1
|
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:838421. [PMID: 35360299 PMCID: PMC8960953 DOI: 10.3389/fpls.2022.838421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although full sequence data of several embryogenesis-related genes are available in conifers, their functions are still poorly understood. In this study, we focused on the transcription factor WUSCHEL-related HOMEOBOX 2 (WOX2), which is involved in determination of the apical domain during early embryogenesis, and is required for initiation of the stem cell program in the embryogenic shoot meristem of Arabidopsis. We studied the effects of constitutive overexpression of Pinus pinaster WOX2 (PpWOX2) by Agrobacterium-mediated transformation of P. pinaster somatic embryos and Arabidopsis seedlings. Overexpression of PpWOX2 during proliferation and maturation of somatic embryos of P. pinaster led to alterations in the quantity and quality of cotyledonary embryos. In addition, transgenic somatic seedlings of P. pinaster showed non-embryogenic callus formation in the region of roots and subsequently inhibited root growth. Overexpression of PpWOX2 in Arabidopsis promoted somatic embryogenesis and organogenesis in a part of the transgenic seedlings of the first and second generations. A concomitant increased expression of endogenous embryogenesis-related genes such as AtLEC1 was detected in transgenic plants of the first generation. Various plant phenotypes observed from single overexpressing transgenic lines of the second generation suggest some significant interactions between PpWOX2 and AtWOX2. As an explanation, functional redundancy in the WOX family is suggested for seed plants. Our results demonstrate that the constitutive high expression of PpWOX2 in Arabidopsis and P. pinaster affected embryogenesis-related traits. These findings further support some evolutionary conserved roles of this gene in embryo development of seed plants and have practical implications toward somatic embryogenesis induction in conifers.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Juliane Raschke
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kurt Zoglauer
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Rupps
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Tiwari R, Kaur J, Bisht NC. Extra-large G-proteins influence plant response to Sclerotinia sclerotiorum by regulating glucosinolate metabolism in Brassica juncea. MOLECULAR PLANT PATHOLOGY 2021; 22:1180-1194. [PMID: 34374201 PMCID: PMC8435238 DOI: 10.1111/mpp.13096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 05/22/2021] [Indexed: 05/30/2023]
Abstract
Heterotrimeric G-proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G-proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G-protein networks during pathogen response in a polyploid crop. Here, we investigated the role of extra-large G-proteins (XLGs) in the oilseed crop Brassica juncea, which has inherent susceptibility to the necrotrophic fungal pathogen Sclerotinia sclerotiorum. The allotetraploid B. juncea genome contains multiple homologs of three XLG genes (two BjuXLG1, five BjuXLG2, and three BjuXLG3), sharing a high level of sequence identity, gene structure organization, and phylogenetic relationship with the progenitors' orthologs. Quantitative reverse transcription PCR analysis revealed that BjuXLGs have retained distinct expression patterns across plant developmental stages and on S. sclerotiorum infection. To determine the role of BjuXLG genes in the B. juncea defence response against S. sclerotiorum, RNAi-based suppression was performed. Disease progression analysis showed more rapid lesion expansion and fungal accumulation in BjuXLG-RNAi lines compared to the vector control plants, wherein suppression of BjuXLG3 homologs displayed more compromised defence response at the later time point. Knocking down BjuXLGs caused impairment of the host resistance mechanism to S. sclerotiorum, as indicated by reduced expression of defence marker genes PDF1.2 and WRKY33 on pathogen infection. Furthermore, BjuXLG-RNAi lines showed reduced accumulation of leaf glucosinolates on S. sclerotiorum infection, wherein aliphatic glucosinolates were significantly compromised. Overall, our data suggest that B. juncea XLG genes are important signalling nodes modulating the host defence pathways in response to this necrotrophic pathogen.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Jagreet Kaur
- Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia
| | | |
Collapse
|
3
|
Nambiar DM, Kumari J, Augustine R, Kumar P, Bajpai PK, Bisht NC. GTR1 and GTR2 transporters differentially regulate tissue-specific glucosinolate contents and defence responses in the oilseed crop Brassica juncea. PLANT, CELL & ENVIRONMENT 2021; 44:2729-2743. [PMID: 33908644 DOI: 10.1111/pce.14072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
GTR1 and GTR2 transporters are components of the source to sink translocation network of glucosinolates, which are major defence metabolites in the Brassicaceae. These transporters can be genetically manipulated for reduction of seed-glucosinolates without inhibiting glucosinolate biosynthesis, thereby maintaining the inherent defence potential of plants. However, the different roles of GTRs in influencing tissue-specific distribution of glucosinolates in agriculturally important Brassica crops are yet unknown. Here, we report functional characterization of two groups of glucosinolate transporters (GTR1 and GTR2) from Brassica juncea based on gene expression data, biochemical analysis, gene-complementation studies in GTR-deficient mutants and RNAi-based knockdown followed by insect feeding experiments. Although both GTRs showed ubiquitous expression patterns and broad substrate specificity, the single-gene knockdown lines displayed different phenotypes. The GTR2-knockdown plants showed a significant reduction of glucosinolates in seeds and a higher accumulation in leaves and pods, while the GTR1-knockdown plants displayed a smaller reduction of glucosinolates in seeds and significantly lower glucosinolate levels in leaves. Consequently, knockdown of GTR2 resulted in higher resistance towards the generalist pest, Spodoptera litura. Overall, our study highlights the distinctive roles of B. juncea GTRs in tissue-specific accumulation of glucosinolates and the potential for manipulating GTR2 for enhanced nutrition and plant defence.
Collapse
Affiliation(s)
- Deepti M Nambiar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Juhi Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prabodh K Bajpai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Hooykaas MJG, Hooykaas PJJ. The genome sequence of hairy root Rhizobium rhizogenes strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid. Microbiologyopen 2021; 10:e1180. [PMID: 33970547 PMCID: PMC8087989 DOI: 10.1002/mbo3.1180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
We report here the complete genome sequence of the Rhizobium rhizogenes (formerly Agrobacterium rhizogenes) strain LBA9402 (NCPPB1855rifR), a pathogenic strain causing hairy root disease. To assemble a complete genome, we obtained short reads from Illumina sequencing and long reads from Oxford Nanopore Technology sequencing. The genome consists of a 3,958,212 bp chromosome, a 2,005,144 bp chromid (secondary chromosome) and a 252,168 bp Ri plasmid (pRi1855), respectively. The primary chromosome was very similar to that of the avirulent biocontrol strain K84, but the chromid showed a 724 kbp deletion accompanied by a large 1.8 Mbp inversion revealing the dynamic nature of these secondary chromosomes. The sequence of the agropine Ri plasmid was compared to other types of Ri and Ti plasmids. Thus, we identified the genes responsible for agropine catabolism, but also a unique segment adjacent to the TL region that has the signature of a new opine catabolic gene cluster including the three genes that encode the three subunits of an opine dehydrogenase. Our sequence analysis also revealed a novel gene at the very right end of the TL-DNA, which is unique for the agropine Ri plasmid. The protein encoded by this gene was most related to the succinamopine synthases of chrysopine and agropine Ti plasmids and thus may be involved in the synthesis of the unknown opine that can be degraded by the adjacent catabolic cluster. The available sequence will facilitate the use of R. rhizogenes and especially LBA9402 in both the laboratory and for biotechnological purposes.
Collapse
|
5
|
Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, Lee-Parsons CW, Stuttmann J, Marillonnet S. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. PLANT COMMUNICATIONS 2021; 2:100135. [PMID: 33898975 PMCID: PMC8060730 DOI: 10.1016/j.xplc.2020.100135] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by the stable transformation of a Cas9 expression construct into the plant genome. The efficiency of introducing mutations in genes of interest can vary considerably depending on the specific features of the constructs, including the source and nature of the promoters and terminators used for the expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency of the Cas9 nuclease in generating mutations in target genes in Arabidopsis thaliana, we investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLSs), and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on its activity and that two NLSs worked better than one. However, the highest efficiency of the constructs was achieved by the addition of 13 introns into the Cas9 coding sequence, which dramatically improved the editing efficiency of the constructs. None of the primary transformants obtained with a Cas9 gene lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of the primary transformants generated with the intronized Cas9 gene displayed mutant phenotypes. The intronized Cas9 gene was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.
