1
|
Chen N, Peng J, Xiong F, Tu Y. Peak width of skeletonized mean diffusivity: a novel biomarker for white matter damage in spinocerebellar ataxia type 2. Neuroradiology 2024:10.1007/s00234-024-03499-5. [PMID: 39535589 DOI: 10.1007/s00234-024-03499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Peak width of skeletonized mean diffusivity (PSMD) is a robust and fully automated imaging marker employed to detect microstructural damage in white matter. This study aimed to evaluate whether PSMD reflects the severity of white matter damage and tracks disease progression in patients with spinocerebellar ataxia type 2 (SCA2). METHODS Nine patients with SCA2 and sixteen age- and gender-matched healthy controls were enrolled. Clinical and imaging data were collected at baseline and after 3.5 years. Each participant underwent MRI scans twice to obtain diffusion tensor imaging data, from which PSMD were automatically calculated. Differences in PSMD between SCA2 patients and healthy controls were analyzed using a linear mixed model. Additionally, Spearman's rank correlations were employed to assess associations between PSMD values and clinical variables. RESULTS Patients with SCA2 exhibited higher PSMD values at baseline and follow-up compared to HCs, indicating more severe white matter damage. Longitudinal data revealed a continual increase in PSMD values in SCA2 patients over time. The mixed-effects model confirmed significant differences in PSMD values between the two groups, as well as an interaction effect suggesting different progression rates. These findings suggest that SCA2 associates with progressive deterioration of white matter. No significant correlations were observed between PSMD values and clinical variables in this study. CONCLUSION This study underscores the potential of PSMD as a neuroimaging biomarker for detecting microstructural white matter damage and monitoring disease progression in patients with SCA2.
Collapse
Affiliation(s)
- Nan Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Peng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Xiong
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, China.
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Tu Y, Li Z, Xiong F, Gao F. Progressive white matter degeneration in patients with spinocerebellar ataxia type 2. Neuroradiology 2024; 66:101-108. [PMID: 38040824 DOI: 10.1007/s00234-023-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Spinocerebellar ataxia type 2 (SCA2) is a progressive neurodegenerative disorder characterized by cerebellar atrophy. However, studies to elucidate the longitudinal progression of the neuropathology are limited. We sought to identify brain macrostructural and microstructural alterations in patients with SCA2 using fixel-based analysis (FBA) to better understand its distribution patterns and progression. METHODS We enrolled 9 patients with SCA2 and 16 age- and gender-matched controls. Longitudinal clinical and imaging data were collected at baseline, and 3.5 years later. Fiber density (FD), fiber-bundle cross-section (FC), and a combination of FD and FC (FDC) were calculated. The paired t-test was used to examine longitudinal differences. The associations between fixel-based metrics and clinical variables were explored in SCA2 patients. RESULTS At baseline, patients with SCA2 displayed multiple white matter tracts with significantly decreased FD, FC, and FDC in the corticospinal tract, cerebellar peduncles, brainstem, corpus callosum, thalamus, striatum, and prefrontal cortex, compared to controls. Over time, many of these macrostructural and microstructural alterations progressed, manifesting lower FD, FC, and FDC in corticospinal tract, middle cerebellar peduncle, brainstem, striatum, fornix, and cingulum. No significant brain white matter alterations were found in the healthy controls over time. There was no association between the FBA-derived metrics and clinical variables in SCA2. CONCLUSION This study provides evidence of brain macrostructural and microstructural alterations and of progression over time in SCA2. The FBA-derived metrics may serve as potential biomarkers of SCA2 progression.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, China.
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Kelekçi S, Yıldız AB, Sevinç K, Çimen DU, Önder T. Perspectives on current models of Friedreich’s ataxia. Front Cell Dev Biol 2022; 10:958398. [PMID: 36036008 PMCID: PMC9403045 DOI: 10.3389/fcell.2022.958398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich’s ataxia (FRDA, OMIM#229300) is the most common hereditary ataxia, resulting from the reduction of frataxin protein levels due to the expansion of GAA repeats in the first intron of the FXN gene. Why the triplet repeat expansion causes a decrease in Frataxin protein levels is not entirely known. Generation of effective FRDA disease models is crucial for answering questions regarding the pathophysiology of this disease. There have been considerable efforts to generate in vitro and in vivo models of FRDA. In this perspective article, we highlight studies conducted using FRDA animal models, patient-derived materials, and particularly induced pluripotent stem cell (iPSC)-derived models. We discuss the current challenges in using FRDA animal models and patient-derived cells. Additionally, we provide a brief overview of how iPSC-based models of FRDA were used to investigate the main pathways involved in disease progression and to screen for potential therapeutic agents for FRDA. The specific focus of this perspective article is to discuss the outlook and the remaining challenges in the context of FRDA iPSC-based models.
Collapse
Affiliation(s)
| | | | | | | | - Tamer Önder
- *Correspondence: Simge Kelekçi, , ; Tamer Önder,
| |
Collapse
|
4
|
Stenton SL, Piekutowska-Abramczuk D, Kulterer L, Kopajtich R, Claeys KG, Ciara E, Eisen J, Płoski R, Pronicka E, Malczyk K, Wagner M, Wortmann SB, Prokisch H. Expanding the clinical and genetic spectrum of FDXR deficiency by functional validation of variants of uncertain significance. Hum Mutat 2021; 42:310-319. [PMID: 33348459 DOI: 10.1002/humu.24160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Ferrodoxin reductase (FDXR) deficiency is a mitochondrial disease described in recent years primarily in association with optic atrophy, acoustic neuropathy, and developmental delays. Here, we identified seven unpublished patients with FDXR deficiency belonging to six independent families. These patients show a broad clinical spectrum ranging from Leigh syndrome with early demise and severe infantile-onset encephalopathy, to milder movement disorders. In total nine individual pathogenic variants, of which seven were novel, were identified in FDXR using whole exome sequencing in suspected mitochondrial disease patients. Over 80% of these variants are missense, a challenging variant class in which to determine pathogenic consequence, especially in the setting of nonspecific phenotypes and in the absence of a reliable biomarker, necessitating functional validation. Here we implement an Arh1-null yeast model to confirm the pathogenicity of variants of uncertain significance in FDXR, bypassing the requirement for patient-derived material.
Collapse
Affiliation(s)
- Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany
| | | | - Lea Kulterer
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elżbieta Ciara
- Department of Medical Genetics, Children's Memorial Health Institute (CMHI) Warsaw, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Pronicka
- Department of Medical Genetics, Children's Memorial Health Institute (CMHI) Warsaw, Warsaw, Poland
| | - Katarzyna Malczyk
- Department of Diagnostic Imaging, Children's Memorial Health Institute (CMHI) Warsaw, Warsaw, Poland
| | - Matias Wagner
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany
| | - Saskia B Wortmann
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany.,Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria.,Radboud Centre for Mitochondrial Diseases (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Neurogenomics, Munich, Germany
| |
Collapse
|
5
|
Pane C, Salzano A, Trinchillo A, Del Prete C, Casali C, Marcotulli C, Defazio G, Guardasole V, Vastarella R, Giallauria F, Puorro G, Marsili A, De Michele G, Filla A, Cittadini A, Saccà F. Safety and feasibility of upper limb cardiopulmonary exercise test in Friedreich ataxia. Eur J Prev Cardiol 2020; 29:445-451. [DOI: 10.1093/eurjpc/zwaa134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Abstract
Aims
To explore the feasibility of upper limbs cardiopulmonary exercise test (CPET) in Friedreich ataxia (FRDA) patients and to compare the results with sex, age, and body mass index (BMI) matched cohort of healthy controls (HC).
Methods and results
Cardiopulmonary exercise test was performed using an upper limbs cycle ergometer on fasting subjects. Peak oxygen uptake (peak VO2) was recorded as the mean value of VO2 during a 20 s period at the maximal effort of the test at an appropriate respiratory exchange rate. The ventilatory anaerobic threshold (AT) was detected by the use of the V-slope method. We performed echocardiography with an ultrasound system equipped with a 2.5 MHz multifrequency transducer for complete M-mode, two-dimensional, Doppler, and Tissue Doppler Imaging analyses. We studied 55 FRDA and 54 healthy matched controls (HC). Peak VO2 showed a significant 31% reduction in FRDA patients compared to HC (15.2 ± 5.7 vs. 22.0 ± 6.1 mL/kg/min; P < 0.001). Peak workload was reduced by 41% in FRDA (42.9 ± 12.5 vs. 73.1 ± 21.2 W; P < 0.001). In FRDA patients, peak VO2 is inversely correlated with the Scale for Assessment and Rating of Ataxia score, disease duration, and 9HPT performance, and directly correlated with activities of daily living. The AT occurred at 48% of peak workload time in FRDA patients and at 85% in HC (P < 0.001).
Conclusions
Upper limb CPET is useful in the assessment of exercise tolerance and a possible tool to determine the functional severity of the mitochondrial oxidative defect in patients with FRDA. The cardiopulmonary exercise test is an ideal functional endpoint for Phases II and III trials through a simple, non-invasive, and safe exercise test.
