1
|
Zholos AV, Melnyk MI, Dryn DO. Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics. Neuropharmacology 2024; 242:109776. [PMID: 37913983 DOI: 10.1016/j.neuropharm.2023.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Acetylcholine is the primary excitatory neurotransmitter in visceral smooth muscles, wherein it binds to and activates two muscarinic receptors subtypes, M2 and M3, thus causing smooth muscle excitation and contraction. The first part of this review focuses on the types of cells involved in cholinergic neurotransmission and on the molecular mechanisms underlying acetylcholine-induced membrane depolarisation, which is the central event of excitation-contraction coupling causing Ca2+ entry via L-type Ca2+ channels and smooth muscle contraction. Studies of the muscarinic cation current in intestinal myocytes (mICAT) revealed its main molecular counterpart, receptor-operated TRPC4 channel, which is activated in synergy by both M2 and M3 receptors. M3 receptors activation is of permissive nature, while activation of M2 receptors via Gi/o proteins that are coupled to them plays a direct role in TRPC4 opening. Our understanding of signalling pathways underlying mICAT generation has vastly expanded in recent years through studies of TRPC4 gating in native cells and its regulation in heterologous cells. Recent studies using muscarinic receptor knockout have established that at low agonist concentration activation of both M2 receptor and the M2/M3 receptor complex elicits smooth muscle contraction, while at high agonist concentration M3 receptor function becomes dominant. Based on this knowledge, in the second part of this review we discuss the cellular and molecular mechanisms underlying the numerous anticholinergic effects on neuroactive drugs, in particular general anaesthetics and anxiolytics, which can significantly impair gastrointestinal motility. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Alexander V Zholos
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Mariia I Melnyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Kim H, Kim J, Jeon JP, Myeong J, Wie J, Hong C, Kim HJ, Jeon JH, So I. The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels (Austin) 2012; 6:333-43. [PMID: 22878724 PMCID: PMC3508772 DOI: 10.4161/chan.21198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Hana Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Guibert C, Ducret T, Savineau JP. Voltage-independent calcium influx in smooth muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:10-23. [DOI: 10.1016/j.pbiomolbio.2008.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Kim BJ, Jeon JH, Kim SJ, So I. Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes. Can J Physiol Pharmacol 2008; 85:1254-62. [PMID: 18066127 DOI: 10.1139/y07-118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of calmodulin (CaM) and myosin light chain kinase (MLCK) on murine ileal myocytes using the whole-cell patch-clamp technique. Under the voltage clamp, at the holding potential of -60 mV, 50 micromol/L carbachol (CCh) induced inward currents (I CCh), and spontaneous decay of I CCh occurred. The peak inward currents induced by the repetitive application of CCh (50 micromol/L) tended to decrease in amplitude. Intracellular application of 0.2 mmol/L guanosine 5'-O-(gamma-thio)triphosphate (GTP gammaS) from the patch electrode induced an inward current at a holding potential of -60m V, and the peak inward currents induced by the repetitive application of Cs tended to decrease slightly in amplitude. The amplitude of I CCh was reduced by pretreatment either with W-7, trifluoroperazine, W-5, and melittin (CaM inhibitors) or with ML-7 and ML-9 (selective MLCK inhibitors), and the inhibitory effects were reversible. However, when we pretreated with 50 micromol/L W-7 or 5 micromol/L ML-7 on GTP gammaS-induced inward currents, almost no inhibition was observed in the inward currents. Application of both Rho kinase inhibitor and MLCK inhibitor inhibited GTP gammaS-induced currents. We conclude that CaM and MLCK modulate the activation process of I CCh in murine ileal myocytes and suggest that the classical type transient receptor potential (TRPC) channel 5 might be a candidate for nonselective cationic currents (NSCC) activated by muscarinic stimulation in gastrointestinal smooth muscle cells.