Collapse
Affiliation(s)
- Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Claudia Horn
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Carolyn W.T. Lee-Parsons
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Niu L, Zhong X, Zhang Y, Yang J, Xing G, Li H, Liu D, Ma R, Dong Y, Yang X. Enhanced tolerance to Phytophthora root and stem rot by over-expression of the plant antimicrobial peptide CaAMP1 gene in soybean. BMC Genet 2020; 21:68. [PMID: 32631255 PMCID: PMC7336493 DOI: 10.1186/s12863-020-00872-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Antimicrobial peptides play important roles in both plant and animal defense systems. Moreover, over-expression of CaAMP1 (Capsicum annuum antimicrobial protein 1), an antimicrobial protein gene isolated from C. annuum leaves infected with Xanthomonas campestris pv. vesicatoria, confers broad-spectrum resistance to hemibiotrophic bacterial and necrotrophic fungal pathogens in Arabidopsis. Phytophthora root and stem rot (PRR), caused by the fungus Phytophthora sojae, is one of the most devastating diseases affecting soybean (Glycine max) production worldwide. RESULTS In this study, CaAMP1 was transformed into soybean by Agrobacterium-mediated genetic transformation. Integration of the foreign gene in the genome of transgenic soybean plants and its expression at the translation level were verified by Southern and western blot analyses, respectively. CaAMP1 over-expression (CaAMP1-OX) lines inoculated with P. sojae race 1 exhibited enhanced and stable PRR tolerance through T2-T4 generations compared with the wild-type Williams 82 plants. Gene expression analyses in the transgenic plants revealed that the expression of salicylic acid-dependent, jasmonic acid-dependent, and plant disease resistance genes (R-genes) were significantly up-regulated after P. sojae inoculation. CONCLUSIONS These results indicate that CaAMP1 over-expression can significantly enhance PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways. This provides an alternative approach for developing soybean varieties with improved tolerance against soil-borne pathogenic PRR.
Collapse
Affiliation(s)
- Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongbo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
- Jilin Normal University, Siping, 136000, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
7
|
Mukherjee S, Sengupta S, Mukherjee A, Basak P, Majumder AL. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. PLANTA 2019; 249:891-912. [PMID: 30465114 DOI: 10.1007/s00425-018-3046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.
Collapse
Affiliation(s)
- Sritama Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
- Botany Department, Bethune College, Kolkata, West Bengal, 700006, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
- School of Plant Environment and Soil Sciences, LSUAg Center, Baton Rouge, LA, 70803, USA.
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Papri Basak
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
| |
Collapse
|
8
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yang J, Xing G, Niu L, He H, Guo D, Du Q, Qian X, Yao Y, Li H, Zhong X, Yang X. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Res 2018; 27:155-166. [PMID: 29476327 DOI: 10.1007/s11248-018-0063-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Soybean oil contains approximately 20% oleic acid and 63% polyunsaturated fatty acids, which limits its uses in food products and industrial applications because of its poor oxidative stability. Increasing the oleic acid content in soybean seeds provides improved oxidative stability and is also beneficial to human health. Endoplasmic reticulum-associated delta-12 fatty acid desaturase 2 (FAD2) is the key enzyme responsible for converting oleic acid (18:1) precursors to linoleic acid (18:2) in the lipid biosynthetic pathway. In this study, a 390-bp conserved sequence of GmFAD2-1B was used to trigger a fragment of RNAi-mediated gene knockdown, and a seed-specific promoter of the β-conglycinin alpha subunit gene was employed to downregulate the expression of this gene in soybean seeds to increase the oleic acid content. PCR and Southern blot analysis showed that the T-DNA had inserted into the soybean genome and was stably inherited by the progeny. In addition, the expression analysis indicated that GmFAD2-1B was significantly downregulated in the seeds by RNAi-mediated post-transcription gene knockdown driven by the seed-specific promoter. The oleic acid content significantly increased from 20 to ~ 80% in the transgenic seeds, and the linoleic and linolenic acid content decreased concomitantly in the transgenic lines compared with that in the wild types. The fatty acid profiles also exhibited steady changes in three consecutive generations. However, the total protein and oil contents and agronomic traits of the transgenic lines did not show a significant difference compared with the wild types.
Collapse
Affiliation(s)
- Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qian Du
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
10
|
Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. PLANTA 2016; 243:473-88. [PMID: 26476718 DOI: 10.1007/s00425-015-2409-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 05/25/2023]
Abstract
Embryogenesis-related genes ( LdBBM, LdLEC1, LdWOX2 and LdSERK ) were confirmed in sequence and expression abundance for Larix decidua —these findings are valid for somatic as well as for zygotic embryo development.S omatic embryogenesis is a reliable source of high-quality genotypes as it presents an advantageous alternative for conifers in forestry, independent from seed production. Although this propagation method is already being applied, molecular factors initiating and controlling the process remain to be understood. The embryogenesis-associated genes BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) were identified and analyzed in somatic embryos of the European larch, L. decidua Mill. Subsequent comparisons with annotated sequences displayed similarities with angiosperm homologs. Transcript accumulation of the identified genes during embryogenesis has been analyzed. LdLEC1 and LdWOX2 are mainly expressed during early embryogenesis, whereas LdBBM and LdSERK reveal increased expression during later development. Temporal and spatial expression studies revealed a specific LdLEC1 signal in the outer cell layer of young embryo heads, whereas mature embryos showed a homogeneous expression. The overexpression of LdLEC1 in Arabidopsis influences germination and cotyledon formation, thus indicating the interspecific importance of LEC1 for proper embryo and specifically cotyledon development. Our data support a conserved role of principal regulators during plant embryogenesis that may be used as molecular markers for embryogenicity and to further determine initiating processes of somatic embryogenesis.
Collapse
|
11
|
Augustine R, Mukhopadhyay A, Bisht NC. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:855-66. [PMID: 23721233 DOI: 10.1111/pbi.12078] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 05/20/2023]
Abstract
Brassica juncea (Indian mustard), a globally important oilseed crop, contains relatively high amount of seed glucosinolates ranging from 80 to 120 μmol/g dry weight (DW). One of the major breeding objectives in oilseed Brassicas is to improve the seed-meal quality through the development of low-seed-glucosinolate lines (<30 μmol/g DW), as high amounts of certain seed glucosinolates are known to be anti-nutritional and reduce the meal palatability. Here, we report the development of transgenic B. juncea lines having seed glucosinolates as low as 11.26 μmol/g DW, through RNAi-based targeted suppression of BjMYB28, a R2R3-MYB transcription factor family gene involved in aliphatic glucosinolate biosynthesis. Targeted silencing of BjMYB28 homologs provided significant reduction in the anti-nutritional aliphatic glucosinolates fractions, without altering the desirable nonaliphatic glucosinolate pool, both in leaves and seeds of transgenic plants. Molecular characterization of single-copy, low glucosinolate homozygous lines confirmed significant down-regulation of BjMYB28 homologs vis-à-vis enhanced accumulation of BjMYB28-specific siRNA pool. Consequently, these low glucosinolate lines also showed significant suppression of genes involved in aliphatic glucosinolate biosynthesis. The low glucosinolate trait was stable in subsequent generations of the transgenic lines with no visible off-target effects on plant growth and development. Various seed quality parameters including fatty acid composition, oil content, protein content and seed weight of the low glucosinolate lines also remained unaltered, when tested under containment conditions in the field. Our results indicate that targeted silencing of a key glucosinolate transcriptional regulator MYB28 has huge potential for reducing the glucosinolates content and improving the seed-meal quality of oilseed Brassica crops.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | | |
Collapse
|
12
|
Ye X, Williams EJ, Shen J, Johnson S, Lowe B, Radke S, Strickland S, Esser JA, Petersen MW, Gilbertson LA. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res 2011; 20:773-86. [PMID: 21042934 DOI: 10.1007/s11248-010-9458-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Single transgene copy, vector backbone-free transgenic crop plants are highly desired for functional genomics and many biotechnological applications. We demonstrate that binary vectors that use a replication origin derived from the Ri plasmid of Agrobacterium rhizogenes (oriRi) increase the frequency of single copy, backbone-free transgenic plants in Agrobacterium tumefaciens mediated transformation of soybean, canola, and corn, compared to RK2-derived binary vectors (RK2 oriV). In large scale soybean transformation experiments, the frequency of single copy, backbone-free transgenic plants was nearly doubled in two versions of the oriRi vectors compared to the RK2 oriV control vector. In canola transformation experiments, the oriRi vector produced more single copy, backbone-free transgenic plants than did the RK2 oriV vector. In corn transformation experiments, the frequency of single copy backbone-free transgenic plants was also significantly increased when using the oriRi vector, although the transformation frequency dropped. These results, derived from transformation experiments using three crops, indicate the advantage of oriRi vectors over RK2 oriV binary vectors for the production of single copy, backbone-free transgenic plants using Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Xudong Ye
- Agracetus Campus, Monsanto Company, 8520 University Green, P. O. Box 620999, Middleton, WI 53562, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Patra B, Ray S, Richter A, Majumder AL. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. PROTOPLASMA 2010; 245:143-52. [PMID: 20524018 DOI: 10.1007/s00709-010-0163-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/18/2010] [Indexed: 05/03/2023]
Abstract
Introgression and functional expression of either the PcINO1 (L: -myo-inositol 1-phosphate synthase or MIPS coding gene from the wild halophytic rice, Porteresia coarctata) or McIMTI (inositol methyl transferase, IMTI coding gene from common ice plant Mesembryanthemum crystallinum) has earlier been shown to confer salt tolerance to transgenic tobacco plants (Sheveleva et al., Plant Physiol 115:1211-1219, 1997; Majee et al., J Biol Chem 279:28539-28552, 2004). In this communication, we show that transgenic tobacco plants co-expressing PcINO1 and McIMT1 gene either in cytosol or in chloroplasts accumulate higher amount of total inositol (free and methyl inositol) compared to non-transgenic plants. These transgenic plants were more competent in terms of growth potential and photosynthetic activity and were less prone to oxidative stress under salt stress. A positive correlation between the elevated level of total inositol and methylated inositol and the capability of the double transgenic plants to withstand a higher degree of salt stress compared to the plants expressing either PcINO1 or McIMT1 alone is inferred.