Collapse
Affiliation(s)
- Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Via E Gianturco, Naples, 80143, Italy
| | - Assunta Trinchillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Claudia Del Prete
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Faggiana 34, Latina, Italy
| | - Christian Marcotulli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Faggiana 34, Latina, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 km 4.500, Cagliari, Italy
| | - Vincenzo Guardasole
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Rossella Vastarella
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Giorgia Puorro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Angela Marsili
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| |
Collapse
|
6
|
Indelicato E, Nachbauer W, Eigentler A, Amprosi M, Matteucci Gothe R, Giunti P, Mariotti C, Arpa J, Durr A, Klopstock T, Schöls L, Giordano I, Bürk K, Pandolfo M, Didszdun C, Schulz JB, Boesch S. Onset features and time to diagnosis in Friedreich's Ataxia. Orphanet J Rare Dis 2020; 15:198. [PMID: 32746884 PMCID: PMC7397644 DOI: 10.1186/s13023-020-01475-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background In rare disorders diagnosis may be delayed due to limited awareness and unspecific presenting symptoms. Herein, we address the issue of diagnostic delay in Friedreich’s Ataxia (FRDA), a genetic disorder usually caused by homozygous GAA-repeat expansions. Methods Six hundred eleven genetically confirmed FRDA patients were recruited within a multicentric natural history study conducted by the EFACTS (European FRDA Consortium for Translational Studies, ClinicalTrials.gov-Identifier NCT02069509). Age at first symptoms as well as age at first suspicion of FRDA by a physician were collected retrospectively at the baseline visit. Results In 554 of cases (90.7%), disease presented with gait or coordination disturbances. In the others (n = 57, 9.3%), non-neurological features such as scoliosis or cardiomyopathy predated ataxia. Before the discovery of the causal mutation in 1996, median time to diagnosis was 4(IQR = 2–9) years and it improved significantly after the introduction of genetic testing (2(IQR = 1–5) years, p < 0.001). Still, after 1996, time to diagnosis was longer in patients with a) non-neurological presentation (mean 6.7, 95%CI [5.5,7.9] vs 4.5, [4.2,5] years in those with neurological presentation, p = 0.001) as well as in b) patients with late-onset (3(IQR = 1–7) vs 2(IQR = 1–5) years compared to typical onset < 25 years of age, p = 0.03). Age at onset significantly correlated with the length of the shorter GAA repeat (GAA1) in case of neurological onset (r = − 0,6; p < 0,0001), but not in patients with non-neurological presentation (r = − 0,1; p = 0,4). Across 54 siblings’ pairs, differences in age at onset did not correlate with differences in GAA-repeat length (r = − 0,14, p = 0,3). Conclusions In the genetic era, presentation with non-neurological features or in the adulthood still leads to a significant diagnostic delay in FRDA. Well-known correlations between GAA1 repeat length and disease milestones are not valid in case of atypical presentations or positive family history.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raffaella Matteucci Gothe
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - University of Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Javier Arpa
- Reference Unit of Hereditary Ataxias and Paraplegias, Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, Inserm U 1127, CNRS UMR 7225, University Hospital Pitié-Salpêtrière, Paris, France
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ilaria Giordano
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Bürk
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Didszdun
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | | |
Collapse
|
7
|
Boesch S, Indelicato E. Erythropoietin and Friedreich Ataxia: Time for a Reappraisal? Front Neurosci 2019; 13:386. [PMID: 31105516 PMCID: PMC6491891 DOI: 10.3389/fnins.2019.00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Friedreich ataxia (FRDA) is a rare neurological disorder due to deficiency of the mitochondrial protein frataxin. Frataxin deficiency results in impaired mitochondrial function and iron deposition in affected tissues. Erythropoietin (EPO) is a cytokine which was mostly known as a key regulator of erythropoiesis until cumulative evidence showed additional neurotrophic and neuroprotective properties. These features offered the rationale for advancement of EPO in clinical trials in different neurological disorders in the past years, including FRDA. Several mechanisms of action of EPO may be beneficial in FRDA. First of all, EPO exposure results in frataxin upregulation in vitro and in vivo. By promoting erythropoiesis, EPO influences iron metabolism and induces shifts in iron pool which may ameliorate conditions of free iron excess and iron accumulation. Furthermore, EPO signaling is crucial for mitochondrial gene activation and mitochondrial biogenesis. Up to date nine clinical trials investigated the effects of EPO and derivatives in FRDA. The majority of these studies had a proof-of-concept design. Considering the natural history of FRDA, all of them were too short in duration and not powered for clinical changes. However, these studies addressed significant issues in the treatment with EPO, such as (1) the challenge of the dose finding, (2) stability of frataxin up-regulation, (3) continuous versus intermittent stimulation with EPO/regimen, or (4) tissue changes after EPO exposure in humans in vivo (muscle biopsy, brain imaging). Despite several clinical trials in the past, no treatment is available for the treatment of FRDA. Current lines of research focus on gene therapy, frataxin replacement strategies and on regulation of key metabolic checkpoints such as NrF2. Due to potential crosstalk with all these mechanisms, interventions on the EPO pathway still represent a valuable research field. The recent development of small EPO mimetics which maintain cytoprotective properties without erythropoietic action may open a new era in EPO research for the treatment of FRDA.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
8
|
Reetz K, Dogan I, Hohenfeld C, Didszun C, Giunti P, Mariotti C, Durr A, Boesch S, Klopstock T, Rodríguez de Rivera Garrido FJ, Schöls L, Giordano I, Bürk K, Pandolfo M, Schulz JB. Nonataxia symptoms in Friedreich Ataxia: Report from the Registry of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS). Neurology 2018; 91:e917-e930. [PMID: 30097477 DOI: 10.1212/wnl.0000000000006121] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To provide a systematic evaluation of the broad clinical variability in Friedreich ataxia (FRDA), a multisystem disorder presenting mainly with afferent ataxia but also a complex phenotype of nonataxia symptoms. METHODS From the large database of the European Friedreich's Ataxia Consortium for Translational Studies, 650 patients with genetically confirmed FRDA were included. Detailed data of medical history documentation, questionnaires, and reports on clinical features were analyzed to provide in-depth description of the clinical profile and frequency rates of phenotypical features with a focus on differences between typical-onset and late-onset FRDA. Logistic regression modeling was used to identify predictors for the presence of the most common clinical features. RESULTS The most frequent clinical features beyond afferent ataxia were abnormal eye movements (90.5%), scoliosis (73.5%), deformities of the feet (58.8%), urinary dysfunction (42.8%), cardiomyopathy and cardiac hypertrophy (40.3%), followed by decreased visual acuity (36.8%); less frequent features were, among others, depression (14.1%) and diabetes (7.1%). Most of these features were more common in the typical-onset group compared to the late-onset group. Logistic regression models for the presence of these symptoms demonstrated the predictive value of GAA repeat length on the shorter allele and age at onset, but also severity of ataxia signs, sex, and presence of neonatal problems. CONCLUSIONS This joint European effort demonstrates the multisystem nature of this neurodegenerative disease encompassing most the central nervous, neuromuscular, cardiologic, and sensory systems. A distinct and deeper knowledge of this rare and chronic disease is highly relevant for clinical practice and designs of clinical trials.
Collapse
Affiliation(s)
- Kathrin Reetz
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Imis Dogan
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Christian Hohenfeld
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Didszun
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Paola Giunti
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Caterina Mariotti
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Durr
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvia Boesch
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Klopstock
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco Javier Rodríguez de Rivera Garrido
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Ludger Schöls
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Ilaria Giordano
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Katrin Bürk
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Massimo Pandolfo
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium
| | - Jörg B Schulz
- From the Department of Neurology (K.R., I.D., C.H., C.D., J.B.S.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R., I.D., C.H., C.D., J.B.S.), Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany; Department of Molecular Neuroscience (P.G.), Ataxia Center, UCL Institute of Neurology, London, UK; Unit of Genetics of Neurodegenerative and Metabolic Diseases (C.M.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; ICM (Brain and Spine Institute) Sorbonne Universités (A.D.), UPMC Univ Paris 06 UMR S 1127, and INSERM U 1127, CNRS UMR 7225 and APHP, Pitié-Salpêtrière University Hospital, Genetic Department, Paris, France; Department of Neurology (S.B.), Medical University Innsbruck, Austria; Department of Neurology (T.K.), Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (DZNE) (T.K.), Munich; Munich Cluster for Systems Neurology (SyNergy) (T.K.), Munich, Germany; Reference Unit of Hereditary Ataxias and Paraplegias (F.J.R.d.R.G.), Department of Neurology, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; Department of Neurodegenerative Diseases (L.S.), Hertie-Institute for Clinical Brain Research, University of Tübingen; Department of Neurology (I.G.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (I.G.), Bonn; Department of Neurology (K.B.), Philipps University of Marburg, Germany; and Laboratory of Experimental Neurology (M.P.), Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
9
|
Antenora A, Bruzzese D, Lieto M, Roca A, Florio MT, Peluso S, Saccà F, De Michele G, Santorelli FM, Filla A. Predictors of survival in spinocerebellar ataxia type 2 population from Southern Italy. Neurol Sci 2018; 39:1857-1860. [DOI: 10.1007/s10072-018-3504-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
|
10
|
Mascalchi M, Marzi C, Giannelli M, Ciulli S, Bianchi A, Ginestroni A, Tessa C, Nicolai E, Aiello M, Salvatore E, Soricelli A, Diciotti S. Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLoS One 2018; 13:e0200258. [PMID: 30001379 PMCID: PMC6042729 DOI: 10.1371/journal.pone.0200258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To assess the potential of histogram metrics of diffusion-tensor imaging (DTI)-derived indices in revealing neurodegeneration and its progression in spinocerebellar ataxia type 2 (SCA2). MATERIALS AND METHODS Nine SCA2 patients and 16 age-matched healthy controls, were examined twice (SCA2 patients 3.6±0.7 years and controls 3.3±1.0 years apart) on the same 1.5T scanner by acquiring T1-weighted and diffusion-weighted (b-value = 1000 s/mm2) images. Cerebrum and brainstem-cerebellum regions were segmented using FreeSurfer suite. Histogram analysis of DTI-derived indices, including mean diffusivity (MD), fractional anisotropy (FA), axial (AD) / radial (RD) diffusivity and mode of anisotropy (MO), was performed. RESULTS At baseline, significant differences between SCA2 patients and controls were confined to brainstem-cerebellum. Median values of MD/AD/RD and FA/MO were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (1.11/1.30/1.03×10(-3) mm2/s and 0.14/0.19) than in controls (0.80/1.00/0.70×10(-3) mm2/s and 0.20/0.41). Also, peak location values of MD/AD/RD and FA were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (0.91/1.11/0.81×10(-3) mm2/s and 0.12) than in controls (0.71/0.91/0.63×10(-3) mm2/s and 0.18). Peak height values of FA and MD/AD/RD/MO were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (0.20 and 0.07/0.06/0.07×10(-3) mm2/s/year /0.07) than in controls (0.15 and 0.14/0.11/0.12/×10(-3) mm2/s/year /0.09). The rate of change of MD median values was significantly (p<0.001) higher (i.e., increased) in SCA2 patients (0.010×10(-3) mm2/s/year) than in controls (-0.003×10(-3) mm2/s/year) in the brainstem-cerebellum, whereas no significant difference was found for other indices and in the cerebrum. CONCLUSION Histogram analysis of DTI-derived indices is a relatively straightforward approach which reveals microstructural changes associated with pontocerebellar degeneration in SCA2 and the median value of MD is capable to track its progression.
