1
|
Tokunaga R, Shibata H, Kurosawa M. Alteration of serotonin release response in the central nucleus of the amygdala to noxious and non-noxious mechanical stimulation in a neuropathic pain model rat. J Physiol Sci 2025; 74:17. [PMID: 39843008 DOI: 10.1186/s12576-024-00910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Previously, we found that serotonin (5-HT) release in the central nucleus of the amygdala (CeA) of anesthetized rats decreases in response to innocuous stroking of the skin, irrespective of stimulus laterality, but increases in response to noxious pinching applied to a hindlimb contralateral to the 5-HT measurement site. The aim of the present study was to determine whether intra-CeA 5-HT release responses to cutaneous stimulation were altered in an animal model of neuropathic pain induced by ligation of the left L5 spinal nerve. In anesthetized neuropathic pain model rats, stroking of the left hindlimb increased 5-HT release in the CeA, whereas stroking of the right hindlimb decreased it. Meanwhile, pinching of the left hindlimb increased intra-CeA 5-HT release irrespective of stimulus laterality. In conclusion, the present study demonstrated that intra-CeA 5-HT release responses to cutaneous stimulation are altered in an animal model of neuropathic pain.
Collapse
Affiliation(s)
- Ryota Tokunaga
- Center for Medical Sciences, International University of Health and Welfare, 324-8501, Otawara, Tochigi, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, 950-3198, Niigata, Japan
| | - Hideshi Shibata
- Laboratory of Veterinary Anatomy, Institute of Agriculture, Tokyo University of Agriculture and Technology, 183-8509, Fuchu, Tokyo, Japan
| | - Mieko Kurosawa
- Center for Medical Sciences, International University of Health and Welfare, 324-8501, Otawara, Tochigi, Japan; Bio-Laboratory, Foundation for Advancement of International Science, 305-0821, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Kaikai NE, Ba-M Hamed S, Slimani A, Dilagui I, Hanchi AL, Soraa N, Mezrioui NE, Bennis M, Ghanima A. Chronic exposure to metam sodium-based pesticide in mice during adulthood elevated anxiety and depression-like behaviors: Involvement of serotoninergic depletion and gut microbiota dysbiosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104066. [PMID: 36640922 DOI: 10.1016/j.etap.2023.104066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metam sodium-based pesticide (MS-BP) is widely used in agriculture and public health. We have previously demonstrated that maternal exposure to MS-BP resulted in sensorimotor alterations in mice offspring with long-lasting deficits including anxiety- and depression-like behaviors. Here, we project to verify whether these two neurobehavioral effects occur during adulthood following direct exposure to MS-BP and whether it results in changes in the serotoninergic system and gut microbiota. Our findings showed that chronic exposure to MS-BP increased anxiety- and depression-like behaviors, accompanied by a depletion of serotonin-like neurons within the dorsal raphe nucleus and a reduction in serotoninergic terminals in the infralimbic cortex and the basolateral amygdala. In addition, all MS-BP-exposed animals exhibited a reduced total bacterial number and diversity of gut microbiota. Taken together, our data demonstrated that MS-BP-induced behavioral changes could be related to the impairment of the serotoninergic system and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco; Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco
| | - Saadia Ba-M Hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Aiman Slimani
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Ilham Dilagui
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Asmae Lamrani Hanchi
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nabila Soraa
- Laboratory of Microbiology, University Hospital Center Mohamed VI, Marrakesh, Morocco
| | - Nour-Eddine Mezrioui
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakesh, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health. Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakesh, Morocco.
| |
Collapse
|
3
|
Sanford LD, Wellman LL, Adkins AM, Guo ML, Zhang Y, Ren R, Yang L, Tang X. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders. Neurobiol Stress 2023; 23:100517. [PMID: 36793998 PMCID: PMC9923229 DOI: 10.1016/j.ynstr.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sleep and stress have complex interactions that are implicated in both physical diseases and psychiatric disorders. These interactions can be modulated by learning and memory, and involve additional interactions with the neuroimmune system. In this paper, we propose that stressful challenges induce integrated responses across multiple systems that can vary depending on situational variables in which the initial stress was experienced, and with the ability of the individual to cope with stress- and fear-inducing challenges. Differences in coping may involve differences in resilience and vulnerability and/or whether the stressful context allows adaptive learning and responses. We provide data demonstrating both common (corticosterone, SIH and fear behaviors) and distinguishing (sleep and neuroimmune) responses that are associated with an individual's ability to respond and relative resilience and vulnerability. We discuss neurocircuitry regulating integrated stress, sleep, neuroimmune and fear responses, and show that responses can be modulated at the neural level. Finally, we discuss factors that need to be considered in models of integrated stress responses and their relevance for understanding stress-related disorders in humans.
Collapse
Affiliation(s)
- Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wellman LL, Lonart G, Adkins AM, Sanford LD. Regulation of Dark Period Sleep by the Amygdala: A microinjection and optogenetics study. Brain Res 2022; 1781:147816. [PMID: 35131286 PMCID: PMC8901558 DOI: 10.1016/j.brainres.2022.147816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
Abstract
The central nucleus of the amygdala (CNA) projects to brainstem regions that generate and regulate rapid eye movement sleep (REM). We used optogenetics to assess the influence of CNA inputs into reticularis pontis oralis (RPO), pedunculopontine tegmentum (PPT) and nucleus subcoeruleus (SubC) on dark period sleep. We compared these results to effects of microinjections into CNA of the GABAA agonist, muscimol (MUS, inhibition of cell bodies) and tetrodotoxin (TTX, inhibition of cell bodies and fibers of passage). For optogenetics, male Wistar rats received excitatory (AAV5-EF1a-DIO -hChR2(H134R)-EYFP) or inhibitory (AAV-EF1a-DIO-eNpHR3.0-EYFP; DIO-eNpHR3.0) opsins into CNA and AAV5-EF1a-mCherry-IRES-WGA-Cre into RPO, PPT, or SubC. This enabled only CNA neurons synaptically connected to each region to express opsin. Optic cannulae for light delivery into CNA and electrodes for determining sleep were implanted. Sleep was recorded with and without blue or amber light stimulation of CNA. Separate rats received MUS or TTX into CNA prior to recording sleep. Optogenetic activation of CNA neurons projecting to RPO enhanced REM and did not alter non-REM (NREM) whereas activation of CNA neurons projecting to PPT or SubC did not significantly affect sleep. Inhibition of CNA neurons projecting to any region did not significantly alter sleep. TTX inactivation of CNA decreased REM and increased NREM whereas muscimol inactivation did not significantly alter sleep. Thus, the amygdala can regulate decreases and increases in REM, and RPO is important for CNA promotion of REM. Fibers passing through CNA, likely from the basolateral nucleus of the amygdala, also play a role in regulating sleep.
Collapse
|
5
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Tafet GE, Nemeroff CB. Pharmacological Treatment of Anxiety Disorders: The Role of the HPA Axis. Front Psychiatry 2020; 11:443. [PMID: 32499732 PMCID: PMC7243209 DOI: 10.3389/fpsyt.2020.00443] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Stress in general, and early life stress in particular, has been associated with the development of anxiety and mood disorders. The molecular, biological and psychological links between stress exposure and the pathogenesis of anxiety and mood disorders have been extensively studied, resulting in the search of novel psychopharmacological strategies aimed at targets of the hypothalamic-pituitary-adrenal (HPA) axis. Hyperactivity of the HPA axis has been observed in certain subgroups of patients with anxiety and mood disorders. In addition, the effects of different anti-anxiety agents on various components of the HPA axis has been investigated, including benzodiazepines, tricyclic antidepressants (TCAs), and selective serotonin reuptake inhibitors (SSRIs). For example, benzodiazepines, including clonazepam and alprazolam, have been demonstrated to reduce the activity of corticotrophin releasing factor (CRF) neurons in the hypothalamus. TCAs and SSRIs are also effective anti-anxiety agents and these may act, in part, by modulating the HPA axis. In this regard, the SSRI escitalopram inhibits CRF release in the central nucleus of the amygdala, while increasing glucocorticoid receptor (GRs) density in the hippocampus and hypothalamus. The molecular effects of these anti-anxiety agents in the regulation of the HPA axis, taken together with their clinical efficacy, may provide further understanding about the role of the HPA axis in the pathophysiology of mood and anxiety disorders, paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo E. Tafet
- Department of Psychiatry and Neurosciences, Maimónides University, Buenos Aires, Argentina
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Wiersielis KR, Samuels BA, Roepke TA. Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol Teratol 2020; 79:106884. [PMID: 32289443 DOI: 10.1016/j.ntt.2020.106884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.
Collapse
Affiliation(s)
- Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA.
