1
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PVV, Kumar S, Siddique KHM, Nayyar H. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:878498. [PMID: 35837452 PMCID: PMC9274134 DOI: 10.3389/fpls.2022.878498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Bindumadhava HanumanthaRao
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Hyderabad, India
- Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, India
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H. M. Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, Paul V, Kumar S, Singh B, Zinta G. Physiological and molecular insights on wheat responses to heat stress. PLANT CELL REPORTS 2022; 41:501-518. [PMID: 34542670 DOI: 10.1007/s00299-021-02784-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Gahlaut
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Gaurav Zinta
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
4
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
5
|
Okamoto A, Koyama K, Bhusal N. Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean ( Menyanthes trifoliata), an Emergent Aquatic Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:174. [PMID: 35050061 PMCID: PMC8779618 DOI: 10.3390/plants11020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/02/2022]
Abstract
Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species' tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.
Collapse
Affiliation(s)
- Azumi Okamoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Kohei Koyama
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
6
|
Different Regulatory Modes of Synechocystis sp. PCC 6803 in Response to Photosynthesis Inhibitory Conditions. mSystems 2021; 6:e0094321. [PMID: 34874777 PMCID: PMC8651088 DOI: 10.1128/msystems.00943-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria are promising industrial platforms owing to their ability to produce diverse natural secondary metabolites and nonnative value-added biochemicals from CO2 and light. To fully utilize their industrial potency, it is critical to understand their photosynthetic efficiency under various environmental conditions. In this study, we elucidated the inhibitory mechanisms of photosynthesis under high-light and low-temperature stress conditions in the model cyanobacterium Synechocystis sp. PCC 6803. Under each stress condition, the transcript abundance and translation efficiency were measured using transcriptome sequencing (RNA-seq) and ribosome profiling, and the genome-wide transcription unit architecture was constructed by data integration of transcription start sites and transcript 3′-end positions obtained from differential RNA-seq and sequencing of 3′-ends (Term-seq), respectively. Our results suggested that the mode of photosynthesis inhibition differed between the two stress conditions; high light stress induced photodamage responses, while low temperature stress impaired the translation efficiency of photosynthesis-associated genes. In particular, poor translation of photosystem I resulted from ribosome stalling at the untranslated regions, affecting the overall photosynthetic yield under low temperature stress. Our comprehensive multiomics analysis with transcription unit architecture provides foundational information on photosynthesis for future industrial strain development. IMPORTANCE Cyanobacteria are a compelling biochemical production platform for their ability to propagate using light and atmospheric CO2 via photosynthesis. However, the engineering of strains is hampered by limited understanding of photosynthesis under diverse environmental conditions such as high-light and low-temperature stresses. Herein, we decipher the transcriptomic and translatomic responses of the photosynthetic efficiency to stress conditions using the integrative analysis of multiomic data generated by RNA-seq and ribosome profiling, respectively. Through the generated massive data, along with the guide of the genome-wide transcription unit architecture constructed by transcription start sites and transcript 3′-end positions, we identified the factors affecting photosynthesis at transcription, posttranscription, and translation levels. Importantly, the high-light stress induces photodamage responses, and the low-temperature stress cripples the translation efficiency of photosynthesis-associated genes. The resulting insights provide pivotal information for future cyanobacterial cell factories powered by the engineering toward robust photosynthesis ability.
Collapse
|
7
|
Qu Y, Sakoda K, Fukayama H, Kondo E, Suzuki Y, Makino A, Terashima I, Yamori W. Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2308-2320. [PMID: 33745135 DOI: 10.1111/pce.14051] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/15/2023]
Abstract
Global warming threatens food security by decreasing crop yields through damage to photosynthetic systems, especially Rubisco activation. We examined whether co-overexpression of Rubisco and Rubisco activase improves the photosynthetic and growth performance of rice under high temperatures. We grew three rice lines-the wild-type (WT), a Rubisco activase-overexpressing line (oxRCA) and a Rubisco- and Rubisco activase-co-overexpressing line (oxRCA-RBCS)-and analysed photosynthesis and biomass at 25 and 40°C. Compared with the WT, the Rubisco activase content was 153% higher in oxRCA and 138% higher in oxRCA-RBCS, and the Rubisco content was 27% lower in oxRCA and similar in oxRCA-RBCS. The CO2 assimilation rate (A) of WT was lower at 40°C than at 25°C, attributable to Rubisco deactivation by heat. On the other hand, that of oxRCA and oxRCA-RBCS was maintained at 40°C, resulting in higher A than WT. Notably, the dry weight of oxRCA-RBCS was 26% higher than that of WT at 40°C. These results show that increasing the Rubisco activase content without the reduction of Rubisco content could improve yield and sustainability in rice at high temperature.
Collapse
Affiliation(s)
- Yuchen Qu
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sakoda
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Ma C, Qin S, Cui H, Liu Z, Zhuang L, Wang Y, Zhong Z. Nitrogen enrichment mediates the effects of high temperature on the growth, photosynthesis, and biochemical constituents of Gracilaria blodgettii and Gracilaria lemaneiformis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21256-21265. [PMID: 33411287 DOI: 10.1007/s11356-020-11969-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Gracilaria blodgettii and Gracilaria lemaneiformis are often adopted as tools to purify aquaculture tail water. However, there has been such phenomenon that high temperature in summer restricts the process of aquaculture. To explore the adaptive capacity of G. blodgettii and G. lemaneiformis, we experimented them and cultured for 12 days under three temperatures (20, 25, and 30 °C) and three levels of multiple nitrogen sources (0.12, 0.6 and 4.4 mg L-1). Their growth, photosynthetic characteristics, and biochemical compositions including the contents of pigments and soluble protein were determined to investigate the single and interactive effects of temperatures and nitrogen levels on these two species. The results showed that in terms of G. blodgettii, the higher growth rate and more pigment (chlorophyll a and carotenoids) contents were observed at 25 and 30 °C in comparison to 20 °C, and the pigments showed maximum contents at 25 °C. More nitrogen improved the growth rate, net photosynthetic rate (Pn) at 25 and 30 °C, Fv/Fm at 20 °C, maximal photosynthetic electron transfer rate (ETRm), as well as soluble protein content at 20 and 25 °C. Additionally, the growth rate, Pn, and ETRm of G. lemaneiformis all showed a decline as increasing temperature; analogously high nitrogen concentration increased the growth rate at 25 and 30 °C, Fv/Fm at each temperature, ETRm, and pigments contents at 20 °C, as well as soluble protein content at 20 and 25 °C. Conclusions indicated that high temperature restricted the growth rate, inhibited photosynthetic characteristics, and decreased the soluble protein content of G. lemaneiformis. The reduced photosynthetic performance, pigments, and soluble protein contents of G. blodgettii were noted under similar conditions. However, nitrogen enrichment induced the greater resistant level to high temperature, and G. blodgettii showed better response. These findings suggested that these two Gracilaria species possessed a certain adaptability to tail water from aquaculture at high temperature and G. blodgettii can resist more to. Therefore, it seems to be an alternative and workable scheme to adopt some suitable macroalgae to optimize the solution to present purification of aquaculture wastewater or eutrophic waters under high temperature.
