in the healing wounds of db/db mice. These data support a role for nerve-mediated inflammation in cutaneous wound repair.
Collapse
Affiliation(s)
| | | | | | - F. Frank Isik
- University of Washington, Division of Plastic Surgery
| | - Chengyu Xie
- University of Washington Department of Surgery
| | | |
Collapse
|
32
|
Beiswenger KK, Calcutt NA, Mizisin AP. Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. Acta Histochem 2008; 110:351-62. [PMID: 18384843 PMCID: PMC2561960 DOI: 10.1016/j.acthis.2007.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/04/2007] [Accepted: 12/04/2007] [Indexed: 12/28/2022]
Abstract
Assessment of cutaneous innervation in skin biopsies is emerging as a valuable means of both diagnosing and staging diabetic neuropathy. Immunolabeling, using antibodies to neuronal proteins such as protein gene product 9.5, allows for the visualization and quantification of intraepidermal nerve fibers. Multiple studies have shown reductions in intraepidermal nerve fiber density in skin biopsies from patients with both type 1 and type 2 diabetes. More recent studies have focused on correlating these changes with other measures of diabetic neuropathy. A loss of epidermal innervation similar to that observed in diabetic patients has been observed in rodent models of both type 1 and type 2 diabetes and several therapeutics have been reported to prevent reductions in intraepidermal nerve fiber density in these models. This review discusses the current literature describing diabetes-induced changes in cutaneous innervation in both human and animal models of diabetic neuropathy.
Collapse
Affiliation(s)
- Kristina K Beiswenger
- Department of Pathology, University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0612, USA.
| | | | | |
Collapse
|
33
|
Vincent AM, Russell JW, Sullivan KA, Backus C, Hayes JM, McLean LL, Feldman EL. SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp Neurol 2007; 208:216-27. [PMID: 17927981 PMCID: PMC2190625 DOI: 10.1016/j.expneurol.2007.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 11/17/2022]
Abstract
Hyperglycemia-induced oxidative stress is an inciting event in the development of diabetic complications including diabetic neuropathy. Our observations of significant oxidative stress and morphological abnormalities in mitochondria led us to examine manganese superoxide dismutase (SOD2), the enzyme responsible for mitochondrial detoxification of oxygen radicals. We demonstrate that overexpression of SOD2 decreases superoxide (O(2)(-)) in cultured primary dorsal root ganglion (DRG) neurons and subsequently blocks caspase-3 activation and cellular injury. Underexpression of SOD2 in dissociated DRG cultures from adult SOD2(+/-) mice results in increased levels of O2-, activation of caspase-3 cleavage and decreased neurite outgrowth under basal conditions that are exacerbated by hyperglycemia. These profound changes in sensory neurons led us to explore the effects of decreased SOD2 on the development of diabetic neuropathy (DN) in mice. DN was assessed in SOD2(+/-) C57BL/6J mice and their SOD2(+/+) littermates following streptozotocin (STZ) treatment. These animals, while hyperglycemic, do not display any signs of DN. DN was observed in the C57BL/6Jdb/db mouse, and decreased expression of SOD2 in these animals increased DN. Our data suggest that SOD2 activity is an important cellular modifier of neuronal oxidative defense against hyperglycemic injury.