Collapse
Affiliation(s)
- Mario Mascalchi
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Stefano Ciulli
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Bianchi
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Ginestroni
- Neuroradiology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Carlo Tessa
- Department of Radiology and Nuclear Medicine, Versilia Hospital, AUSL 12 Viareggio, Lido di Camaiore (Lu), Italy
| | | | | | - Elena Salvatore
- Department of Neurological Sciences, University of Naples Federico II, Naples, Italy
| | | | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| |
Collapse
|
11
|
Natural history of mitochondrial disorders: a systematic review. Essays Biochem 2018; 62:423-442. [DOI: 10.1042/ebc20170108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022]
Abstract
The natural history of a disease defines the age of onset, presenting features, clinical phenotype, morbidity and mortality outcomes of disease that is unmodified by treatments. A clear understanding of the natural history of mitochondrial disorders is essential for establishing genotype-phenotype–prognosis correlations. We performed a systematic review of the reported natural history of mitochondrial disease by searching the literature for all published natural history studies containing at least 20 individuals. We defined a phenotype as ‘common’ if it was observed in ≥30% of cases in a study, thereby highlighting common and uncommon phenotypes for each disorder. Thirty-seven natural history studies were identified encompassing 29 mitochondrial disease entities. Fifty-nine percent of disorders had an onset before 18 months and 81% before 18 years. Most disorders had multisystemic involvement and most often affected were the central nervous system, eyes, gastrointestinal system, skeletal muscle, auditory system and the heart. Less frequent involvement was seen for respiratory, renal, endocrine, hepatic, haematological and genitourinary systems. Elevated lactate was the most frequent biochemical abnormality, seen in 72% of disorders. Age of death was <1 y in 13% of disorders, <5 y in 57% and <10 y in 74%. Disorders with high mortality rates were generally associated with earlier deaths. The most robust indicators of poor prognosis were early presentation of disease and truncating mutations. A thorough knowledge of natural history has helped to redefine diagnostic criteria for classical clinical syndromes and to establish a clinical baseline for comparison in single-arm clinical trials of novel therapies.
Collapse
|
12
|
Marzi C, Ciulli S, Giannelli M, Ginestroni A, Tessa C, Mascalchi M, Diciotti S. Structural Complexity of the Cerebellum and Cerebral Cortex is Reduced in Spinocerebellar Ataxia Type 2. J Neuroimaging 2018; 28:688-693. [PMID: 29975004 DOI: 10.1111/jon.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fractal dimension (FD) is an index of structural complexity of cortical gray matter (GM) and white matter (WM). Application of FD to pontocerebellar degeneration has revealed cerebellar changes. However, so far, possible concurrent cerebral changes and progression of changes in brain complexity have not been investigated. METHODS We computed FD of cerebellar and cerebral cortex and WM derived from longitudinal brain MRI of patients with spinocerebellar ataxia type 2 (SCA2), which is an inherited cause of pontocerebellar degeneration. Nine SCA2 patients and 16 age-matched healthy controls were examined twice (3.6 ± .7 and 3.3 ± 1.0 years apart, respectively) on the same 1.5T MR scanner with T1-weighted imaging. Cortical GM and WM of the cerebrum and cerebellum were segmented using FreeSurfer and FD of these segmentations were computed. RESULTS At baseline, FD values of cerebellar GM and WM were significantly (P < .001) lower in SCA2 patients (2.48 ± .04 for GM and 1.74 ± .09 for WM) than in controls (2.56 ± .02 for GM and 2.22 ± .19 for WM). Also, FD values of cerebral GM were significantly (P < .05) lower in SCA2 patients (2.39 ± .03) than in controls (2.43 ± .02). No significant differences were observed for FD of the cerebral WM. The rate of change of FD values was not significantly different between SCA2 patients and controls. CONCLUSIONS The structural complexity of the cerebellum and cerebral cortex is reduced in SCA2 patients. Fractal analysis seems not to be able to demonstrate progression of changes associated with degeneration in SCA2.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Stefano Ciulli
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Andrea Ginestroni
- Neuroradiology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Carlo Tessa
- Department of Radiology and Nuclear Medicine, Versilia Hospital, Lido di Camaiore (Lu), Italy
| | - Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Autonomic function testing in Friedreich's ataxia. J Neurol 2018; 265:2015-2022. [PMID: 29951702 PMCID: PMC6132658 DOI: 10.1007/s00415-018-8946-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
Abstract
Background Friedreich ataxia (FRDA) is an inherited movement disorder which manifests with progressive gait instability, sensory loss and cardiomyopathy. Peripheral neuropathy is an established feature of FRDA. At neuropathological examination, a depletion of large, myelinated axons is evident, but also unmyelinated fibers are affected which may result in a variety of sensory and autonomic signs and symptoms. Impaired temperature perception, vasomotor disturbances of lower extremities and a high prevalence of urinary symptoms have been documented in FRDA, but data from autonomic function testing in genetically confirmed cases are lacking. Methods Genetically confirmed FRDAs were recruited in an outpatient setting. In a screening visit, general and neurological examination, laboratory testing, ECG and echocardiography were performed. Autonomic functions were evaluated by means of systematic questionnaires (SCOPA-Aut, OHQ), skin sympathetic reflex and cardiovascular autonomic function testing (CAFT). For the latter, a comparison with matched healthy controls was performed. Results 20 patients were recruited and 13 underwent CAFT. Symptoms referred to multiple autonomic domains, particularly bladder function, thermoregulation and sweating were reported. SCOPA-Aut scores were significantly predicted by disease severity. At CAFT, FRDAs did not differ from controls except for increased heart rate at rest and during orthostatic challenge. Two patients had non-neurogenic orthostatic hypotension (14%). Skin sympathetic responses were pathologic in 3 out of 10 patients (of whom 2 aged > 50). Conclusions FRDA patients may experience several autonomic symptoms and overall their burden correlates with disease severity. Nonetheless, clinical testing shows no major involvement of sudomotor and cardiovascular autonomic function.
Collapse
|
14
|
Affiliation(s)
| | - Sylvia Bösch
- Neurology Department, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
15
|
Lad M, Parkinson MH, Rai M, Pandolfo M, Bogdanova-Mihaylova P, Walsh RA, Murphy S, Emmanuel A, Panicker J, Giunti P. Urinary, bowel and sexual symptoms in a cohort of patients with Friedreich's ataxia. Orphanet J Rare Dis 2017; 12:158. [PMID: 28950889 PMCID: PMC5615455 DOI: 10.1186/s13023-017-0709-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/17/2017] [Indexed: 11/14/2022] Open
Abstract
Background Pelvic symptoms are distressing symptoms experienced by patients with Friedreich’s Ataxia (FRDA). The aim of this study was to describe the prevalence of lower urinary tract symptoms (LUTS), bowel and sexual symptoms in FRDA. Methods Questionnaire scores measuring LUTS, bowel and sexual symptoms were analysed with descriptive statistics as a cohort and as subgroups (Early/Late-onset and Early/Late-stage FRDA) They were also correlated with validated measures of disease severity including those of ataxia severity, non-ataxic symptoms and activities of daily living. Results 80% (n = 46/56) of patients reported LUTS, 64% (n = 38/59) reported bowel symptoms and 83% (n = 30/36) reported sexual symptoms. Urinary and bowel or sexual symptoms were significantly likely to co-exist among patients. Late-onset FRDA patients were also more likely to report LUTS than early-onset ones. Patients with a longer disease duration reported higher LUTS scores and poorer quality of life scores related to urinary symptoms. Conclusions A high proportion of FRDA have symptoms suggestive of LUTS, bowel and sexual dysfunction. This is more marked with greater disease duration and later disease onset. These symptoms need to be addressed by clinicians as they can have a detrimental effect on patients.
Collapse
Affiliation(s)
- Meher Lad
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.,Department of Uro-Neurology, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London, UK
| | - Michael H Parkinson
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Myriam Rai
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Massimo Pandolfo
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Petya Bogdanova-Mihaylova
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Dublin, 24, Ireland
| | - Richard A Walsh
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Dublin, 24, Ireland.,Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | - Sinéad Murphy
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Dublin, 24, Ireland
| | - Anton Emmanuel
- Department of Gastroenterology, University College London Hospitals, London, UK
| | - Jalesh Panicker
- Department of Uro-Neurology, National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, Ataxia Centre, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
16
|
Mascalchi M, Bianchi A, Ciulli S, Ginestroni A, Aiello M, Dotti MT, Salvi F, Nicolai E, Soricelli A, Diciotti S. Lower medulla hypoplasia in Friedreich ataxia: MR Imaging confirmation 140 years later. J Neurol 2017. [PMID: 28620720 DOI: 10.1007/s00415-017-8542-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mario Mascalchi
- Neuroscience Centre, "Anna Meyer" Children Hospital, Florence, Italy.