Collapse
Affiliation(s)
- Chen Ma
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhengyi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Longchuan Zhuang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Yong Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- Hohai University, Nanjing, 210098, Jiangsu, China
| | - Zhihai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
| |
Collapse
|
9
|
Degen GE, Orr DJ, Carmo-Silva E. Heat-induced changes in the abundance of wheat Rubisco activase isoforms. THE NEW PHYTOLOGIST 2021; 229:1298-1311. [PMID: 32964463 DOI: 10.1111/nph.16937] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
The Triticum aestivum (wheat) genome encodes three isoforms of Rubisco activase (Rca) differing in thermostability, which could be exploited to improve the resilience of this crop to global warming. We hypothesized that elevated temperatures would cause an increase in the relative abundance of heat-stable Rca1β. Wheat plants were grown at 25° C : 18°C (day : night) and exposed to heat stress (38° C : 22°C) for up to 5 d at pre-anthesis. Carbon (C) assimilation, Rubisco activity, CA1Pase activity, transcripts of Rca1β, Rca2β, and Rca2α, and the quantities of the corresponding protein products were measured during and after heat stress. The transcript of Rca1β increased 40-fold in 4 h at elevated temperatures and returned to the original level after 4 h upon return of plants to control temperatures. Rca1β comprised up to 2% of the total Rca protein in unstressed leaves but increased three-fold in leaves exposed to elevated temperatures for 5 d and remained high at 4 h after heat stress. These results show that elevated temperatures cause rapid changes in Rca gene expression and adaptive changes in Rca isoform abundance. The improved understanding of the regulation of C assimilation under heat stress will inform efforts to improve wheat productivity and climate resilience.
Collapse
Affiliation(s)
- Gustaf E Degen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
10
|
Compared to Australian Cultivars, European Summer Wheat (Triticum aestivum) Overreacts When Moderate Heat Stress Is Applied at the Pollen Development Stage. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heat stress frequently imposes a strong negative impact on vegetative and reproductive development of plants leading to severe yield losses. Wheat, a major temperate crop, is more prone to suffer from increased temperatures than most other major crops. With heat waves becoming more intense and frequent, as a consequence of global warming, a decrease in wheat yield is highly expected. Here, we examined the impact of a short-term (48 h) heat stress on wheat imposed during reproduction at the pollen mitosis stage both, at the physiological and molecular level. We analyzed two sets of summer wheat germplasms from Australia (Kukri, Drysdale, Gladius, and RAC875) and Europe (Epos, Cornetto, Granny, and Chamsin). Heat stress strongly affected gas exchange parameters leading to reduced photosynthetic and transpiration rates in the European cultivars. These effects were less pronounced in Australian cultivars. Pollen viability was also reduced in all European cultivars. At the transcriptional level, the largest group of heat shock factor genes (type A HSFs), which trigger molecular responses as a result of environmental stimuli, showed small variations in gene expression levels in Australian wheat cultivars. In contrast, HSFs in European cultivars, including Epos and Granny, were strongly downregulated and partly even silenced, while the high-yielding variety Chamsin displayed a strong upregulation of type A HSFs. In conclusion, Australian cultivars are well adapted to moderate heat stress compared to European summer wheat. The latter strongly react after heat stress application by downregulating photosynthesis and transpiration rates as well as differentially regulating HSFs gene expression pattern.
Collapse
|
11
|
Xu Y, Yuan Y, Du N, Wang Y, Shu S, Sun J, Guo S. Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. HORTICULTURE RESEARCH 2018; 5:53. [PMID: 30302257 PMCID: PMC6165847 DOI: 10.1038/s41438-018-0060-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Various biotic and abiotic stresses threaten the cultivation of future agricultural crops. Among these stresses, heat stress is a major abiotic stress that substantially reduces agricultural productivity. Many strategies to enhance heat stress tolerance of crops have been developed, among which is grafting. Here, we show that Momordica-grafted cucumber scions have intrinsically enhanced chlorophyll content, leaf area, and net photosynthetic rate under heat stress compared to plants grafted onto cucumber rootstock. To investigate the mechanisms by which Momordica rootstock enhanced cucumber scions heat stress tolerance, comparative proteomic analysis of cucumber leaves in response to rootstock-grafting and/or heat stress was conducted. Seventy-seven differentially accumulated proteins involved in diverse biological processes were identified by two-dimensional electrophoresis (2-DE) in conjunction with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). The following four main categories of proteins were involved: photosynthesis (42.8%), energy and metabolism (18.2%), defense response (14.3%), and protein and nucleic acid biosynthesis (11.7%). Proteomic analysis revealed that scions grafted onto Momordica rootstocks upregulated more proteins involved in photosynthesis compared to scions grafted onto cucumber rootstocks under heat stress and indicated enhanced photosynthetic capacity when seedlings were exposed to heat stress. Furthermore, the expression of photosynthesis-related genes in plants grafted onto Momordica rootstocks significantly increased in response to heat stress. In addition, increased high-temperature tolerance of plants grafted onto Momordica rootstock was associated with the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and oxygen-evolving enhancer protein 1 (OEE1). Taken together, the data indicated that Momordica rootstock might alleviate growth inhibition caused by heat stress by improving photosynthesis, providing valuable insight into enhancing heat stress tolerance in the global warming epoch.
Collapse
Affiliation(s)
- Ye Xu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nanshan Du
- Department of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| |
Collapse
|
12
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
13
|
|
14
|
Schroda M, Hemme D, Mühlhaus T. The Chlamydomonas heat stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:466-480. [PMID: 25754362 DOI: 10.1111/tpj.12816] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Abstract
Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells.