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
8
|
Loupy KM, Arnold MR, Hassell JE, Lieb MW, Milton LN, Cler KE, Fox JH, Siebler PH, Schmidt D, Noronha SISR, Day HEW, Lowry CA. Evidence that preimmunization with a heat-killed preparation of Mycobacterium vaccae reduces corticotropin-releasing hormone mRNA expression in the extended amygdala in a fear-potentiated startle paradigm. Brain Behav Immun 2019; 77:127-140. [PMID: 30597198 DOI: 10.1016/j.bbi.2018.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/16/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma and stressor-related disorder that is characterized by dysregulation of glucocorticoid signaling, chronic low-grade inflammation, and impairment in the ability to extinguish learned fear. Corticotropin-releasing hormone (Crh) is a stress- and immune-responsive neuropeptide secreted from the paraventricular nucleus of the hypothalamus (PVN) to stimulate the hypothalamic-pituitary-adrenal (HPA) axis; however, extra-hypothalamic sources of Crh from the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) govern specific fear- and anxiety-related defensive behavioral responses. We previously reported that preimmunization with a heat-killed preparation of the immunoregulatory environmental bacterium Mycobacterium vaccae NCTC 11659 enhances fear extinction in a fear-potentiated startle (FPS) paradigm. In this follow-up study, we utilized an in situ hybridization histochemistry technique to investigate Crh, Crhr1, and Crhr2 mRNA expression in the CeA, BNST, and PVN of the same rats from the original study [Fox et al., 2017, Brain, Behavior, and Immunity, 66: 70-84]. Here, we demonstrate that preimmunization with M. vaccae NCTC 11659 decreases Crh mRNA expression in the CeA and BNST of rats exposed to the FPS paradigm, and, further, that Crh mRNA expression in these regions is correlated with fear behavior during extinction training. These data are consistent with the hypothesis that M. vaccae promotes stress-resilience by attenuating Crh production in fear- and anxiety-related circuits. These data suggest that immunization with M. vaccae may be an effective strategy for prevention of fear- and anxiety-related disorders.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Margaret W Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren N Milton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James H Fox
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Sylvana I S R Noronha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80045, USA.
| |
Collapse
|
9
|
Kovács LÁ, Schiessl JA, Nafz AE, Csernus V, Gaszner B. Both Basal and Acute Restraint Stress-Induced c-Fos Expression Is Influenced by Age in the Extended Amygdala and Brainstem Stress Centers in Male Rats. Front Aging Neurosci 2018; 10:248. [PMID: 30186150 PMCID: PMC6113579 DOI: 10.3389/fnagi.2018.00248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023] Open
Abstract
The hypothalamus-pituitary-adrenal axis (HPA) is the main regulator of the stress response. The key of the HPA is the parvocellular paraventricular nucleus of the hypothalamus (pPVN) controlled by higher-order limbic stress centers. The reactivity of the HPA axis is considered to be a function of age, but to date, little is known about the background of this age-dependency. Sporadic literature data suggest that the stress sensitivity as assessed by semi-quantitation of the neuronal activity marker c-Fos may also be influenced by age. Here, we aimed at investigating the HPA activity and c-Fos immunoreactivity 2 h after the beginning of a single 60 min acute restraint stress in eight age groups of male Wistar rats. We hypothesized that the function of the HPA axis (i.e., pPVN c-Fos and blood corticosterone (CORT) level), the neuronal activity of nine stress-related limbic areas (i.e., magnocellular PVN (mPVN), medial (MeA), central (CeA), basolateral nuclei of the amygdala, the oval (ovBNST), dorsolateral (dlBNST), dorsomedial (dmBNST), ventral and fusiform (fuBNST) divisions of the bed nucleus of the stria terminalis (BNST)), and two brainstem stress centers such as the centrally projecting Edinger-Westphal nucleus (cpEW) and dorsal raphe nucleus (DR) show age dependency in their c-Fos response. The somatosensory barrel cortex area (S1) was evaluated to test whether the age dependency is specific for stress-centers. Our results indicate that the stress-induced rise in blood CORT titer was lower in young age reflecting relatively low HPA activity. All 12 stress-related brain areas showed c-Fos response that peaked at 2 months of age. The magnitude of c-Fos immunoreactivity correlated negatively with age in seven regions (MeA, CeA, ovBNST, dlBNST, dmBNST, fuBNST and pPVN). Unexpectedly, the CeA, ovBNST and cpEW showed a considerable basal c-Fos expression in 1-month-old rats which decreased with age. The S1 showed a U-shaped age-related dynamics in contrast to the decline observed in stress centers. We conclude that the age- and brain area dependent dynamics in stress-induced neuronal activity pattern may contribute to the age dependance of the stress reactivity. Further studies are in progress to determine the neurochemical identity of neurons showing age-dependent basal and/or stress-induced c-Fos expression.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary.,Center for Neuroscience, Pécs University, Pécs, Hungary
| | | | | | - Valér Csernus
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary.,Center for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
10
|
Tritschler L, Gaillard R, Gardier AM, David DJ, Guilloux JP. [Consequences of the monoaminergic systems cross-talk in the antidepressant activity]. Encephale 2018; 44:264-273. [PMID: 29801770 DOI: 10.1016/j.encep.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment for treat major depressive disorders. Despite their effectiveness, only 30% of SSRI-treated patients reach remission of depressive symptoms. SSRIs by inhibiting the serotonin transporter present some limits with residual symptoms. Increasing not only serotonin but also norepinephrine and dopamine levels in limbic areas seems to improve remission. Anatomical relationships across serotoninergic, dopaminergic and noradrenergic systems suggest tight reciprocal regulations among them. This review attempts to present, from acute to chronic administration the consequences of SSRI administration on monoaminergic neurotransmission. The serotonin neurons located in the raphe nucleus (RN) are connected to the locus coeruleus (locus coeruleus), the key structure of norepinephrine synthesis, through GABAergic-inhibiting interneurons. Activation of the 5-HT2A receptors expressed on GABAergic interneurons following SERT-inhibition induces an increase in serotonin leading to inhibitory effect on NE release. Similarly, the serotonin neurons exert negative regulation on dopaminergic neurons from the ventral tegmental area (VTA) through a GABAergic interneuron. These interneurons express the 5-HT2C and 5-HT3 receptors inducing an inhibitory effect of 5-HT on DA release. Positive reciprocal connections are also observed through direct projections from the locus coeruleus to the RN and from the VTA to the RN through α1 and D2 receptors respectively, both stimulating the serotoninergic activity. Acute SSRI treatment induces only a slight increase in 5-HT levels in limbic areas due to the activation of presynaptic 5-HT1A and 5-HT1B autoreceptors counteracting the effects of the transporter blockade. No change in NE levels and a small decrease in the dopaminergic neurotransmission is also observed. These weak changes in monoamine in the limbic areas after acute SSRI treatment seems to be one of key point involved in the onset of action. Following desensitization of the 5-HT1A and 5-HT1B autoreceptors, chronic SSRI treatment induces a large increase in the 5-HT neurotransmission. Changes in 5-HT levels at the limbic areas results in a decrease in NE transmission and an increase in DA transmission through an increase in the post-synaptic D2 receptors sensitivity and not from a change in DA levels, which is mainly due to a desensitization of the 5-HT2A receptor. The observed decrease of NE neurotransmission could explain some limits of the SSRI therapy and the interest to activate NE system for producing more robust effects. On the other hand, the D2 sensitization, especially in the nucleus accumbens, stimulates the motivation behavior as well as remission of anhedonia considering the major role of DA release in this structure. Finally, we need to take into account the key role of each monoaminergic neurotransmission to reach remission. Targeting only one system will limit the therapeutic effectiveness. Clinical evidences, including the STAR*D studies, confirmed this by an increase of the remission rate following the mobilization of several monoaminergic transmissions. However, these combinations cannot constitute first line of treatment considering the observed increase of side effects. Such an approach should be adapted to each patient in regard to its particular symptoms as well as clinical history. The next generation of antidepressant therapy will need to take into consideration the interconnections and the interrelation between the monoaminergic systems.
Collapse
Affiliation(s)
- L Tritschler
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - R Gaillard
- Inserm UMR 894, centre de psychiatrie & neurosciences, CNRS GDR 3557, institut de psychiatrie, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; Service hospitalo-universitaire, centre hospitalier Sainte-Anne, 75015 Paris, France
| | - A M Gardier
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - D J David
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| | - J-P Guilloux
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| |
Collapse
|
11
|
Hashtjini MM, Jahromi GP, Sadr SS, Meftahi GH, Hatef B, Javidnazar D. Deep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:370-375. [PMID: 29796219 PMCID: PMC5960752 DOI: 10.22038/ijbms.2018.27482.6705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities. Materials and Methods: Forty Male Wistar rats (220–250 g) were divided into 5 groups (n=8) and underwent stereotactic surgery to implant electrodes in the right basolateral nucleus of the amygdala (BLn). After 7 days, some animals received a foot shock, followed by another 7-day treatment schedule (DBS treatment). Next, freezing behavior was measured as a predicted response in the absence of the foot shock (re-exposure time). Blood serum corticosterone levels and amygdala c-Fos protein expression were assessed using Enzyme-linked immunosorbent assay (ELISA) and Western blot, respectively. Furthermore, freezing behaviors by re-exposure time test and general anxiety by elevated plus-maze (EPM) were evaluated. Results: PTSD decreased serum corticosterone levels and increased both amygdala c-Fos expression and freezing behaviors. Therefore, DBS treatment significantly (P<0.001) enhanced serum corticosterone levels and could significantly (P<0.001) reduce both c-Fos protein expression and freezing behaviors’ duration. However, DBS treatment has no effect on the general anxiety in PTSD rats. Conclusion: We argue that these outcomes might demonstrate the mechanism of DBS treatment, a complete therapeutic strategy, in PTSD patients.