Collapse
MESH Headings
- Animals
- Caspase 3/metabolism
- Cells, Cultured
- Diabetes Mellitus/genetics
- Diabetes Mellitus, Experimental
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Enzyme Activation
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondrial Membranes
- Neural Conduction
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neuroprotective Agents/metabolism
- Oxidative Stress
- Rats
- Rats, Sprague-Dawley
- Superoxide Dismutase/deficiency
- Superoxide Dismutase/metabolism
- Transfection
Collapse
Affiliation(s)
| | - James W. Russell
- Department of Neurology, Neuromuscular Division, University of Maryland
| | | | | | | | | | | |
Collapse
|
34
|
Hsieh CH, Jeng SF, Lu TH, Chen YC, Hsieh MW, Chen SS. Loss of Small Fibers in Entrapment Neuropathy and Their Regeneration after Surgical Decompression in a Rat Model. J Neurotrauma 2007; 24:1658-66. [DOI: 10.1089/neu.2007.0279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ching-Hua Hsieh
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| | - Seng-Feng Jeng
- Department of Plastic and Reconstructive Surgery, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| | - Tsu-Hsiang Lu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| | - Yi-Chun Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| | - Min-Wei Hsieh
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| | - Shun-Sheng Chen
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan
| |
Collapse
|
35
|
Abstract
Skin biopsy has been widely used in recent years for the investigation of small-calibre sensory nerves, including somatic unmyelinated intraepidermal nerve fibres, dermal myelinated nerve fibres, and autonomic nerve fibres in peripheral neuropathies, with different techniques for tissue processing and nerve fibre assessment. Here, we review the techniques for skin biopsy, the processing and assessment of the biopsy sample, their possible uses in different types of peripheral neuropathy, and their use in the follow-up of patients and in clinical trials. We also review the association between morphological measures of skin innervation and function and the limits of this method in the aetiological classification of peripheral neuropathies.
Collapse
Affiliation(s)
- Claudia Sommer
- Department of Neurology, University of Würzburg, Germany.
| | | |
Collapse
|
36
|
Paré M, Albrecht PJ, Noto CJ, Bodkin NL, Pittenger GL, Schreyer DJ, Tigno XT, Hansen BC, Rice FL. Differential hypertrophy and atrophy among all types of cutaneous innervation in the glabrous skin of the monkey hand during aging and naturally occurring type 2 diabetes. J Comp Neurol 2007; 501:543-67. [PMID: 17278131 DOI: 10.1002/cne.21262] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathy (DN) is a common severe complication of type 2 diabetes. The symptoms of chronic pain, tingling, and numbness are generally attributed to small fiber dysfunction. However, little is known about the pathology among innervation to distal extremities, where symptoms start earliest and are most severe, and where the innervation density is the highest and includes a wide variety of large fiber sensory endings. Our study assessed the immunochemistry, morphology, and density of the nonvascular innervation in glabrous skin from the hands of aged nondiabetic rhesus monkeys and from age-matched monkeys that had different durations of spontaneously occurring type 2 diabetes. Age-related reductions occurred among all types of innervation, with epidermal C-fiber endings preferentially diminishing earlier than presumptive Adelta-fiber endings. In diabetic monkeys epidermal innervation density diminished faster, became more unevenly distributed, and lost immunodetectable expression of calcitonin gene-related peptide and capsaicin receptors, TrpV1. Pacinian corpuscles also deteriorated. However, during the first few years of hyperglycemia, a surprising hypertrophy occurred among terminal arbors of remaining epidermal endings. Hypertrophy also occurred among Meissner corpuscles and Merkel endings supplied by Abeta fibers. After longer-term hyperglycemia, Meissner corpuscle hypertrophy declined but the number of corpuscles remained higher than in age-matched nondiabetics. However, the diabetic Meissner corpuscles had an abnormal structure and immunochemistry. In contrast, the expanded Merkel innervation was reduced to age-matched nondiabetic levels. These results indicate that transient phases of substantial innervation remodeling occur during the progression of diabetes, with differential increases and decreases occurring among the varieties of innervation.