Collapse
Affiliation(s)
- Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Dorothea Hemme
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| |
Collapse
|
15
|
Nellaepalli S, Kodru S, Raghavendra AS, Subramanyam R. Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:24-33. [PMID: 25792151 DOI: 10.1016/j.jphotobiol.2015.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 12/01/2022]
Abstract
We investigated the mechanism involved in triggering state transitions at 40°C in Arabidopsis thaliana. Leaves (1-6 week old) exposed to 40°C exhibited state II transition indicating its role as one of the earliest stress responsive mechanism apart from regulation of light energy distribution between photosystem (PS)II and PSI. Post illumination transients (rise in Fo') revealed that non-photochemical reduction of PQ pool at 40°C in dark is responsible for activation of STN7 kinase, consequently light harvesting complex (LHC)II phosphorylation leading to state II condition. Later, in pgr5 mutant, non-photochemical reduction of PQ pool was observed indicating the involvement of alternative electron transfer routes. In chlororespiratory mutant crr2-2, state II transition occurred signifying that the reduction of PQ pool is independent from NDH mediated cyclic electron transfer. Further, antimycin A inhibitor studies in wt and mutants revealed its inhibitory action on non-photochemical reduction of PQ pool affecting both LHCII phosphorylation and migration to PSI which leads to state I. Thus, our study showed that antimycin A sensitive pathway independent from PGR5 dependent cyclic electron transfer, is responsible for inducing non-photochemical reduction of PQ pool and state transitions at 40°C.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sireesha Kodru
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
16
|
Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 230:33-50. [PMID: 25480006 DOI: 10.1016/j.plantsci.2014.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/22/2014] [Accepted: 10/26/2014] [Indexed: 05/18/2023]
Abstract
Experiments to explore physiological and biochemical differences of the effects of heat stress in ten wheat (Triticum aestivum L.) cultivars have been performed. Based on the response of photosynthesis rates, cell membrane lipid peroxide concentrations and grain yield to heat, six cultivars were clustered as heat-tolerant (cv. '579', cv. '810', cv. '1110', cv. Terice, cv. Taifun and cv. Vinjett) and four as heat-sensitive (cv. '490', cv. '633', cv. '1039' and cv. '1159'). Higher rates of photosynthetic carbon- and light-use were accompanied by lower damage to cell membranes in leaves of tolerant compared to sensitive cultivars under heat stress. The tolerant cv. '810' and the sensitive cv. '1039' were selected for further proteome analysis of leaves. Proteins related to photosynthesis, glycolysis, stress defence, heat shock and ATP production were differently expressed in leaves of the tolerant and sensitive cultivar under heat stress in relation to the corresponding control. The abundance of proteins related to signal transduction, heat shock, photosynthesis, and antioxidants increased, while the abundance of proteins related to nitrogen metabolism decreased in the tolerant cv. '810' under heat stress as compared to the control. Collectively, the results indicate that primarily changes in both the amount and activities of enzymes involved in photosynthesis and antioxidant activities in leaves contributed to higher heat tolerance in the cv. '810' compared to the heat sensitive cv. '1039'.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China; Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark; Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| | - Burcu Seckin Dinler
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey
| | - Marija Vignjevic
- Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Susanne Jacobsen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Bernd Wollenweber
- Aarhus University, Faculty of Science and Technology, Institute of Agroecology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| |
Collapse
|
17
|
Dou H, Xv K, Meng Q, Li G, Yang X. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. PLANT, CELL & ENVIRONMENT 2015; 38:61-72. [PMID: 24811248 DOI: 10.1111/pce.12366] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
CBF3, a known cold-inducible gene that encodes a transcription factor, was isolated from Arabidopsis thaliana and introduced into the potato (Solanum tuberosum cv. 'luyin NO.1') under the control of the CaMV35S promoter or the rd29A promoter. Our results revealed that temperature of 40 °C or higher can significantly induce AtCBF3 expression. After heat stress, the net photosynthetic rate (Pn ), the maximal photochemical efficiency of photosystem II (PSII) (Fv /Fm ) and the accumulation of the D1 protein were higher in the transgenic lines than in the wild-type (WT) line. Moreover, compared with the WT line, O2 (●-) and H2 O2 accumulation in the transgenic lines were reduced. A Q-PCR assay of a subset of the genes involved in photosynthesis and antioxidant defence further verified the above results. Interestingly, under heat stress conditions, the accumulation of heat-shock protein 70 (HSP70) increased in the WT line but decreased in the transgenic lines. These results suggest that potato plants ectopically expressing AtCBF3 exhibited enhanced tolerance to high temperature, which is associated with improved photosynthesis and antioxidant defence via induction of the expression of many stress-inducible genes. However, this mechanism may not depend upon the regulatory pathways in which HSP70 is involved.
Collapse
Affiliation(s)
- Haiou Dou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | |
Collapse
|
18
|
Hemme D, Veyel D, Mühlhaus T, Sommer F, Jüppner J, Unger AK, Sandmann M, Fehrle I, Schönfelder S, Steup M, Geimer S, Kopka J, Giavalisco P, Schroda M. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:4270-97. [PMID: 25415976 PMCID: PMC4277220 DOI: 10.1105/tpc.114.130997] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.
Collapse
Affiliation(s)
- Dorothea Hemme
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jessica Jüppner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ann-Katrin Unger
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Michael Sandmann
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Schönfelder
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Martin Steup
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 2014; 98:8777-96. [PMID: 25139449 DOI: 10.1007/s00253-014-6020-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.
Collapse
|
20
|
Koyama K, Takemoto S. Morning reduction of photosynthetic capacity before midday depression. Sci Rep 2014; 4:4389. [PMID: 24633128 PMCID: PMC3955906 DOI: 10.1038/srep04389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022] Open
Abstract
Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.
Collapse
Affiliation(s)
- Kohei Koyama
- 1] Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan [2] Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Shuhei Takemoto
- The University of Tokyo Tanashi Forest, Graduate School of Agricultural & Life Sciences, 1-1-8 Midoricho, Nishitokyo, Tokyo 188-0002, Japan
| |
Collapse
|
21
|
Gupta D, Eldakak M, Rohila JS, Basu C. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress. PLANT SIGNALING & BEHAVIOR 2014; 9:e972851. [PMID: 25482765 PMCID: PMC4623024 DOI: 10.4161/15592316.2014.972851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 05/20/2023]
Abstract
Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Biology; California State University Northridge; Northridge, CA USA
| | - Moustafa Eldakak
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD USA
- Department of Genetics; Faculty of Agriculture, El Shatby; Alexandria University; Alexandria, Egypt
| | - Jai S Rohila
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD USA
- Department of Plant Science; South Dakota State University; Brookings, SD USA
- Correspondence to: Jai S Rohila; , Chhandak Basu;
| | - Chhandak Basu
- Department of Biology; California State University Northridge; Northridge, CA USA
- Correspondence to: Jai S Rohila; , Chhandak Basu;
| |
Collapse
|
22
|
Carmo-Silva AE, Salvucci ME. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. PLANTA 2012; 236:1433-45. [PMID: 22733425 DOI: 10.1007/s00425-012-1691-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/05/2012] [Indexed: 05/28/2023]
Abstract
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.
