1
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
2
|
Ansari N, Ramachandran V, Mohamad NA, Salim E, Ismail P, Hazmi M, Mat LNI. Association of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) Gene Polymorphisms with Type 2 Diabetes among Malay Ethnics. Glob Med Genet 2023; 10:12-18. [PMID: 36703777 PMCID: PMC9873477 DOI: 10.1055/s-0042-1760384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, and the underlying causes remain unknown and have not been fully elucidated. Several candidate genes have been associated with T2DM in various populations with conflicting results. The variations found in glucokinase ( GCK ), glucokinase regulatory protein ( GCKR ), and glucose-6-phosphatase 2 ( G6PC2 ) genes were not well studied, particularly among Asians. Aims The main objective of this study was to determine the candidate genetic polymorphisms of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) genes in T2DM among Malay ethnics. Methods In this candidate gene association study, a total of 180 T2DM subjects and 180 control subjects were recruited to determine the genotypes using polymerase chain reaction-restriction fragment length polymorphism and Taqman probe assay methods. Genotype and allele frequencies in case and control samples were compared using the chi-squared test to determine a significant difference. Results The body mass index, fasting blood glucose, hemoglobin A1c, systolic and diastolic blood pressure, and total cholesterol were significantly different ( p < 0.05) between T2DM and control subjects. The genotypic and allelic frequencies of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) gene polymorphisms were significantly different between T2DM and controls ( p < 0.05). Conclusion Hence, rs1799884 of GCK gene and rs780094 of GCKR gene and rs560887 of the G6PC2 gene are possible genetic biomarkers in T2DM development among Malay ethnics in Malaysia.
Collapse
Affiliation(s)
- Neda Ansari
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasudevan Ramachandran
- Faculty of Health Sciences, University College MAIWP International, Taman Batu Muda, Kuala Lumpur, Malaysia,Vasudevan Ramachandran Faculty of Health Sciences, University College MAIWP InternationalTaman Batu Muda, 68100 Batu Caves, Kuala LumpurMalaysia
| | - Nur Afiqah Mohamad
- Centre for Foundation Studies, Lincoln University College, Selangor, DE, Malaysia
| | - Elnaz Salim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamad Hazmi
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Liyana Najwa Inchee Mat
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia,Address for correspondence Liyana Najwa Inchee, Mat, MBBCh BAO, PhD Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang 43400, Selangor DEMalaysia
| |
Collapse
|
3
|
Akbarzadeh M, Alipour N, Moheimani H, Zahedi AS, Hosseini-Esfahani F, Lanjanian H, Azizi F, Daneshpour MS. Evaluating machine learning-powered classification algorithms which utilize variants in the GCKR gene to predict metabolic syndrome: Tehran Cardio-metabolic Genetics Study. J Transl Med 2022; 20:164. [PMID: 35397593 PMCID: PMC8994379 DOI: 10.1186/s12967-022-03349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a prevalent multifactorial disorder that can increase the risk of developing diabetes, cardiovascular diseases, and cancer. We aimed to compare different machine learning classification methods in predicting metabolic syndrome status as well as identifying influential genetic or environmental risk factors. METHODS This candidate gene study was conducted on 4756 eligible participants from the Tehran Cardio-metabolic Genetic study (TCGS). We compared predictive models using logistic regression (LR), Random Forest (RF), decision tree (DT), support vector machines (SVM), and discriminant analyses. Demographic and clinical features, as well as variables regarding common GCKR gene polymorphisms, were included in the models. We used a 10-repeated tenfold cross-validation to evaluate model performance. RESULTS 50.6% of participants had MetS. MetS was significantly associated with age, gender, schooling years, BMI, physical activity, rs780094, and rs780093 (P < 0.05) as indicated by LR. RF showed the best performance overall (AUC-ROC = 0.804, AUC-PR = 0.776, and Accuracy = 0.743) and indicated BMI, physical activity, and age to be the most influential model features. According to the DT, a person with BMI < 24 and physical activity < 8.8 possesses a 4% chance for MetS. In contrast, a person with BMI ≥ 25, physical activity < 2.7, and age ≥ 33, has 77% probability of suffering from MetS. CONCLUSION Our findings indicated that, on average, machine learning models outperformed conventional statistical approaches for patient classification. These well-performing models may be used to develop future support systems that use a variety of data sources to identify persons at high risk of getting MetS.
Collapse
Affiliation(s)
- Mahdi Akbarzadeh
- Biostatistics, Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nadia Alipour
- Biostatistics, Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Asieh Sadat Zahedi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ho LJ, Lu CH, Su RY, Lin FH, Su SC, Kuo FC, Chu NF, Hung YJ, Liu JS, Hsieh CH. Association between glucokinase regulator gene polymorphisms and serum uric acid levels in Taiwanese adolescents. Sci Rep 2022; 12:5519. [PMID: 35365700 PMCID: PMC8975867 DOI: 10.1038/s41598-022-09393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The glucokinase regulator gene (GCKR) is located on chromosome 2p23. It plays a crucial role in maintaining plasma glucose homeostasis and metabolic traits. Recently, genome-wide association studies have revealed a positive association between hyperuricemia and GCKR variants in adults. This study investigated this genetic association in Taiwanese adolescents. Data were collected from our previous cross-sectional study (Taipei Children Heart Study). The frequencies of various genotypes (CC, CT, and TT) or alleles (C and T) of the GCKR intronic single-nucleotide polymorphism (SNP) rs780094 and the coding SNP rs1260326 (Pro446Leu, a common 1403C-T transition) were compared between a total of 968 Taiwanese adolescents (473 boys, 495 girls) with hyperuricemia or normal uric acid levels on the basis of gender differences. Logistic and linear regression analyses explored the role of GCKR in abnormal uric acid (UA) levels. Boys had higher UA levels than girls (6.68 ± 1.29 and 5.23 ± 0.95 mg/dl, respectively, p < 0.001). The analysis of both SNPs in girls revealed that the T allele was more likely to appear in patients with hyperuricemia than the C allele. After adjusting for confounders, the odds ratio (OR) for hyperuricemia incidence in the TT genotype was 1.75 (95% confidence interval [CI] 1.02–3.00), which was higher than that in the C allele carriers in rs1260326 in the girl population. Similarly, the TT genotypes had a higher risk of hyperuricemia, with an OR of 2.29 (95% CI 1.11–4.73) for rs1260326 and 2.28 (95% CI 1.09–4.75) for rs780094, than the CC genotype in girl adolescents. The T (Leu446) allele of GCKR rs1260326 polymorphism is associated with higher UA levels in Taiwanese adolescent girls.