Collapse
Affiliation(s)
- Michel Paré
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Umapathi T, Tan WL, Loke SC, Soon PC, Tavintharan S, Chan YH. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve 2007; 35:591-8. [PMID: 17221881 DOI: 10.1002/mus.20732] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the study was to reliably identify an early stage of diabetic polyneuropathy (DPN) by measuring injury to epidermal nerve fibers. We compared intraepidermal nerve fiber density (IENFD) at the ankle and thigh of 29 diabetic subjects who had no clinical or electrophysiological evidence of small- or large-fiber neuropathy to that of 84 healthy controls. The mean ankle IENFD of diabetic subjects was 9.1+/-5.0 mm and that of controls, 13.0+/-4.8 mm (P<0.001). The thigh IENFD did not differ significantly. The IENFD ratio (thigh IENFD divided by ankle IENFD) was 2.39+/-1.30 in diabetic subjects and 1.77+/-0.58 in controls (P<0.001), indicating a length-dependent reduction of IENFD in diabetics. Ankle IENFD remained significantly lower and the IENFD ratio higher in diabetic subjects after adjusting for age. Two subjects had parasympathetic dysfunction, two had retinopathy, and two early nephropathy. Age, height, weight, duration of diabetes, and average HbA1c did not influence IENFD among diabetic subjects. We used receiver operating characteristic (ROC) curves to describe and compare the utility of various threshold values of ankle IENFD and IENFD ratio for the diagnosis of early DPN. The sensitivity and specificity of diagnosing DPN using ankle IENFD of less than 10 mm were 72.4% and 76.2%, respectively. Thus, asymptomatic diabetics have a measurable, length-dependent reduction of distal epidermal nerves. Analogous to microalbuminuria in diabetic nephropathy, reliable identification and quantitation of nascent diabetic neuropathy may have potential therapeutic implications.
Collapse
Affiliation(s)
- T Umapathi
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433.
| | | | | | | | | | | |
Collapse
|
38
|
Al'Abadie MS, Gawkrodger DJ, Senior HJ, Dent M, Ward JD. Cutaneous nerves in diabetic neuropathy: an immunohistochemical study. J Eur Acad Dermatol Venereol 2006. [DOI: 10.1111/j.1468-3083.1993.tb00041.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Gradin KA, Zhu H, Jeansson M, Simonsen U. Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from the early non-obese diabetic mouse. Eur J Pharmacol 2006; 539:184-91. [PMID: 16707122 DOI: 10.1016/j.ejphar.2006.03.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/27/2006] [Accepted: 03/31/2006] [Indexed: 11/29/2022]
Abstract
The present study investigated whether sympathetic neurotransmission is altered at an early stage of diabetes in mesenteric small arteries isolated from female non-obese diabetic (NOD) and control animals without diabetes from the same mouse strain. The NOD diabetic mice had increased plasma glucose and hypertension. Confocal microscopy showed distribution of nerve terminals was similar, but immunoreaction intensity for neuropeptide Y (NPY) and tyrosine hydroxylase was higher in small arteries from NOD diabetic compared with NOD control mice. In the presence of prazosin and activated with vasopressin, electrical field stimulation evoked contractions which were more pronounced in mesenteric arteries from NOD diabetic versus NOD control mice and inhibited by the NPY Y(1) receptor antagonist, BIBP 3226. NPY concentration-response curves were leftward shifted in arteries from NOD diabetic versus NOD control both in arteries with and without endothelium, but not in the presence of the BIBP 3226. The present findings suggest that enhanced NPY content and vasoconstriction to NPY by activation of NPY Y(1) receptors in arteries from diabetic mice may contribute to the enhanced sympathetic nerve activity and vascular resistance in female non-obese early diabetic animals.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Institute for Neuroscience and Physiology, Department of Pharmacology, University of Göteborg, Medicinaregatan 11, 413 90 Göteborg, Sweden.
| | | | | | | |
Collapse
|
40
|
Abstract
Wound healing is a complicated and integrated process. Although there is some tolerance in terms of redundancy and interrelated control mechanisms, pushing beyond such limits may contribute to delayed wound healing, and in extreme cases lead to chronic wounds/ulcers and thus potentially to lower extremity amputation. Diabetes is associated with such disruption in wound healing. Research in humans and in animal models has identified a large number of changes associated with diabetes at the molecular level in delayed wound healing and to a lesser extent in chronic diabetic ulcers. Better overall understanding of these changes and how they are interrelated would allow for specifically targeted treatment, thus ensuring improved quality of life for patients and providing savings to the high costs that are associated with all aspects of chronic diabetic ulcers. This review examines the work done at the molecular level on chronic diabetic ulcers, as well as considering changes seen in diabetes in general, both in humans and animal models, that may in turn contribute to ulcer formation.