Collapse
Affiliation(s)
- A Elizabete Carmo-Silva
- US Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | | |
Collapse
|
23
|
Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One 2012; 7:e44342. [PMID: 22937172 PMCID: PMC3429442 DOI: 10.1371/journal.pone.0044342] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 08/02/2012] [Indexed: 01/13/2023] Open
Abstract
Kelps, brown algae of the order Laminariales, dominate rocky shores and form huge kelp beds which provide habitat and nurseries for various marine organisms. Whereas the basic physiological and ecophysiological characteristics of kelps are well studied, the molecular processes underlying acclimation to different light and temperature conditions are still poorly understood. Therefore we investigated the molecular mechanisms underlying the physiological acclimation to light and temperature stress. Sporophytes of S. latissima were exposed to combinations of light intensities and temperatures, and microarray hybridizations were performed to determine changes in gene expression patterns. This first large-scale transcriptomic study of a kelp species shows that S. latissima responds to temperature and light stress with a multitude of transcriptional changes: up to 32% of genes showed an altered expression after the exposure experiments. High temperature had stronger effects on gene expression in S. latissima than low temperature, reflected by the higher number of temperature-responsive genes. We gained insights into underlying molecular processes of acclimation, which includes adjustment of the primary metabolism as well as induction of several ROS scavengers and a sophisticated regulation of Hsps. We show that S. latissima, as a cold adapted species, must make stronger efforts for acclimating to high than to low temperatures. The strongest response was caused by the combination of high temperatures with high light intensities, which proved most harmful for the alga.
Collapse
Affiliation(s)
- Sandra Heinrich
- Department of Functional Ecology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | |
Collapse
|
24
|
Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. PLANTA 2012; 236:753-61. [PMID: 22526503 DOI: 10.1007/s00425-012-1647-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/03/2012] [Indexed: 05/20/2023]
Abstract
Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.
Collapse
Affiliation(s)
- Yoko Marutani
- Laboratory of Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Nada-ku, 657-8501, Kobe, Japan
| | | | | | | | | |
Collapse
|
25
|
DeRidder BP, Shybut ME, Dyle MC, Kremling KAG, Shapiro MB. Changes at the 3'-untranslated region stabilize Rubisco activase transcript levels during heat stress in Arabidopsis. PLANTA 2012; 236:463-76. [PMID: 22411508 DOI: 10.1007/s00425-012-1623-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/26/2012] [Indexed: 05/24/2023]
Abstract
Inhibition of photosynthesis by heat stress is accompanied by functional impairment of Rubisco's chaperone, activase (RCA), resulting in deactivation of Rubisco. Since activase is extremely sensitive to thermal denaturation, changes in expression of RCA at the transcript or protein level could provide a mechanism for acclimation of photosynthesis to prolonged heat stress. Using quantitative real-time PCR (qPCR) we show steady-state RCA transcript levels in Arabidopsis thaliana are stabilized during prolonged exposure to moderate heat (35 °C). A survey of RCA transcripts indicates heat stress did not alter the relative abundance of transcripts encoding α and β-isoforms of activase that are produced by alternative splicing of the pre-mRNA. Instead, mRNA stabilization in heat-stressed plants coincided with a significant reduction in the average length of activase 3'-untranslated regions, and was associated with enrichment of an uncharacterized activase mRNA splice variant, AtRCAβ2. Transcript-specific qPCR revealed AtRCAβ2 mRNA was more stable than AtRCAα and AtRCAβ mRNA in heat-stressed plants. Using an inducible transgenic system, we found that RCA transcripts lacking their native 3'-untranslated region were significantly more stable than their full-length counterparts in vivo. Using this system, stability of the RCA protein was examined over 24 h in vivo, in the absence of RCA transcription. At both optimal and elevated temperatures, RCA protein levels remained stable in plants lacking RCA mRNA, but increased when RCA mRNA was present, particularly in heat-stressed plants. This study reveals a possible mechanism, involving post-transcriptional regulation of an important photosynthesis regulatory gene, for acclimation of photosynthesis to heat stress.
Collapse
Affiliation(s)
- Benjamin P DeRidder
- Department of Biology, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112, USA.
| | | | | | | | | |
Collapse
|
26
|
Zaffagnini M, Bedhomme M, Lemaire SD, Trost P. The emerging roles of protein glutathionylation in chloroplasts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:86-96. [PMID: 22325869 DOI: 10.1016/j.plantsci.2012.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species play important roles in redox signaling mainly through a set of reversible post-translational modifications of cysteine thiol residues in proteins, including glutathionylation and dithiol/disulfide exchange. Protein glutathionylation has been extensively studied in mammals but emerging evidence suggests that it can play important roles in plants and in chloroplast in particular. This redox modification involves protein thiols and glutathione and is mainly controlled by glutaredoxins, oxidoreductases belonging to the thioredoxin superfamily. In this review, we first present the possible mechanisms of protein glutathionylation and then introduce the chloroplast systems of glutaredoxins and thioredoxins, in order to pinpoint the biochemical properties that make some glutaredoxin isoforms the master enzymes in deglutathionylation. Finally, we discuss the possible roles of glutathionylation in thiol protection, protein regulation, reactive oxygen species scavenging and redox signaling in chloroplasts, with emphasis on the crosstalk between thioredoxin- and glutaredoxin-mediated signaling pathways.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
27
|
Nichol CJ, Pieruschka R, Takayama K, F Rster B, Kolber Z, Rascher U, Grace J, Robinson SA, Pogson B, Osmond B. Canopy conundrums: building on the Biosphere 2 experience to scale measurements of inner and outer canopy photoprotection from the leaf to the landscape. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1-24. [PMID: 32480756 DOI: 10.1071/fp11255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 12/02/2011] [Indexed: 06/11/2023]
Abstract
Recognising that plant leaves are the fundamental productive units of terrestrial vegetation and the complexity of different environments in which they must function, this review considers a few of the ways in which these functions may be measured and potentially scaled to the canopy. Although canopy photosynthetic productivity is clearly the sum of all leaves in the canopy, we focus on the quest for 'economical insights' from measurements that might facilitate integration of leaf photosynthetic activities into canopy performance, to better inform modelling based on the 'insights of economics'. It is focussed on the reversible downregulation of photosynthetic efficiency in response to light environment and stress and summarises various xanthophyll-independent and dependent forms of photoprotection within the inner and outer canopy of woody plants. Two main themes are developed. First, we review experiments showing the retention of leaves that grow old in the shade may involve more than the 'payback times' required to recover the costs of their construction and maintenance. In some cases at least, retention of these leaves may reflect selection for distinctive properties that contribute to canopy photosynthesis through utilisation of sun flecks or provide 'back up' capacity following damage to the outer canopy. Second, we report experiments offering hope that remote sensing of photosynthetic properties in the outer canopy (using chlorophyll fluorescence and spectral reflectance technologies) may overcome problems of access and provide integrated measurements of these properties in the canopy as a whole. Finding appropriate tools to scale photosynthesis from the leaf to the landscape still presents a challenge but this synthesis identifies some measurements and criteria in the laboratory and the field that improve our understanding of inner and outer canopy processes.