Collapse
Affiliation(s)
- Barunava Patra
- Plant Molecular and Cellular Genetics, Bose Institute (Centenary Building), P1/12, C.I.T Scheme-VIIM, Kolkata, 700054, India
| | | | | | | |
Collapse
|
14
|
Kato H, Motomura T, Komeda Y, Saito T, Kato A. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:571-7. [PMID: 19962211 DOI: 10.1016/j.jplph.2009.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/07/2009] [Accepted: 11/07/2009] [Indexed: 05/02/2023]
Abstract
NAC proteins comprise one of the largest families of transcription factors in the plant genome. They are known to be involved in various aspects of plant development, but the functions of most of them have not yet been determined. ANAC036, a member of the Arabidopsis NAC transcription factor family, contains unique sequences that are conserved among various NAC proteins found in other plant species. Expression analysis of the ANAC036 gene indicated that this gene was strongly expressed in leaves. Transgenic plants overexpressing the ANAC036 gene showed a semidwarf phenotype. The lengths of leaf blades, petioles and stems of these plants were smaller than those in wild-type plants. Microscopy revealed that cell sizes in leaves and stems of these plants were smaller than those in wild-type plants. These findings suggested that ANAC036 and its orthologues are involved in the growth of leaf cells.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
15
|
Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder AL. Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata. PLANTA 2010; 231:1211-1227. [PMID: 20213122 DOI: 10.1007/s00425-010-1127-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 02/11/2010] [Indexed: 05/28/2023]
Abstract
The gene coding for rice chloroplastic L-myo-inositol-1-phosphate synthase (MIPS; EC 5.5.1.4) has been identified by matrix-assisted laser desorption time-of-flight mass spectrometry analysis of the purified and immunologically cross-reactive approximately 60 kDa chloroplastic protein following two-dimensional polyacrylamide gel electrophoresis, which exhibited sequence identity with the cytosolic MIPS coded by OsINO1-1 gene. A possible chloroplastic transit peptide sequence was identified upstream of the OsINO1-1 gene upon analysis of rice genome. RT-PCR and confocal microscope studies confirmed transcription, effective translation and its functioning as a chloroplast transit peptide. Bioinformatic analysis mapped the chloroplastic MIPS (OsINO1-1) gene on chromosome 3, and a second MIPS gene (OsINO1-2) on chromosome 10 which lacks conventional chloroplast transit peptide sequence as in OsINO1-1. Two new PcINO1 genes, with characteristic promoter activity and upstream cis-elements were identified and cloned, but whether these proteins can be translocated to the chloroplast or not is yet to be ascertained. Electrophoretic mobility shift assay carried out with nuclear extract of Porteresia coarctata leaves grown under both control and stressed condition shows binding of nuclear proteins with the upstream elements. Nucleotide divergence among the different Oryza and Porteresia INO1 genes were calculated and compared.
Collapse
Affiliation(s)
- Sudipta Ray
- Plant Molecular and Cellular Genetics, Bose Institute (Centenary Campus), Kolkata, India
| | | | | | | | | |
Collapse
|
16
|
Cell-cell signaling and the Agrobacterium tumefaciens Ti plasmid copy number fluctuations. Plasmid 2008; 60:89-107. [PMID: 18664372 DOI: 10.1016/j.plasmid.2008.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
The Agrobacterium tumefaciens oncogenic Ti plasmids replicate and segregate to daughter cells via repABC cassettes, in which repA and repB are plasmid partitioning genes and repC encodes the replication initiator protein. repABC cassettes are encountered in a growing number of plasmids and chromosomes of the alpha-proteobacteria, and findings from particular representatives of agrobacteria, rhizobia and Paracoccus have began to shed light on their structure and functions. Amongst repABC replicons, Ti plasmids and particularly the octopine-type Ti have recently stood as model in regulation of repABC basal expression, which acts in plasmid copy number control, but also appear to undergo pronounced up-regulation of repABC, upon interbacterial and host-bacterial signaling. The last results in considerable Ti copy number increase and collective elevation of Ti gene expression. Inhibition of the Ti repABC is in turn conferred by a plant defense compound, which primarily affects Agrobacterium virulence and interferes with cell-density perception. Altogether, the above suggest that the entire Ti gene pool is subjected to the bacterium-eukaryote signaling network, a phenomenon quite unprecedented for replicons thought of as stringently controlled. It remains to be seen whether similar copy number variations characterize related replicons or if they are of even broader significance in plasmid biology.
Collapse
|
17
|
Abstract
repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups. The replication and stable maintenance of these replicons depend on the presence of a repABC operon. The repABC operons sequenced to date share some general characteristics. All of them contain at least three protein-encoding genes: repA, repB and repC. The first two genes encode proteins involved in plasmid segregation, whereas repC encodes a protein crucial for replication. The origin of replication maps within the repC gene. In contrast, the centromere-like sequence (parS) can be located at various positions in the operon. In this review we will summarize current knowledge about this plasmid family, with special emphasis on their structural diversity and their complex genetic regulation. Finally, we will examine some ideas about their evolutionary origin and trends.
Collapse
|
18
|
Yamamoto S, Uraji M, Tanaka K, Moriguchi K, Suzuki K. Identification of pTi-SAKURA DNA region conferring enhancement of plasmid incompatibility and stability. Genes Genet Syst 2007; 82:197-206. [PMID: 17660690 DOI: 10.1266/ggs.82.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Agrobacterium tumefaciens, the stability of Ti plasmids differs depending on the strain. So far, little is known about genes that cause the difference in stability. The repABC operon is responsible for replication and incompatibility of Ti plasmids. We constructed recombinant plasmids carrying the repABC operon and different portions of pTi-SAKURA. Cells having the recombinant plasmids that harbored a 2.6-kbp NheI fragment of pTi-SAKURA were found to be transformed via conjugation 100-fold less frequently with a small incompatible repABC plasmid than cells having the recombinant plasmids lacking the 2.6-kbp NheI fragment. Since the phenomenon occurred only when the resident and incoming plasmids belonged to the same incompatibility group, it was suggested that the 2.6-kbp NheI fragment bears the potential enhancing incompatibility. The fragment contained an operon consisting of two open reading frames, tiorf24 and tiorf25. tiorf24 is an orphan gene, whereas tiorf25 is a homologue of a group of plasmid stability genes. Removal of the 2.6-kbp fragment from the resident pTi-SAKURA increased the resident plasmid ejection ratio by the incoming repABC plasmid, whereas addition of the fragment to pTiC58 decreased the ejection ratio, and the loss ratio during growth at 37 degrees C. These data suggest that tiorf24 and tiorf25 are responsible for the stability of pTi-SAKURA, and reduce, in the host bacterium, the frequency of ejection of the resident plasmid, presumably through an incompatibility mechanism.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
19
|
Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 2006; 72:3662-72. [PMID: 16672515 PMCID: PMC1472397 DOI: 10.1128/aem.72.5.3662-3672.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.