Collapse
Affiliation(s)
- R Blakytny
- Fachklinik Hornheide, Tumor Forschung, Münster, Germany
| | | |
Collapse
|
41
|
Demiot C, Tartas M, Fromy B, Abraham P, Saumet JL, Sigaudo-Roussel D. Aldose reductase pathway inhibition improved vascular and C-fiber functions, allowing for pressure-induced vasodilation restoration during severe diabetic neuropathy. Diabetes 2006; 55:1478-83. [PMID: 16644708 DOI: 10.2337/db05-1433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pressure-induced vasodilation, a neurovascular mechanism relying on the interaction between mechanosensitive C-fibers and vessels, allows skin blood flow to increase in response to locally nonnociceptive applied pressure that in turn may protect against pressure ulcers. We expected that severe neuropathy would dramatically affect pressure-induced vasodilation in diabetic mice, and we aimed to determine whether pressure-induced vasodilation alteration could be reversed in 8-week diabetic mice. Control and diabetic mice received no treatment or sorbinil, an aldose reductase inhibitor, or alagebrium, an advanced glycation end product breaker, the last 2 weeks of diabetes. Laser Doppler flowmetry was used to evaluate pressure-induced vasodilation and endothelium-dependent vasodilation after iontophoretic delivery of acetylcholine (ACh). We assessed the nervous function with measurements of motor nerve conduction velocity (MNCV) as well as the C-fiber-mediated nociception threshold. Pressure-induced vasodilation, endothelial response, C-fiber threshold, and MNCV were all altered in 8-week diabetic mice. None of the treatments had a significant effect on MNCV. Although sorbinil and alagebrium both restored ACh-dependent vasodilation, sorbinil was the sole treatment to restore the C-fiber threshold as well as pressure-induced vasodilation development. Therefore, the inhibition of aldose reductase pathway by sorbinil improved vascular and C-fiber functions that allow pressure-induced vasodilation restoration that could limit neuropathic diabetic cutaneous pressure ulcers.
Collapse
Affiliation(s)
- Claire Demiot
- Laboratory of Physiology, CNRS, UMR6214, INSERM U771, Medical School, University of Angers, F-49045 Angers, France
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Diabetic neuropathy is a debilitating consequence of type 1 and 2 diabetes. Hyperglycemia disrupts the normal function of neurons and their supporting glia at multiple levels. The complexity of this complication, combined with difficulties of delivering therapy to sensory, sympathetic and parasympathetic neurons, contributes to the intractability of this serious diabetic complication. This review summarizes recent reviews examining the state of research on and treatment of diabetic neuropathy and highlights areas of clinical and basic research that may yield new diagnostic and treatment options. RECENT FINDINGS Recent reviews summarize the effects of hyperglycemia on the peripheral nervous system as well as diagnosis and treatment of patients with diabetic neuropathy. Advances in the analysis of intraepidermal fiber densities could shorten the time course of clinical trials and extend data analyses to include sympathetic as well as sensory information. Unchecked glucose-mediated oxidative stress and advanced glycation endproduct signaling through receptors for advanced glycation endproducts are implicated in diabetic neuropathy and may serve as new therapeutic targets. SUMMARY The best efforts of countless investigators have yet to find effective treatments either to stop the progression of axonal degeneration and cell death or regrow damaged axons. Basic research into the prevention of oxidative stress caused by excess glucose as well as the prevention of advanced glycation endproduct/receptor for advanced glycation endproduct signaling may offer new therapeutic targets. The use of skin biopsies may aid in early detection of both sensory and autonomic neuropathy, and perhaps in the case of patients with type 2 diabetes, diagnose neuropathy prior to the onset of symptoms.