Collapse
Affiliation(s)
- Caroline J Nichol
- School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, Scotland, UK
| | - Roland Pieruschka
- Institute for Bio- and Geosciences IBG 2: Plant Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kotaro Takayama
- Laboratory of Physiological Green Systems, Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Japan
| | - Britta F Rster
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Zbigniew Kolber
- Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Uwe Rascher
- Institute for Bio- and Geosciences IBG 2: Plant Sciences, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - John Grace
- School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, Scotland, UK
| | - Sharon A Robinson
- Institute for Conservation Biology and Ecosystem Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barry Pogson
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Barry Osmond
- Plant Sciences Division, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
28
|
Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, Cassier-Chauvat C, Decottignies P, Lemaire SD. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics 2011; 11:M111.014142. [PMID: 22122882 DOI: 10.1074/mcp.m111.014142] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS One 2011; 6:e23033. [PMID: 21887227 PMCID: PMC3162573 DOI: 10.1371/journal.pone.0023033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. METHODOLOGY/FINDINGS The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. CONCLUSIONS Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.
Collapse
Affiliation(s)
- Hai-Bo Luo
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ling Ma
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui-Feng Xi
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Duan
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shao-Hua Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wayne Loescher
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
| | - Jun-Fang Wang
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Wang
- Beijing Key Laboratory of Viticulture and Enology, and Key Laboratory of Plant Resource Science, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
30
|
Sharkey TD, Zhang R. High Temperature Effects on Electron and Proton Circuits of Photosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:712-22. [PMID: 20666927 DOI: 10.1111/j.1744-7909.2010.00975.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
31
|
Structural changes associated with the acute thermal instability of Rubisco activase. Arch Biochem Biophys 2010; 499:17-25. [PMID: 20450882 DOI: 10.1016/j.abb.2010.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 11/21/2022]
Abstract
Inhibition of photosynthesis by heat has been linked to the instability of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) chaperone, Rubisco activase. Examination of the recombinant enzyme showed that ADP and ATP protected against inactivation, whereas Mg(2+) promoted inactivation. Heating caused aggregation of Rubisco activase characterized by disruption of secondary structure content and formation of insoluble protein. In contrast, incubation at room temperature without nucleotide caused the active approximately 660 kDa protein to form a soluble, but inactive aggregate of > 2 x 10(6) Da. Circular dichroism (CD) spectroscopy and fluorescence established that structural perturbations in the aggregate did not reduce alpha-helical content significantly. Differences in the thermal stability between wild type and mutant Rubisco activase were observed for the recombinant proteins and when the proteins were expressed in transgenic Arabidopsis. That the sensitivity of these plants to heat differs indicates that the thermal instability of Rubisco activase is a main determinant of the temperature-sensitivity of photosynthesis.
Collapse
|
32
|
Behnke K, Loivamäki M, Zimmer I, Rennenberg H, Schnitzler JP, Louis S. Isoprene emission protects photosynthesis in sunfleck exposed Grey poplar. PHOTOSYNTHESIS RESEARCH 2010; 104:5-17. [PMID: 20135229 DOI: 10.1007/s11120-010-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/11/2010] [Indexed: 05/12/2023]
Abstract
In the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars. Similar impairment was not detected when the leaves were exposed to high light (lightflecks) only. Within 10 h non-isoprene emitting poplars recovered from sunfleck-related impairment as indicated by chlorophyll fluorescence and microarray analysis. Unstressed leaves of non-isoprene emitting poplars had higher ascorbate contents, but also higher contents of malondialdehyde than wild-type. Microarray analyses revealed lipid and chlorophyll degradation processes in the non-isoprene emitting poplars. Thus, there is evidence for an adjustment of the antioxidative system in the non-isoprene emitting poplars even under normal growth conditions.
Collapse
Affiliation(s)
- Katja Behnke
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Yamori W, Noguchi K, Hikosaka K, Terashima I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. PLANT PHYSIOLOGY 2010; 152:388-99. [PMID: 19880611 PMCID: PMC2799372 DOI: 10.1104/pp.109.145862] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/27/2009] [Indexed: 05/18/2023]
Abstract
While interspecific variation in the temperature response of photosynthesis is well documented, the underlying physiological mechanisms remain unknown. Moreover, mechanisms related to species-dependent differences in photosynthetic temperature acclimation are unclear. We compared photosynthetic temperature acclimation in 11 crop species differing in their cold tolerance, which were grown at 15 degrees C or 30 degrees C. Cold-tolerant species exhibited a large decrease in optimum temperature for the photosynthetic rate at 360 microL L(-1) CO(2) concentration [Opt (A(360))] when growth temperature decreased from 30 degrees C to 15 degrees C, whereas cold-sensitive species were less plastic in Opt (A(360)). Analysis using the C(3) photosynthesis model shows that the limiting step of A(360) at the optimum temperature differed between cold-tolerant and cold-sensitive species; ribulose 1,5-bisphosphate carboxylation rate was limiting in cold-tolerant species, while ribulose 1,5-bisphosphate regeneration rate was limiting in cold-sensitive species. Alterations in parameters related to photosynthetic temperature acclimation, including the limiting step of A(360), leaf nitrogen, and Rubisco contents, were more plastic to growth temperature in cold-tolerant species than in cold-sensitive species. These plastic alterations contributed to the noted growth temperature-dependent changes in Opt (A(360)) in cold-tolerant species. Consequently, cold-tolerant species were able to maintain high A(360) at 15 degrees C or 30 degrees C, whereas cold-sensitive species were not. We conclude that differences in the plasticity of photosynthetic parameters with respect to growth temperature were responsible for the noted interspecific differences in photosynthetic temperature acclimation between cold-tolerant and cold-sensitive species.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
34
|
Hozain MI, Salvucci ME, Fokar M, Holaday AS. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. TREE PHYSIOLOGY 2010; 30:32-44. [PMID: 19864261 DOI: 10.1093/treephys/tpp091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Significant inhibition of photosynthesis occurs at temperatures only a few degrees (<or= 10 degrees C) above the optimum, resulting in a considerable loss of potential productivity. Most studies of heat stress have focused on crop or weedy annual plants, whereas similar studies with trees have been limited in number. As temperature is a major factor limiting the geographic ranges of most plants, the aim of this study was to use two Populus species adapted to contrasting thermal environments for determining the factors that constrain photosynthetic assimilation (A) under moderate heat stress in tree species. Consistent with its native range in temperate regions, Populus deltoides Bartr. ex Marsh. exhibited a significantly higher temperature optimum for A than did Populus balsamifera L., a boreal species. The higher A exhibited by P. deltoides at 33-40 degrees C compared to that for P. balsamifera was associated with a higher activation state of Rubisco and correlated with a higher ATPase activity of Rubisco activase. The temperature response of minimal chlorophyll a fluorescence for darkened leaves was similar for both species and was not consistent with a thylakoid lipid phase change contributing to the decline in A in the range of 30-40 degrees C. Taken together, these data support the idea that the differences in the temperature response of A for the two Populus species could be attributed to the differences in the response of Rubisco activation and ultimately to the thermal properties of Rubisco activase. That the primary sequence of Rubisco activase differed between the species, especially in regions associated with ATPase activity and Rubisco recognition, indicates that the genotypic differences in Rubisco activase might underlie the differences in the heat sensitivity of Rubisco activase and photosynthesis at moderately high temperatures.