Collapse
Affiliation(s)
- Li-Ju Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Ruei-Yu Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| |
Collapse
|
5
|
Yeh KH, Hsu LA, Teng MS, Wu S, Chou HH, Ko YL. Pleiotropic Effects of Common and Rare GCKR Exonic Mutations on Cardiometabolic Traits. Genes (Basel) 2022; 13:genes13030491. [PMID: 35328045 PMCID: PMC8951277 DOI: 10.3390/genes13030491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The common non-synonymous mutation of the glucokinase regulator (GCKR) gene, namely rs1260326, is widely reported to have pleiotropic effects on cardio-metabolic traits and hematological parameters. Objective: This study aimed to identify whether other GCKR variants may have pleiotropic effects independent of the rs1260326 genotypes. Methods: In total, 81,097 Taiwan Biobank participants were enrolled for the regional plot association studies and candidate variant analysis of the region around the GCKR gene. Results: The initial candidate variant approach showed the significant association of the rs1260326 genotypes with multiple phenotypes. Regional plot association analysis of the GCKR gene region further revealed genome-wide significant associations between GCKR variants and serum total and low-density lipoprotein cholesterol; triglyceride, uric acid, creatinine, aspartate aminotransferase, γ-Glutamyl transferase, albumin, and fasting plasma glucose levels; estimated glomerular filtration rate; leukocyte and platelet counts; microalbuminuria, and metabolic syndrome, with rs1260326 being the most common lead polymorphism. Serial conditional analysis identified genome-wide significant associations of two low-frequency exonic mutations, rs143881585 and rs8179206, with high serum triglyceride and albumin levels. In five rare GCKR exonic non-synonymous or nonsense mutations available for analysis, GCKR rs146175795 showed an independent association with serum triglyceride and albumin levels and rs150673460 showed an independent association with serum triglyceride levels. Weighted genetic risk scores from the combination of GCKR rs143881585 and rs146175795 revealed a significant association with metabolic syndrome. Conclusion: In addition to the rs1260326 variant, low-frequency and rare GCKR exonic mutations exhibit pleiotropic effects on serum triglyceride and albumin levels and the risk of metabolic syndrome. These results provide evidence that both common and rare GCKR variants may play a critical role in predicting the risk of cardiometabolic disorders.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
6
|
Zusi C, Rinaldi E, Bonetti S, Boselli ML, Trabetti E, Malerba G, Bonora E, Bonadonna RC, Trombetta M. Haplotypes of the genes (GCK and G6PC2) underlying the glucose/glucose-6-phosphate cycle are associated with pancreatic beta cell glucose sensitivity in patients with newly diagnosed type 2 diabetes from the VNDS study (VNDS 11). J Endocrinol Invest 2021; 44:2567-2574. [PMID: 34128214 DOI: 10.1007/s40618-020-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. AIM In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. METHODS In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. RESULTS Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). CONCLUSION Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.
Collapse
Affiliation(s)
- C Zusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Rinaldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - S Bonetti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - M L Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Trabetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - G Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - E Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - M Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| |
Collapse
|
7
|
Zahedi AS, Akbarzadeh M, Sedaghati-Khayat B, Seyedhamzehzadeh A, Daneshpour MS. GCKR common functional polymorphisms are associated with metabolic syndrome and its components: a 10-year retrospective cohort study in Iranian adults. Diabetol Metab Syndr 2021; 13:20. [PMID: 33602293 PMCID: PMC7890822 DOI: 10.1186/s13098-021-00637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous studies reported that common functional variants (rs780093, rs780094, and rs1260326) in the glucokinase regulator gene (GCKR) were associated with metabolic syndrome despite the simultaneous association with the favorable and unfavorable metabolic syndrome components. We decided to evaluate these findings in a cohort study with a large sample size of Iranian adult subjects, to our knowledge for the first time. We investigated the association of the GCKR variants with incident MetS in mean follow-up times for nearly 10 years. METHODS Analysis of this retrospective cohort study was performed among 5666 participants of the Tehran Cardiometabolic Genetics Study (TCGS) at 19-88 years at baseline. Linear and logistic regression analyses were used to investigate the metabolic syndrome (JIS criteria) association and its components with rs780093, rs780094, and rs1260326 in an additive genetic model. Cox regression was carried out to peruse variants' association with the incidence of metabolic syndrome in the TCGS cohort study. RESULTS In the current study, we have consistently replicated the association of the GCKR SNPs with higher triglyceride and lower fasting blood sugar levels (p < 0.05) in Iranian adults. The CT genotype of the variants was associated with lower HDL-C levels. The proportional Cox adjusted model regression resulted that TT carriers of rs780094, rs780093, and rs1260326 were associated with 20%, 23%, and 21% excess risk metabolic syndrome incidence, respectively (p < 0.05). CONCLUSIONS Elevated triglyceride levels had the strongest association with GCKR selected variants among the metabolic syndrome components. Despite the association of these variants with decreased fasting blood sugar levels, T alleles of the variants were associated with metabolic syndrome incidence; so whether individuals are T allele carriers of the common functional variants, they have a risk factor for the future incidence of metabolic syndrome.