Collapse
Affiliation(s)
- Kelli A Sullivan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
43
|
Calcutt NA, Freshwater JD, Hauptmann N, Taylor EM, Mizisin AP. Protection of sensory function in diabetic rats by Neotrofin. Eur J Pharmacol 2006; 534:187-93. [PMID: 16507305 DOI: 10.1016/j.ejphar.2006.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 01/27/2023]
Abstract
We investigated the ability of Neotrofin, an agent that enhances endogenous nerve growth factor (NGF) levels, to prevent phenotypic, functional and structural changes that occur in the peripheral nerve of streptozotocin-diabetic rats. Eight weeks of Neotrofin treatment prevented depletion of NGF protein in plantar foot skin and sciatic nerve of diabetic rats and increased NGF protein in associated skeletal muscles. These effects were accompanied by maintenance of normal nerve levels of the neuropeptides substance P and calcitonin gene related peptide. Thermal hypoalgesia and conduction slowing of large sensory fibres in diabetic rats were ameliorated by Neotrofin treatment, whereas there was no effect on conduction slowing in large motor fibres or on reduced myelinated fibre axonal calibre. Enhancing endogenous production of neurotrophic factors using small molecules may be an alternative to either exogenous treatment with neurotrophic factors or gene therapy as a therapeutic approach to treating diabetic neuropathy.
Collapse
Affiliation(s)
- Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla 92093-0612, USA.
| | | | | | | | | |
Collapse
|
44
|
Souza BR, Cardoso JF, Amadeu TP, Desmoulière A, Costa AMA. Sympathetic denervation accelerates wound contraction but delays reepithelialization in rats. Wound Repair Regen 2006; 13:498-505. [PMID: 16176458 DOI: 10.1111/j.1067-1927.2005.00070.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Participation of the peripheral nervous system in wound healing is not well understood. The aim of this study was to investigate the effects of sympathetic denervation on rat excisional cutaneous wound healing. Male rats were chemically denervated with intraperitoneal administration of 6-hydroxydopamine (6-OHDA) in 1% ascorbic acid. 6-OHDA or vehicle was administered twice a week until euthanasia, beginning 7 days before wounding. A full-thickness excisional lesion was performed and the lesion area measured to evaluate wound contraction. After euthanasia, the lesion and adjacent normal skin were formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin and eosin or toluidine blue, or immunostained for alpha-smooth muscle actin. Animals treated with 6-OHDA showed acceleration in wound contraction, increase in myofibroblastic differentiation, reduction in mast cell migration, and a delay in reepithelialization. To investigate the effects of neurogenic inflammation, a group of animals was treated with 6-OHDA only after the acute inflammatory phase, and these animals showed delayed wound contraction 3 and 7 days after wounding when compared to those treated before the lesion. In conclusion, the present study shows that sympathetic denervation affects cutaneous wound healing, probably by a decrease in neurogenic inflammation during the initial phase of healing and the absence of catecholamines throughout the final phase.