Collapse
Affiliation(s)
- Moh'd I Hozain
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | | | | | |
Collapse
|
35
|
Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback ME, Dellapenna D, Sharkey TD. Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. PLANT, CELL & ENVIRONMENT 2009; 32:1538-47. [PMID: 19558623 DOI: 10.1111/j.1365-3040.2009.02018.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We measured the DeltaPsi and DeltapH components of the transthylakoid proton motive force (pmf) in light-adapted, intact tobacco leaves in response to moderate heat. The DeltaPsi causes an electrochromic shift (ECS) in carotenoid absorbance spectra. The light-dark difference spectrum has a peak at 518 nm and the two components of the pmf were separated by following the ECS for 25 s after turning the light off. The ECS signal was deconvoluted by subtracting the effects of zeaxanthin formation (peak at 505 nm) and the qE-related absorbance changes (peak at 535 nm) from a signal measured at 520 nm. Heat reduced DeltapH while DeltaPsi slightly increased. Elevated temperature accelerated ECS decay kinetics likely reflecting heat-induced increases in proton conductance and ion movement. Energy-dependent quenching (qE) was reduced by heat. However, the reduction of qE was less than expected given the loss of DeltapH. Zeaxanthin did not increase with heat in light-adapted leaves but it was higher than would be predicted given the reduced DeltapH found at high temperature. The results indicate that moderate heat stress can have very large effects on thylakoid reactions.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang R, Sharkey TD. Photosynthetic electron transport and proton flux under moderate heat stress. PHOTOSYNTHESIS RESEARCH 2009; 100:29-43. [PMID: 19343531 DOI: 10.1007/s11120-009-9420-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/23/2009] [Indexed: 05/23/2023]
Abstract
Moderate heat stress has been reported to increase PSI cyclic electron flow (CEF). We subjected leaves of Arabidopsis (Arabidopsis thaliana) mutants disrupted in the regulation of one or the other pathway of CEF flow-crr2 (chlororespiratory reduction, deficient in regulation of chloroplast NAD(P)H dehydrogenase-dependent CEF) and pgr5 (proton gradient regulation, proposed to have reduced efficiency of antimycin-A-sensitive-CEF regulation) to moderate heat stress. Light-adapted leaves were switched from 23 to 40 degrees C in 2 min. Gas exchange, chlorophyll fluorescence, the electrochromic shift (ECS), and P700 were measured. Photosynthesis of crr2 and pgr5 was more sensitive to heat and had less ability to recover than the genetic background gl. The proton conductance in light was increased by heat and it was twice as much in pgr5, which had much smaller light-induced proton motive force. We confirmed that P700 becomes more reduced at high temperature and show that, in contrast, the proportion of PSII open centers (with Q (A) oxidized) increases. The two mutants had much slower P700(+) reduction rate during and after heat than gl. The proportion of light absorbed by PSI versus PSII was increased in gl and crr2 during and after heat treatment, but not in pgr5. We propose that heat alters the redox balance away from PSII and toward PSI and that the regulation of CEF helps photosynthesis tolerate heat stress.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Kana R, Kotabová E, Prásil O. Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO2 assimilation in preheated barley leaves. PHYSIOLOGIA PLANTARUM 2008; 133:794-806. [PMID: 18494737 DOI: 10.1111/j.1399-3054.2008.01094.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heat stress causes inhibition of photosynthetic CO(2) assimilation, affects light photosynthetic reactions and accelerates alternative pathways of plastoquinone pool reduction (APPR). We have studied all these heat-sensitive processes after preheating to a broad range of physiological temperatures (24-46 degrees C) to explore a role of these alternative pathways during heat stress. Primarily, the effective quantum yield of PSII photochemistry was reduced (at 40 degrees C). This PSII downregulation was accompanied by the stimulation of APPR and preceded reduction of photosynthetic CO(2) assimilation by 2 degrees ; it occurred after preheating at 42 degrees C because of inhibition in Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) activation process. Thus, we suggest that the heat-induced stimulation of APPR is not associated with the heat-induced inhibition of Calvin cycle as it was reported for other types of stresses. A possible role of APPR in the compensation of PSII downregulation is briefly discussed.