Collapse
Affiliation(s)
- Mina Mokhtari Hashtjini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Boshra Hatef
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Danial Javidnazar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fornix Structural Connectivity and Allostatic Load: Empirical Evidence From Schizophrenia Patients and Healthy Controls. Psychosom Med 2017; 79:770-776. [PMID: 28498274 PMCID: PMC5573616 DOI: 10.1097/psy.0000000000000487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The fornix is a white matter tract carrying the fibers connecting the hippocampus and the hypothalamus, two essential stress-regulatory structures of the brain. We tested the hypothesis that allostatic load (AL), derived from a battery of peripheral biomarkers indexing the cumulative effects of stress, is associated with abnormalities in brain white matter microstructure, especially the fornix, and that higher AL may help explain the white matter abnormalities in schizophrenia. METHODS Using 13 predefined biomarkers, we tested AL in 44 schizophrenic patients and 33 healthy controls. Diffusion tensor imaging was used to obtain fractional anisotropy (FA) values of the fornix and other white matter tracts. RESULTS AL scores were significantly elevated in patients compared with controls (F(3,77) = 7.87, p = .006). AL was significantly and inversely correlated with FA of fornix in both controls (r = -.58, p = .001) and patients (r = -.36, p = .023). Several nominally significant (p < .05 but did not survive Bonferroni correction for multiple comparison) correlations were also observed between AL and FA of other white matter tracts in schizophrenic patients. However, the fornix was the only tract exhibiting a correlation with AL in both groups. CONCLUSIONS These results provide initial evidence that allostatic processes are linked to fornix microstructure in clinical participants.
Collapse
|
13
|
Flanigan M, Aleyasin H, Takahashi A, Golden SA, Russo SJ. An emerging role for the lateral habenula in aggressive behavior. Pharmacol Biochem Behav 2017; 162:79-86. [PMID: 28499809 DOI: 10.1016/j.pbb.2017.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
Abstract
Inter-male aggression is an essential component of social behavior in organisms from insects to humans. However, when expressed inappropriately, aggression poses significant threats to the mental and physical health of both the aggressor and the target. Inappropriate aggression is a common feature of numerous neuropsychiatric disorders in humans and has been hypothesized to result from the atypical activation of reward circuitry in response to social targets. The lateral habenula (LHb) has recently been identified as a major node of the classical reward circuitry and inhibits the release of dopamine from the midbrain to signal negative valence. Here, we discuss the evidence linking LHb function to aggression and its valence, arguing that strong LHb outputs to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN) are likely to play roles in aggression and its rewarding components. Future studies should aim to elucidate how various inputs and outputs of the LHb shape motivation and reward in the context of aggression.
Collapse
Affiliation(s)
- Meghan Flanigan
- Fishberg Department of Neuroscience and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hossein Aleyasin
- Fishberg Department of Neuroscience and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aki Takahashi
- Fishberg Department of Neuroscience and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; University of Tsukuba, Tsukuba, Japan
| | - Sam A Golden
- National Institute of Drug Abuse, Baltimore, MD, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Solanki RR, Scholl JL, Watt MJ, Renner KJ, Forster GL. Amphetamine Withdrawal Differentially Increases the Expression of Organic Cation Transporter 3 and Serotonin Transporter in Limbic Brain Regions. J Exp Neurosci 2016; 10:93-100. [PMID: 27478387 PMCID: PMC4957605 DOI: 10.4137/jen.s40231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022] Open
Abstract
Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal. We also determined whether changes in transporter expression were confined to these regions. Male rats received amphetamine or saline for two weeks followed by 24 hours or two weeks of withdrawal, with transporter expression measured using Western immunoblot. OCT3 and SERT expression increased in the CeA at both withdrawal timepoints. In the vHipp, OCT3 expression increased only at 24 hours of withdrawal, with an equivalent pattern seen in the dorsomedial hypothalamus. No changes were evident in any other regions sampled. These regionally specific changes in limbic OCT3 and SERT expression may partially contribute to the serotonergic imbalance and negative affect during amphetamine withdrawal.
Collapse
Affiliation(s)
- Rajeshwari R. Solanki
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Michael J. Watt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Kenneth J. Renner
- Biology Department, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Gina L. Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
15
|
Tokunaga R, Shimoju R, Takagi N, Shibata H, Kurosawa M. Serotonin release in the central nucleus of the amygdala in response to noxious and innocuous cutaneous stimulation in anesthetized rats. J Physiol Sci 2016; 66:307-14. [PMID: 26668011 PMCID: PMC10717205 DOI: 10.1007/s12576-015-0426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
We investigated the effect of noxious (pinching) and innocuous (stroking) stimulation of skin on serotonin (5-HT) release in the central nucleus of the amygdala (CeA) in anesthetized rats. 5-HT in the CeA was collected by microdialysis methods. Dialysate output from consecutive 10-min periods was injected into a high-performance liquid chromatograph and 5-HT was measured with an electrochemical detector. Bilateral pinching of the back for 10 min increased 5-HT release significantly; 5-HT release was also increased with stimulation of the forelimb or hindlimb. In contrast, stroking of these areas decreased 5-HT release significantly. Furthermore, simultaneous stroking and pinching produced no change in the 5-HT release. In conclusion, the present study demonstrates that 5-HT release in the CeA is regulated by somatic afferent stimulation in a modality-dependent manner, and that innocuous stimulation can dampen the change in 5-HT release that occurs in response to noxious stimulation.
Collapse
Affiliation(s)
- Ryota Tokunaga
- Division of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan
| | - Rie Shimoju
- Division of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan
| | - Noriaki Takagi
- Division of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan
| | - Hideshi Shibata
- Laboratory of Veterinary Anatomy, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Mieko Kurosawa
- Division of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan.
- Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan.
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan.
| |
Collapse
|
16
|
Chronic stress impairs α1-adrenoceptor-induced endocannabinoid-dependent synaptic plasticity in the dorsal raphe nucleus. J Neurosci 2015; 34:14560-70. [PMID: 25355210 DOI: 10.1523/jneurosci.1310-14.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha 1-adrenergic receptors (α1-ARs) control the activity of dorsal raphe nucleus (DRn) serotonin (5-HT) neurons and play crucial role in the regulation of arousal and stress homoeostasis. However, the precise role of these receptors in regulating glutamate synapses of rat DRn 5-HT neurons and whether chronic stress exposure alters such regulation remain unknown. In the present study, we examined the impact of chronic restraint stress on α1-AR-mediated regulation of glutamate synapses onto DRn 5-HT neurons. We found that, in the control condition, activation of α1-ARs induced an inward current and long-term depression (LTD) of glutamate synapses of DRn 5-HT neurons. The α1-AR LTD was initiated by postsynaptic α1-ARs but mediated by a decrease in glutamate release. The presynaptic expression of the α1-AR LTD was signaled by retrograde endocannabinoids (eCBs). Importantly, we found that chronic exposure to restraint stress profoundly reduced the magnitude of α1-AR LTD but had no effect on the amplitude of α1-AR-induced inward current. Chronic restraint stress also reduced the CB1 receptor-mediated inhibition of EPSC and the eCB-mediated depolarization-induced suppression of excitation. Collectively, these results indicate that chronic restraint stress impairs the α1-AR LTD by reducing the function of presynaptic CB1 receptors and reveal a novel mechanism by which noradrenaline controls synaptic strength and plasticity in the DRn. They also provide evidence that chronic stress impairs eCB signaling in the DRn, which may contribute, at least in part, to the dysregulation of the stress homeostasis.