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Andrea Bianchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefano Ciulli
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Fabrizio Salvi
- "Il Bene" Center for Immunological and Rare Neurological Diseases at Bellaria Hospital, IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | | | | | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| |
Collapse
|
17
|
Bürk K. Friedreich Ataxia: current status and future prospects. CEREBELLUM & ATAXIAS 2017; 4:4. [PMID: 28405347 PMCID: PMC5383992 DOI: 10.1186/s40673-017-0062-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 01/23/2023]
Abstract
Friedreich ataxia (FA) represents the most frequent type of inherited ataxia. Most patients carry homozygous GAA expansions in the first intron of the frataxin gene on chromosome 9. Due to epigenetic alterations, frataxin expression is significantly reduced. Frataxin is a mitochondrial protein. Its deficiency leads to mitochondrial iron overload, defective energy supply and generation of reactive oxygen species. This review gives an overview over clinical and genetic aspects of FA and discusses current concepts of frataxin biogenesis and function as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Katrin Bürk
- University of Marburg, and Paracelsus-Elena Klinik, Klinikstr. 16, 34128 Kassel, Germany
| |
Collapse
|
18
|
Mehta N, Chacko P, Jin J, Tran T, Prior TW, He X, Agarwal G, Raman SV. Serum versus Imaging Biomarkers in Friedreich Ataxia to Indicate Left Ventricular Remodeling and Outcomes. Tex Heart Inst J 2016; 43:305-10. [PMID: 27547137 DOI: 10.14503/thij-14-4198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with Friedreich ataxia typically die of cardiomyopathy, marked by myocardial fibrosis and abnormal left ventricular (LV) geometry. We measured procollagen I carboxyterminal propeptide (PICP), a serum biomarker of collagen production, and characterized genotypes, phenotypes, and outcomes in these patients. Twenty-nine patients with Friedreich ataxia (mean age, 34.2 ± 2.2 yr) and 29 healthy subjects (mean age, 32.5 ± 1.1 yr) underwent serum PICP measurements. Patients underwent cardiac magnetic resonance imaging and outcome evaluations at baseline and 12 months. Baseline PICP values were significantly higher in the patients than in the control group (1,048 ± 77 vs 614 ± 23 ng/mL; P <0.001); severity of genetic abnormality did not indicate severity of PICP elevation. Higher PICP levels corresponded to greater LV concentric remodeling only at baseline (r=0.37, P <0.05). Higher baseline PICP strongly indicated subsequent increases in LV end-diastolic volume (r=0.52, P=0.02). The PICP levels did not distinguish between 14 patients with evident myocardial fibrosis identified through positive late gadolinium enhancement and 15 who had no enhancement (1,067 ± 125 vs 1,030 ± 98 ng/mL; P=0.82). At 12 months, cardiac events had occurred in 3 of 14 fibrosis-positive and none of 15 fibrosis-negative patients (P=0.1); their baseline PICP levels were similar. We conclude that PICP, a serum marker of collagen synthesis, is elevated in Friedreich ataxia and indicates baseline abnormal LV geometry and subsequent dilation. Cardiac magnetic resonance and PICP warrant consideration as complementary biomarkers in therapeutic trials of Friedreich ataxia cardiomyopathy.
Collapse
|
19
|
Saccà F, Puorro G, Marsili A, Antenora A, Pane C, Casali C, Marcotulli C, Defazio G, Liuzzi D, Tatillo C, Cambriglia DM, Schiano di Cola G, Giuliani L, Guardasole V, Salzano A, Ruvolo A, De Rosa A, Cittadini A, De Michele G, Filla A. Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia. Mov Disord 2016; 31:734-41. [DOI: 10.1002/mds.26552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Francesco Saccà
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Giorgia Puorro
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Angela Marsili
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Antonella Antenora
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Chiara Pane
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Carlo Casali
- Department of Medical-Surgical Sciences and Biotechnologies; University of Rome; Rome Italy
| | - Christian Marcotulli
- Department of Medical-Surgical Sciences and Biotechnologies; University of Rome; Rome Italy
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs; University of Bari; Bari Italy
| | - Daniele Liuzzi
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs; University of Bari; Bari Italy
| | - Chiara Tatillo
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Donata Maria Cambriglia
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Giuseppe Schiano di Cola
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Luigi Giuliani
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Vincenzo Guardasole
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Andrea Salzano
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Antonio Ruvolo
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Anna De Rosa
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| |
Collapse
|
20
|
Wedding IM, Kroken M, Henriksen SP, Selmer KK, Fiskerstrand T, Knappskog PM, Berge T, Tallaksen CME. Friedreich ataxia in Norway - an epidemiological, molecular and clinical study. Orphanet J Rare Dis 2015; 10:108. [PMID: 26338206 PMCID: PMC4559212 DOI: 10.1186/s13023-015-0328-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
Background Friedreich ataxia is an autosomal recessive hereditary spinocerebellar disorder, characterized by progressive limb and gait ataxia due to proprioceptive loss, often complicated by cardiomyopathy, diabetes and skeletal deformities. Friedreich ataxia is the most common hereditary ataxia, with a reported prevalence of 1:20 000 – 1:50 000 in Central Europe. Previous reports from south Norway have found a prevalence varying from 1:100 000 – 1:1 350 000; no studies are previously done in the rest of the country. Methods In this cross-sectional study, Friedreich ataxia patients were identified through colleagues in neurological, pediatric and genetic departments, hospital archives searches, patients’ associations, and National Centre for Rare Disorders. All included patients, carriers and controls were investigated clinically and molecularly with genotype characterization including size determination of GAA repeat expansions and frataxin measurements. 1376 healthy blood donors were tested for GAA repeat expansion for carrier frequency analysis. Results Twenty-nine Friedreich ataxia patients were identified in Norway, of which 23 were ethnic Norwegian, corresponding to a prevalence of 1:176 000 and 1:191 000, respectively. The highest prevalence was seen in the north. Carrier frequency of 1:196 (95 % CI = [1:752–1:112]) was found. Homozygous GAA repeat expansions in the FXN gene were found in 27/29, while two patients were compound heterozygous with c.467 T < C, L157P and the deletion (g.120032_122808del) including exon 5a. Two additional patients were heterozygous for GAA repeat expansions only. Significant differences in the level of frataxin were found between the included patients (N = 27), carriers (N = 37) and controls (N = 27). Conclusions In this first thorough study of a complete national cohort of Friedreich ataxia patients, and first nation-wide study of Friedreich ataxia in Norway, the prevalence of Friedreich ataxia in Norway is lower than in Central Europe, but higher than in the last Norwegian report, and as expected from migration studies. A south–north prevalence gradient is present. Based on Hardy Weinberg’s equilibrium, the carrier frequency of 1:196 is consistent with the observed prevalence. All genotypes, and typical and atypical phenotypes were present in the Norwegian population. The patients were phenotypically similar to European cohorts. Frataxin was useful in the diagnostic work-up of heterozygous symptomatic cases. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0328-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iselin Marie Wedding
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Oslo, Norway.
| | - Mette Kroken
- Department of Medical Genetics, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway
| | | | - Kaja Kristine Selmer
- Department of Medical Genetics, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway.,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Torunn Fiskerstrand
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway
| | - Chantal M E Tallaksen
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway.,University of Oslo, Faculty of Medicine, Oslo, Norway
| |
Collapse
|
21
|
Mascalchi M, Toschi N, Giannelli M, Ginestroni A, Della Nave R, Tessa C, Piacentini S, Dotti MT, Aiello M, Nicolai E, Soricelli A, Salvi F, Diciotti S. Regional Cerebral Disease Progression in Friedreich's Ataxia: A Longitudinal Diffusion Tensor Imaging Study. J Neuroimaging 2015; 26:197-200. [PMID: 26175281 DOI: 10.1111/jon.12270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Imaging biomarkers of disease progression are desirable in inherited ataxias. MRI has demonstrated brain damage in Friedreich ataxia (FRDA) in form of regional atrophy of the medulla, peridentate cerebellar white matter (WM) and superior cerebellar peduncles (visible in T1-weighted images) and of change of microstructural characteristics of WM tracts of the brainstem, cerebellar peduncles, cerebellum, and supratentorial structures (visible through diffusion-weighted imaging). We explored the potential of brain MR morphometry and diffusion tensor imaging (DTI) to track the progression of neurodegeneration in FRDA. METHODS Eight patients (5F, 3M; age 13.4-41.2 years) and 8 healthy controls (2F, 6M; age 26.2-48.3 years) underwent 2 MRI examinations (mean 3.9 and 4.1 years apart, respectively) on the same 1.5T scanner. The protocol included 3D T1-weighted images and axial diffusion-weighted images (b-value 1,000 s/mm(2)) for calculating maps of fractional anisotropy, mean, axial and radial diffusivity, and mode of anisotropy. Tensor-based morphometry was used to investigate regional volume changes and tract-based spatial statistics was used to investigate microstructural changes in WM tracts. RESULTS Longitudinal analyses showed no differences in regional volume changes but a significant difference in axial diffusivity changes in cerebral and corpus callosum WM of patients as compared to controls (mean longitudinal rate of change for axial diffusivity: -.02 × 10(-3) mm(2)/s/year in patients vs. .01 × 10(-3) mm(2)/s/year in controls). No correlation with number of triplets, disease duration, and worsening of the clinical deficit was observed. CONCLUSION DTI can track brain microstructural changes in FRDA and can be considered a potential biomarker of disease progression.