Collapse
Affiliation(s)
- Radek Kana
- Faculty of Science, Laboratory of Biophysics, Palacký University, Olomouc, Czech Republic.
| | | | | |
Collapse
|
38
|
Yamori W, Noguchi K, Kashino Y, Terashima I. The Role of Electron Transport in Determining the Temperature Dependence of the Photosynthetic Rate in Spinach Leaves Grown at Contrasting Temperatures. ACTA ACUST UNITED AC 2008; 49:583-91. [DOI: 10.1093/pcp/pcn030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Kubien DS, Sage RF. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco. PLANT, CELL & ENVIRONMENT 2008; 31:407-18. [PMID: 18182015 DOI: 10.1111/j.1365-3040.2008.01778.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The reasons for the decline in net CO2 assimilation (A) above its thermal optimum are controversial. We tested the hypothesis that increasing the ratio of Rubisco activase to Rubisco catalytic site concentration would increase the activation state of Rubisco at high temperatures. We measured photosynthetic gas exchange, in vivo electron transport (J) and the activation state of Rubisco between 15 and 45 degrees C, at 38 and 76 Pa ambient CO2, in wild-type (WT) and anti-rbcS tobacco. The Rubisco content of the anti-rbcS lines was 30% (S7-1) or 6% (S7-2) of WT, but activase levels were the same in the three genotypes. Anti-rbcS plants had lower A than WT at all temperatures, but had a similar thermal optimum for photosynthesis as WT at both CO2 levels. In WT plants, Rubisco was fully activated at 32 degrees C, but the activation state declined to 64% at 42 degrees C. By contrast, the activation state of Rubisco was above 90% in the S7-1 line, between 15 and 42 degrees C. Both A and J declined about 20% from T(opt) to the highest measurement temperatures in WT and the S7-1 line, but this was fully reversed after a 20 min recovery at 35 degrees C. At 76 Pa CO2, predicted rates of RuBP regeneration-limited photosynthesis corresponded with measured A in WT tobacco at all temperatures, and in S7-1 tobacco above 40 degrees C. Our observations are consistent with the hypothesis that the high temperature decline in A in the WT is because of an RuBP regeneration limitation, rather than the capacity of Rubisco activase to maintain high Rubisco activation state.
Collapse
Affiliation(s)
- David S Kubien
- Department of Biology, University of New Brunswick, 10 Bailey Dr., Fredericton, NB, Canada.
| | | |
Collapse
|
40
|
Portis AR, Parry MAJ. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. PHOTOSYNTHESIS RESEARCH 2007; 94:121-43. [PMID: 17665149 DOI: 10.1007/s11120-007-9225-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 05/16/2023]
Abstract
Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.
Collapse
Affiliation(s)
- Archie R Portis
- Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
41
|
Sage RF, Kubien DS. The temperature response of C(3) and C(4) photosynthesis. PLANT, CELL & ENVIRONMENT 2007; 30:1086-106. [PMID: 17661749 DOI: 10.1111/j.1365-3040.2007.01682.x] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada.
| | | |
Collapse
|
42
|
Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. PLANT CELL REPORTS 2007; 26:1635-46. [PMID: 17458549 DOI: 10.1007/s00299-006-0299-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/21/2006] [Accepted: 12/31/2006] [Indexed: 05/05/2023]
Abstract
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants 9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO(2) assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants. The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fraction and thus enhanced the tolerance of CO(2) assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method for enhancing high temperature tolerance of plants.
Collapse
Affiliation(s)
- Lingling Feng
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kreslavski VD, Carpentier R, Klimov VV, Murata N, Allakhverdiev SI. Molecular mechanisms of stress resistance of the photosynthetic apparatus. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807030014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. PLANT PHYSIOLOGY 2007; 143:629-38. [PMID: 17142484 PMCID: PMC1803748 DOI: 10.1104/pp.106.090712] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Whole spinach (Spinacia oleracea) plants were subjected to heat stress (25 degrees C-50 degrees C) in the dark for 30 min. At temperatures higher than 35 degrees C, CO2 assimilation rate decreased significantly. The maximal efficiency of photosystem II (PSII) photochemistry remained unchanged until 45 degrees C and decreased only slightly at 50 degrees C. Nonphotochemical quenching increased significantly either in the absence or presence of dithiothreitol. There was an appearance of the characteristic band at around 698 nm in 77 K fluorescence emission spectra of leaves. Native green gel of thylakoid membranes isolated immediately from heat-stressed leaves showed that many pigment-protein complexes remained aggregated in the stacking gel. The analyses of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting demonstrated that the aggregates were composed of the main light-harvesting complex of PSII (LHCIIb). To characterize the aggregates, isolated PSII core complexes were incubated at 25 degrees C to 50 degrees C in the dark for 10 min. At temperatures over 35 degrees C, many pigment-protein complexes remained aggregated in the stacking gel of native green gel, and immunoblotting analyses showed that the aggregates were composed of LHCIIb. In addition, isolated LHCII was also incubated at 25 degrees C to 50 degrees C in the dark for 10 min. LHCII remained aggregated in the stacking gel of native green gel at temperatures over 35 degrees C. Massive aggregation of LHCII was clearly observed by using microscope images, which was accompanied by a significant increase in fluorescence quenching. There was a linear relationship between the formation of LHCII aggregates and nonphotochemical quenching in vivo. The results in this study suggest that LHCII aggregates may represent a protective mechanism to dissipate excess excitation energy in heat-stressed plants.
Collapse
Affiliation(s)
- Yunlai Tang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:414-21. [PMID: 17207454 DOI: 10.1016/j.bbabio.2006.11.019] [Citation(s) in RCA: 782] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/28/2022]
Abstract
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to an imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. In the "classical" scheme for the mechanism of photoinhibition, strong light induces the production of reactive oxygen species (ROS), which directly inactivate the photochemical reaction center of PSII. By contrast, in a new scheme, we propose that photodamage is initiated by the direct effect of light on the oxygen-evolving complex and that ROS inhibit the repair of photodamaged PSII by suppressing primarily the synthesis of proteins de novo. The activity of PSII is restricted by a variety of environmental stresses. The effects of environmental stress on damage to and repair of PSII can be examined separately and it appears that environmental stresses, with the exception of strong light, act primarily by inhibiting the repair of PSII. Studies have demonstrated that repair-inhibitory stresses include CO(2) limitation, moderate heat, high concentrations of NaCl, and low temperature, each of which suppresses the synthesis of proteins de novo, which is required for the repair of PSII. We postulate that most types of environmental stress inhibit the fixation of CO(2) with the resultant generation of ROS, which, in turn, inhibit protein synthesis.
Collapse
Affiliation(s)
- Norio Murata
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
46
|
MARCHAND FL, VERLINDEN M, KOCKELBERGH F, GRAAE BJ, BEYENS L, NIJS I. Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01203.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wang P, Ye J, Shen Y, Mi H. The role of chloroplast NAD(P)H dehydrogenase in protection of tobacco plant against heat stress. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2006; 49:311-21. [PMID: 16989276 DOI: 10.1007/s11427-006-2005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After incubation at 42 degrees C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (deltandhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of deltandhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42 degrees C for 6 h, the photochemical activity declined more markedly in deltandhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (deltapH), while the consumption of deltapH was highly inhibited in deltandhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra deltapH, thus reducing the photooxidative damage.