Collapse
|
17
|
Su J, Tanaka Y, Muratsubaki T, Kano M, Kanazawa M, Fukudo S. Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats. Neurogastroenterol Motil 2015; 27:30-9. [PMID: 25359531 DOI: 10.1111/nmo.12462] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) and its receptor 1 (CRH-R1) play an important role in the colonic response to stress. The central nucleus of the amygdala (CeA) is a major extrahypothalamic site that contains a large number of neurons expressing both CRH and CRH-R1. Here, we verified the hypothesis that CRH in the CeA sensitizes visceral nociception via CRH-R1 with release of noradrenaline, dopamine, and serotonin (5-HT) in the CeA. METHODS In male Wistar rats, visceral sensitivity was quantified by recording the visceromotor response to colorectal distension (CRD) with administration of vehicle, CRH, or the CRH-R1 antagonist CP-154526+ CRH or CRH-R1 antagonist CP-154526 alone into the CeA. Simultaneously, extracellular levels of noradrenaline, dopamine, and 5-HT were measured in the CeA using microdialysis. All data were obtained under restraint conditions. KEY RESULTS Administration of CRH into the CeA significantly increased the number of abdominal muscle contractions in response to CRD. CP-154526 significantly blocked the number of abdominal muscle contractions in response to CRD with the administration of CRH into the CeA. Noradrenaline in the CeA was increased by CRD, further increased by CRH, and inhibited by CRH-R1 antagonist. Dopamine in the CeA was also exaggerated by CRH but was not inhibited by CRH-R1 antagonist. 5-HT in the CeA was unchanged. CONCLUSIONS & INFERENCES These results suggest that CRH in the CeA sensitizes visceral nociception via CRH-R1 with release of noradrenaline.
Collapse
Affiliation(s)
- J Su
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep-wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep-wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Larry D Sanford
- Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23507, USA,
| | | | | |
Collapse
|
19
|
Coelho CM, Balaban CD. Visuo-vestibular contributions to anxiety and fear. Neurosci Biobehav Rev 2014; 48:148-59. [PMID: 25451199 DOI: 10.1016/j.neubiorev.2014.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
The interactive roles of the visual and vestibular systems allow for postural control within boundaries of perceived safety. In specific circumstances, visual vestibular and postural interactions act as a cue that trigger fear, similarly to what occurs in motion sickness. Unusual patterns of visuo-vestibular interaction that emerge without warning can elicit fear, which can then become associated to a certain stimuli or situation, creating a CS-US association, (i.e., phobia), or can emerge without warning but also without becoming associated to a particular concomitant event (i.e., panic). Depending on the individual sensitivity to visuo-vestibular unusual patterns and its impact in postural control, individuals will be more or less vulnerable to develop these disorders. As such, the mechanism we here propose is also sufficient to explain the lack of certain fears albeit exposure. Following this rationale, a new subcategory of anxiety disorders, named visuo-vestibular fears can be considered. This model brings important implications for developmental and evolutionary psychological science, and invites to place visuo-vestibular fears in a particular subtype or specification within the DSM-5 diagnostic criteria.
Collapse
Affiliation(s)
- Carlos M Coelho
- University of Minho, School of Engineering, Centro Algoritmi, Guimarães, Portugal; University of Queensland, Queensland Brain Institute, Brisbane, Australia.
| | - Carey D Balaban
- University of Pittsburgh, School of Med, Department of Otolaryngology, Eye & Ear Inst., Pittsburgh, PA, USA; University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, USA; University of Pittsburgh, Department of Communication Sciences & Disorders, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Corteen NL, Carter JA, Rudolph U, Belelli D, Lambert JJ, Swinny JD. Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Struct Funct 2014; 220:2739-63. [PMID: 24973971 DOI: 10.1007/s00429-014-0824-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 01/28/2023]
Abstract
The dorsal raphe nucleus (DRN) provides the major source of serotonin to the central nervous system (CNS) and modulates diverse neural functions including mood. Furthermore, DRN cellular networks are engaged in the stress-response at the CNS level allowing for adaptive behavioural responses, whilst stress-induced dysregulation of DRN and serotonin release is implicated in psychiatric disorders. Therefore, identifying the molecules regulating DRN activity is fundamental to understand DRN function in health and disease. GABAA receptors (GABAARs) allow for brain region, cell type and subcellular domain-specific GABA-mediated inhibitory currents and are thus key regulators of neuronal activity. Yet, the GABAAR subtypes expressed within the neurochemically diverse cell types of the mouse DRN are poorly described. In this study, immunohistochemistry and confocal microscopy revealed that all serotonergic neurons expressed immunoreactivity for the GABAAR alpha2 and 3 subunits, although the respective signals were co-localised to varying degrees with inhibitory synaptic marker proteins. Only a topographically located sub-population of serotonergic neurons exhibited GABAAR alpha1 subunit immunoreactivity. However, all GABAergic as well as non-GABAergic, non-serotonergic neurons within the DRN expressed GABAAR alpha1 subunit immunoreactivity. Intriguingly, immunoreactivity for the GABAAR gamma2 subunit was enriched on GABAergic rather than serotonergic neurons. Finally, repeated restraint stress increased the expression of the GABAAR alpha3 subunit at the mRNA and protein level. The study demonstrates the identity and location of distinct GABAAR subunits within the cellular networks of the mouse DRN and that stress impacts on the expression levels of particular subunits at the gene and protein level.
Collapse
Affiliation(s)
- Nicole L Corteen
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK,
| | | | | | | | | | | |
Collapse
|
21
|
Howerton AR, Roland AV, Fluharty JM, Marshall A, Chen A, Daniels D, Beck SG, Bale TL. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol Psychiatry 2014; 75:873-83. [PMID: 24289884 PMCID: PMC3997756 DOI: 10.1016/j.biopsych.2013.10.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Women are twice as likely as men to suffer from stress-related affective disorders. Corticotropin-releasing factor (CRF) is an important link between stress and mood, in part through its signaling in the serotonergic dorsal raphe (DR). Development of CRF receptor-1 (CRFr1) antagonists has been a focus of numerous clinical trials but has not yet been proven efficacious. We hypothesized that sex differences in CRFr1 modulation of DR circuits might be key determinants in predicting therapeutic responses and affective disorder vulnerability. METHODS Male and female mice received DR infusions of the CRFr1 antagonist, NBI 35965, or CRF and were evaluated for stress responsivity. Sex differences in indices of neural activation (cFos) and colocalization of CRFr1 throughout the DR were examined. Whole-cell patch-clamp electrophysiology assessed sex differences in serotonin neuron membrane characteristics and responsivity to CRF. RESULTS Males showed robust behavioral and hypothalamic-pituitary-adrenal axis responses to DR infusion of NBI 35965 and CRF, whereas females were minimally responsive. Sex differences were also found for both CRF-induced DR cFos and CRFr1 co-localization throughout the DR. Electrophysiologically, female serotonergic neurons showed blunted membrane excitability and divergent inhibitory postsynaptic current responses to CRF application. CONCLUSIONS These studies demonstrate convincing sex differences in CRFr1 activity in the DR, where blunted female responses to NBI 35965 and CRF suggest unique stress modulation of the DR. These sex differences might underlie affective disorder vulnerability and differential sensitivity to pharmacologic treatments developed to target the CRF system, thereby contributing to a current lack of CRFr1 antagonist efficacy in clinical trials.
Collapse
Affiliation(s)
- Alexis R Howerton
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison V Roland
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Fluharty
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anikò Marshall
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Sheryl G Beck
- Department of Anesthesia, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tracy L Bale
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 2014; 267:1-10. [PMID: 24583042 DOI: 10.1016/j.neuroscience.2014.02.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/13/2014] [Accepted: 02/08/2014] [Indexed: 12/31/2022]
Abstract
Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain.
Collapse
Affiliation(s)
- C-J Yang
- School of Preschool & Special Education, East China Normal University, Shanghai, China.
| | - H-P Tan
- School of Preschool & Special Education, East China Normal University, Shanghai, China
| | - Y-J Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Hansson C, Alvarez-Crespo M, Taube M, Skibicka KP, Schmidt L, Karlsson-Lindahl L, Egecioglu E, Nissbrandt H, Dickson SL. Influence of ghrelin on the central serotonergic signaling system in mice. Neuropharmacology 2014; 79:498-505. [DOI: 10.1016/j.neuropharm.2013.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 02/09/2023]
|
24
|
Lee JS, Lee HS. Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: Light microscopic study. Brain Res 2014; 1560:46-59. [DOI: 10.1016/j.brainres.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
25
|
Nakamura K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front Integr Neurosci 2013; 7:60. [PMID: 23986662 PMCID: PMC3753458 DOI: 10.3389/fnint.2013.00060] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide "reward context" information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Physiology, Kansai Medical University Hirakata, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Kawaguchi, Japan
| |
Collapse
|
26
|
Margatho LO, Elias CF, Elias LLK, Antunes-Rodrigues J. Oxytocin in the central amygdaloid nucleus modulates the neuroendocrine responses induced by hypertonic volume expansion in the rat. J Neuroendocrinol 2013; 25:466-77. [PMID: 23331859 DOI: 10.1111/jne.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/13/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time-polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre-treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.