Collapse
Affiliation(s)
- Bruna R Souza
- Departmento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
45
|
Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol 2006; 15:1-13. [PMID: 16364026 DOI: 10.1111/j.0906-6705.2005.00372.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress has long been discussed controversially as a cause of hair loss. However, solid proof of stress-induced hair growth inhibition had long been missing. If psychoemotional stress can affect hair growth, this must be mediated via definable neurorendocrine and/or neuroimmunological signaling pathways. Revisiting and up-dating relevant background data on neural mechanisms of hair growth control, we sketch essentials of hair follicle (HF) neurobiology and discuss the modulation of murine hair growth by neuropeptides, neurotransmitters, neurotrophins, and mast cells. Exploiting an established mouse model for stress, we summarize recent evidence that sonic stress triggers a cascade of molecular events including plasticity of the peptidergic peri- and interfollicular innervation and neuroimmune crosstalk. Substance P (SP) and NGF (nerve growth factor) are recruited as key mediators of stress-induced hair growth-inhibitory effects. These effects include perifollicular neurogenic inflammation, HF keratinocyte apoptosis, inhibition of proliferation within the HF epithelium, and premature HF regression (catagen induction). Intriguingly, most of these effects can be abrogated by treatment of stressed mice with SP-receptor neurokinin-1 receptor (NK-1) antagonists or NGF-neutralizing antibodies - as well as, surprisingly, by topical minoxidil. Thus there is now solid in vivo-evidence for the existence of a defined brain- HF axis. This axis can be utilized by psychoemotional and other stressors to prematurely terminate hair growth. Stress-induced hair growth inhibition can therefore serve as a highly instructive model for exploring the brain-skin connection and provides a unique experimental model for dissecting general principles of skin neuroendocrinology and neuroimmunology well beyond the HF.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Psychoneuroimmunology Research Group, Internal Medicine, Psychosomatics, University Medicine Berlin, Charité Virchow Campus, Germany.
| | | | | |
Collapse
|
46
|
Chen YS, Chung SSM, Chung SK. Noninvasive monitoring of diabetes-induced cutaneous nerve fiber loss and hypoalgesia in thy1-YFP transgenic mice. Diabetes 2005; 54:3112-8. [PMID: 16249433 DOI: 10.2337/diabetes.54.11.3112] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Progressive loss of pain perception and cutaneous nerve fibers are frequently observed in diabetic patients. We evaluated the feasibility of using thy1-YFP mice that express the yellowish-green fluorescent protein (YFP) in all of their sensory/motor neurons for noninvasive monitoring of cutaneous nerve fiber loss during diabetes. Fluorescent fibers in skin sections from the leg of thy1-YFP mice stained positive for the neuron-specific protein gene product 9.5 (PGP9.5), indicating that the cutaneous fluorescent fibers are indeed nerve fibers. In diabetic thy1-YFP mice, significant small cutaneous nerve fiber loss in the leg was observed at 3 months following the onset of diabetes, but loss of heat-induced pain perception occurred as early as 1 month following the onset of diabetes, indicating that functional impairment of sensory nerves precedes cutaneous nerve fiber loss. Immunostaining of skin sections of mice killed at 6 months following the onset of diabetes showed that parallel to the loss of small fluorescent nerve fibers, there was a significant decrease in fibers stained positive for calcitonin gene-related peptide, substance P, and purinoreceptor subtype in diabetic thy1-YFP mice. These mice will be useful for noninvasive monitoring of cutaneous nerve fiber degeneration and loss of heat-induced pain perception during diabetes and for the assessment of efficacy of therapeutic treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Yuk Shan Chen
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
47
|