Collapse
Affiliation(s)
- Asiyeh Sadat Zahedi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, POBox: 19195-4763, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, POBox: 19195-4763, Tehran, Iran
| | - Bahareh Sedaghati-Khayat
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, POBox: 19195-4763, Tehran, Iran
| | - Atefeh Seyedhamzehzadeh
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, POBox: 19195-4763, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, POBox: 19195-4763, Tehran, Iran
| |
Collapse
|
8
|
Anghebem‐Oliveira MI, Webber S, Alberton D, de Souza EM, Klassen G, Picheth G, Rego FGDM. The GCKR Gene Polymorphism rs780094 is a Risk Factor for Gestational Diabetes in a Brazilian Population. J Clin Lab Anal 2017; 31:e22035. [PMID: 27554451 PMCID: PMC6817084 DOI: 10.1002/jcla.22035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The glucokinase regulatory protein (GCKR) regulates the activity of the glucokinase (GCK), which plays a key role in glucose homeostasis. Genetic variants in GCK have been associated with diabetes and gestational diabetes (GDM). Due to the relationship between GCKRP and GCK, polymorphisms in GCKR are also candidates for genetic association with GDM. The aim of this study was to evaluate the association between the GCKR rs780094 polymorphism and GDM in a Brazilian population. METHODS 252 unrelated Euro-Brazilian pregnant women were classified as control (healthy pregnant women, n = 125) and GDM (pregnant women with GDM, n = 127) age-matched groups. Clinical and anthropometric data were obtained from all subjects. The GCKR rs780094 polymorphism was genotyped using fluorescent probes (TaqMan® , code C_2862873_10). RESULTS Both groups were in Hardy-Weinberg equilibrium. The GCKR rs780094 polymorphism was associated with GDM in codominant and dominant models (P = 0.022 and P = 0.010, respectively). The minor allele (T) frequency for the control group in the study was 38.4% (95% CI: 32-44%), similar to frequencies reported for other Caucasian populations. CONCLUSION Carriers of the C allele of rs780094 were 1.41 (odds ratio, 95% CI, 0.97-2.03) times more likely to develop GDM.
Collapse
Affiliation(s)
- Mauren Isfer Anghebem‐Oliveira
- Department of Clinical AnalysisFederal University of ParanaCuritibaBrazil
- Health and Biosciences SchoolPontifical Catholic University of ParanaCuritibaBrazil
| | - Susan Webber
- Department of Clinical AnalysisFederal University of ParanaCuritibaBrazil
| | - Dayane Alberton
- Department of Clinical AnalysisFederal University of ParanaCuritibaBrazil
| | | | - Giseli Klassen
- Department of Basic PathologyFederal University of ParanaCuritibaBrazil
| | - Geraldo Picheth
- Department of Clinical AnalysisFederal University of ParanaCuritibaBrazil
| | | |
Collapse
|
9
|
Sumegi K, Jaromi L, Magyari L, Kovesdi E, Duga B, Szalai R, Maasz A, Matyas P, Janicsek I, Melegh B. Functional variants of lipid level modifier MLXIPL, GCKR, GALNT2, CILP2, ANGPTL3 and TRIB1 genes in healthy Roma and Hungarian populations. Pathol Oncol Res 2015; 21:743-9. [PMID: 25573592 DOI: 10.1007/s12253-014-9884-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Abstract
The role of triglyceride metabolism in different diseases, such as cardiovascular or cerebrovascular diseases is still under extensive investigations. In genome-wide studies several polymorphisms have been reported, which are highly associated with plasma lipid level changes. Our goal was to examine eight variants: rs12130333 at the ANGPTL3, rs16996148 at the CILP2, rs17321515 at the TRIB1, rs17145738 and rs3812316 of the MLXIPL, rs4846914 at GALNT2, rs1260326 and rs780094 residing at the GCKR loci. A total of 399 Roma (Gypsy) and 404 Hungarian population samples were genotyped using PCR-RFLP method. Significant differences were found between Roma and Hungarian population samples in both MLXIPL variants (C allele frequency of rs17145738: 94.1% vs. 85.6%, C allele frequency of rs3812316: 94.2% vs. 86.8% in Romas vs. in Hungarians, p < 0.05), in ANGPTL3 (T allele frequency of rs1213033: 12.2% vs. 18.5% in Romas vs. Hungarians, p < 0.05) and GALNT2 (G allele frequency of rs4846914: 46.6% vs. 54.5% Romas vs. in Hungarians, p < 0.05), while no differences over SNPs could be verified and the known minor alleles showed no correlation with triglyceride levels in any population samples. The current study revealed fundamental differences of known triglyceride modifying SNPs in Roma population. Failure of finding evidence for affected triglyceride metabolism shows that these susceptibility genes are much less effective compared for example to the apolipoprotein A5 gene.