Collapse
Affiliation(s)
- Byung Joo Kim
- Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
5
|
Zholos AV. Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3/Ca2+ system. Acta Pharmacol Sin 2006; 27:833-42. [PMID: 16787566 DOI: 10.1111/j.1745-7254.2006.00392.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acetylcholine, the main enteric excitatory neuromuscular transmitter, evokes membrane depolarization and contraction of gastrointestinal smooth muscle cells by activating G protein-coupled muscarinic receptors. Although the cholinergic excitation is generally underlined by the multiplicity of ion channel effects, the primary event appears to be the opening of cation-selective channels; among them the 60 pS channel has been recently identified as the main target for the acetylcholine action in gastrointestinal myocytes. The evoked cation current, termed mI(CAT), causes either an oscillatory or a more sustained membrane depolarization response, which in turn leads to increases of the open probability of voltage-gated Ca2+ channels, thus providing Ca2+ entry in parallel with Ca2+ release for intracellular Ca2+ concentration rise and contraction. In recent years there have been several significant developments in our understanding of the signaling processes underlying mICAT generation. They have revealed important synergistic interactions between M2 and M3 receptor subtypes, single channel mechanisms, and the involvement of TRPC-encoded proteins as essential components of native muscarinic cation channels. This review summarizes these recent findings and in particular discusses the roles of the phospholipase C/InsP3/intracellular Ca2+ release system in the mI(CAT) physiological regulation.
Collapse
|
6
|
Unno T, Matsuyama H, Okamoto H, Sakamoto T, Yamamoto M, Tanahashi Y, Yan HD, Komori S. Muscarinic cationic current in gastrointestinal smooth muscles: signal transduction and role in contraction. ACTA ACUST UNITED AC 2006; 26:203-17. [PMID: 16879487 DOI: 10.1111/j.1474-8673.2006.00366.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1 The muscarinic receptor plays a key role in the parasympathetic nervous control of various peripheral tissues including gastrointestinal tract. The neurotransmitter acetylcholine, via activating muscarinic receptors that exist in smooth muscle, produces its contraction. 2 There is the opening of cationic channels as an underlying mechanism. The opening of cationic channels results in influxes of Ca2+ via the channels into the cell and also via voltage-dependent Ca2+ channels which secondarily opened in response to the depolarization, providing an amount of Ca2+ for activation of the contractile proteins. 3 Electrophysiological and pharmacological studies have shown that the cationic channels as well as muscarinic receptors exist in many visceral smooth muscle cells. However, the activation mechanisms of the cationic channels are still unclear. 4 In this article, we summarize the current knowledge of the muscarinic receptor-operated cationic channels, focusing on the receptor subtype, G protein and other signalling molecules that are involved in activation of these channels and on the molecular characteristics of the channel. This will improve strategies aimed at developing new selective pharmacological agents and understanding the activation mechanism and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- T Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim MT, Kim BJ, Lee JH, Kwon SC, Yeon DS, Yang DK, So I, Kim KW. Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. Am J Physiol Cell Physiol 2005; 290:C1031-40. [PMID: 16306123 DOI: 10.1152/ajpcell.00602.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The classic type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Because TRPC channels have calmodulin (CaM) binding sites at their COOH termini, we investigated the effect of CaM on mTRPC5. TRPC5 was initially activated by muscarinic stimulation with 50 microM carbachol and then decayed rapidly even in the presence of carbachol. Intracellular CaM (150 microg/ml) increased the amplitude of mTRPC5 current activated by muscarinic stimulation. CaM antagonists (W-7 and calmidazolium) inhibited mTRPC5 currents when they were applied during the activation of mTRPC5. Pretreatment of W-7 and calmidazolium also inhibited the activation of mTRPC5 current. Inhibitors of myosin light chain kinase (MLCK) inhibited the activation of mTRPC5 currents, whereas inhibitors of CaM-dependent protein kinase II did not. Small interfering RNA against cardiac type MLCK also inhibited the activation of mTRPC5 currents. However, inhibitors of CaM or MLCK did not show any effect on GTPgammaS-induced currents. Application of both Rho kinase inhibitor and MLCK inhibitor inhibited GTPgammaS-induced currents. We conclude that CaM and MLCK modulates the activation process of mTRPC5.
Collapse
Affiliation(s)
- Min Tae Kim
- Department of Physiology and Biophysics, Seoul National Univ. College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gordienko DV, Zholos AV. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005; 36:367-86. [PMID: 15451621 DOI: 10.1016/j.ceca.2004.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/11/2004] [Accepted: 02/14/2004] [Indexed: 11/26/2022]
Abstract
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).