Collapse
Affiliation(s)
- Mario Mascalchi
- Quantitative and Functional Neuroradiology Research Unit at Meyer Children and Careggi Hospitals of Florence, Florence, Italy.,"Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Nicola Toschi
- Medical Physics Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata,", Rome, Italy.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA.,Harvard Medical School, Boston, MA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana,", Pisa, Italy
| | | | | | - Carlo Tessa
- Unit of Radiology, Versilia Hospital, Azienda USL 12 Viareggio, Lido di Camaiore (Lu), Italy
| | | | | | | | | | - Andrea Soricelli
- IRCSS SDN Foundation, Naples, Italy.,University of Naples Parthenope, Naples, Italy
| | - Fabrizio Salvi
- "Il Bene" Centre for Immunological and Rare Diseases, Bellaria Hospital, IRCSS Neurologia Città di Bologna, Bologna, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi,", University of Bologna, Cesena, Italy
| |
Collapse
|
22
|
Mascalchi M, Toschi N, Giannelli M, Ginestroni A, Della Nave R, Nicolai E, Bianchi A, Tessa C, Salvatore E, Aiello M, Soricelli A, Diciotti S. Progression of microstructural damage in spinocerebellar ataxia type 2: a longitudinal DTI study. AJNR Am J Neuroradiol 2015; 36:1096-101. [PMID: 25882284 DOI: 10.3174/ajnr.a4343] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The ability of DTI to track the progression of microstructural damage in patients with inherited ataxias has not been explored so far. We performed a longitudinal DTI study in patients with spinocerebellar ataxia type 2. MATERIALS AND METHODS Ten patients with spinocerebellar ataxia type 2 and 16 healthy age-matched controls were examined twice with DTI (mean time between scans, 3.6 years [patients] and 3.3 years [controls]) on the same 1.5T MR scanner. Using tract-based spatial statistics, we analyzed changes in DTI-derived indices: mean diffusivity, axial diffusivity, radial diffusivity, fractional anisotropy, and mode of anisotropy. RESULTS At baseline, the patients with spinocerebellar ataxia type 2, as compared with controls, showed numerous WM tracts with significantly increased mean diffusivity, axial diffusivity, and radial diffusivity and decreased fractional anisotropy and mode of anisotropy in the brain stem, cerebellar peduncles, cerebellum, cerebral hemisphere WM, corpus callosum, and thalami. Longitudinal analysis revealed changes in axial diffusivity and mode of anisotropy in patients with spinocerebellar ataxia type 2 that were significantly different than those in the controls. In patients with spinocerebellar ataxia type 2, axial diffusivity was increased in WM tracts of the right cerebral hemisphere and the corpus callosum, and the mode of anisotropy was extensively decreased in hemispheric cerebral WM, corpus callosum, internal capsules, cerebral peduncles, pons and left cerebellar peduncles, and WM of the left paramedian vermis. There was no correlation between the progression of changes in DTI-derived indices and clinical deterioration. CONCLUSIONS DTI can reveal the progression of microstructural damage of WM fibers in the brains of patients with spinocerebellar ataxia type 2, and mode of anisotropy seems particularly sensitive to such changes. These results support the potential of DTI-derived indices as biomarkers of disease progression.
Collapse
Affiliation(s)
- M Mascalchi
- From the Quantitative and Functional Neuroradiology Research Unit (M.M.), Meyer Children and Careggi Hospitals of Florence, Florence, Italy "Mario Serio" Department of Experimental and Clinical Biomedical Sciences (M.M., A.B.), University of Florence, Florence, Italy
| | - N Toschi
- Medical Physics Section (N.T.), Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy Department of Radiology (N.T.), Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts Harvard Medical School (N.T.), Boston, Massachusetts
| | - M Giannelli
- Unit of Medical Physics (M.G.), Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana," Pisa, Italy
| | - A Ginestroni
- Neuroradiology Unit (A.G.), Careggi General Hospital, Florence, Italy
| | | | - E Nicolai
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy
| | - A Bianchi
- From the Quantitative and Functional Neuroradiology Research Unit (M.M.), Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - C Tessa
- Unit of Radiology (C.T.), Versilia Hospital, Lido di Camaiore, Italy
| | - E Salvatore
- Department of Neurological Sciences (E.S.), University of Naples Federico II, Naples, Italy
| | - M Aiello
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy
| | - A Soricelli
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy University of Naples Parthenope (A.S.), Naples, Italy
| | - S Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" (S.D.), University of Bologna, Cesena, Italy
| |
Collapse
|
23
|
Igoillo-Esteve M, Gurgul-Convey E, Hu A, Romagueira Bichara Dos Santos L, Abdulkarim B, Chintawar S, Marselli L, Marchetti P, Jonas JC, Eizirik DL, Pandolfo M, Cnop M. Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Hum Mol Genet 2015; 24:2274-86. [PMID: 25552656 DOI: 10.1093/hmg/ddu745] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic β-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that β-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced β-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients' induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.
Collapse
Affiliation(s)
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover 30625, Germany
| | - Amélie Hu
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Laila Romagueira Bichara Dos Santos
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Satyan Chintawar
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Jean-Christophe Jonas
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research and, Division of Endocrinology, Erasmus Hospital, 1070, Brussels, Belgium
| |
Collapse
|
24
|
Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris) 2014; 170:355-65. [PMID: 24792433 DOI: 10.1016/j.neurol.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.
Collapse
Affiliation(s)
- H Puccio
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Collège de France, chaire de génétique humaine, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France
| | - M Anheim
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - C Tranchant
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
25
|
Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study. PLoS One 2014; 9:e89410. [PMID: 24586758 PMCID: PMC3934889 DOI: 10.1371/journal.pone.0089410] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/20/2014] [Indexed: 12/28/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.
Collapse
|
26
|
Salvatore E, Tedeschi E, Mollica C, Vicidomini C, Varrone A, Coda ARD, Brunetti A, Salvatore M, De Michele G, Filla A, Pappatà S. Supratentorial and infratentorial damage in spinocerebellar ataxia 2: a diffusion-weighted MRI study. Mov Disord 2013; 29:780-6. [PMID: 24375449 DOI: 10.1002/mds.25757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal-dominant degenerative disorder that is neuropathologically characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. Diffusion-weighted imaging (DWI)-Magnetic Resonance Imaging (MRI) studies of SCA2 have enabled in vivo quantification of neurodegeneration in infratentorial regions, whereas supratentorial regions have been explored less thoroughly. We measured microstructural changes in both infratentorial and supratentorial regions in 13 SCA2 patients (9 men, 4 women; mean age, 50 ± 12 years) and 15 controls (10 men, 5 women; mean age, 49 ± 14 years) using DWI-MRI and correlated the DWI changes with disease severity and duration. Disease severity was evaluated using the International Cooperative Ataxia Rating Scale and the Inherited Ataxia Clinical Rating Scale. Cerebral diffusion trace ( D¯) values were generated, and regions of interest (ROIs) and voxel-based analysis with Statistical Parametric Mapping (SPM) were used for data analysis. In SCA2 patients, ROI analysis and SPM confirmed significant increases in D¯ values in the pons, cerebellar white matter (CWM) and middle cerebellar peduncles. Moreover, SPM analysis revealed increased D¯ values in the right thalamus, bilateral temporal cortex/white matter, and motor cortex/pyramidal tract regions. Increased diffusivity in the frontal white matter (FWM) and the CWM was significantly correlated with ataxia severity. DWI-MRI revealed that both infratentorial and supratentorial microstructural changes may characterize SCA2 patients in the course of the disease and might contribute to the severity of the symptoms.
Collapse
Affiliation(s)
- Elena Salvatore
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich's ataxia: classical and atypical phenotypes. J Neurochem 2013; 126 Suppl 1:103-17. [PMID: 23859346 DOI: 10.1111/jnc.12317] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia.
Collapse
Affiliation(s)
- Michael H Parkinson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
28
|
Cnop M, Igoillo-Esteve M, Rai M, Begu A, Serroukh Y, Depondt C, Musuaya AE, Marhfour I, Ladrière L, Moles Lopez X, Lefkaditis D, Moore F, Brion JP, Cooper JM, Schapira AHV, Clark A, Koeppen AH, Marchetti P, Pandolfo M, Eizirik DL, Féry F. Central role and mechanisms of β-cell dysfunction and death in friedreich ataxia-associated diabetes. Ann Neurol 2012; 72:971-82. [PMID: 23280845 PMCID: PMC4900175 DOI: 10.1002/ana.23698] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known. We aimed to evaluate the relative contribution of insulin resistance and β-cell failure and the pathogenic mechanisms involved in FRDA diabetes. METHODS Forty-one FRDA patients, 26 heterozygous carriers of a GAA expansion, and 53 controls underwent oral and intravenous glucose tolerance tests. β-Cell proportion was quantified in postmortem pancreas sections from 9 unrelated FRDA patients. Using an in vitro disease model, we studied how frataxin deficiency affects β-cell function and survival. RESULTS FRDA patients had increased abdominal fat and were insulin resistant. This was not compensated for by increased insulin secretion, resulting in a markedly reduced disposition index, indicative of pancreatic β-cell failure. Loss of glucose tolerance was driven by β-cell dysfunction, which correlated with abdominal fatness. In postmortem pancreas sections, pancreatic islets of FRDA patients had a lower β-cell content. RNA interference-mediated frataxin knockdown impaired glucose-stimulated insulin secretion and induced apoptosis in rat β cells and human islets. Frataxin deficiency sensitized β cells to oleate-induced and endoplasmic reticulum stress-induced apoptosis, which could be prevented by the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. INTERPRETATION Pancreatic β-cell dysfunction is central to diabetes development in FRDA as a result of mitochondrial dysfunction and higher sensitivity to metabolic and endoplasmic reticulum stress-induced β-cell death.