Collapse
Affiliation(s)
- Katalin Sumegi
- Department of Medical Genetics, Clinical Centre, University of Pecs, Szigeti u. 12, Pecs, H-7624, Hungary,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Large scale meta-analyses of fasting plasma glucose raising variants in GCK, GCKR, MTNR1B and G6PC2 and their impacts on type 2 diabetes mellitus risk. PLoS One 2013; 8:e67665. [PMID: 23840762 PMCID: PMC3695948 DOI: 10.1371/journal.pone.0067665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The evidence that the variants GCK rs1799884, GCKR rs780094, MTNR1B rs10830963 and G6PC2 rs560887, which are related to fasting plasma glucose levels, increase the risk of type 2 diabetes mellitus (T2DM) is contradictory. We therefore performed a meta-analysis to derive a more precise estimation of the association between these polymorphisms and T2DM. METHODS All the publications examining the associations of these variants with risk of T2DM were retrieved from the MEDLINE and EMBASE databases. Using the data from the retrieved articles, we computed summary estimates of the associations of the four variants with T2DM risk. We also examined the studies for heterogeneity, as well as for bias of the publications. RESULTS A total of 113,025 T2DM patients and 199,997 controls from 38 articles were included in the meta-analysis. Overall, the pooled results indicated that GCK (rs1799884), GCKR (rs780094) and MTNR1B (rs10830963) were significantly associated with T2DM susceptibility (OR, 1.04; 95%CI, 1.01-1.08; OR, 1.08; 95%CI, 1.05-1.12 and OR, 1.05; 95%CI, 1.02-1.08, respectively). After stratification by ethnicity, significant associations for the GCK, MTNR1B and G6PC2 variants were detected only in Caucasians (OR, 1.09; 95%CI, 1.02-1.16; OR, 1.10; 95%CI, 1.08-1.13 and OR, 0.97; 95%CI, 0.95-0.99, respectively), but not in Asians (OR, 1.02, 95% CI 0.98-1.05; OR, 1.01; 95%CI, 0.98-1.04 and OR, 1.12; 95%CI, 0.91-1.32, respectively). CONCLUSIONS Our meta-analyses demonstrated that GCKR rs780094 variant confers high cross-ethnicity risk for the development of T2DM, while significant associations between GCK, MTNR1B and G6PC2 variants and T2DM risk are limited to Caucasians.
Collapse
|
11
|
Wang ZY, Jin L, Tan H, Irwin DM. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR). PLoS One 2013; 8:e60896. [PMID: 23573289 PMCID: PMC3613411 DOI: 10.1371/journal.pone.0060896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR) is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity. METHODOLOGY/PRINCIPAL FINDINGS GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified. CONCLUSIONS/SIGNIFICANCE GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard) or mutated (mammals) GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.
Collapse
Affiliation(s)
- Zhao Yang Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Male Zucker diabetic fatty fa/fa (ZDF) rats develop obesity and insulin resistance at a young age, and then with aging, progressively develop hyperglycemia. This hyperglycemia is associated with impaired pancreatic β-cell function, loss of pancreatic β-cell mass, and decreased responsiveness of liver and extrahepatic tissues to the actions of insulin and glucose. Of particular interest are the insights provided by studies of these animals into the mechanism behind the progressive impairment of carbohydrate metabolism. This feature among others, including the development of obesity- and hyperglycemia-related complications, is common between male ZDF rats and humans with type 2 diabetes associated with obesity. We discuss the diabetic features and complications found in ZDF rats and why these animals are widely used as a genetic model for obese type 2 diabetes.
Collapse
Affiliation(s)
- Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | |
Collapse
|
13
|
Horvatovich K, Bokor S, Polgar N, Kisfali P, Hadarits F, Jaromi L, Csongei V, Repasy J, Molnar D, Melegh B. Functional glucokinase regulator gene variants have inverse effects on triglyceride and glucose levels, and decrease the risk of obesity in children. DIABETES & METABOLISM 2011; 37:432-9. [DOI: 10.1016/j.diabet.2011.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
|
14
|
Hadarits F, Kisfali P, Mohás M, Maász A, Duga B, Janicsek I, Wittmann I, Melegh B. Common functional variants of APOA5 and GCKR accumulate gradually in association with triglyceride increase in metabolic syndrome patients. Mol Biol Rep 2011; 39:1949-55. [PMID: 21643755 DOI: 10.1007/s11033-011-0942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/26/2011] [Indexed: 11/28/2022]
Abstract
The common functional variants of the apolipoprotein A5 (APOA5) and the glucokinase regulatory protein genes (GCKR) have been shown to associate with increased fasting triglyceride (TG) levels. Albeit the basic association has been extensively investigated in several populations of different origin, less is known about quantitative traits of them. In our study accumulation rates of four APOA5 (T-1131, IVS3 + G476A, T1259C and C56G) and two GCKR (C1337T and rs780094) functional SNPs were analyzed in patients stratified into four TG quartile groups. Randomly selected 325 metabolic syndrome patients were separated into four quartile (q) groups based on the TG levels as follows q1: TG <1.38 mmol/l; q2: 1.38-1.93 mmol/l; q3: 1.94-2.83 mmol/l; and q4: TG >2.83 mmol/l. We observed significant stepwise increase of prevalence rates of minor allele frequencies in the four plasma TG quartiles for three APOA5 SNPs: -1131C (q1: 4.94%; q2: 8.64%; q3: 11.6%; q4: 12.3%), IVS3 + 476A (q1: 4.32%; q2: 7.4%; q3: 10.36%; q4: 11.1%), and 1259C (q1: 4.94%; q2: 7.41%; q3: 10.4%; q4: 11.7%). The haplotype analysis revealed, that the frequency of APOA5*2 haplotype gradually increased in q2, q3 and q4 (q1: 9.87%; q2: 14.8%; q3: 18.3%; q4: 21%). The distribution of the homozygotes of the two analyzed GCKR variants resembled to the APOA5 pattern. Contrary to the hypothetically predictable linear association coming from the current knowledge about the APOA5 and GCKR functions, the findings presented here revealed a unique, TG raise dependent gradual accumulation of the functional variants of in MS patients. Thus, the findings of the current study serve indirect evidence for the existence of rare APOA5 and GCKR haplotypes in metabolic syndrome patients with higher TG levels, which contribute to the complex lipid metabolism alteration in this disease.