Collapse
Affiliation(s)
- L O Margatho
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
27
|
Borgers AJ, Alkemade A, Van de Giessen EM, Drent ML, Booij J, Bisschop PH, Fliers E. Imaging of serotonin transporters with [123I]FP-CIT SPECT in the human hypothalamus. EJNMMI Res 2013; 3:34. [PMID: 23618227 PMCID: PMC3648392 DOI: 10.1186/2191-219x-3-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serotonergic neurons in the rodent hypothalamus are implicated in key neuroendocrine and metabolic functions, including circadian rhythmicity. However, the assessment of the serotonergic system in the human hypothalamus in vivo is difficult as delineation of the hypothalamus is cumbersome with conventional region-of-interest analysis. In the present study, we aimed to develop a method to visualize serotonin transporters (SERT) in the hypothalamus. Additionally, we tested the hypothesis that hypothalamic SERT binding ratios are different between patients with hypothalamic impairment (HI), pituitary insufficiency (PI), and control subjects (C). METHODS SERT availability was determined in 17 subjects (6 HI, 5 PI, and 6 healthy controls), 2 h after injection of 123I-N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ([123I]FP-CIT), using single-photon emission computed tomography (performed on a brain-dedicated system) fused with individual magnetic resonance imaging (MRI) scans of the brain. The hypothalamus (representing specific SERT binding) and cerebellum (representing nonspecific binding) were manually delineated on each MRI to assess [123I]FP-CIT binding and specific-to-nonspecific binding ratios. RESULTS In each healthy subject, [123I]FP-CIT binding was higher in the hypothalamus than in the cerebellum, and the mean hypothalamic binding ratio of SERT was 0.29 ± 0.23. We found no difference in hypothalamic binding ratios between HI, PI, and control subjects (HI 0.16 ± 0.24, PI 0.45 ± 0.39, C 0.29 ± 0.23, p value 0.281). CONCLUSIONS We were able to demonstrate SERT binding in the human hypothalamus in vivo. However, we did not find altered hypothalamic SERT binding in patients with hypothalamic impairment. TRIAL REGISTRATION Netherlands Trial Register: NTR2520.
Collapse
Affiliation(s)
- Anke J Borgers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Room F5-168, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
29
|
Wang J, Shen RY, Haj-Dahmane S. Endocannabinoids mediate the glucocorticoid-induced inhibition of excitatory synaptic transmission to dorsal raphe serotonin neurons. J Physiol 2012; 590:5795-808. [PMID: 22946098 DOI: 10.1113/jphysiol.2012.238659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids play a critical role in the modulation of stress responses by controlling the function of the serotonin (5-HT) system. However, the precise effects of glucocorticoids on the excitability of dorsal raphe (DR) 5-HT neurons remain unknown. In this study, we investigated the effects of glucocorticoids on excitatory synaptic transmission to putative DR 5-HT neurons. We found that corticosterone or the synthetic glucocorticoid agonist dexamethasone rapidly suppressed glutamatergic synaptic transmission to DR 5-HT neurons by inhibiting glutamate release in the DR. This inhibitory effect was mimicked by membrane-impermeable glucocorticoids, indicating the involvement of membrane-located corticosteroid receptors. The glucocorticoid-induced inhibition of glutamatergic transmission was mediated by the activation of postsynaptic G-protein-coupled receptors and signalled by retrograde endocannabinoid (eCB) messengers. Examination of the downstream mechanisms revealed that glucocorticoids enhance eCB signalling via an inhibition of cyclooxygenase-2. Together, these findings unravel a novel mechanism by which glucocorticoids control the excitability of DR 5-HT neurons and provide new insight into the rapid effects of stress hormones on the function of the 5-HT system.
Collapse
Affiliation(s)
- Jue Wang
- Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | | | | |
Collapse
|
30
|
Dong E, Wellman LL, Yang L, Sanford LD. Effects of microinjections of Group II metabotropic glutamate agents into the amygdala on sleep. Brain Res 2012; 1452:85-95. [PMID: 22453124 PMCID: PMC3326230 DOI: 10.1016/j.brainres.2012.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022]
Abstract
Systemic administration of the Group II metabotropic glutamate (mGlu) receptor agonist, LY379268 (LY37), dose-dependently suppresses rapid eye movement sleep (REM) whereas systemic administration of the mGlu II receptor antagonist, LY341495 (LY34), increases arousal. Group II mGlu receptors are highly expressed in the amygdala, a brain region involved in the regulation of sleep and arousal. To determine whether the amygdala is involved in mediating the effects of Group II mGlu agents on sleep, we microinjected LY37 and LY34 into the basal amygdala (BA) and the central nucleus of the amygdala (CNA) and recorded sleep and wakefulness. Wistar rats were implanted with electrodes for recording sleep and with bilateral cannulae aimed into BA for drug administration. Different groups of rats received bilateral microinjections of LY37 into BA at two dosage ranges (3.2 mM, 5.3 mM or 10.7 mM or 0.1 nM, 2.0 nM or 10.0 nM) or one dosage range of LY34 (1.0 nM, 30.0 nM or 60.0 nM). Microinjections into CNA were conducted at one dosage range for LY37 (0.1 nM, 2.0 nM or 10.0 nM) and for LY34 (1.0 nM, 30.0 nM or 60.0 nM). All drugs or vehicle alone were administered in a counterbalanced order at 5-day intervals. Following microinjection, sleep was recorded for 20 h. Microinjection of LY37 into BA at both nM and mM concentrations significantly decreased REM without significantly altering NREM, total sleep or wakefulness. The high dosage of LY34 in BA significantly suppressed NREM and total sleep. Microinjections of LY37 or LY34 into CNA had no significant impact on sleep. We suggest that Group II mGlu receptors may influence specific cells in BA that control descending output (via the CNA or bed nucleus of the stria terminalis) that in turn regulates pontine REM generator regions.
Collapse
Affiliation(s)
- Enheng Dong
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | |
Collapse
|
31
|
Martin MM, Liu Y, Wang Z. Developmental exposure to a serotonin agonist produces subsequent behavioral and neurochemical changes in the adult male prairie vole. Physiol Behav 2012; 105:529-35. [PMID: 21958679 PMCID: PMC3225497 DOI: 10.1016/j.physbeh.2011.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022]
Abstract
Autistic spectrum disorders (ASDs) are classified as pervasive developmental disorders characterized by abnormalities in various cognitive and behavioral functions. Although exact underlying causes are still unknown, nearly 30% of autistic patients show elevated blood levels of serotonin (5-HT) and, therefore, various genetic and environmental factors that are known to elevate 5-HT levels may play a role in the development of ASDs. In the present study, we used the socially monogamous male prairie vole (Microtus ochrogaster) as an animal model to examine the effects of perinatal exposure to 5-methoxytryptamine (5-MT), a non-selective serotonin agonist, on subsequent behavioral and neurochemical changes in the brain. 5-MT treated males showed a decrease in affiliation and an increase in anxiety-related behavior, as well as a decrease in the density of 5-HT immunoreactive (ir) fibers in the amygdala and oxytocin-ir and vasopressin-ir cells in the paraventricular nucleus of the hypothalamus, compared to saline treated controls. These data indicate that exposure to 5-HT during early development can induce abnormalities in various neurochemical systems which, in turn, may underlie deficits in social and anxiety-related behaviors. In addition, these data will help to establish the prairie vole model to study the neurobiological underpinnings of complex neuropsychiatric disorders such as ASDs.
Collapse
Affiliation(s)
- Melissa M. Martin
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
32
|
Liu X, Wellman LL, Yang L, Ambrozewicz MA, Tang X, Sanford LD. Antagonizing corticotropin-releasing factor in the central nucleus of the amygdala attenuates fear-induced reductions in sleep but not freezing. Sleep 2011; 34:1539-49. [PMID: 22043125 DOI: 10.5665/sleep.1394] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Contextual fear is followed by significant reductions in rapid eye movement sleep (REM) that are regulated by the central nucleus of the amygdala (CNA). Corticotropin-releasing factor (CRF) plays a major role in regulating the stress response as well as arousal, and CRF in CNA is implicated in stress-related behavior. To test the hypothesis that CRF regulation of CNA is involved in fear-induced alterations in REM, we determined the effects of microinjections into CNA of the CRF1 antagonist, antalarmin (ANT) on fear-induced reductions in REM. We also evaluated c-Fos activation in the hypothalamic paraventricular nucleus (PVN), locus coeruleus (LC), and dorsal raphe nucleus (DRN) to determine whether activation of these regions was consistent with their roles in regulating stress and in the control of REM. DESIGN On separate days, rats were subjected to baseline and 2 shock training sessions (S1 and S2). Five days later, the rats received bilateral microinjections of ANT (4.8 mM) or vehicle (VEH) prior to exposure to the fearful context. Sleep was recorded for 20 h in each condition. Freezing was assessed during S1, S2, and context. Separate groups of rats received identical training and microinjections or handling control (HC) only, but were sacrificed 2 h after context exposure to assess c-Fos expression. SETTING NA. PATIENTS OR PARTICIPANTS NA. INTERVENTIONS NA. MEASUREMENTS AND RESULTS Compared to baseline, S1 and S2 significantly reduced REM. Exposure to the fearful context reduced REM in VEH treated rats, whereas REM in ANT treated rats did not differ from baseline. ANT did not significantly alter freezing. Fear-induced c-Fos expression was decreased in PVN and LC after ANT compared to VEH. CONCLUSIONS The results demonstrate that CRF receptors in CNA are involved in fear-induced reductions in REM and neural activation (as indicated by c-Fos) in stress and REM regulatory regions, but not in fear-induced freezing.