Collapse
Affiliation(s)
- Peng Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
48
|
Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. PLANT, CELL & ENVIRONMENT 2006; 29:1659-70. [PMID: 16898026 DOI: 10.1111/j.1365-3040.2006.01550.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, several studies reported that the optimum temperature for the initial slope [IS(Ci)] of the light-saturated photosynthetic rate (A) versus intercellular CO2 concentration (Ci) curve changed, depending on the growth temperature. However, few studies compare IS(Ci) with ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) properties. Here, we assessed Rubisco activation state and in vitro Rubisco kinetics, the main determinants of IS(Ci), in spinach leaves grown at 30/25 [high temperature (HT)] and 15/10 degrees C [low temperature (LT)]. We measured Rubisco activation state and A at a CO2 concentration of 360 microL L(-1) (A360) at various temperatures. In both HT and LT leaves, the Rubisco activation state decreased with increasing temperatures above the optimum temperatures for A360, while the activation state remained high at lower temperatures. To compare Rubisco characteristics, temperature dependences of the maximum rate of ribulose 1,5-bisphosphate (RuBP) carboxylation (Vcmax), specificity factor (Sc/o) and thermal stability were examined. We also examined Vcmax, and thermal stability in the leaves that were transferred from HT to LT conditions and were subsequently kept under LT conditions for 2 weeks (HL). Rubisco purified from HT, LT and HL leaves are called HT, LT and HL Rubisco, respectively. Thermal stabilities of LT and HL Rubisco were similar and lower than that of HT Rubisco. Both Vcmax and Sc/o in LT Rubisco were higher than those of HT Rubisco at low temperatures, while these were lower at high temperatures. Vcmax in HL Rubisco were similar to those of LT Rubisco at low temperatures, and to those of HT Rubisco at high temperatures. The predicted photosynthetic rates, taking account of the Rubisco kinetics and the Rubisco activation state, agreed well with A360 in both HT and LT leaves. This study suggests that photosynthetic performance is largely determined by the Rubisco kinetics at low temperature and by Rubisco Kinetics and the Rubisco activation state at high temperature.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | |
Collapse
|
49
|
Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. PLANT PHYSIOLOGY 2006; 141:465-74. [PMID: 16428601 PMCID: PMC1475475 DOI: 10.1104/pp.105.070490] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 10/21/2005] [Accepted: 10/25/2005] [Indexed: 05/06/2023]
Abstract
In this study, the function of the NAD(P)H dehydrogenase (NDH)-dependent pathway in suppressing the accumulation of reactive oxygen species in chloroplasts was investigated. Hydrogen peroxide accumulated in the leaves of tobacco (Nicotiana tabacum) defective in ndhC-ndhK-ndhJ (DeltandhCKJ) at 42 degrees C and 4 degrees C, and in that of wild-type leaves at 4 degrees C. The maximum quantum efficiency of PSII decreased to a similar extent in both strains at 42 degrees C, while it decreased more evidently in DeltandhCKJ at 4 degrees C. The parameters linked to CO(2) assimilation, such as the photochemical efficiency of PSII, the decrease of nonphotochemical quenching following the initial rise, and the photosynthetic O(2) evolution, were inhibited more significantly in DeltandhCKJ than in wild type at 42 degrees C and were seriously inhibited in both strains at 4 degrees C. While cyclic electron flow around PSI mediated by NDH was remarkably enhanced at 42 degrees C and suppressed at 4 degrees C. The proton gradient across the thylakoid membranes and light-dependent ATP synthesis were higher in wild type than in DeltandhCKJ at either 25 degrees C or 42 degrees C, but were barely formed at 4 degrees C. Based on these results, we suggest that cyclic photophosphorylation via the NDH pathway might play an important role in regulation of CO(2) assimilation under heat-stressed condition but is less important under chilling-stressed condition, thus optimizing the photosynthetic electron transport and reducing the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Peng Wang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Hüve K, Bichele I, Tobias M, Niinemets U. Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. PLANT, CELL & ENVIRONMENT 2006; 29:212-28. [PMID: 17080637 DOI: 10.1111/j.1365-3040.2005.01414.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In water-stressed leaves, accumulation of neutral osmotica enhances the heat tolerance of photosynthetic electron transport. There are large diurnal and day-to-day changes in leaf sugar content because of variations in net photosynthetic production, respiration and retranslocation. To test the hypothesis that diurnal and day-to-day variations in leaf sugar content and osmotic potential significantly modify the responses to temperature of photosynthetic electron transport rate, we studied chlorophyll fluorescence rise temperatures (i.e. critical temperatures at break-points in fluorescence versus temperature response curves, corresponding to enhanced damage of PSII centers and detachment of pigment-binding complexes) in the dark at a background of weak far-red light (T(FR)) and under actinic light (T(L)), and responses of foliar photosynthetic electron transport rate to temperature using gas-exchange and chlorophyll fluorescence techniques in the temperate tree Populus tremula L. Sucrose and sorbitol feeding experiments demonstrated strong increases of fluorescence rise temperatures T(FR) and T(L) with decreasing leaf osmotic potential and increasing internal sugar concentration. Similar T(FR) and T(L) changes were observed in response to natural variation in leaf sugar concentration throughout the day. Increases in leaf sugar concentration led to an overall down-regulation of the rate of photosynthetic electron transport (J), but increases in the optimum temperature (Topt) of J. For the entire dataset, Topt varied from 33.8 degrees C to 43 degrees C due to natural variation in sugars and from 33.8 degrees C to 52.6 degrees C in the sugar feeding experiments, underscoring the importance of sugars in modifying the response of J to temperature. However, the correlations between the sugar concentration and fluorescence rise temperature varied between the days. This variation in fluorescence rise temperature was best explained by the average temperature of the preceding 5 or 6 days. In addition, there was a significant year-to-year variation in heat sensitivity of photosynthetic electron transport that was associated with year-to-year differences in endogenous sugar content. Our data demonstrate a diurnal variation in leaf heat tolerance due to changes in sugar concentration, but they also show that this short-term modification in heat tolerance is super-imposed by long-term changes in heat resistance driven by average temperature of preceding days.
Collapse
Affiliation(s)
- Katja Hüve
- Department of Plant Physiology, University of Tartu, Riia 23, Tartu EE 51010, Estonia
| | | | | | | |
Collapse
|