Collapse
Affiliation(s)
- Ferenc Hadarits
- Central Laboratory, Markusovszky County Hospital, Szombathely, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mohás M, Kisfali P, Járomi L, Maász A, Fehér E, Csöngei V, Polgár N, Sáfrány E, Cseh J, Sümegi K, Hetyésy K, Wittmann I, Melegh B. GCKR gene functional variants in type 2 diabetes and metabolic syndrome: do the rare variants associate with increased carotid intima-media thickness? Cardiovasc Diabetol 2010; 9:79. [PMID: 21114848 PMCID: PMC3009616 DOI: 10.1186/1475-2840-9-79] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/29/2010] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies revealed that glucokinase regulatory protein (GCKR) variants (rs780094 and rs1260326) are associated with serum triglycerides and plasma glucose levels. Here we analyzed primarily the association of these two variants with the lipid profile and plasma glucose levels in Hungarian subjects with type 2 diabetes mellitus and metabolic syndrome; and also correlated the genotypes with the carotid intima-media thickness records. Methods A total of 321 type 2 diabetic patients, 455 metabolic syndrome patients, and 172 healthy controls were genotyped by PCR-RFLP. Results Both GCKR variants were found to associate with serum triglycerides and with fasting plasma glucose. However, significant association with the development of type 2 diabetes mellitus and metabolic syndrome could not be observed. Analyzing the records of the patients, a positive association of prevalence the GCKR homozygous functional variants and carotid intima-media thickness was found in the metabolic syndrome patients. Conclusions Our results support that rs780094 and rs1260326 functional variants of the GCKR gene are inversely associated with serum triglycerides and fasting plasma glucose levels, as it was already reported for diabetic and metabolic syndrome patients in some other populations. Besides this positive replication, as a novel feature, our preliminary findings also suggest a cardiovascular risk role of the GCKR minor allele carriage based on the carotid intima-media thickness association.
Collapse
Affiliation(s)
- Márton Mohás
- 2nd Department of Medicine and Nephrological Center, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Functional variants of glucokinase regulatory protein and apolipoprotein A5 genes in ischemic stroke. J Mol Neurosci 2009; 41:121-8. [PMID: 19847674 DOI: 10.1007/s12031-009-9301-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/07/2009] [Indexed: 01/08/2023]
Abstract
Both the natural variants of the apolipoprotein A5 (APOA5) and the glucokinase regulatory protein gene (GCKR) have been shown to associate with increased fasting triglyceride levels. Here, we investigated the possible association of the functional variants of these two genes with non-fasting triglyceride levels and their susceptibility nature in ischemic stroke. A total of 513 stroke patients and 172 healthy controls were genotyped. All the APOA5 variants (T-1131C, IVS3 + G476A, C56G, and T1259C) were associated with increased triglyceride levels in all stroke patients and controls; except for T1259C, they all conferred risk for the disease. No such association was found for the examined GCKR rs1260326 (C1337T) variant. Furthermore, we examined the effects of specific combinations of the GCKR rs1260326 and APOA5 polymorphisms. Our findings confirmed the previous results regarding the association of APOA5 variants with triglyceride-level increase and stroke susceptibility of these alleles. By contrast, we could not detect any association of the studied GCKR allele with triglyceride levels or with the susceptibility of stroke in the same cohort of patients. In addition, the effect of APOA5 did not change significantly when specific combinations of the two genes were present.
Collapse
|
17
|
Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PRV, Orho-Melander M, Gloyn AL. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 2009; 18:4081-8. [PMID: 19643913 PMCID: PMC2758140 DOI: 10.1093/hmg/ddp357] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP+-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P ≤ 0.03). Experiments using equimolar concentrations of both regulatory proteins confirmed these findings (n = 9; P < 0.001). In conclusion, P446L-GKRP has reduced regulation by physiological concentrations of F6P, resulting indirectly in increased GCK activity. Altered GCK regulation in liver is predicted to enhance glycolytic flux, promoting hepatic glucose metabolism and elevating concentrations of malonyl-CoA, a substrate for de novo lipogenesis, providing a mutational mechanism for the reported association of this variant with raised triglycerides and lower glucose levels.
Collapse
Affiliation(s)
- Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Conversion of glucose into glycogen is a major pathway that contributes to the removal of glucose from the portal vein by the liver in the postprandial state. It is regulated in part by the increase in blood-glucose concentration in the portal vein, which activates glucokinase, the first enzyme in the pathway, causing an increase in the concentration of glucose 6-P (glucose 6-phosphate), which modulates the phosphorylation state of downstream enzymes by acting synergistically with other allosteric effectors. Glucokinase is regulated by a hierarchy of transcriptional and post-transcriptional mechanisms that are only partially understood. In the fasted state, glucokinase is in part sequestered in the nucleus in an inactive state, complexed to a specific regulatory protein, GKRP (glucokinase regulatory protein). This reserve pool is rapidly mobilized to the cytoplasm in the postprandial state in response to an elevated concentration of glucose. The translocation of glucokinase between the nucleus and cytoplasm is modulated by various metabolic and hormonal conditions. The elevated glucose 6-P concentration, consequent to glucokinase activation, has a synergistic effect with glucose in promoting dephosphorylation (inactivation) of glycogen phosphorylase and inducing dephosphorylation (activation) of glycogen synthase. The latter involves both a direct ligand-induced conformational change and depletion of the phosphorylated form of glycogen phosphorylase, which is a potent allosteric inhibitor of glycogen synthase phosphatase activity associated with the glycogen-targeting protein, GL [hepatic glycogen-targeting subunit of PP-1 (protein phosphatase-1) encoded by PPP1R3B]. Defects in both the activation of glucokinase and in the dephosphorylation of glycogen phosphorylase are potential contributing factors to the dysregulation of hepatic glucose metabolism in Type 2 diabetes.