Collapse
Affiliation(s)
- D V Gordienko
- Department of Basic Medical Sciences/Pharmacology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | |
Collapse
|
9
|
Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 2004; 561:415-32. [PMID: 15579537 PMCID: PMC1665365 DOI: 10.1113/jphysiol.2004.075051] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated, by using the patch clamp technique, Ca2+-mediated regulation of heterologously expressed TRPC6 and TRPC7 proteins in HEK293 cells, two closely related homologues of the transient receptor potential (TRP) family and molecular candidates for native receptor-operated Ca2+ entry channels. With nystatin-perforated recording, the magnitude and time courses of activation and inactivation of carbachol (CCh; 100 microM)-activated TRPC6 currents (I(TRPC6)) were enhanced and accelerated, respectively, by extracellular Ca2+ (Ca2+(o)) whether it was continuously present or applied after receptor stimulation. In contrast, Ca2+(o) solely inhibited TRPC7 currents (I(TRPC7)). Vigorous buffering of intracellular Ca2+ (Ca2+(i)) under conventional whole-cell clamp abolished the slow potentiating (i.e. accelerated activation) and inactivating effects of Ca2+(o), disclosing fast potentiation (EC50: approximately 0.4 mM) and inhibition (IC50: approximately 4 mM) of I(TRPC6) and fast inhibition (IC50: approximately 0.4 mM) of I(TRPC7). This inhibition of I(TRPC6) and I(TRPC7) seems to be associated with voltage-dependent reductions of unitary conductance and open probability at the single channel level, whereas the potentiation of I(TRPC6) showed little voltage dependence and was mimicked by Sr2+ but not Ba2+. The activation process of I(TRPC6) or its acceleration by Ca2+(o) probably involves phosphorylation by calmodulin (CaM)-dependent kinase II (CaMKII), as pretreatment with calmidazolium (3 microM), coexpression of Ca2+-insensitive mutant CaM, and intracellular perfusion of the non-hydrolysable ATP analogue AMP-PNP and a CaMKII-specific inhibitory peptide all effectively prevented channel activation. However, this was not observed for TRPC7. Instead, single CCh-activated TRPC7 channel activity was concentration-dependently suppressed by nanomolar Ca2+(i) via CaM and conversely enhanced by IP3. In addition, the inactivation time course of I(TRPC6) was significantly retarded by pharmacological inhibition of protein kinase C (PKC). These results collectively suggest that TRPC6 and 7 channels are multiply regulated by Ca2+ from both sides of the membrane through differential Ca2+-CaM-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Juan Shi
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Zholos AV, Bolton TB, Dresvyannikov AV, Kustov MV, Tsvilovskii VV, Shuba MF. Cholinergic excitation of smooth muscles: Multiple signaling pathways linking M2 and M3 muscarinic receptors to cationic channels. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zholos AV, Tsytsyura YD, Gordienko DV, Tsvilovskyy VV, Bolton TB. Phospholipase C, but not InsP3 or DAG, -dependent activation of the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle cells. Br J Pharmacol 2003; 141:23-36. [PMID: 14662735 PMCID: PMC1574170 DOI: 10.1038/sj.bjp.0705584] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In visceral smooth muscles, both M(2) and M(3) muscarinic receptor subtypes are found, and produce two major metabolic effects: adenylyl cyclase inhibition and PLCbeta activation. Thus, we studied their relevance for muscarinic cationic current (mI(CAT)) generation, which underlies cholinergic excitation. Experiments were performed on single guinea-pig ileal cells using patch-clamp recording techniques under conditions of weakly buffered [Ca(2+)](i) (either using 50 microm EGTA or 50-100 microm fluo-3 for confocal fluorescence imaging) or with [Ca(2+)](i) 'clamped' at 100 nm using 10 mm BAPTA/CaCl(2) mixture. 2. Using a cAMP-elevating agent (1 microm isoproterenol) or a membrane-permeable cAMP analog (10 microm 8-Br-cAMP), we found no evidence for mI(CAT) modulation through a cAMP/PKA pathway. 3. With low [Ca(2+)](i) buffering, the PLC blocker U-73122 at 2.5 microm almost abolished mI(CAT), in some cases without any significant effect on [Ca(2+)](i). When [Ca(2+)](i) was buffered at 100 nm, U-73122 reduced both carbachol- and GTPgammaS-induced mI(CAT) maximal conductances (IC(50)=0.5-0.6 microm) and shifted their activation curves positively. 4. U-73343, a weak PLC blocker, had no effect on GTPgammaS-induced mI(CAT), but weakly inhibited carbachol-induced current, possibly by competitively inhibiting muscarinic receptors, since the inhibition could be prevented by increasing the carbachol concentration to 1 mm. Aristolochic acid and D-609, which inhibit PLA(2) and phosphatidylcholine-specific PLC, respectively, had no or very small effects on mI(CAT), suggesting that these enzymes were not involved. 5. InsP(3) (1 microm) in the pipette or OAG (20 microm) applied externally had no effect on mI(CAT) or its inhibition by U-73122. Ca(2+) store depletion (evoked by InsP(3), or by combined cyclopiazonic acid, ryanodine and caffeine treatment) did not induce any significant current, and had no effect on mI(CAT) in response to carbachol when [Ca(2+)](i) was strongly buffered to 100 nm. 6. It is concluded that phosphatidylinositol-specific PLC modulates mI(CAT) via Ca(2+) release, but also does so independently of InsP(3), DAG, Ca(2+) store depletion or a rise of [Ca(2+)](i). Our present results explain the previously established 'permissive' role of the M(3) receptor subtype in mI(CAT) generation, and provide a new insight into the molecular mechanisms underlying the shifts of the cationic conductance activation curve.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Nerve-Muscle Physiology, A.A. Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.