Jiang Y, Nyengaard JR, Zhang JS, Jakobsen J. Selective loss of calcitonin gene-related Peptide-expressing primary sensory neurons of the a-cell phenotype in early experimental diabetes. Diabetes 2004; 53:2669-75. [PMID: 15448099 DOI: 10.2337/diabetes.53.10.2669] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To evaluate the possible role of neuropeptide immunoreactive primary sensory neurons on the development of nociceptive dysfunction in diabetes, the absolute numbers of immunoreactive substance P and calcitonin gene-related peptide (CGRP) dorsal root ganglion (DRG) cell bodies were estimated in diabetic and nondiabetic BALB/C (p75(+/+)) and p75 receptor knockout (p75(-/-)) mice with unilateral sciatic nerve crush. The total numbers of immunoreactive substance P A-cells, substance P B-cells, CGRP A-cells, and CGRP B-cells in L5DRG were estimated using semithick consecutive sections and the optical fractionator. After 4 weeks of streptozotocin-induced diabetes, the number of immunoreactive CGRP A-cells was reduced from 692 +/- 122 to 489 +/- 125 (P = 0.004) in p75(+/+) mice on the noncrushed side. In p75(-/-) mice, there was no such effect of diabetes on the immunoreactive CGRP A-cell number. In p75(+/+) and p75(-/-) mice, there was no effect of diabetes on the immunoreactive CGRP B-cell number, nor was there any effect of diabetes on the immunoreactive substance P B-cell number. Sciatic nerve crush was associated with a substantial loss of L5DRG B-cells in diabetic and nondiabetic p75(+/+) mice and with substantial loss of immunoreactive substance P cells in diabetic p75(+/+) mice. In diabetic and nondiabetic p75(-/-) mice, there was no crush effect on neuropeptide expression. It is concluded that experimental diabetes in the mouse is associated with loss of immunoreactive CGRP primary sensory neurons of the A-cell phenotype, that this loss could play a role for the touch-evoked nociception in the model, and that the neuronal immunoreactive CGRP abnormality possibly is mediated by activation of the p75 neurotrophin receptor.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/deficiency
- Calcitonin Gene-Related Peptide/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Male
- Mice
- Mice, Knockout
- Nerve Crush
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Phenotype
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
- Sciatic Nerve/pathology
- Sciatic Nerve/physiopathology
Collapse
Affiliation(s)
- Yun Jiang
- Department of Neurology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
48
|
Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care 2004; 27:1974-9. [PMID: 15277426 DOI: 10.2337/diacare.27.8.1974] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Small-fiber neuropathies may be symptomatic yet escape detection by standard tests. We hypothesized that morphologic changes in intraepidermal nerves would correlate with clinical measures of small-fiber neuropathy. RESEARCH DESIGN AND METHODS We studied 25 diabetic and 23 nondiabetic patients with neuropathy defined by signs, symptoms, and quantitative testing and 20 control subjects. Skin biopsies were obtained from forearm, thigh, proximal leg, and distal leg, and nerves identified using immunofluorescence with antibody to protein gene product (PGP) 9.5. RESULTS Mean dendritic length (MDL) (P < 0.01) and intraepidermal nerve fiber density (IENF) (P < 0.001) progressively decreased from proximal to distal sites only in patients with neuropathy. There was a significant reduction in IENF when comparing control subjects and patient groups in the distal leg (P < 0.001). MDL was significantly decreased in the thigh (P < 0.005) and in the proximal (P < 0.01) and distal (P < 0.002) leg in patients compared with control subjects. IENF was not significantly altered in diabetic patients of <5 years' duration, but significantly decreased in patients with >5 years' duration. MDL showed a linear decrease with increasing duration of diabetes. Distal leg IENF showed significant negative correlations with warm (P < 0.02) and cold (P < 0.05) thermal threshold, heat pain (P < 0.05), pressure sense (P < 0.05), and neurological disability score total sensory (P < 0.03) and total neuropathy (P < 0.03) values. CONCLUSIONS IENF was not significantly altered in these patients at <5 years' duration of diabetes, but fell significantly after 5 years of diabetes. MDL exhibited a linear loss with time, suggesting a different mechanism of change. MDL and IENF together may prove a useful end point in therapeutic trials for neuropathy.