Collapse
Affiliation(s)
- Xianling Liu
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | | | |
Collapse
|
33
|
Waselus M, Valentino RJ, Van Bockstaele EJ. Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J Chem Neuroanat 2011; 41:266-80. [PMID: 21658442 PMCID: PMC3156417 DOI: 10.1016/j.jchemneu.2011.05.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023]
Abstract
The midbrain dorsal raphe nucleus (DR) is the origin of the central serotonin (5-HT) system, a key neurotransmitter system that has been implicated in the expression of normal behaviors and in diverse psychiatric disorders, particularly affective disorders such as depression and anxiety. One link between the DR-5-HT system and affective disorders is exposure to stressors. Stress is a major risk factor for affective disorders, and stressors alter activity of DR neurons in an anatomically specific manner. Stress-induced changes in DR neuronal activity are transmitted to targets of the DR via ascending serotonergic projections, many of which collateralize to innervate multiple brain regions. Indeed, the collateralization of DR efferents allows for the coordination of diverse components of the stress response. This review will summarize our current understanding of the organization of the ascending DR system and its collateral projections. Using the neuropeptide corticotropin-releasing factor (CRF) system as an example of a stress-related initiator of DR activity, we will discuss how topographic specificity of afferent regulation of ascending DR circuits serves to coordinate activity in functionally diverse target regions under appropriate conditions.
Collapse
Affiliation(s)
- Maria Waselus
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | | | | |
Collapse
|
34
|
Osterberg N, Wiehle M, Oehlke O, Heidrich S, Xu C, Fan CM, Krieglstein K, Roussa E. Sim1 is a novel regulator in the differentiation of mouse dorsal raphe serotonergic neurons. PLoS One 2011; 6:e19239. [PMID: 21541283 PMCID: PMC3082558 DOI: 10.1371/journal.pone.0019239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/30/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesencephalic dopaminergic neurons (mDA) and serotonergic (5-HT) neurons are clinically important ventral neuronal populations. Degeneration of mDA is associated with Parkinson's disease; defects in the serotonergic system are related to depression, obsessive-compulsive disorder, and schizophrenia. Although these neuronal subpopulations reveal positional and developmental relationships, the developmental cascades that govern specification and differentiation of mDA or 5-HT neurons reveal missing determinants and are not yet understood. METHODOLOGY We investigated the impact of the transcription factor Sim1 in the differentiation of mDA and rostral 5-HT neurons in vivo using Sim1-/- mouse embryos and newborn pups, and in vitro by gain- and loss-of-function approaches. PRINCIPAL FINDINGS We show a selective significant reduction in the number of dorsal raphe nucleus (DRN) 5-HT neurons in Sim1-/- newborn mice. In contrast, 5-HT neurons of other raphe nuclei as well as dopaminergic neurons were not affected. Analysis of the underlying molecular mechanism revealed that tryptophan hydroxylase 2 (Tph2) and the transcription factor Pet1 are regulated by Sim1. Moreover, the transcription factor Lhx8 and the modulator of 5-HT(1A)-mediated neurotransmitter release, Rgs4, exhibit significant higher expression in ventral hindbrain, compared to midbrain and are target genes of Sim1. CONCLUSIONS The results demonstrate for the first time a selective transcription factor dependence of the 5-HT cell groups, and introduce Sim1 as a regulator of DRN specification acting upstream of Pet1 and Tph2. Moreover, Sim1 may act to modulate serotonin release via regulating RGS4. Our study underscores that subpopulations of a common neurotransmitter phenotype use distinct combinations of transcription factors to control the expression of shared properties.
Collapse
Affiliation(s)
- Nadja Osterberg
- Department for Neuroanatomy, Georg-August-University Goettingen, Goettingen, Germany
- DFG Research Center Molecular Physiology of the Brain (CMPB), Goettingen, Germany
| | - Michael Wiehle
- Department for Neuroanatomy, Georg-August-University Goettingen, Goettingen, Germany
| | - Oliver Oehlke
- Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stefanie Heidrich
- Department for Neuroanatomy, Georg-August-University Goettingen, Goettingen, Germany
| | - Cheng Xu
- Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
| | - Kerstin Krieglstein
- DFG Research Center Molecular Physiology of the Brain (CMPB), Goettingen, Germany
- Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department for Neuroanatomy, Georg-August-University Goettingen, Goettingen, Germany
- DFG Research Center Molecular Physiology of the Brain (CMPB), Goettingen, Germany
- Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Lukkes JL, Staub DR, Dietrich A, Truitt W, Neufeld-Cohen A, Chen A, Johnson PL, Shekhar A, Lowry CA. Topographical distribution of corticotropin-releasing factor type 2 receptor-like immunoreactivity in the rat dorsal raphe nucleus: co-localization with tryptophan hydroxylase. Neuroscience 2011; 183:47-63. [PMID: 21453754 DOI: 10.1016/j.neuroscience.2011.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/04/2011] [Accepted: 03/22/2011] [Indexed: 01/07/2023]
Abstract
Corticotropin-releasing factor (CRF) and CRF-related neuropeptides are involved in the regulation of stress-related physiology and behavior. Members of the CRF family of neuropeptides bind to two known receptors, the CRF type 1 (CRF₁) receptor, and the CRF type 2 (CRF₂) receptor. Although the distribution of CRF₂ receptor mRNA expression has been extensively studied, the distribution of CRF₂ receptor protein has not been characterized. An area of the brain known to contain high levels of CRF₂ receptor mRNA expression and CRF₂ receptor binding is the dorsal raphe nucleus (DR). In the present study we investigated in detail the distribution of CRF₂ receptor immunoreactivity throughout the rostrocaudal extent of the DR. CRF₂ receptor-immunoreactive perikarya were observed throughout the DR, with the highest number and density in the mid-rostrocaudal DR. Dual immunofluorescence revealed that CRF₂ receptor immunoreactivity was frequently co-localized with tryptophan hydroxylase, a marker of serotonergic neurons. This study provides evidence that CRF₂ receptor protein is expressed in the DR, and that CRF₂ receptors are expressed in topographically organized subpopulations of cells in the DR, including serotonergic neurons. Furthermore, these data are consistent with the hypothesis that CRF₂ receptors play an important role in the regulation of stress-related physiology and behavior through actions on serotonergic and non-serotonergic neurons within the DR.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bang SJ, Commons KG. Age-dependent effects of initial exposure to nicotine on serotonin neurons. Neuroscience 2011; 179:1-8. [PMID: 21277949 DOI: 10.1016/j.neuroscience.2011.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/15/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Adolescence is a critical vulnerable period during which exposure to nicotine greatly enhances the possibility to develop drug addiction. Growing evidence suggests that serotonergic (5-HT) neurotransmission may contribute to the initiation and maintenance of addictive behavior. As the dorsal raphe (DR) and median raphe (MnR) nuclei are the primary 5-HT source to the forebrain, the current study tested the hypothesis that there are age-dependent effects of acute nicotine administration on activation of 5-HT neurons within these regions. Both adolescent (Postnatal day 30) and adult (Postnatal day 70) male Sprague-Dawley rats received subcutaneous injection of either saline or nicotine (0.2, 0.4, or 0.8 mg/kg). Subsequently, the number of 5-HT cells that were double-labeled for Fos and tryptophan hydroxylase was counted in seven subregions within the DR and the entire MnR. The results show that acute nicotine injection induces Fos expression in 5-HT neurons in a region-specific manner. In addition, adolescents show broader regional activations at either a lower (0.2 mg/kg) and a higher (0.8 mg/kg) dose of nicotine, displaying a unique U-shape response curve across doses. In contrast, 5-HT cells with activated Fos expression were restricted to fewer regions in adults, and the patterns of expression were more consistent across doses. The results reveal dose-dependent effects of nicotine during adolescence with apparent sensitization at different ends of the dosage spectrum examined compared to adults. These data indicate that initial exposure to nicotine may have unique effects in adolescence on the ascending 5-HT system, with the potential for consequences on the affective-motivational qualities of the drug and the subsequent propensity for repeated use.