Collapse
Affiliation(s)
- Miriam Cnop
- Laboratory of Experimental Medicine, Universite Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rosen KM, Folker JE, Vogel AP, Corben LA, Murdoch BE, Delatycki MB. Longitudinal change in dysarthria associated with Friedreich ataxia: a potential clinical endpoint. J Neurol 2012; 259:2471-7. [PMID: 22669353 DOI: 10.1007/s00415-012-6547-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 01/10/2023]
Abstract
CNS functions that show change across short periods of time are particularly useful clinical endpoints for Friedreich ataxia. This study determined whether there is measurable acoustical change in the dysarthria associated with Friedreich ataxia across yearly intervals. A total of 29 participants diagnosed with Friedreich ataxia were recorded across 4 years at yearly intervals. A repeated measures ANOVA was used to determine which acoustic measures differed across time, and pairwise t tests were used to assess the consistency of the change across the time intervals. The relationship between the identified measures with perceptual severity was assessed with stepwise regression. Significant longitudinal change was observed with four measures that relate to the utterance duration and spectral changes in utterances. The spectral measures consistently detected change across time intervals of two or more years. The four measures combined moderately predicted perceptual severity. Together, the results implicate longitudinal change in speaking rate and utterance duration. Changes in speech associated with Friedreich ataxia can be measured across intervals of 2 years and therefore show rich potential for monitoring disease progression and therapy outcomes.
Collapse
Affiliation(s)
- Kristin M Rosen
- School of Health and Rehabilitation Science, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Massimo Pandolfo
- Brussels Free University and Erasme Hospital, Brussels, Belgium.
| |
Collapse
|
31
|
Bourke T, Keane D. Friedreich's Ataxia: a review from a cardiology perspective. Ir J Med Sci 2011; 180:799-805. [PMID: 21822977 DOI: 10.1007/s11845-011-0744-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Neuromuscular disorders are not among the common causes of cardiomyopathy in the general population; however, cardiomyopathy is known to occur in several neuromuscular disorders including Friedreich's Ataxia (FA). In patients with neuromuscular disorders, concomitant cardiac involvement contributes significantly to morbidity and mortality and often leads to premature death. METHODS An extensive literature search of Medline and Pubmed was conducted to include all published reports on cardiac involvement in FA. Secondary articles were identified from key paper reference listings. CONCLUSION Hypertrophic cardiomyopathy is a cardinal feature of FA; therefore all FA patients should be screened for cardiomyopathy. A cardiac examination, ECG and ECHO are advised at diagnosis, and also on the development of any cardiac symptoms. Treatment is determined by the presence of symptoms, the presence of left ventricular outflow gradient and the sudden death risk. Institution of aggressive medical therapy early in the course of the disease may help improve quality of life and provide survival benefit.
Collapse
Affiliation(s)
- T Bourke
- Cardiac Arrhythmia Service, St Vincent's University Hospital, Elm Park, Dublin, Ireland.
| | | |
Collapse
|
32
|
Ginestroni A, Diciotti S, Cecchi P, Pesaresi I, Tessa C, Giannelli M, Della Nave R, Salvatore E, Salvi F, Dotti MT, Piacentini S, Soricelli A, Cosottini M, De Stefano N, Mascalchi M. Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Hum Brain Mapp 2011; 33:1780-91. [PMID: 21674694 DOI: 10.1002/hbm.21319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/23/2010] [Accepted: 03/10/2011] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is associated with a distributed pattern of neurodegeneration in the spinal cord and the brain secondary to selective neuronal loss. We used functional MR Imaging (fMRI) to explore brain activation in FRDA patients during two motor-sensory tasks of different complexity, i.e. continuous hand tapping and writing of "8" figure, with the right dominant hand and without visual feedback. Seventeen FRDA patients and two groups of age-matched healthy controls were recruited. Task execution was monitored and recorded using MR-compatible devices. Hand tapping was correctly performed by 11 (65%) patients and writing of the "8" by 7 (41%) patients. After correction for behavioral variables, FRDA patients showed in both tasks areas of significantly lower activation in the left primary sensory-motor cortex and right cerebellum. Also left thalamus and right dorsolateral prefrontal cortex showed hypo-activation during hand tapping. During writing of the "8" task FRDA patients showed areas of higher activation in the right parietal and precentral cortex, globus pallidus, and putamen. Activation of right parietal cortex, anterior cingulum, globus pallidus, and putamen during writing of the "8" increased with severity of the neurological deficit. In conclusion fMRI demonstrates in FRDA a mixed pattern constituted by areas of decreased activation and areas of increased activation. The decreased activation in the primary motor cortex and cerebellum presumably reflects a regional neuronal damage, the decreased activation of the left thalamus and primary sensory cortex could be secondary to deafferentation phenomena, and the increased activation of right parietal cortex and striatum might have a possible compensatory significance.
Collapse
Affiliation(s)
- Andrea Ginestroni
- Department of Clinical Physiopathology, Radiodiagnostic Section, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich's ataxia. Neuroradiology 2010; 53:367-72. [PMID: 21128070 DOI: 10.1007/s00234-010-0807-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/16/2010] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Decreased fractional anisotropy (FA) demonstrated by diffusion tensor MR imaging (DTI) in areas of white matter (WM) damage is generally associated with increase of radial diffusivity, while axial diffusivity is reported to be decreased, unchanged, or increased. Aiming to better define the type of axial diffusivity change occurring in a typical human neurodegenerative disease, we investigated axial and radial diffusivity in Friedreich's ataxia (FRDA) which is characterized by selective neuronal loss of the dentate nuclei and atrophy and decreased FA of the superior cerebellar peduncles (SCPs). METHODS Axial and radial diffusivity of the whole-brain WM were evaluated in 14 patients with FRDA and 14 healthy volunteers using DTI at 1.5 T and the tract-based spatial statistics (TBSS) method, part of FSL software. RESULTS TBSS analysis showed a single area in the central midbrain corresponding to the decussation of the SCPs which exhibited lower FA in patients than in controls. In this area, a significant increase of both axial and radial diffusivity was observed. No clusters of significantly decreased axial diffusivity were observed, while additional clusters of increase of radial diffusivity were present throughout the brain. CONCLUSIONS The selective decrease of FA in SCPs of FRDA patients reflecting chronic WM tract damage is associated with increase of both the axial and radial diffusivity, the latter more pronounced than the former. The ultrastructural and biophysical bases of the increased axial diffusivity in chronically degenerating WM tracts deserve further studies.
Collapse
|
34
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
35
|
Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, Piacentini S, Filippi M, Mascalchi M. Assessment of Brain White Matter Fiber Bundle Atrophy in Patients with Friedreich Ataxia. Radiology 2010; 255:882-9. [PMID: 20501725 DOI: 10.1148/radiol.10091742] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Hospital San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marmolino D, Manto M, Acquaviva F, Vergara P, Ravella A, Monticelli A, Pandolfo M. PGC-1alpha down-regulation affects the antioxidant response in Friedreich's ataxia. PLoS One 2010; 5:e10025. [PMID: 20383327 PMCID: PMC2850922 DOI: 10.1371/journal.pone.0010025] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cells from individuals with Friedreich's ataxia (FRDA) show reduced activities of antioxidant enzymes and cannot up-regulate their expression when exposed to oxidative stress. This blunted antioxidant response may play a central role in the pathogenesis. We previously reported that Peroxisome Proliferator Activated Receptor Gamma (PPARgamma) Coactivator 1-alpha (PGC-1alpha), a transcriptional master regulator of mitochondrial biogenesis and antioxidant responses, is down-regulated in most cell types from FRDA patients and animal models. METHODOLOGY/PRINCIPAL FINDINGS We used primary fibroblasts from FRDA patients and the knock in-knock out animal model for the disease (KIKO mouse) to determine basal superoxide dismutase 2 (SOD2) levels and the response to oxidative stress induced by the addition of hydrogen peroxide. We measured the same parameters after pharmacological stimulation of PGC-1alpha. Compared to control cells, PGC-1alpha and SOD2 levels were decreased in FRDA cells and did not change after addition of hydrogen peroxide. PGC-1alpha direct silencing with siRNA in control fibroblasts led to a similar loss of SOD2 response to oxidative stress as observed in FRDA fibroblasts. PGC-1alpha activation with the PPARgamma agonist (Pioglitazone) or with a cAMP-dependent protein kinase (AMPK) agonist (AICAR) restored normal SOD2 induction. Treatment of the KIKO mice with Pioglitazone significantly up-regulates SOD2 in cerebellum and spinal cord. CONCLUSIONS/SIGNIFICANCE PGC-1alpha down-regulation is likely to contribute to the blunted antioxidant response observed in cells from FRDA patients. This response can be restored by AMPK and PPARgamma agonists, suggesting a potential therapeutic approach for FRDA.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mario Manto
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium
| | - Fabio Acquaviva
- Department of Cellular and Molecular Biology, University of Naples “Federico II”, Naples, Italy
| | - Paola Vergara
- Department of Cellular and Molecular Biology, University of Naples “Federico II”, Naples, Italy
| | - Ajay Ravella
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Massimo Pandolfo
- Laboratoire de Neurologie Expérimentale, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
37
|
ASAAD NIDAL, EL-MENYAR AYMAN, AL SUWAIDI JASSIM. Recurrent Ventricular Tachycardia in Patient with Friedreich's Ataxia in the Absence of Clinical Myocardial Disease. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2010; 33:109-12. [DOI: 10.1111/j.1540-8159.2009.02528.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Isolated degeneration of the posterior column as a distinct entity--a clinical and electrophysiologic follow-up study. Clin Neurol Neurosurg 2009; 112:209-12. [PMID: 20018441 DOI: 10.1016/j.clineuro.2009.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/21/2009] [Accepted: 11/18/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to better describe the long term clinical course and electrophysiologic and radiologic findings in isolated degeneration of the posterior column. METHODS Four patients with the presenting symptoms of a progressive tabetic ataxia were followed up clinically and electrophysiologically over up to 15 years between 1997 and 2008. They received standardized neurological examinations, electrophysiologic testing with SEP, MEP, NCV, EMG, autonomic testing and cardiac evaluation, head and spine MRI, laboratory evaluation including CSF analysis. RESULTS Progressive gait ataxia due to pallhypasthesia and loss of position sense with areflexia remained the only symptoms. Pes cavus deformity was a notable clinical feature in all cases. There was no involvement of other systems and all patients remained fully ambulatory. There was no cardiac involvement. Electrophysiology was characterized by absent cortical tibial SEP with normal lumbar complexes and normal nerve conduction studies and transcortical magnetic stimulation as well as sympathetic skin response. MRI of the cord was normal. Laboratory analysis and CSF were unrevealing. CONCLUSION Isolated degeneration of the posterior column is a rare condition with a clinically benign course without progression involving other systems and characteristic electrophysiologic findings (isolated loss of cortical tibial-SEP with normal lumbar leads). Pes cavus deformity seems to be an unusual but typical clinical feature. The etiology is most likely a sporadic degenerative disease of the cord.