Collapse
|
19
|
Mukhtar MH, Payne VA, Arden C, Harbottle A, Khan S, Lange AJ, Agius L. Inhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Am J Physiol Regul Integr Comp Physiol 2008; 294:R766-74. [PMID: 18199594 DOI: 10.1152/ajpregu.00593.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.
Collapse
Affiliation(s)
- Mohammed H Mukhtar
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Shin JS, Torres TP, Catlin RL, Donahue EP, Shiota M. A defect in glucose-induced dissociation of glucokinase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1381-90. [PMID: 17204595 DOI: 10.1152/ajpregu.00260.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were ∼8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 ± 4 μmol·kg−1·min−1. When plasma glucose was raised to ∼17 mM, GK was still predominantly localized with its inhibitory protein in the nucleus. EGP was not suppressed. When sorbitol was infused at 5.6 and 16.7 μmol·kg−1·min−1, along with the increase in plasma glucose, GK was exported to the cytoplasm. EGP (23 ± 19 and 12 ± 5 μmol·kg−1·min−1) was suppressed without a decrease in glucose 6-phosphatase flux (145 ± 23 and 126 ± 16 vs. 122 ± 10 μmol·kg−1·min−1without sorbitol) but increased in glucose phosphorylation as indicated by increases in glucose recycling (122 ± 17 and 114 ± 19 vs. 71 ± 11 μmol·kg−1·min−1), glucose-6-phosphate content (254 ± 32 and 260 ± 35 vs. 188 ± 20 nmol/g liver), fractional contribution of plasma glucose to uridine 5′-diphosphate-glucose flux (43 ± 8 and 42 ± 8 vs. 27 ± 6%), and glycogen synthesis from plasma glucose (20 ± 4 and 22 ± 5 vs. 9 ± 4 μmol glucose/g liver). The decreased glucose effectiveness to suppress EGP and stimulate hepatic glucose uptake may result from failure of the sugar to activate GK by stimulating the translocation of the enzyme.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
21
|
Køster B, Fenger M, Poulsen P, Vaag A, Bentzen J. Novel polymorphisms in the GCKR gene and their influence on glucose and insulin levels in a Danish twin population. Diabet Med 2005; 22:1677-82. [PMID: 16401311 DOI: 10.1111/j.1464-5491.2005.01700.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The glucokinase regulatory protein gene is a candidate gene for Type 2 diabetes. This study reveals three new polymorphisms and examines the impact of one new and one known polymorphism on insulin secretion and parameters associated with the insulin resistance syndrome in Danish twins with different degrees of glucose tolerance. METHODS Single nucleotide polymorphism detection was performed in 20 healthy subjects and in 20 subjects with Type 2 diabetes. The effect of the polymorphisms on lipid, glucose and insulin measures was studied in 566 same-sex twins aged 55-74 years. RESULTS The new nucleotide (nt) 363 polymorphism was found only in subjects with impaired glucose tolerance and Type 2 diabetes. The nt 11216 polymorphism influenced insulin measured at 120 min during an oral glucose tolerance test (OGTT). Subjects with genotype C11216C/T11216C had 21% higher insulin values (P<0.05) than subjects with genotype T11216T. In twins discordant for this genotype, the C-allele was associated with significantly higher plasma insulin levels at all time points during the OGTT, higher beta-cell function and lower plasma glucose levels during the OGTT. CONCLUSION The C-allele of nt 11216 polymorphism was associated with increased insulin secretion, and may therefore exert a potentially protective effect against Type 2 diabetes. This remains to be shown in a larger study population.
Collapse
Affiliation(s)
- B Køster
- The Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | | | | | | | | |
Collapse
|
22
|
Brocklehurst KJ, Davies RA, Agius L. Differences in regulatory properties between human and rat glucokinase regulatory protein. Biochem J 2004; 378:693-7. [PMID: 14627435 PMCID: PMC1223974 DOI: 10.1042/bj20031414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/17/2003] [Accepted: 11/19/2003] [Indexed: 11/17/2022]
Abstract
The inhibition of glucokinase by rat and Xenopus GKRPs (glucokinase regulatory protein) is well documented. We report a comparison of the effects of human and rat GKRPs on glucokinase activity. Human GKRP is a more potent inhibitor of glucokinase than rat GKRP in the absence of fructose 6-phosphate or sorbitol 6-phosphate, and has a higher affinity for these ligands. However, human and rat GKRPs have similar affinities for fructose 1-phosphate and chloride. Residues that are not conserved between the rodent and human proteins affect both the affinity for fructose 6-phosphate and sorbitol 6-phosphate and the inhibitory potency of GKRP on glucokinase in the absence of these ligands.