Collapse
Affiliation(s)
- S J Bang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Children's Hospital Boston, and Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Restraint stress-induced reduction in prepulse inhibition in Brown Norway rats: role of the CRF2 receptor. Neuropharmacology 2010; 60:561-71. [PMID: 21185316 DOI: 10.1016/j.neuropharm.2010.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/22/2022]
Abstract
Stress plays a role in many psychiatric disorders that are characterized by deficits in prepulse inhibition (PPI), a form of sensorimotor gating. Corticotropin-releasing factor (CRF) is one of the most important neurotransmitters involved in behavioral components of the stress response. Central infusion of CRF reduces PPI in both rats and mice. In mice, it has been shown that CRF(1) receptor activation mediates the effect of exogenous CRF on PPI. However, the roles of the two CRF receptors in a stress-induced reduction in PPI are not known. We sought to determine whether CRF(1) and/or CRF(2) receptor blockade attenuates a stress-induced reduction of PPI in rats. In separate experiments, we assessed PPI in Brown Norway rats after exposure to 5 days of 2-h restraint, and after pretreatment with the CRF(1) receptor antagonist, CP-154,526 (20.0 mg/kg), or the CRF(2) receptor antagonist, antisauvagine-30 (10.0 μg). Repeated, but not acute, restraint decreased PPI and attenuated the increase in PPI caused by repeated PPI testing. Blockade of the CRF(1) receptor did not attenuate the effect of repeated restraint on PPI or grooming behavior. While CRF(2) receptor blockade did attenuate the effect of repeated restraint on PPI, repeated ICV infusion of the selective CRF(2) receptor agonist urocortin III, did not affect PPI. These findings demonstrate the effect of stress on sensorimotor gating and suggest that the CRF(2) receptor mediates this effect in rats.
Collapse
|
39
|
Chronic amphetamine treatment enhances corticotropin-releasing factor-induced serotonin release in the amygdala. Eur J Pharmacol 2010; 644:80-7. [PMID: 20655906 DOI: 10.1016/j.ejphar.2010.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/02/2010] [Accepted: 07/11/2010] [Indexed: 11/23/2022]
Abstract
Amphetamine use is associated with dysphoric states, including heightened anxiety, that emerge within 24h of withdrawal from the drug. Corticotropin-releasing factor increases serotonin release in the central nucleus of the amygdala, and this neurochemical circuitry may play a role in mediating fear and anxiety states. We have previously shown that chronic amphetamine treatment increases corticotropin-releasing factor receptor type-2 levels in the serotonergic dorsal raphe nucleus of the rat. Therefore, we hypothesized that chronic amphetamine treatment would enhance the amygdalar serotonergic response to corticotropin-releasing factor infused into the dorsal raphe nucleus. Male rats were injected once-daily with d-amphetamine (2.5mg/kg i.p., or saline) for two weeks. Serotonin release within the central nucleus of the amygdala in response to intra-raphe infusion of corticotropin-releasing factor (100 ng) was measured 24h after the last treatment in urethane-anesthetized (1.8 mg/kg, i.p.) rats using in vivo microdialysis. Rats pretreated with amphetamine showed significantly enhanced serotonin release in the central nucleus of the amygdala in response to corticotropin-releasing factor infusion when compared to saline pretreated rats. Furthermore, this enhanced response was blocked by the corticotropin-releasing factor type-2 receptor antagonist antisauvagine-30 (2 microg) infused into the dorsal raphe nucleus. These results suggest increased sensitivity to corticotropin-releasing factor as mediated by type-2 receptors following chronic amphetamine treatment, which may underlie dysphoric states observed during amphetamine withdrawal.
Collapse
|
40
|
Bajic D, Commons KG. Acute noxious stimulation modifies morphine effect in serotonergic but not dopaminergic midbrain areas. Neuroscience 2010; 166:720-9. [PMID: 20026253 PMCID: PMC2823975 DOI: 10.1016/j.neuroscience.2009.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/18/2009] [Accepted: 12/11/2009] [Indexed: 11/20/2022]
Abstract
It is poorly understood if and how pain may modify the effect of opioids on neural systems that contribute to reward and addictive behavior. We hypothesized that the activation of ascending dopaminergic and serotonergic nuclei by morphine is modified by the presence of noxious stimulation. Immunohistochemical double-labeling technique with Fos was used to examine if an intraplantar formalin injection, an acute noxious input, changed the effect of morphine on dopaminergic neurons of the ventral tegmental area (VTA), and serotonergic neurons of the dorsal raphe nucleus (DR). Four groups of rats were analyzed: (1) control injected with normal saline s.c., (2) rats treated with formalin into the hind paw 30 min after normal saline injection, (3) rats injected with morphine sulfate s.c., and (4) rats treated with formalin into the hind paw 30 min after morphine injection (morphine/formalin). Following morphine injection, there was an increase in the number of dopaminergic neurons in the VTA with Fos immunolabeling. However, noxious stimulation did not detectably change morphine's effect on Fos expression in VTA dopamine neurons. In contrast, the number of serotonergic neurons containing Fos was increased in the morphine/formalin group compared to all other groups and this effect was topographically selective for the dorsal area of the DR at mid rostro-caudal levels. Therefore, morphine's activation of the VTA, which is associated with motivated behavior and reward seeking, appears similar in the context of pain. However, activation of the ascending serotonin system, which influences mood and has the capacity to modify reward pathways, appears different. In addition, these findings reveal interactions between nociceptive signaling and opioids that contrasts with the notion that opioids simply block access of nociceptive signaling to supraspinal structures.
Collapse
Affiliation(s)
- D Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Boston, MA, USA.
| | | |
Collapse
|
41
|
Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in the rat hypothalamus and the surrounding diencephalic and telencephalic areas. J Chem Neuroanat 2010; 39:235-41. [PMID: 20080175 DOI: 10.1016/j.jchemneu.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/09/2010] [Accepted: 01/09/2010] [Indexed: 11/23/2022]
Abstract
Disorders of serotonergic neurotransmission are involved in disturbances of numerous hypothalamic functions including circadian rhythm, mood, neuroendocrine functions, sleep and feeding. Among the serotonin receptors currently recognized, 5-HT(1A) receptors have received considerable attention due to their importance in the etiology of mood disorders. While previous studies have shown the presence of 5-HT(1A) receptors in several regions of the rat brain, there is no detailed map of the cellular distribution of 5-HT(1A) receptors in the rat diencephalon. In order to characterize the distribution and morphology of the neurons containing 5-HT(1A) receptors in the diencephalon and the adjacent telencephalic areas, single label immunohistochemistry was utilized. Large, multipolar, 5-HT(1A)-immunoreactive (IR) neurons were mainly detected in the magnocellular preoptic nucleus and in the nucleus of diagonal band of Broca, while the supraoptic nucleus contained mainly fusiform neurons. Medium-sized 5-HT(1A)-IR neurons with triangular or round-shaped somata were widely distributed in the diencephalon, populating the zona incerta, lateral hypothalamic area, anterior hypothalamic nucleus, substantia innominata, dorsomedial and premamillary nuclei, paraventricular nucleus and bed nucleus of stria terminalis. The present study provides schematic mapping of 5-HT(1A)-IR neurons in the rat diencephalon. In addition, the morphology of the detected 5-HT(1A)-IR neural elements is also described. Since rat is a widely used laboratory animal in pharmacological models of altered serotoninergic neurotransmission, detailed mapping of 5-HT(1A)-IR structures is pivotal for the neurochemical characterization of the neurons containing 5-HT(1A) receptors.
Collapse
|
42
|
Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T. Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 2009; 518:668-86. [DOI: 10.1002/cne.22237] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
de Lange RPJ, Wiegant VM, Stam R. Altered neuropeptide Y and neurokinin messenger RNA expression and receptor binding in stress-sensitised rats. Brain Res 2008; 1212:35-47. [PMID: 18440496 DOI: 10.1016/j.brainres.2008.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
A single session of footshocks in rats causes long-lasting sensitisation of behavioural, hormonal and autonomic responses to subsequent novel stressful challenges as well as altered pain sensitivity. These changes mimic aspects of post-traumatic stress disorder in humans. Our aim was to identify neuropeptide substrates in the central nervous system involved in stress sensitisation. Male Wistar rats were exposed to ten footshocks in 15 min (preshocked) or placed in the same cage without shocks (control). Two weeks later, rats were placed in a novel cage, subjected to 5 min of 85 dB noise, and returned to their home cage. Rats were killed either before or 1 h after noise and their brains processed for in situ hybridization for neuropeptide Y (NPY) and beta-preprotachykinin-I (PPT) mRNA. Additional groups of rats were killed under basal conditions and brains processed for NPY and neurokinin receptor binding with radiolabelled ligands. Two weeks after footshock treatment NPY mRNA expression was increased in the basolateral amygdala and showed preshockxnoise interaction in the locus coeruleus (down after noise in controls, lower basal and unchanged after noise in preshocked). PPT expression in the lateral parabrachial nucleus also showed preshockxnoise interaction (up after noise in controls, higher basal and down after noise in preshocked), and was increased after noise in the periaquaeductal grey. NK1 receptor binding in the agranular insular cortex and arcuate nucleus of the hypothalamus and NK2 receptor binding in the amygdala was lower in preshocked rats than in controls. Altered expression of NPY in the basolateral amygdala and locus coeruleus could contribute to or compensate for behavioural and autonomic sensitisation in preshocked rats. Altered PPT expression in the parabrachial nucleus may be involved in the altered pain processing seen in this model. Lower NK1 and NK2 receptor numbers in cortex, hypothalamus and amygdala may reflect secondary adaptations to altered neuropeptide release. These long-term changes in brain neuropeptide systems could offer novel leads for pharmacological modulation of long-term stress-induced sensitisation.