Collapse
|
39
|
Marmolino D, Acquaviva F. Friedreich's Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. CEREBELLUM (LONDON, ENGLAND) 2009; 8:245-59. [PMID: 19165552 DOI: 10.1007/s12311-008-0084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/14/2008] [Indexed: 10/25/2022]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron-sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-gamma agonists.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie Expérimentale, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
| | | |
Collapse
|
40
|
Coppola G, Marmolino D, Lu D, Wang Q, Cnop M, Rai M, Acquaviva F, Cocozza S, Pandolfo M, Geschwind DH. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia. Hum Mol Genet 2009; 18:2452-61. [PMID: 19376812 PMCID: PMC2694693 DOI: 10.1093/hmg/ddp183] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/14/2009] [Indexed: 01/09/2023] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARgamma) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARgamma coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARgamma pathway affects frataxin levels in vitro, supporting PPARgamma as a novel therapeutic target in FRDA.
Collapse
Affiliation(s)
- Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | | | - Daning Lu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | - Miriam Cnop
- Division of Endocrinology
- Laboratory of Experimental Medicine, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | | | - Fabio Acquaviva
- Department of Cellular and Molecular Biology, University of Naples ‘Federico II’, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
| | - Sergio Cocozza
- Department of Cellular and Molecular Biology, University of Naples ‘Federico II’, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
| | | | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Rinaldi C, Tucci T, Maione S, Giunta A, De Michele G, Filla A. Low-dose idebenone treatment in Friedreich's ataxia with and without cardiac hypertrophy. J Neurol 2009; 256:1434-7. [PMID: 19363628 DOI: 10.1007/s00415-009-5130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/23/2009] [Accepted: 03/19/2009] [Indexed: 11/30/2022]
Abstract
Left ventricular hypertrophy (LVH) is a frequent finding in Friedreich's ataxia (FRDA). In previous studies treatment with idebenone, a synthetic analogue of coenzyme Q10, has been associated with a substantial decrease in myocardial hypertrophy, despite great variability in cardiac responsiveness among patients. Here we present the results of a retrospective analysis of a cohort of 35 patients (20 with LVH, 15 without LVH) with confirmed molecular diagnosis of FRDA, treated with idebenone 5 mg/kg/day for up to five years. At the end of the study, we found an increase of interventricular septum and posterior wall thickness in the group without LVH before treatment and no change in the group with LVH before treatment. The neurological picture of the disease significantly deteriorated with time in both groups.
Collapse
Affiliation(s)
- C Rinaldi
- Department of Neurological Sciences, University of Federico II, 80131 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Maione S, Giunta A, Filla A, De Michele G, Spinelli L, Liucci GA, Campanella G, Condorelli M. May age onset be relevant in the occurrence of left ventricular hypertrophy in Friedreich's ataxia? Clin Cardiol 2009; 20:141-5. [PMID: 9034643 PMCID: PMC6656134 DOI: 10.1002/clc.4960200211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although heart involvement has been widely reported in Friedreich's ataxia (FA), which is the most prevalent of the spino-cerebellar degenerative diseases, the reason that cardiac abnormalities develop has not been yet established. HYPOTHESIS The investigation was undertaken to study the prevalence and characteristics of cardiac abnormalities in patients with FA and to evaluate whether the presence of left ventricular hypertrophy could be predicted. METHODS In all, 75 patients with FA and 16 patients with late onset FA (LOFA) disease were investigated for cardiac abnormalities using noninvasive methods. RESULTS A significant (p < 0.01) difference in the age onset (9.8 +/- 3.9 years) was found in 31 of the 75 patients with FA (41%) who showed left ventricular hypertrophy (LVH) at echocardiographic examination compared with the remaining 44 patients with FA without LVH (12.6 +/- 4.3 years). Moreover, none of the 16 patients with LOFA (age onset 26.5 +/- 4.2 years) showed abnormalities at echocardiographic examination. A significant (p < 0.01) concordance in the familial distribution of hypertrophy was also found. CONCLUSION These data suggest that the earlier the disease develops the more frequently LVH occurs.
Collapse
Affiliation(s)
- S Maione
- Department of Internal Medicine, Federico II University of Naples, School of Medicine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, Sartucci F, De Michele G, Dotti MT, Piacentini S, Mascalchi M. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord 2008; 23:899-903. [PMID: 18311829 DOI: 10.1002/mds.21982] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Voxel-based morphometry (VBM) enables an unbiased in-vivo whole-brain quantitative analysis of differences in gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) volumes. We assessed with VBM 20 spinocerebellar ataxia Type 2 (SCA2) patients with mild or moderate cerebellar deficit and 20 age and sex-matched healthy controls. SCA2 patients showed a significant (P < 0.05 corrected for multiple comparison) symmetric loss of GM in the cerebellar vermis and hemispheres sparing lobules I,II, Crus II,VII, and X, and of the WM in the peridentate region, middle cerebellar peduncles, dorsal pons, and cerebral peduncles. The CSF volume was increased in the posterior cranial fossa. No GM, WM or CSF volume changes were observed in the supratentorial compartment. A mild (P < 0.05, >0.01) correlation was observed between the GM and WM loss and severity of the neurological deficit. In SCA2 patients with mild to moderate cerebellar deficit, GM and WM volume loss and CSF volume increase are confined to the posterior cranial fossa.
Collapse
Affiliation(s)
- Riccardo Della Nave
- Radiodiagnostic Section, Department of Clinical Physiopathology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ginestroni A, Della Nave R, Tessa C, Giannelli M, De Grandis D, Plasmati R, Salvi F, Piacentini S, Mascalchi M. Brain structural damage in spinocerebellar ataxia type 1 : a VBM study. J Neurol 2008; 255:1153-8. [PMID: 18438695 DOI: 10.1007/s00415-008-0860-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/21/2007] [Accepted: 01/06/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Neuropathological description of the brain in spinocerebellar ataxia type 1(SCA1) is limited to a few cases. Voxel-based morphometry (VBM) enables an unbiased in vivo whole-brain quantitative analysis of regional differences in gray matter (GM) and white matter (WM) volume. We assessed with VBM the structural damage in patients with genetically confirmed SCA1. METHOD Fifteen SCA1 patients and 15 age-matched healthy controls underwent MR examination with acquisition of high-resolution T1-weighted images. The results were correlated with the disease duration and severity of the clinical deficit assessed with the International Cerebellar Ataxia Rating Scale (ICARS) and Inherited Ataxia Clinical Rating Scale (IACRS). RESULTS As compared to controls, patients with SCA1 showed a significant (p < 0.05 corrected for multiple comparison) symmetric loss of volume of the GM in the rostral cerebellar vermis and paramedian portions of the anterior cerebellar lobes. WM was decreased in the peridentate region and middle cerebellar peduncles but not in the pons. No GM or WM volume loss was found in the cerebral hemispheres. The cerebellar and brainstem GM and WM volume loss correlated with disease duration and the ICARS and IACRS scores. CONCLUSIONS VBM confirms that atrophy predominantly involves the brainstem and cerebellum in SCA1. The correlation with the clinical features indicates that VBM might be useful to monitor disease progression.
Collapse
Affiliation(s)
- Andrea Ginestroni
- Radiodiagnostic Section, Dept. of Clinical Physiopathology, University of Florence, Viale Morgagni 85, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE Friedreich's ataxia is a genetically transmitted, progressive spinocerebellar degenerative disease characterized by ataxia. The purpose of this study is to evaluate the demographics, progression, nonoperative, and operative treatment of spinal deformities in patients with Friedreich's ataxia at 2 tertiary pediatric orthopaedic hospitals. METHODS After institutional review board approval, chart review of Friedreich's ataxia patients identified those having scoliosis. Demographic data, length of follow-up, brace treatment, operative treatment, and complications were determined. Radiographic review was also performed. RESULTS Seventy-seven patients were identified as having Friedreich's ataxia, of which 49 (63%) were diagnosed with scoliosis. Twenty-seven were male; 22 were female. Mean age at diagnosis of scoliosis was 12.8 years (4.9-20 years). Mean follow-up was 3.7 years (0-13 years). There were 16 (33%) double major curves, with 8 (22%) of the thoracic curves being left sided. Hyperkyphosis was present in 12 (24.5%).Twenty-four (49%) of patients progressed > or =6 degrees. Using a chi-square analysis, there was no association, with a curve magnitude of 10 degrees before the age of 10 years and progression of the curve (P = 0.4386). Ten (20%) patients were treated in braces, with average progression in brace of 15 (0-44) degrees. Sixteen (33%) patients were treated with spinal fusion (15 posterior spinal fusion and 1 anterior spinal fusion). Thirteen (81%) of 16 patients who underwent operative intervention were wheelchair dependent. Somatosensory evoked potentials monitoring was attempted in 11 patients but was effective in only 1. Immediate postoperative correction averaged 49% in the thoracic spine (24%-87%) and 51% in the lumbar spine (26%-82%). This correction decreased to 39% in the thoracic (-22% to 85 %) and 30% in the lumbar spine (-35% to 82%) at final follow-up. The average postoperative follow-up was 3.6 years (2-6.5). One patient (6.2%) developed an infection and was the only patient who underwent reoperation. CONCLUSIONS Scoliosis in Friedreich's ataxia is common (63%). Curve patterns are variable and do not necessarily resemble idiopathic curves. Although few patients were braced, results were poor. Fusion using modern segmental constructs was effective in creating substantial intraoperative correction and maintaining correction postoperatively. SSEP monitoring was usually ineffective, so preparation for a wake-up test is recommended. SIGNIFICANCE Patients with Friedreich's ataxia need to be carefully screened for scoliosis and counseled about the high rate of surgical fusion. Using modern implants, correction can be achieved and maintained.