| | | | | | | | | |
Collapse
|
12
|
Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW. TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 2003; 284:G604-16. [PMID: 12631560 DOI: 10.1152/ajpgi.00069.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated which transient receptor potential (TRP) channel is responsible for the nonselective cation channel (NSCC) activated by carbachol (CCh) in murine stomach with RT-PCR and the electrophysiological method. All seven types of TRP mRNA were detected in murine stomach with RT-PCR. When each TRP channel was expressed, the current-voltage relationship of mTRP5 was most similar to that recorded in murine gastric myocytes. mTRP5 showed a conductance order of Cs(+) > K(+) > Na(+), similar to that in the murine stomach. With 0.2 mM GTPgammaS in the pipette solution, the current was activated transiently in both NSCC in the murine stomach and the expressed mTRP5. Both NSCC activated by CCh in murine stomach and mTRP5 were inhibited by intracellularly applied anti-G(q/11) antibody, PLC inhibitor U-73122, IICR inhibitor 2-aminoethoxydiphenylborate, and nonspecific cation channel blockers La(3+) and flufenamate. There were two other unique properties. Both the native NSCC and mTRP5 were activated by 1-oleoyl-2-acetyl-sn-glycerol. Without the activation of NSCC by CCh, the NSCC in murine stomach was constitutively active like mTRP5. From the above results, we suggest that mTRP5 might be a candidate for the NSCC activated by ACh or CCh in murine stomach.
Collapse
Affiliation(s)
- Young Mee Lee
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
McFadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol 2002; 135:1-13. [PMID: 11786473 PMCID: PMC1573126 DOI: 10.1038/sj.bjp.0704468] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca(2+)](i)). This activator calcium can originate from two intimately linked sources--the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family.
Collapse
Affiliation(s)
- Ian McFadzean
- Centre for Cardiovascular Biology & Medicine, School of Biomedical Sciences, King's College London, Hodgkin Building, Guys Campus, London SE1 9RT.
| | | |
Collapse
|
14
|
Inoue R, Ito Y. Intracellular ATP slows time-dependent decline of muscarinic cation current in guinea pig ileal smooth muscle. Am J Physiol Cell Physiol 2000; 279:C1307-18. [PMID: 11029277 DOI: 10.1152/ajpcell.2000.279.5.c1307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of intracellular nucleotide triphosphates on time-dependent changes in muscarinic receptor cation currents (I(cat)) were investigated using the whole cell patch-clamp technique in guinea pig ileal muscle. In the absence of nucleotide phosphates in the patch pipette, I(cat) evoked every 10 min decayed progressively. This decay was slowed dose dependently by inclusion of millimolar concentrations of ATP in the pipette. This required a comparable concentration of Mg(2+), was mimicked by UTP and CTP, and was attenuated by simultaneous application of alkaline phosphatase or inhibitors of tyrosine kinase. In contrast, a sudden photolytic release of millimolar ATP (probably in the free form) caused a marked suppression of I(cat). Submillimolar concentrations of GTP dose dependently increased the amplitude of I(cat) as long as ATP and Mg(2+) were in the pipette, but, in their absence, GTP was ineffective at preventing I(cat) decay. The decay of I(cat) was paralleled by altered voltage-dependent gating, i.e., a positive shift in the activation curve and reduction in the maximal conductance. It is thus likely that ATP exerts two reciprocal actions on I(cat), through Mg(2+)-dependent and -independent mechanisms, and that the enhancing effect of GTP on I(cat) is essentially different from that of ATP.