Collapse
Affiliation(s)
- Robert P J de Lange
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, P.O. box 80040, 3508 TA Utrecht, The Netherlands
| | | | | |
Collapse
|
44
|
Selective anterograde tracing of nonserotonergic projections from dorsal raphe nucleus to the basal forebrain and extended amygdala. J Chem Neuroanat 2008; 35:317-25. [PMID: 18434087 DOI: 10.1016/j.jchemneu.2008.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/20/2022]
Abstract
The dorsal raphe nucleus (DRN) contains both serotonergic and nonserotonergic projection neurons. Retrograde tracing studies have demonstrated that components of the basal forebrain and extended amygdala are targeted heavily by input from nonserotonergic DRN neurons. The object of this investigation was to examine the terminal distribution of nonserotonergic DRN projections in the basal forebrain and extended amygdala, using a technique that allows selective anterograde tracing of nonserotonergic DRN projections. To trace nonserotonergic DRN projections, animals were pretreated with nomifensine, desipramine and the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), 7 days prior to placing an iontophoretic injection of biotinylated dextran amine (BDA) into the DRN. In animals treated with 5,7-DHT, numerous nonserotonergic BDA-labeled fibers ascended to the basal forebrain in the medial forebrain bundle system. Some of these labeled fibers crossed through the lateral hypothalamus, bed nucleus of the stria terminalis, and substantial innominata. These fibers entered the amygdala through the ansa peduncularis and ramified within the central and basolateral amygdaloid nuclei. Other fibers entered the diagonal band of Broca and formed a dense plexus of labeled fibers in the dorsal half of the intermediate portion of the lateral septal nucleus and the septohippocampal nucleus. These findings demonstrate that the basal forebrain and extended amygdala receive a dense projection from nonserotonergic DRN neurons. Given that the basal forebrain plays a critical role in processes such as motivation, affect, and behavioral control, these findings support the hypothesis that nonserotonergic DRN projections may exert substantial modulatory control over emotional and motivational functions.
Collapse
|
45
|
Mo B, Feng N, Renner K, Forster G. Restraint stress increases serotonin release in the central nucleus of the amygdala via activation of corticotropin-releasing factor receptors. Brain Res Bull 2008; 76:493-8. [PMID: 18534257 DOI: 10.1016/j.brainresbull.2008.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/26/2022]
Abstract
Decreases in serotonergic activity in the central nucleus of the amygdala reduce responses to stressors, suggesting an important role for serotonin in this region of the amygdala in stress reactivity. However, it is not known whether exposure to stressors actually increases serotonin release in the central nucleus of the amygdala. The current experiment tested the hypothesis that restraint stress increases extracellular serotonin within the central nucleus of the amygdala and adjacent medial amygdala using in vivo microdialysis in awake male rats during the dark phase of the light-dark cycle. Serotonin release in the central nucleus increased immediately in response to restraint stress. In contrast, there was no change in serotonin release within the adjacent medial amygdala during or following restraint. Since corticotropin-releasing factor is an important mediator of both responses to stressors and serotonergic activity, subsequent experiments tested the hypothesis that central nucleus serotonergic response to restraint stress is mediated by central corticotropin-releasing factor receptors. Administration of the corticotropin-releasing factor type 1 and 2 receptor antagonist d-Phe-CRF (icv, 10 microg/5 microl) prior to restraint stress suppressed restraint-induced serotonin release in the central nucleus. The results suggest that restraint stress rapidly and selectively increases serotonin release in the central nucleus of the amygdala by the activation of central corticotropin-releasing factor receptors. Furthermore, the results imply that corticotropin-releasing factor mediated serotonergic activity in central nucleus of the amygdala may be an important component of a stress response.
Collapse
Affiliation(s)
- Bing Mo
- Biology Department and Neuroscience Group, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
46
|
Bethea CL, Centeno ML. Ovarian steroid treatment decreases corticotropin-releasing hormone (CRH) mRNA and protein in the hypothalamic paraventricular nucleus of ovariectomized monkeys. Neuropsychopharmacology 2008; 33:546-56. [PMID: 17507918 DOI: 10.1038/sj.npp.1301442] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin-releasing hormone (CRH) gene and protein expression were examined in the paraventricular nucleus (PVN) of ovariectomized female macaques treated with placebo or hormone therapy (HT) consisting of either estrogen (E) for 28 days, or progesterone (P) for the last 14 of 28 days, or E for 28 days supplemented with P for the last 14 of 28 days using Silastic capsules implanted s.c. in the periscapular region (n=4/group). Perfusion fixed sections (25 microm) at five levels of the PVN (rostral to caudal at 250 microm intervals) were immunostained (ICC) with an antibody to human CRH or processed in an in situ hybridization (ISH) assay with a monkey specific CRH riboprobe. The immunostained CRH-positive area was quantified with a Marianas Stereology Workstation and Slidebook 4.2. There was a significant decrease in the immunological CRH signal with E, P, and E+P treatment as measured by total or average pixels and microns (analysis of variance (ANOVA), p<0.002; Student-Newman-Keul's post hoc test versus placebo control group, p<0.05). There was also a decrease in the number of detectable CRH neurons (ANOVA, p<0.03) with HT. The sections processed for ISH were exposed to autoradiographic films. The CRH mRNA signal was analyzed with NIH Image. The average optical density and positive pixel area of the CRH mRNA signal was significantly suppressed by ovarian HT (ANOVA p<0.002; Student-Newman-Keul's post hoc test versus placebo control group, p<0.05). In summary, 1 month of stable treatment with a moderate dose of E, P or E+P significantly reduced CRH mRNA and protein in the PVN of ovariectomized monkeys. These results suggest that this hormone treatment regimen may increase stress resilience in surgically menopausal primates.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
47
|
McNamara IM, Borella AW, Bialowas LA, Whitaker-Azmitia PM. Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, behavioral and peptide changes. Brain Res 2008; 1189:203-14. [DOI: 10.1016/j.brainres.2007.10.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/19/2023]
|
48
|
Michelsen KA, Schmitz C, Steinbusch HWM. The dorsal raphe nucleus—From silver stainings to a role in depression. ACTA ACUST UNITED AC 2007; 55:329-42. [PMID: 17316819 DOI: 10.1016/j.brainresrev.2007.01.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/29/2022]
Abstract
Over a hundred years ago, Santiago Ramón y Cajal used a new staining method developed by Camillo Golgi to visualize, among many other structures, what we today call the dorsal raphe nucleus (DRN) of the midbrain. Over the years, the DRN has emerged as a multifunctional and multitransmitter nucleus, which modulates or influences many CNS processes. It is a phylogenetically old brain area, whose projections reach out to a large number of regions and nuclei of the CNS, particularly in the forebrain. Several DRN-related discoveries are tightly connected with important events in the history of neuroscience, for example the invention of new histological methods, the discovery of new neurotransmitter systems and the link between neurotransmitter function and mood disorders. One of the main reasons for the wide current interest in the DRN is the nucleus' involvement in depression. This involvement is particularly attributable to the main transmitter of the DRN, serotonin. Starting with a historical perspective, this essay describes the morphology, ascending projections and multitransmitter nature of the DRN, and stresses its role as a key target for depression research.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
49
|
Halberstadt AL, Balaban CD. Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience 2006; 140:1067-77. [PMID: 16600519 DOI: 10.1016/j.neuroscience.2006.02.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 02/17/2006] [Accepted: 02/23/2006] [Indexed: 11/16/2022]
Abstract
Using a combination of double retrograde tracing and serotonin immunofluorescence staining, we examined whether individual serotonergic and nonserotonergic neurons in the dorsal raphe nucleus are sources of collateralized axonal projections to vestibular nuclei and the central amygdaloid nucleus in the rat. Following unilateral injections of Diamidino Yellow into the vestibular nuclei and Fast Blue into the central amygdaloid nucleus, it was observed that approximately one-fourth of the dorsal raphe nucleus neurons projecting to the vestibular nuclei send axon collaterals to the central amygdaloid nucleus. Immunofluorescence staining for serotonin revealed that more than half of the dorsal raphe nucleus neurons from which these collateralized projections arise contain serotonin-like immunoreactivity. These findings indicate that a subpopulation of serotonergic and nonserotonergic dorsal raphe nucleus cells may act to co-modulate processing in the vestibular nuclei and the central amygdaloid nucleus, regions implicated in the generation of emotional and affective responses to real and perceived motion.
Collapse
Affiliation(s)
- A L Halberstadt
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
50
|
Adamyan NY, Akopyan NS. Effects of basolateral amygdalar nuclei on neuronal activity in the medullary respiratory center under hypoxia conditions. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|