Collapse
Affiliation(s)
- Gary L Pittenger
- Department of Internal Medicine, The Strelitz Diabetes Institutes, Norfolk, Virginia 23510, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Ahmad T, Ugarph-Morawski A, Li J, Bileviciute-Ljungar I, Finn A, Ostenson CG, Kreicbergs A. Bone and joint neuropathy in rats with type-2 diabetes. ACTA ACUST UNITED AC 2004; 119:61-7. [PMID: 15093698 DOI: 10.1016/j.regpep.2003.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/28/2003] [Accepted: 12/29/2003] [Indexed: 01/11/2023]
Abstract
We have previously demonstrated that Goto-Kakizaki (GK) rats with spontaneous type-2 diabetes and peripheral neuropathy exhibit regional osteopathic changes. In the present study on 18 GK rats and 21 control Wistar rats, the occurrence of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), and the autonomic neuropeptide Y (NPY) was analysed in bone and joints, dorsal root ganglia and lumbar spinal cord by immunohistochemistry and radioimmunoassay (RIA). Immunohistochemistry disclosed a predominance of immunoreactivities in vessel-related nerve fibers, although some were also seen in free terminals. While SP, CGRP and NPY in periosteum, cortical bone and synovium was confined to neuronal tissue, the bone marrow in addition exhibited an abundance of NPY-positive megakaryocytes. Apart from this cellular source of NPY, the observations suggest that the three neuropeptides analysed in bone and joints are of neuronal origin. Quantification by RIA showed a significant decrease of NPY in cortical bone (-36%), bone marrow (-66%) and ankle (-29%) of GK rats. CGRP was decreased in the spinal cord (-19%) and dorsal root ganglia (-26%) but was unchanged in bone and joints, as with SP. Given the suggested anabolic role of NPY and CGRP on bone, neuropeptidergic deficit in diabetes may prove to be an important factor underlying the development of regional osteopenia.
Collapse
Affiliation(s)
- Tashfeen Ahmad
- Section of Orthopaedics, Department of Surgical Sciences, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Shun CT, Chang YC, Wu HP, Hsieh SC, Lin WM, Lin YH, Tai TY, Hsieh ST. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. ACTA ACUST UNITED AC 2004; 127:1593-605. [PMID: 15128619 DOI: 10.1093/brain/awh180] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensory neuropathy is a prominent component of diabetic neuropathy. It is not entirely clear how diabetes influences skin innervation, and whether these changes are correlated with clinical signs and laboratory findings. To investigate these issues, we performed skin biopsies on the distal leg of 38 consecutive type 2 diabetic patients with sensory symptoms in lower limbs (25 males and 13 females, aged 56.2 +/- 9.4 years) and analysed the correlations of intraepidermal nerve fibre (IENF) densities in skin with glycaemic status (duration of diabetes, HbA1C, and fasting and post-prandial glucose levels), and functional parameters of small fibres (warm and cold thresholds) and large fibres (vibratory threshold and parameters of nerve conduction studies). Clinically, 23 patients (60.5%) had signs of small-fibre impairment, and 19 patients (50.0%) had signs of large-fibre impairment. IENF densities were much lower in diabetic patients than in age- and gender-matched controls (1.794 +/- 2.120 versus 9.359 +/- 3.466 fibres/mm, P < 0.0001), and 81.6% (31/38) of diabetic patients had reduced IENF densities. IENF densities were negatively associated with the duration of diabetes (standardized coefficient: -0.422, P = 0.015) by analysis with a multivariate linear regression model. Abnormal results of functional examinations were present in 81.6% (warm threshold), 57.9% (cold threshold), 63.2% (vibratory threshold) and 49% (amplitude of sural sensory action potential) of diabetic patients. Among the three sensory thresholds, the warm threshold temperature had the highest correlation with IENF densities (standardized coefficient: -0.773, P < 0.0001). On nerve conduction studies in lower-limb nerves, there were abnormal responses in 54.1% of sural nerves, and 50.0% of peroneal nerves. Of neurophysiological parameters, the amplitude of the sural sensory action potential had the highest correlation with IENF density (standardized coefficient: 0.739, P < 0.0001). On clinical examination, 15 patients showed no sign of small-fibre impairment, but seven of these patients had reduced IENF densities. In conclusion, small-fibre sensory neuropathy presenting with reduced IENF densities and correlated elevation of warm thresholds is a major manifestation of type 2 diabetes. In addition, the extent of skin denervation increases with diabetic duration.
Collapse
Affiliation(s)
- Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei
| | | | | | | | | | | | | | | |
Collapse
|