Collapse
Affiliation(s)
- M Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase fromPorteresia coarctata(Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 2006; 580:3980-8. [PMID: 16806195 DOI: 10.1016/j.febslet.2006.06.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 05/29/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
We have previously demonstrated that introgression of PcINO1 gene from Porteresia coarctata (Roxb.) Tateoka, coding for a novel salt-tolerant L-myo-inositol 1-phosphate synthase (MIPS) protein, confers salt tolerance to transgenic tobacco plants (Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P. and Majumder, A.L. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt-tolerance phenotype. J. Biol. Chem. 279, 28539-28552). In this communication we have shown that functional introgression of the PcINO1 gene confers salt-tolerance to evolutionary diverse organisms from prokaryotes to eukaryotes including crop plants albeit to a variable extent. A direct correlation between unabated increased synthesis of inositol under salinity stress by the PcINO1 gene product and salt tolerance has been demonstrated for all the systems pointing towards the universality of the application across evolutionary divergent taxa.
Collapse
Affiliation(s)
- Aparajita Das-Chatterjee
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C I T Scheme VIIM, Kolkata 700 054, India
| | | | | | | | | | | |
Collapse
|
21
|
Chai Y, Winans SC. RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression. Mol Microbiol 2006; 58:1114-29. [PMID: 16262794 DOI: 10.1111/j.1365-2958.2005.04886.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmids of Agrobacterium tumefaciens replicate using the products of the repABC operon, which are highly conserved among plasmids and some chromosomes of the alpha-Proteobacteria. The products of repA and repB direct plasmid partitioning, while the repC gene encodes a replication initiator protein. The transcription of the repABC operon of tumour inducing (Ti) plasmids is both negatively autoregulated by the RepA and RepB proteins, and positively regulated by TraR. In the present study, we have identified a fourth gene (repD) in the repABC operon of an octopine-type Ti plasmid. repD is 78 codons in length, and maps between repA and repB genes. A repD-lacZ protein fusion demonstrated that repD is strongly expressed. Two identical binding sites for the RepB protein were found within the repD coding sequence, and these sites are required for plasmid stability and for maximal repression of repABC transcription. RepA protein enhances the binding of RepB at these binding sites, just as RepB increases the affinity of RepA for binding sites at the repABC P4 promoter. We propose that RepA and RepB form complexes that bind both sites, possibly causing a loop that is important for repression of the repABC operon. Binding at one or both sites may also be required for accurate plasmid partitioning.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
22
|
Izquierdo J, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Hernández-Lucas I, Sanjuan J, Cevallos MA. An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 2005; 54:259-77. [PMID: 16005966 DOI: 10.1016/j.plasmid.2005.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 11/23/2022]
Abstract
The widespread replicons of repABC and repC families from alpha-proteobacteria share high similarity in their replication initiator proteins (RepC). Here we describe the minimal region required for stable replication of a member of the repC family, the low copy-number plasmid pRmeGR4a from Sinorizobium meliloti GR4. This region contains only two genes: one encoding the initiator protein RepC (46.8 kDa) and other, an antisense RNA (67 nt). Mapping of transcriptional start sites and promoter regions of both genes showed that the antisense RNA is nested within the repC mRNA leader. The constitutively expressed countertranscribed RNA (ctRNA) forms a single stem-loop structure that acts as an intrinsic rho-independent terminator. The ctRNA is a strong trans-incompatibility factor and negative regulator of repC expression. Based on structural and functional similarities between members of the repC and repABC families we propose a model of their evolutionary relationship.
Collapse
MESH Headings
- Amino Acid Sequence
- Conjugation, Genetic
- DNA Replication
- DNA, Bacterial
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Glucuronidase/analysis
- Glucuronidase/metabolism
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Phylogeny
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Messenger/genetics
- Replicon
- Rhizobium etli/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Javier Izquierdo
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Watson RJ, Heys R. Replication regions of Sinorhizobium meliloti plasmids. Plasmid 2005; 55:87-98. [PMID: 16202450 DOI: 10.1016/j.plasmid.2005.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/21/2005] [Accepted: 08/05/2005] [Indexed: 11/24/2022]
Abstract
The replication (rep) regions of small plasmids from three Sinorhizobium meliloti strains were cloned by marker rescue. Two unique replication regions were identified, one of which was common to two different strains. Plasmid pBB83 carried a 7.2 kbp rep region from a 42 kbp plasmid, and pBB84 carried a 4.5 kbp rep region from a 36 kbp plasmid. The cloned rep regions were of different compatibility types, and were capable of displacing their parent plasmids from S. meliloti. Neither could function in a PolA- strain of Escherichia coli. The cloned replication regions were less stable in S. meliloti than their parent plasmids. The rep genes for each plasmid were localized to less than 2.5 kbp segments. Sequencing data revealed that the pBB83 Rep protein is uncommon, with partial identity to a protein encoded by a plasmid from S. meliloti GR4 [Mercado-Blanco, J., Olivares, J., 1994. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 32, 75-79]. However, the cloned DNA fragment also contains a truncated segment of the common repABC genes, suggesting that the parent plasmid contained two sets of replication genes. Other genes and an IS-element within the insert are most closely related to sequences derived from the Rhizobiaceae family, suggesting that the plasmid has a limited host range. In contrast, the pBB84 rep region contained genes similar to those associated with several broad host-range plasmids, and its Rep protein is related to that of a Pseudomonas aeruginosa broad host-range plasmid, pVS1 [Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O'Gara, F., Haas, D., 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact. 13, 232-237]. The pBB84 rep region also includes a probable origin of replication, consisting of DNA boxes flanking a series of direct repeats and an AT-rich sequence.
Collapse
Affiliation(s)
- Robert J Watson
- Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ont., Canada KIA OC6.
| | | |
Collapse
|
24
|
Chai Y, Winans SC. A small antisense RNA downregulates expression of an essential replicase protein of anAgrobacterium tumefaciensTi plasmid. Mol Microbiol 2005; 56:1574-85. [PMID: 15916607 DOI: 10.1111/j.1365-2958.2005.04636.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tumour-inducing (Ti) plasmids of Agrobacterium tumefaciens replicate via the products of the repABC genes, which are highly conserved among plasmids of the alpha-Proteobacteria. RepA and RepB direct stable partitioning of daughter plasmids, while the RepC directs replicative DNA synthesis. We have identified a new gene (repE) within the repB-repC intergenic region of an octopine-type Ti plasmid. This gene encodes a small, non-translated RNA that is transcribed in the direction opposite to the repABC mRNA. Increased expression of repE blocked plasmid replication of a repABC-dependent miniplasmid, while decreased repE expression increased plasmid copy number. Direct RNA measurements and repC-lacZ fusions demonstrated that RepE inhibits the expression of RepC at the transcriptional level and possibly also at the translational level. Based on our experimental results and an RNA folding algorithm, we predict that RepE binding to the repABC mRNA would promote termination of the repABC transcript near the start codon of repC. Sequence analysis suggests that this phenomenon may be widespread among plasmids of this family.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Microbiology, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Venkova-Canova T, Soberón NE, Ramírez-Romero MA, Cevallos MA. Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 2005; 54:1431-44. [PMID: 15554980 DOI: 10.1111/j.1365-2958.2004.04366.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repABC replicons contain an operon encoding the initiator protein (RepC) and partitioning proteins (RepA and RepB). The latter two proteins negatively regulate the transcription of the operon. In this article we have identified two novel regulatory elements, located within the conserved repB-repC intergenic sequence, which negatively modulate the expression of repC, in plasmid p42d of Rhizobium etli. One of them is a small antisense RNA and the other is a stem-loop structure in the repABC mRNA that occludes the Shine-Dalgarno sequence of repC. According to in vivo and in vitro analyses, the small antisense RNA (57-59 nt) resembles canonical negative regulators of replication because: (i) it is transcribed from a strong constitutive promoter (P2), (ii) the transcript overlaps untranslated region upstream of the RepC coding sequences, (iii) the RNA forms one secondary structure acting as a rho-independent terminator, (iv) the antisense RNA is a strong trans-incompatibility factor and (v) its presence reduces the level of repC expression. Surprisingly, both of these seemingly negative regulators are required for efficient plasmid replication.