Collapse
Affiliation(s)
- Katy J Brocklehurst
- Cardiovascular and Gastrointestinal Department, AstraZeneca, Macclesfield, Cheshire SK10 4TG, UK
| | | | | |
Collapse
|
23
|
Veiga-da-Cunha M, Delplanque J, Gillain A, Bonthron DT, Boutin P, Van Schaftingen E, Froguel P. Mutations in the glucokinase regulatory protein gene in 2p23 in obese French caucasians. Diabetologia 2003; 46:704-11. [PMID: 12739015 DOI: 10.1007/s00125-003-1083-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/21/2003] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Glucokinase regulatory protein (GKRP) controls the activity of glucokinase in liver but possibly also in some areas of the central nervous system, suggesting that it could play a role in body mass control. Its gene is located in a region (2p21-23) linked to serum leptin levels. Our goal was to investigate whether mutations in the GKRP gene were associated with obesity. METHODS Mutations were sought in the GKRP gene of 57 patients from the families of the French genome-wide scan for obesity that contributed most to the positive LOD score with 2p21-23. The identified mutations were further sought in 720 unrelated obese individuals and 384 individuals of normal weight and their effect on the properties of recombinant GKRP were investigated. RESULTS The most frequent mutation (Pro446Leu) had a similar allele frequency in the obese (0.63) and normal weight (0.64) subjects and did not affect the properties of GKRP. Similarly, no effect on the properties of GKRP was observed with Arg590Tyr, found in 10 out of 720 obese subjects and in 2 out of 384 control subjects (p=0.18). Mutation Arg227Stop was found in one obese family and in 1 out of 384 control subjects and led to an insoluble protein. Mutation Arg518Gln, replacing a conserved residue, led to a marked decrease in the affinity of GKRP for both fructose 6-phosphate and fructose 1-phosphate and to a destabilization of GKRP. However, this mutation did not co-segregate with obesity in the single family in which it was found. CONCLUSIONS/INTERPRETATION Mutations that affect the properties of GKRP are found in the French population, but they do not seem to account for the linkage between the 2p23 locus and quantitative markers of obesity.
Collapse
Affiliation(s)
- M Veiga-da-Cunha
- Laboratory of Physiological Chemistry, University of Louvain, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bentzen J, Poulsen P, Vaag A, Beck-Nielsen H, Fenger M. The influence of the polymorphism in apolipoprotein B codon 2488 on insulin and lipid levels in a Danish twin population. Diabet Med 2002; 19:12-8. [PMID: 11869298 DOI: 10.1046/j.0742-3071.2001.00602.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The apolipoprotein B codon 2488 polymorphism has been associated with the metabolism of lipoproteins in subjects with Type 2 diabetes. However, no data are available on the influence of the polymorphism on insulin or glucose metabolism. This study examines the impact of the polymorphism on parameters associated with the insulin resistance syndrome in Danish twins. METHODS The effect of the polymorphism on lipid, glucose and insulin measures was studied in 548 same sex twins aged 55-74 years. RESULTS The codon 2488 polymorphism influenced fasting triglyceride levels, as well as insulin, as measured at 120 min in an oral glucose tolerance test. Subjects with the genotype T2488T had 14% higher triglyceride levels (P = 0.02) and 31% higher insulin levels (P = 0.004) than subjects with genotype C2488C. In twins discordant for genotype, the T-allele was associated with higher levels of triglyceride (P = 0.04) and insulin (P = 0.02) and lower levels of HDL-cholesterol (P = 0.04). CONCLUSION The T-allele of the codon 2488 polymorphism influenced parameters related to the insulin resistance syndrome, i.e. increased levels of insulin, increased levels of triglyceride and decreased levels of HDL. As the polymorphism is silent, these effects must be mediated through linkage to other polymorphisms in apolipoprotein B or other genes on chromosome 2.
Collapse
Affiliation(s)
- J Bentzen
- The Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Baltrusch S, Lenzen S, Okar DA, Lange AJ, Tiedge M. Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner. J Biol Chem 2001; 276:43915-23. [PMID: 11522786 DOI: 10.1074/jbc.m105470200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low affinity glucose-phosphorylating enzyme glucokinase shows the phenomenon of intracellular translocation in beta cells of the pancreas and the liver. To identify potential binding partners of glucokinase by a systematic strategy, human beta cell glucokinase was screened by a 12-mer random peptide library displayed by the M13 phage. This panning procedure revealed two consensus motifs with a high binding affinity for glucokinase. The first consensus motif, LSAXXVAG, corresponded to the glucokinase regulatory protein of the liver. The second consensus motif, SLKVWT, showed a complete homology to the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which acts as a key regulator of glucose metabolism. Through yeast two-hybrid analysis it became evident that the binding of glucokinase to PFK-2/FBPase-2 is conferred by the bisphosphatase domain, whereas the kinase domain is responsible for dimerization. 5'-Rapid amplification of cDNA ends analysis and Northern blot analysis revealed that rat pancreatic islets express the brain isoform of PFK-2/FBPase-2. A minor portion of the islet PFK-2/FBPase-2 cDNA clones comprised a novel splice variant with 8 additional amino acids in the kinase domain. The binding of the islet/brain PFK-2/ FBPase-2 isoform to glucokinase was comparable with that of the liver isoform. The interaction between glucokinase and PFK-2/FBPase-2 may provide the rationale for recent observations of a fructose-2,6-bisphosphate level-dependent partial channeling of glycolytic intermediates between glucokinase and glycolytic enzymes. In pancreatic beta cells this interaction may have a regulatory function for the metabolic stimulus-secretion coupling. Changes in fructose-2,6-bisphosphate levels and modulation of PFK-2/FBPase-2 activities may participate in the physiological regulation of glucokinase-mediated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- S Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
26
|
Farrelly D, Brown KS, Tieman A, Ren J, Lira SA, Hagan D, Gregg R, Mookhtiar KA, Hariharan N. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. Proc Natl Acad Sci U S A 1999; 96:14511-6. [PMID: 10588736 PMCID: PMC24467 DOI: 10.1073/pnas.96.25.14511] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.