Collapse
Affiliation(s)
- R Inoue
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
15
|
|
16
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Ion channels underlying the resting membrane potential were examined in human fetal airway smooth muscle (ASM). Tissue was obtained from the Medical Research Council Tissue Bank, London, UK. ASM cells were enzymatically dispersed, and ion currents were examined using a patch clamp. Although all cells were of similar size and stained intensely for vimentin, only approximately 50% stained intensely for smooth muscle alpha-actin or myosin heavy chain. Depolarization induced a tetraethylammonium (TEA)- and charybdotoxin (ChTX)-sensitive outward current that varied widely among cells (<50 to >2000 pA at +100 mV), and a smaller nonselective cation current that was similar in all cells (approximately 20 pA at +100 mV). The TEA-sensitive current was associated with three types of large conductance, ChTX-sensitive K+ channel: a 200-pS channel, which was active at negative potentials and low [Ca2+], as described for freshly isolated adult ASM, and two other K+ channels of 100 and 150 pS, previously observed only in adult ASM proliferating in culture. ChTX, but not 4-aminopyridine, caused a substantial depolarization in the current clamp mode, suggesting that, in contrast to ASM from other species or vascular smooth muscle, large conductance K+ channels rather than a delayed rectifier are the major determinant of membrane potential in this tissue. Our results show a distinct similarity between fetal ASM and adult ASM proliferating in culture. We suggest that the heterogeneity in current density and staining reflect different degrees of differentiation, rather than different cell types, and that the 100- and 150-pS K+ channels are specifically associated with a proliferative phenotype in human ASM.
Collapse
Affiliation(s)
- V A Snetkov
- Respiratory Research Laboratories, Department of Allergy and Respiratory Medicine, UMDS, St. Thomas' Campus, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Wang B, Sims SM. CCK regulates nonselective cation channels in guinea pig gastric smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 1998; 274:G709-17. [PMID: 9575853 DOI: 10.1152/ajpgi.1998.274.4.g709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
CCK has widespread effects in the gastrointestinal tract, stimulating pancreatic secretion and contraction of smooth muscles. The cellular mechanisms by which CCK causes smooth muscle contraction are poorly understood. We investigated the effects of CCK on guinea pig gastric smooth muscle cells using patch-clamp techniques. CCK caused contraction of cells accompanied by inward current. The conductance activated by CCK was nonselective for cations and showed little voltage dependence. Because ACh also activates nonselective cation current, we examined interactions between CCK and ACh. When CCK activated inward current, ACh caused no further effect. When CCK failed to activate current, subsequent ACh-activated current was larger and no longer exhibited its characteristic voltage dependence. Intracellular dialysis with guanosine 5'-O-(3-thiotriphosphate) caused similar changes in the voltage dependence of the ACh-activated current, suggesting a role for G proteins in regulation of the current. Activation of nonselective cation current would depolarize muscle and may contribute to the excitation mediated by CCK in tissues. These findings provide evidence that multiple types of receptors converge to regulate nonselective cation current.
Collapse
Affiliation(s)
- B Wang
- Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
19
|
Yamada K, Yanagida H, Ito Y, Inoue R. Postsynaptic enhancement by motilin of muscarinic receptor cation currents in duodenal smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G487-92. [PMID: 9530149 DOI: 10.1152/ajpgi.1998.274.3.g487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have investigated a potential role of motilin in amplifying the postsynaptic muscarinic responses in the rabbit duodenal smooth muscle cells, using the whole cell variant of patch-clamp technique. Stimulation of motilin receptors by exogenously applied motilin (1 nM) resulted in a large increase in carbachol (CCh)-induced atropine-sensitive cation current (ICCh) at threshold concentrations of CCh (0.3-1 microM) at 30 degrees C. This potentiation was abolished in the presence of a specific blocker of motilin receptor (GM109) and was attenuated with increased concentrations of either motilin or CCh, being virtually absent with maximally effective concentrations of these agonists. Motilin failed to potentiate ICCh when the ambient temperature was reduced to 20 degrees C or if the cation current had been directly activated by internal perfusion with guanosine 5'-O-(3-thiotriphosphate) (50 microM) bypassing the muscarinic receptor. These results suggest that some biochemical processes, such as enzymatic reactions, might be involved in the motilin-induced potentiation and that its site of action might be the muscarinic receptor and/or associated G proteins.
Collapse
Affiliation(s)
- K Yamada
- Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|