Collapse
MESH Headings
- Base Sequence
- DNA Replication
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Intergenic/genetics
- DNA, Intergenic/physiology
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Rhizobium etli/genetics
- Sequence Alignment
- Untranslated Regions
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, C.P 62210, Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
26
|
Wise AA, Voinov L, Binns AN. Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 2005; 187:213-23. [PMID: 15601705 PMCID: PMC538830 DOI: 10.1128/jb.187.1.213-223.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirA/VirG two-component regulatory system of Agrobacterium tumefaciens regulates expression of the virulence (vir) genes that control the infection process leading to crown gall tumor disease on susceptible plants. VirA, a membrane-bound homodimer, initiates vir gene induction by communicating the presence of molecular signals found at the site of a plant wound through phosphorylation of VirG. Inducing signals include phenols, monosaccharides, and acidic pH. While sugars are not essential for gene induction, their presence greatly increases vir gene expression when levels of the essential phenolic signal are low. Reception of the sugar signal depends on a direct interaction between ChvE, a sugar-binding protein, and VirA. Here we show that the sugar signal received in the periplasmic region of one subunit within a VirA heterodimer can enhance the kinase function of the second subunit. However, sugar enhancement of vir gene expression was vector dependent. virA alleles expressed from pSa-derived vectors inhibited signal transduction by endogenous VirA. Inhibition was conditional, depending on the induction medium and the virA allele tested. Moreover, constitutive expression of virG overcame the inhibitory effect of some but not all virA alleles, suggesting that there may be more than one inhibitory mechanism.
Collapse
Affiliation(s)
- Arlene A Wise
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | |
Collapse
|
27
|
Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 2004; 279:28539-52. [PMID: 15016817 DOI: 10.1074/jbc.m310138200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
l-myo-Inositol-1-phosphate synthase (EC 5.5.1.4, MIPS), an evolutionarily conserved enzyme protein, catalyzes the synthesis of inositol, which is implicated in a number of metabolic reactions in the biological kingdom. Here we report on the isolation of the gene (PINO1) for a novel salt-tolerant MIPS from the wild halophytic rice, Porteresia coarctata (Roxb.) Tateoka. Identity of the PINO1 gene was confirmed by functional complementation in a yeast inositol auxotrophic strain. Comparison of the nucleotide and deduced amino acid sequences of PINO1 with that of the homologous gene from Oryza sativa L. (RINO1) revealed distinct differences in a stretch of 37 amino acids, between amino acids 174 and 210. Purified bacterially expressed PINO1 protein demonstrated a salt-tolerant character in vitro compared with the salt-sensitive RINO1 protein as with those purified from the native source or an expressed salt-sensitive mutant PINO1 protein wherein amino acids 174-210 have been deleted. Analysis of the salt effect on oligomerization and tryptophan fluorescence of the RINO1 and PINO1 proteins revealed that the structure of PINO1 protein is stable toward salt environment. Furthermore, introgression of PINO1 rendered transgenic tobacco plants capable of growth in 200-300 mm NaCl with retention of approximately 40-80% of the photosynthetic competence with concomitant increased inositol production compared with unstressed control. MIPS protein isolated from PINO1 transgenics showed salt-tolerant property in vitro confirming functional expression in planta of the PINO1 gene. To our knowledge, this is the first report of a salt-tolerant MIPS from any source.
Collapse
Affiliation(s)
- Manoj Majee
- Plant Molecular and Cellular Genetics, Bose Institute (Centenary Building), P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Soberón N, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Cevallos MA. Incompatibility and the partitioning site of the repABC basic replicon of the symbiotic plasmid from Rhizobium etli. Plasmid 2004; 51:203-16. [PMID: 15109827 DOI: 10.1016/j.plasmid.2004.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 01/20/2004] [Indexed: 11/19/2022]
Abstract
The basic replicon of the symbiotic plasmid (p42d) of Rhizobium etli CE3 is constituted by the repABC operon. Whereas RepC is essential for plasmid replication, RepA and RepB are involved in plasmid partitioning. Three incompatibility regions have been previously identified in this plasmid: the first one encodes RepA, a partitioning protein that also down-regulates the repABC transcription. The second region is situated within the repB-repC intergenic sequence (inc(alpha)), and the last one, inc(beta), is located in a 502 bp EcoRI fragment spanning the last 72-bp of the coding region of repC and the following downstream sequence. In this paper we show that: (1) The inc(beta) region is required for plasmid partitioning. (2) A 16-bp palindrome sequence, located 40 bp downstream of the repC gene of plasmid p42d, is necessary and sufficient to induce incompatibility towards the parental plasmid, and accounts for all the incompatibility properties of this region (inc(beta)). (3). The palindrome is the DNA target site for RepB binding. With these findings we propose that inc(beta) contains the partitioning site (par site) of the basic replicon of plasmid p42d, and that the 16-bp palindrome is the core sequence to nucleate the RepB binding.
Collapse
Affiliation(s)
- Nora Soberón
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos
| | | | | | | | | |
Collapse
|
29
|
Urbanczyk H, Suzuki K, Yoshida K, Kondo K. Physical and gene maps of Agrobacterium biovar 2 strains and their relationship to biovar 1 chromosomes. MICROBIOLOGY-SGM 2003; 149:3035-3042. [PMID: 14523134 DOI: 10.1099/mic.0.26480-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diverse types of genomic DNA organization have been found in Rhizobiaceae, especially among Agrobacterium species. Previous studies of Agrobacterium concentrated mainly on biovar 1 strains. Little attention has been given to biovar 2 strains. The biovar 2 genome consists of a large, circular chromosome and second megabase-sized replicon, as well as several plasmids. In this study two biovar 2 strains were analysed, A. rhizogenes (A. radiobacter) K84 and A. rhizogenes A4, by constructing physical maps of their chromosomes and mega-replicons. The maps revealed that in both strains their chromosomes consist of approximately 3.7 Mbp, while the mega-replicons are 2.6 Mbp circular DNAs. Gene mapping and comparative genomic analysis were performed based on the physical maps using Southern hybridization. It was found that rDNA, as well as analysed virulence and virulence-related genes, are present only on the chromosomes. The inter-chromosomal relationship between biovar 1 and biovar 2 strains was also analysed. Interestingly, there was a high similarity between the chromosomes of biovar 2 and the circular chromosomes of biovar 1, whereas similarity among the smaller megabase-sized replicons was restricted to each biovar. Based on these observations the possible relationship among large replicons in Agrobacterium biovars 1 and 2 is discussed.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Laboratory of Plant Molecular Biology and Bioinformatics, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Katsunori Suzuki
- Laboratory of Plant Molecular Biology and Bioinformatics, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kazuo Yoshida
- Laboratory of Plant Molecular Biology and Bioinformatics, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Katsuhiko Kondo
- Laboratory of Plant Chromosome and Gene Stock, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
30
|
Baek CH, Farrand SK, Lee KE, Park DK, Lee JK, Kim KS. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens. J Bacteriol 2003; 185:513-24. [PMID: 12511498 PMCID: PMC145320 DOI: 10.1128/jb.185.2.513-524.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 10/24/2002] [Indexed: 11/20/2022] Open
Abstract
Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their catabolic pathways have evolved convergently from independent origins.