Collapse
|
46
|
Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, Dotti MT, De Michele G, Piacentini S, Mascalchi M. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage 2007; 40:19-25. [PMID: 18226551 DOI: 10.1016/j.neuroimage.2007.11.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/17/2007] [Accepted: 11/22/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropathological examination in Friedreich ataxia (FRDA) reveals neuronal loss in the gray matter (GM) nuclei and degeneration of the white matter (WM) tracts in the spinal cord, brainstem and cerebellum, while the cerebral hemispheres are substantially spared. Tract-based spatial statistics (TBSS) enables an unbiased whole-brain quantitative analysis of the fractional anisotropy (FA) and mean diffusivity (MD) of the brain WM tracts in vivo. PATIENTS AND METHODS We assessed with TBSS 14 patients with genetically confirmed FRDA and 14 age- and sex-matched healthy controls who were also examined with voxel-based morphometry (VBM) to assess regional atrophy of the GM and WM. RESULTS TBSS revealed decreased FA in the inferior and superior cerebellar peduncles and the corticospinal tracts in the medullary pyramis, in WM tracts of the right cerebellar hemisphere and in the right occipito-frontal and inferior longitudinal fasciculi. Increased MD was observed in the superior cerebellar peduncles, deep cerebellar WM, posterior limbs of the internal capsule and retrolenticular area, bilaterally, and in the WM underlying the left central sulcus. Decreased FA in the left superior cerebellar peduncle correlated with clinical severity. VBM showed small symmetric areas of loss of bulk of the peridentate WM which also correlated with clinical severity. CONCLUSIONS TBSS enables in vivo demonstration of degeneration of the brainstem and cerebellar WM tracts which neuropathological examination indicates to be specifically affected in FRDA. TBSS complements VBM and might be a more sensitive tool to detect WM structural changes in degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Riccardo Della Nave
- Radiodiagnostic Section, Department of Clinical Physiopathology, University of Florence, Viale Morgagni 85, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Riazi A, Cano SJ, Cooper JM, Bradley JL, Schapira AHV, Hobart JC. Coordinating outcomes measurement in ataxia research: do some widely used generic rating scales tick the boxes? Mov Disord 2007; 21:1396-403. [PMID: 16755585 DOI: 10.1002/mds.20985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to examine the psychometric properties of four widely used generic health status measures in Friedreich's ataxia (FA), to determine their suitability as outcome measures. Fifty-six people with genetically confirmed FA completed the Barthel Index (BI), General Health Questionnaire (GHQ-12), EuroQol (EQ-5D), and Medical Outcomes Study 36-item Short Form Health Survey (SF-36) by means of postal survey. Six psychometric properties (data quality, scaling assumptions, acceptability, reliability, validity, and responsiveness) were examined. The response rate was 97%. In general, the psychometric properties of the four measures satisfied recommended criteria. However, closer examination highlighted limitations restricting their use for treatment trials. For example, the BI had high levels of missing data, EQ-5D had poor discriminant ability, and five SF-36 scales had high floor and/or ceiling effects. Most scale scores did not span the entire scale range, had means that differed notably from the scale mid-point, and had wide confidence intervals. Effect sizes (ES) were small for all four measures raising questions about their ability to detect clinically significant change. Results highlight the potential limitations of these four scales for evaluating health outcomes in FA and suggest the need for new disease-specific patient-based measures of its impact.
Collapse
Affiliation(s)
- Afsane Riazi
- Neurological Outcomes Measures Unit, Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Della Nave R, Foresti S, Tessa C, Moretti M, Ginestroni A, Gavazzi C, Guerrini L, Salvi F, Piacentini S, Mascalchi M. ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias. Neuroimage 2004; 22:698-705. [PMID: 15193598 DOI: 10.1016/j.neuroimage.2004.01.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/20/2004] [Accepted: 01/21/2004] [Indexed: 10/26/2022] Open
Abstract
Analysis of the apparent diffusion coefficient (ADC) maps derived from diffusion-weighted MR imaging is emerging as a reproducible, sensitive, and quantitative tool to evaluate brain damage in diseases of the white and gray matter. To explore the potentials of ADC maps analysis in degenerative ataxias, we examined 28 patients and 26 age-matched controls with T1, T2, and diffusion (b values 0-1000 along the three main body axes)-weighted MR images. Twenty-four patients had inherited genetically proven diseases including spinocerebellar ataxia type 1 (SCA1) (n = 9), spinocerebellar ataxia type 2 (SCA2) (n = 8), and Friedreich's ataxia (FA) (n = 7), whereas four patients had sporadic adult onset pure cerebellar ataxia (three idiopathic, one gluten intolerance). Area and linear measurements of the CNS structures contained in the posterior cranial fossa (PCF) preliminary enabled classification of the patients in the three morphological categories reflecting the gross pathology findings, namely olivopontocerebellar atrophy (OPCA) (n = 10: six SCA2 and four SCA1), spinal atrophy (SA) (n = 7: all FA), and cortical cerebellar atrophy (CCA) (n = 4: three idiopathic and one gluten intolerance). Seven patients with SCA1 (n = 5) or SCA2 (n = 2) had morphologic changes reminiscent of OPCA, but their values were still in the lower normal range and were classified as undefined. Mean diffusivity (D) maps of the entire brain were generated and D was measured with regions of interest (ROI) in the medulla, pons, middle cerebellar peduncles, and the peridentate white matter. Moreover, after exclusion of the skull with manual segmentation and of the CSF with application of a threshold value, histograms were obtained for D of the brainstem and cerebellum and for D of the cerebral hemispheres. As compared to controls, a (P < 0.001) increase of D was observed in the medulla, middle cerebellar peduncles, and peridentate white matter in OPCA and undefined patients groups who had also significantly increased values of the 25th and 50th percentiles in the brainstem and cerebellum D histogram. In CCA (P = 0.01), an increase of the 25th and 50th percentile of the D value was observed in the brainstem and cerebellum histograms. The SA group showed (P < 0.001) an increased D in the medulla only. A correlation between clinical severity as assessed with the Inherited Ataxias Clinical Rating Scale (IACRS) and the 50th percentile of the D value in the brainstem and cerebellum histogram (r = 0.69) was observed in patients with SCA1 or SCA2. Diffusion MR imaging reveals variable patterns of increase of D in the brainstem, cerebellum, and cerebral hemispheres in degenerative ataxias that match the known distribution of the neuropathological changes.
Collapse
Affiliation(s)
- Riccardo Della Nave
- Radiodiagnostic Section, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Varrone A, Salvatore E, De Michele G, Barone P, Sansone V, Pellecchia MT, Castaldo I, Coppola G, Brunetti A, Salvatore M, Pappatà S, Filla A. Reduced striatal [123I]FP-CIT binding in SCA2 patients without parkinsonism. Ann Neurol 2004; 55:426-30. [PMID: 14991822 DOI: 10.1002/ana.20054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Degeneration of substantia nigra has been described in spinocerebellar ataxia type 2 (SCA2). In this study, dopamine transporter (DAT) density with [123 I]FP-CIT SPECT was studied in six SCA2 patients with no parkinsonian signs, six Parkinson's disease (PD) patients, and six controls. Marked striatal DAT loss was found in both SCA2 and PD patients. However, a more severe reduction in the caudate and a higher putamen to caudate ratio distinguished SCA2 from PD patients, suggesting a more uniform nigrostriatal impairment in SCA2. Striatal DAT density of SCA2 patients correlated with the severity of cerebellar ataxia.
Collapse
Affiliation(s)
- Andrea Varrone
- Biostructure and Bioimaging Institute, National Research Council, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
There has been rapid progress in the understanding of several aspects of Friedreich's ataxia (FA) since the gene mutation was identified in 1996. At the clinical level, now it is possible to confirm that the majority of patients fullfilling clinical criteria for classic FA have the FA gene mutation but some do not, indicating genetic heterogeneity. Also, the phenotype associated with the FA mutation is much wider than that defined by clinical criteria and includes ataxia with retained or brisk reflexes as well as late onset ataxia with or without retained reflexes. It is now clear that the unstable GAA expansion that underlies FA causes a deficiency of the mitochondrial protein frataxin, leading to potentially harmful oxidative injury associated with excessive iron deposits in mitochondria. In addition, pathogenesis may involve a primary defect in synthesis of iron-sulfur cluster containing enzymes. Therapeutic attempts are already using anti-oxidant strategies and such efforts are likely to be enhanced by the rapid availability of animal models of the disease.
Collapse
Affiliation(s)
- Massimo Pandolfo
- Department of Neurology, Erasme Hospital, Brussels Free University, Brussels, Belgium
| |
Collapse
|