Collapse
Affiliation(s)
- D Farrelly
- Bristol-Myers Squibb Pharmaceutical Research Institute, Metabolic Diseases, Princeton, NJ 08540-4000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayward BE, Dunlop N, Intody S, Leek JP, Markham AF, Warner JP, Bonthron DT. Organization of the human glucokinase regulator gene GCKR. Genomics 1998; 49:137-42. [PMID: 9570959 DOI: 10.1006/geno.1997.5195] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucokinase plays an important role in regulating insulin secretion in response to changes in blood glucose levels. As a result, one form of maturity onset diabetes of the young (MODY) results from haploinsufficiency of glucokinase. In both liver and pancreatic islet, glucokinase is allosterically regulated by an inhibitory protein (glucokinase regulatory protein, GCKR). GCKR has therefore become an important gene for functional analysis in type 2 diabetes. To allow genetic assessment of any such role, we have determined the structure of the human GCKR gene. Characterization of P1 and YAC clones containing GCKR shows it to consist of 19 exons spanning 27 kb. RT-PCR, RACE, and RNase protection experiments defined a transcriptional start site for GCKR 66 bp upstream of the initiation codon, but provided no evidence for islet cell specific alternative splicing in the rat. By SSCP screening, a common polymorphic sequence variant has been defined within exon 15 of human GCKR, at nt 1400 of the cDNA. This alters amino acid residue 446 from proline, conserved in rat and Xenopus, to leucine.
Collapse
Affiliation(s)
- B E Hayward
- University of Edinburgh, Department of Medicine, Western General Hospital, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Comuzzie AG, Hixson JE, Almasy L, Mitchell BD, Mahaney MC, Dyer TD, Stern MP, MacCluer JW, Blangero J. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 1997; 15:273-6. [PMID: 9054940 DOI: 10.1038/ng0397-273] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity is a major predisposing factor for the development of several chronic diseases including non-insulin dependent diabetes mellitus (NIDDM) and coronary heart disease (CHD). Leptin is a serum protein which is secreted by adipocytes and thought to play a role in the regulation of body fat. Leptin levels in humans have been found to be highly correlated with an individual's total adiposity. We performed a genome-wide scan and conducted multipoint linkage analysis using a general pedigree-based variance component approach to identify genes with measurable effects on quantitative variation in leptin levels in Mexican Americans. A microsatellite polymorphism, D2S1788, mapped to chromosome 2p21 (approximately 74 cM from the tip of the short arm) and showed strong evidence of linkage with serum leptin levels with a lod score of 4.95 (P = 9 x 10(-7)). This locus accounted for 47% of the variation in serum leptin levels, with a residual additive genetic component contributing an additional 24%. This region contains several potential candidate genes for obesity, including glucokinase regulatory protein (GCKR) and pro-opiomelanocortin (POMC). Our results show strong evidence of linkage of this region of chromosome 2 with serum leptin levels and indicate that this region could contain an important human obesity gene.
Collapse
Affiliation(s)
- A G Comuzzie
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayward BE, Fantes JA, Warner JP, Intody S, Leek JP, Markham AF, Bonthron DT. Co-localization of the ketohexokinase and glucokinase regulator genes to a 500-kb region of chromosome 2p23. Mamm Genome 1996; 7:454-8. [PMID: 8662230 DOI: 10.1007/s003359900132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The glucokinase regulator (GCKR) is a 65-kDa protein that inhibits glucokinase (hexokinase IV) in liver and pancreatic islet. The role of glucokinase (GCK) as pancreatic beta cell glucose sensor and the finding of GCK mutations in maturity onset diabetes of the young (MODY) suggest GCKR as a further candidate gene for type 2 diabetes. The inhibition of GCK by GCKR is relieved by the binding of fructose-1-phosphate (F-1-P) to GCKR. F-1-P is the end product of ketohexokinase (KHK, fructokinase), which, like GCK and GCKR, is present in both liver and pancreatic islet. KHK is the first enzyme of the specialized pathway that catabolizes dietary fructose. We have isolated genomic clones containing the human GCKR and KHK genes. By fluorescent in situ hybridization (FISH), KHK maps to Chromosome (Chr) 2p23.2-23.3, a new assignment corroborated by somatic cell hybrid analysis. The localization of GCKR, originally reported by others as 2p22.3, has been reassessed by high-resolution FISH, indicating that, like KHK, GCKR maps to 2p23.2-23.3. The proximity of GCKR and KHK was further demonstrated both by two-color interphase FISH, which suggests that the two genes lie within 500 kb of each other, and by analysis of overlapping YAC and P1 clones spanning the interval between GCKR and KHK. A new microsatellite polymorphism was used to place the GCKR-KHK locus between D2S305 and D2S165 on the genetic map. The colocalization of these two metabolically connected genes has implications for the interpretation of linkage or allele association studies in type 2 diabetes. It also raises the possibility of coordinate regulation of GCKR and KHK by common cis-acting regulatory elements.
Collapse
Affiliation(s)
- B E Hayward
- Human Genetics Unit, University of Edinburgh, Western General Hospital, UK
| | | | | | | | | | | | | |
Collapse
|