Collapse
Affiliation(s)
- Chang-Ho Baek
- Department of Life Science, Sogang University, Sinsoo-Dong 1, Mapo-Gu, Seoul 121-742, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, Dávila G, Brom S. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 2002; 48:104-16. [PMID: 12383728 DOI: 10.1016/s0147-619x(02)00119-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this paper, we report the identification of replication/partition regions of plasmid p42a and p42b of Rhizobium etli CFN42. Sequence analysis reveals that both replication/partition regions belong to the repABC family. Phylogenetic analysis of all the complete repABC replication/partition regions reported to date, shows that repABC plasmids coexisting in the same strain arose most likely by lateral transfer instead of by duplication followed by divergence. A model explaining how new incompatibility groups originate, is proposed.
Collapse
Affiliation(s)
- Miguel A Cevallos
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bartosik D, Baj J, Piechucka E, Waker E, Wlodarczyk M. Comparative characterization of repABC-type replicons of Paracoccus pantotrophus composite plasmids. Plasmid 2002; 48:130-41. [PMID: 12383730 DOI: 10.1016/s0147-619x(02)00100-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The repABC replicons have an unusual structure, since they carry genes coding for partitioning (repA, repB) and replication (repC) proteins, which are organized in an operon. So far, the presence of these compact bi-functional modules has been reported only in the megaplasmids of the Rhizobiaceae and within the plasmid pTAV1 (107kb) of Paracoccus versutus. We studied the distribution of repABC-type replicons within bacteria belonging to the genus Paracoccus. We found that repABC replicons occur only in the group of pTAV1-like plasmids: pKLW1, pHG16-a, pWKS2, and pPAN1, harbored by different strains of Paracoccus pantotrophus. A partial sequencing approach followed by phylogenetic analysis revealed that these replicons constitute a distinct evolutionary branch of repABC replicons. Incompatibility studies showed that they represent two incompatibility groups designated IncABC1 (pTAV1, pKLW1, and pHG16-a) and IncABC2 (pPAN1). Sequence comparison using available databases allowed the identification, within plasmid pRS241d of Rhodobacter sphaeroides 2.4.1, of an additional sequence highly homologous to the paracoccal repABC replicons, which has been included in comparative analyses.
Collapse
Affiliation(s)
- Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
33
|
Uraji M, Suzuki K, Yoshida K. A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. Genes Genet Syst 2002; 77:1-9. [PMID: 12036099 DOI: 10.1266/ggs.77.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ti (Tumor inducing) plasmids in Agrobacterium tumefaciens can transfer their T-DNA region into dicotyledonous plants, in which the expression of T-DNA genes causes plant tumors and the production of bacterial nutrients, e.g., opines such as nopaline. Naturally occurring Ti plasmids (pTi) are difficult to cure by conventional curing methods because of their high stability. Here, we developed a novel curing method based on plasmid incompatibility. For this, a curing plasmid, pMGTrep1, was newly constructed and subsequently introduced into A. tumefaciens strains harboring pTi by conjugation with Escherichia coli harboring pMGTrep1. The conjugation yielded 32-99% nopaline non-utilizing agrobacterial transconjugants in which pMGTrep1 replaced pTi due to incompatibility. Then, pMGTrep1-less derivatives of the transconjugants are easily selected in the presence of sucrose because pMGTrep1 contains a sucrose-sensitive sacB gene. This efficient method is directly applicable for curing plasmids with the same incompatibility group and shoud also applicable to other types of plasmids in Agrobacterium groups, including A. rhizogenes, by replacing the rep gene region of the curing plasmid with that of the corresponding incompatibility.
Collapse
Affiliation(s)
- Misugi Uraji
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
34
|
Bartosik D, Szymanik M, Wysocka E. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAV1. J Bacteriol 2001; 183:6234-43. [PMID: 11591666 PMCID: PMC100104 DOI: 10.1128/jb.183.21.6234-6243.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 08/06/2001] [Indexed: 11/20/2022] Open
Abstract
The replicator region of composite plasmid pTAV1 of Paracoccus versutus (included in mini-replicon pTAV320) belongs to the family of repABC replicons commonly found in plasmids harbored by Agrobacterium and Rhizobium spp. The repABC replicons encode three genes clustered in an operon, which are involved in partitioning (repA and repB) and replication (repC). In order to localize the partitioning site of pTAV320, the two identified incompatibility determinants of this mini-replicon (inc1, located in the intergenic sequence between repB and repC; and inc2, situated downstream of the repC gene) were PCR amplified and used together with purified RepB fusion protein (homologous to the type B partitioning proteins binding to the partitioning sites) in an electrophoretic mobility shift assay. The protein bound only inc2, forming two complexes in a protein concentration-dependent manner. The inc2 region contains two long (14-bp) repeated sequences (R1 and R2). Disruption of these sequences completely eliminates RepB binding ability. R1 and R2 have sequence similarities with analogous repeats of another repABC replicon of plasmid pPAN1 of Paracoccus pantotrophus DSM 82.5 and with centromeric sequences of the Bacillus subtilis chromosome. Excess RepB protein resulted in destabilization of the inc2-containing plasmid in Escherichia coli. On the other hand, the inc2 region could stabilize another unstable replicon in P. versutus when RepA and RepB were delivered in trans, proving that this region has centromere-like activity. Thus, it was demonstrated that repA, repB, and inc2 constitute a functional system for active partitioning of pTAV320.
Collapse
Affiliation(s)
- D Bartosik
- Warsaw University, Institute of Microbiology, Department of Bacterial Genetics, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
35
|
Ramírez-Romero MA, Téllez-Sosa J, Barrios H, Pérez-Oseguera A, Rosas V, Cevallos MA. RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol Microbiol 2001; 42:195-204. [PMID: 11679078 DOI: 10.1046/j.1365-2958.2001.02621.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basic replicon of Rhizobium etli CE3, like other members of the repABC plasmid family, is constituted by the repABC operon. RepC is essential for replication, and RepA and RepB play a role in plasmid segregation. It has been shown that deletion derivatives lacking the repAB genes have an increased copy number, indicating that these genes participate in the control of plasmid copy number. RepA is also a trans-incompatibility factor. To understand the regulation of the repABC operon, in this paper: (i) the transcription start site of the repABC operon was determined; (ii) the promoter region was identified by site-directed mutagenesis of the putative -35 and -10 hexameric elements; and (iii) RepA was recognized as a negative regulator of the transcription of the repABC operon.
Collapse
Affiliation(s)
- M A Ramírez-Romero
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
A pair of genes designated parA and parB are encoded by many low copy number plasmids and bacterial chromosomes. They work with one or more cis-acting sites termed centromere-like sequences to ensure better than random predivisional partitioning of the DNA molecule that encodes them. The centromere-like sequences nucleate binding of ParB and titrate sufficient protein to create foci, which are easily visible by immuno-fluorescence microscopy. These foci normally follow the plasmid or the chromosomal replication oriC complexes. ParA is a membrane-associated ATPase that is essential for this symmetric movement of the ParB foci. In Bacillus subtilis ParA oscillates from end to end of the cell as does MinD of E. coli, a relative of the ParA family. ParA may facilitate ParB movement along the inner surface of the cytoplasmic membrane to encounter and become tethered to the next replication zone. The ATP-bound form of ParA appears to adopt the conformation needed to drive partition. Hydrolysis to create ParA-ADP or free ParA appears to favour a form that is not located at the pole and binds to DNA rather than the partition complex. Definition of the protein domains needed for interaction with membranes and the conformational changes that occur on interaction with ATP/ADP will provide insights into the partitioning mechanism and possible targets for inhibitors of partitioning.
Collapse
Affiliation(s)
- C Bignell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
37
|
Palmer KM, Turner SL, Young JP. Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae. Plasmid 2000; 44:209-19. [PMID: 11078647 DOI: 10.1006/plas.2000.1488] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repABC operon is essential for stable maintenance of some Rhizobiaceae plasmids and of pTAV320 from Paracoccus versutus. These plasmids are the largest described family of homologous, yet compatible replicons. The repC gene is essential for plasmid replication, and previous work identified four distinct sequence groups (repC1, repC2, repC3, and repC4) that appear to define different compatibility classes. Probes for these different groups were used to characterize plasmids in Rhizobium leguminosarum population studies and three new repC sequence groups, repC5, repC6, and repC7 were identified. The general repC primers were modified to amplify a wider range of repC sequences and repC sequences were identified in Sinorhizobium and Mesorhizobium type strains. We also showed that the repC3 group-specific primers described previously do not amplify all repC3 sequences and developed a new repC3 amplification strategy.
Collapse
Affiliation(s)
- K M Palmer
- Department of Biology, University of York, York, United Kingdom
| | | | | |
Collapse
|
38
|
Chain PS, Hernandez-Lucas I, Golding B, Finan TM. oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region. J Bacteriol 2000; 182:5486-94. [PMID: 10986253 PMCID: PMC110993 DOI: 10.1128/jb.182.19.5486-5494.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a procedure to directly clone large fragments from the genome of the soil bacterium Sinorhizobium meliloti. Specific regions to be cloned are first flanked by parallel copies of an origin of transfer (oriT) together with a plasmid replication origin capable of replicating large clones in Escherichia coli but not in the target organism. Supplying transfer genes in trans specifically transfers the oriT-flanked region, and in this process, site-specific recombination at the oriT sites results in a plasmid carrying the flanked region of interest that can replicate in E. coli from the inserted origin of replication (in this case, the F origin carried on a BAC cloning vector). We have used this procedure with the oriT of the plasmid RK2 to clone contiguous fragments of 50, 60, 115, 140, 240, and 200 kb from the S. meliloti pExo megaplasmid. Analysis of the 60-kb fragment allowed us to identify a 9-kb region capable of autonomous replication in the bacterium Agrobacterium tumefaciens. The nucleotide sequence of this fragment revealed a replicator region including homologs of the repA, repB, and repC genes from other Rhizobiaceae, which encode proteins involved in replication and segregation of plasmids in many organisms.
Collapse
Affiliation(s)
- P S Chain
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
39
|
Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC. The bases of crown gall tumorigenesis. J Bacteriol 2000; 182:3885-95. [PMID: 10869063 PMCID: PMC94570 DOI: 10.1128/jb.182.14.3885-3895.2000] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J Zhu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ramírez-Romero MA, Soberón N, Pérez-Oseguera A, Téllez-Sosa J, Cevallos MA. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 2000; 182:3117-24. [PMID: 10809690 PMCID: PMC94497 DOI: 10.1128/jb.182.11.3117-3124.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 02/25/2000] [Indexed: 11/20/2022] Open
Abstract
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.
Collapse
Affiliation(s)
- M A Ramírez-Romero
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
41
|
Li PL, Farrand SK. The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 2000; 182:179-88. [PMID: 10613878 PMCID: PMC94255 DOI: 10.1128/jb.182.1.179-188.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1999] [Accepted: 10/08/1999] [Indexed: 11/20/2022] Open
Abstract
The replicator (rep) of the nopaline-type Ti plasmid pTiC58 is located adjacent to the trb operon of this conjugal element. Previous genetic studies of this region (D. R. Gallie, M. Hagiya, and C. I. Kado, J. Bacteriol. 161:1034-1041, 1985) identified functions involved in partitioning, origin of replication and incompatibility, and copy number control. In this study, we determined the nucleotide sequence of a 6,146-bp segment that encompasses the rep locus of pTiC58. The region contained four full open reading frames (ORFs) and one partial ORF. The first three ORFs, oriented divergently from the traI-trb operon, are closely related to the repA, repB, and repC genes of the octopine-type Ti plasmid pTiB6S3 as well as to other repA, -B, and -C genes from the Ri plasmid pRiA4b and three large plasmids from Rhizobium spp. The fourth ORF and the partial ORF are similar to y4CG and y4CF, respectively, of the Sym plasmid pNGR234a. The 363-bp intergenic region between traI and repA contained two copies of the tra box which is the cis promoter recognition site for TraR, the quorum-sensing activator of Ti plasmid conjugal transfer. Expression of the traI-trb operon from the tra box II-associated promoter mediated by TraR and its acyl-homoserine lactone ligand, AAI, was negatively influenced by an intact tra box III. On the other hand, the region containing the two tra boxes was required for maximal expression of repA, and this expression was enhanced slightly by TraR and AAI. Copy number of a minimal rep plasmid increased five- to sevenfold in strains expressing traR but only when AAI also was provided. Consistent with this effect, constitutive expression of the quorum-sensing system resulted in an apparent increase in Ti plasmid copy number. We conclude that Ti plasmid copy number is influenced by the quorum-sensing system, suggesting a connection between conjugal transfer and vegetative replication of these virulence elements.
Collapse
Affiliation(s)
- P L Li
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
42
|
Bartosik D, Baj J, Wlodarczyk M. Molecular and functional analysis of pTAV320, a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3149-3157. [PMID: 9846751 DOI: 10.1099/00221287-144-11-3149] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The second replicator region of the native plasmid pTAV1 of Paracoccus versutus has been identified thus proving the composite nature of this replicon. The minimal replicon designated pTAV320 (4.3 kb) was cloned and sequenced. pTAV320 encodes three putative proteins--RepA, RepB and RepC. This replicator region shows strong structural and functional similarity to repABC-type replicons found in several Agrobacterium and Rhizobium plasmids. The origin of replication appears to be localized within the coding sequence of the repC gene. RepC was shown to be essential for replication. RepA and RepB were necessary for stable maintenance of the plasmid, which implies a role in active partitioning. The presence of the complete sequence of pTAV320 (in its non-replicative form) could stabilize in cis pTAV202, a mini-replicon derived from the other pTAV1 replicator region. Deletions introduced into the repC gene abolished the 'stabilizing' activity of pTAV320, suggesting that the centromere-like sequence, necessary for partitioning, might be localized within this gene. The two replicator regions of pTAV1 (pTAV320 and pTAV202) expressed incompatibility towards the parental plasmid but were compatible in trans in P. versutus cells. The pTAV320 replicon can be maintained in several Paracoccus, Agrobacterium, Rhizobium and Rhodobacter strains in addition to P. versutus.
Collapse
Affiliation(s)
- Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Nowy Swiat 67,00-046 Warsaw, Poland
| | - Jadwiga Baj
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Nowy Swiat 67,00-046 Warsaw, Poland
| | - Miroslawa Wlodarczyk
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Nowy Swiat 67,00-046 Warsaw, Poland
| |
Collapse
|
43
|
Rigottier-Gois L, Turner SL, Young JPW, Amarger N. Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology (Reading) 1998; 144:771-780. [DOI: 10.1099/00221287-144-3-771] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of four classes of related plasmid replication genes (repC) within three field populations of Rhizobium leguminosarum in France, Germany and the UK was investigated using RFLP, PCR-RFLP and plasmid profile analysis. The results suggest that the four repC classes are compatible: when two or more different repC sequences are present in a strain they are usually associated with different plasmids. Furthermore, classical incompatibility studies in which a Tn5-labelled plasmid with a group IV repC sequence was transferred into field isolates by conjugation demonstrated that group IV sequences are incompatible with each other, but compatible with the other repC groups. This supports the idea that the different repC groups represent different incompatibility groups. The same field isolates were also screened for chromosomal (plac12) and symbiotic gene (nodD-F region) variation. Comparison of these and the plasmid data suggest that plasmid transfer does occur within field populations of R. leguminosarum but that certain plasmid-chromosome combinations are favoured.
Collapse
Affiliation(s)
- Lionel Rigottier-Gois
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| | - Sarah L. Turner
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - J. Peter W. Young
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - Noëlle Amarger
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| |
Collapse
|
44
|
Thomas CM, Jagura-Burdzy G, Kostelidou K, Thorsted P, Zatyka M. Replication and Maintenance of Bacterial Plasmids. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
García-de los Santos A, Brom S. Characterization of two plasmid-borne lps beta loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:891-902. [PMID: 9304861 DOI: 10.1094/mpmi.1997.10.7.891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Rhizobium etli CFN42, both the symbiotic plasmid (pd) and plasmid b (pb) are required for effective bean nodulation. This is due to the presence on pb of a region (lps beta) involved in lipopolysaccharide (LPS) biosynthesis. We report here the genetic array and functional features of this plasmid-borne region. The sequence analysis of a 3,595-bp fragment revealed the presence of a transcriptional unit integrated by two open reading frames (lps beta 1 and lps beta 2) essential for LPS biosynthesis and symblosis. The lps beta 1 encodes a putative 193 amino acid polypeptide that shows strong homology with glucosyl-1P and galactosyl-1P transferases. The deduced amino acid sequence of the protein encoded by lps beta 2 was very similar to that of proteins involved in surface polysaccharide biosynthesis, such as Pseudomonas aeruginosa WpbM, Bordetella pertussis BpIL, and Yersinia enterocolitica TrsG. DNA sequences homologous to lps beta 1 and lps beta 2 of R. etli CFN42 were consistently found in functionally equivalent plasmids of R. etli, R. leguminosarum bv. viciae, and R. leguminosarum hv. trifolii strains, but not in R. meliloti, R. loti, R. tropici, R. fredii, Bradyrhizobium, Azorhizobium, and Agrobacterium tumefaciens. Even though Rhizobium and Agrobacterium do not share lps beta sequences, their presence is required for crown-gall tumor induction by R. etli transconjugants carrying the Ti plasmid.
Collapse
Affiliation(s)
- A García-de los Santos
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuemavaca, Morelos, México
| | | |
Collapse
|
46
|
Ramírez-Romero MA, Bustos P, Girard L, Rodríguez O, Cevallos MA, Dávila G. Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2825-2831. [PMID: 9274036 DOI: 10.1099/00221287-143-8-2825] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The replicator region of the symbiotic plasmid of Rhizobium etli CFN42 was cloned and sequenced. A plasmid derivative (pH3) harbouring a 5-6 kb HindIII fragment from the symbiotic plasmid was found to be capable of independent replication and eliminated the symbiotic plasmid when introduced into a R. etli CFNX101 strain (a recA derivative). The stability and the copy number of pH3 were the same as that of the symbiotic plasmid, indicating that the information required for stable replication and incompatibility resides in the 5.6 kb HindIII fragment. The sequence analysis of this fragment showed the presence of three ORFs similar in sequence analysis of this fragment showed the presence of three ORFs similar in sequence and organization to repA, repB and repC described for the replicator regions of the Agrobacterium plasmids pTiB653 and pRiA4b and for the R. leguminosarum cryptic plasmid pRL8JI. Hybridization studies showed that p42d-like replicator sequences are found in the symbiotic plasmids of other R. etli strains and in a 'cryptic' plasmid of R. tropici.
Collapse
Affiliation(s)
- Miguel A Ramírez-Romero
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Patricia Bustos
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Oscar Rodríguez
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Miguel A Cevallos
- Departamento de Ecología Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Guillermo Dávila
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| |
Collapse
|
47
|
Barnett MJ, Long SR. Identification and characterization of a gene on Rhizobium meliloti pSyma, syrB, that negatively affects syrM expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:550-559. [PMID: 9204561 DOI: 10.1094/mpmi.1997.10.5.550] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Rhizobium meliloti SyrM protein activates transcription of nodD3 and syrA. Regulation of syrM is complex and may involve as yet undiscovered genes. Here we report the isolation of insertion mutants showing increased expression of a syrM-gusA gene fusion. Characterization of one mutant strain, designated SYR-B, revealed a mutation consisting of a transposon insertion linked to a large deletion. The corresponding wild-type DNA was cloned as a 5.3-kb BamHI fragment. Genetic and physical analysis of this DNA demonstrated that an open reading frame (ORF) near one end of the fragment, encoding the 16.5-kDa SyrB protein, is responsible for the repression of syrM activity. Results of complementation experiments with the 5.3-kb BamHI DNA led us to hypothesize that other genes within this DNA fragment interfere with the expression or activity of SyrB. Our analysis showed that the region upstream of syrB contains three ORFs. One ORF is similar to the Ros repressor of Agrobacterium tumefaciens and the MucR repressor of R. meliloti.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | |
Collapse
|
48
|
Bartosik D, Wlodarczyk M, Thomas CM. Complete nucleotide sequence of the replicator region of Paracoccus (Thiobacillus) versutus pTAV1 plasmid and its correlation to several plasmids of Agrobacterium and Rhizobium species. Plasmid 1997; 38:53-9. [PMID: 9281495 DOI: 10.1006/plas.1997.1295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complete nucleotide sequence of the replicator region of pTAV1, a cryptic, low copy number plasmid of Paracoccus versutus, was determined. The minimal replicon sequence (3149 bp) included in pTAV203/18 contains two open reading frames with coding capabilities for putative polypeptides of 23.8 (RepX) and 46 kDa (RepC'). The two genes have the same transcriptional polarity and both seem to be essential for replication of pTAV203. The predicted amino acid sequence of RepC' shows significant homology with the major replication-associated proteins of several Agrobacterium and Rhizobium plasmids. A probable origin of replication (oriV) was proposed to be localized at the 3' terminal end of the repC' gene.
Collapse
Affiliation(s)
- D Bartosik
- Institute of Microbiology, Warsaw University, Nowy Swiat 67, Warsaw, 00-046, Poland.
| | | | | |
Collapse
|
49
|
Hanai R, Liu R, Benedetti P, Caron PR, Lynch AS, Wang JC. Molecular dissection of a protein SopB essential for Escherichia coli F plasmid partition. J Biol Chem 1996; 271:17469-75. [PMID: 8663262 DOI: 10.1074/jbc.271.29.17469] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Biochemical and genetic experiments were carried out to deduce the structural and functional domains of SopB protein involved in the equipartition of F plasmid. The protein is dimeric. Proteolytic and chemical footprinting studies support earlier genetic analyses that the binding of SopB to specific sites within the F plasmid sopC locus involves mainly the C-terminal region. In vivo, the expression of a high level of SopB protein is known to repress sopC-linked genes. This silencing activity is shown to be unaffected by the deletion of 35 N-terminal residues, but abolished when 71 or more were removed from the N terminus. An excess of SopB protein does not extend its in vitro binding outside sopC, implicating participation of a host factor(s) in SopB-mediated gene silencing. A data base search identified a number of SopB homologues, including both chromosomally encoded bacterial proteins and phage- and plasmid-encoded proteins known to be involved in partition. Sequence homology is limited to the N-terminal half, suggesting that the N-terminal regions of these proteins are conserved to interact with a conserved cellular structure(s), whereas the C-terminal regions have diverged to bind different nucleotide sequences.
Collapse
Affiliation(s)
- R Hanai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
50
|
Taghavi S, Provoost A, Mergeay M, van der Lelie D. Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:169-79. [PMID: 8628216 DOI: 10.1007/bf02174176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A 4.64 kb region of the 180 kb heavy metal resistance plasmid pMOL28 of Alcaligenes eutrophus CH34, previously shown to be able to replicate autonomously, was sequenced and analyzed. Three genes involved in plasmid maintenance were identified: parA28 and parB28 are involved in plasmid partitioning and stability, while repA28 encodes a protein required for replication. In addition to the par AB28 genes, a third locus, parS28, required in cis active partitioning was identified. The parABS28 locus of pMOL28 shows strong similarity in organization to the sop, par and rep regions, respectively, of the Escherichia coli F-factor, the E.coli P1 and P7 prophages and the Agrobacterium pTiB6S3 and pRiA4b plasmids. The ParAB28 proteins of pMOL28 also show similarity to the proteins encoded by two conserved open reading frames present in the replication regions of the Pseudomonas putida and Bacillus subtilis chromosomes. The functionality of the pMOL28 par region was examined by performing stability and incompatibility tests between pMOL28 and pMOL846 or pMOL850 which contain the 4.64 EcoRI replicon fragment of pMOL28, cloned in opposite orientations into pSUP202, which is itself unable to replicate in A. eutrophus. The RepA2 8 replication protein showed similarity to the RepL protein of P1, which is required for lytic replication of this E. coli phage. The replication origin of pMOL28, oriV28, seems to be located within the repA28 coding region, and pMOL28 replication may depend on transcriptional activation of oriV28.
Collapse
Affiliation(s)
- S Taghavi
- Environmental Technology, Flemish Institute for Technological Research (VITO), Belgium
| | | | | | | |
Collapse
|