1
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:245. [PMID: 39342323 PMCID: PMC11439205 DOI: 10.1186/s12974-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Seunghwan Choi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Won-Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580751. [PMID: 38586011 PMCID: PMC10996524 DOI: 10.1101/2024.02.16.580751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Yang X, Zhang J, Cheng Y, Cui M, Jiang Z, Fan C, Chen J, Qi L, Liu H, Bao D. Tenofovir disoproxil fumarate mediates neuronal injury by inducing neurotoxicity. Eur J Clin Microbiol Infect Dis 2023; 42:1195-1205. [PMID: 37604947 DOI: 10.1007/s10096-023-04654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
PURPOSE Highly active antiretroviral therapy (HAART) is an accepted treatment option for patients with virus infection. Mounting evidence indicated that persistent HAART treatment is implicated with increased morbidity of HIV-associated neurocognitive disorders (HAND) in patients. Tenofovir disoproxil fumarate (TDF), a novel nucleotide reverse transcriptase inhibitor (NRTI), was used in patients with HIV co-infected with HBV. And it is still a vital first-line antiretroviral compounds in HAART. However, whether persistent treatment with TDF is involved in HAND development remains to be further elucidated. In this study, we aimed to discuss the neurotoxicity of TDF. METHODS We used SH-SY5Y cells and primary neuronal cells to evaluate the neurotoxicity of TDF in vitro. The cytotoxicity of TDF on SH-SY5Y cells and primary neuronal cells was evaluated by the cell viability and LDH levels by MTT assay and LDH kit, respectively. Hoechst 33342 staining, TUNEL assay and flow cytometry were performed to evaluate the cells apoptosis. The intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production were measured by commercial kits. In addition, the activation level of caspase-3 was evaluated using spectrophotometry and western blotting. RESULTS Our results showed that TDF treatment significantly induced cell viability and induced apoptosis of SH-SY5Y cells and primary neuronal cells. Furthermore, the ROS levels and MDA productions were significantly up-regulated in nerve cells treated with TDF. CONCLUSION: Our findings indicated that TDF may induce neuronal cell apoptosis through increasing the intracellular ROS and the expression level of caspase-3, which may be related to the increasing prevalence of HAND.
Collapse
Affiliation(s)
- Xiaotian Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Juanmei Zhang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450001, Henan, China
| | - Yanhong Cheng
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
- Shenzhen Beike Bio-Technology Co., Ltd, Shenzhen, 518000, Guangdong, China
| | - Mengmeng Cui
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Zhixiong Jiang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Chunhui Fan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jiaxing Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Lixia Qi
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Hongliang Liu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450001, Henan, China.
| | - Dengke Bao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Fields JA, Swinton MK, Carson A, Soontornniyomkij B, Lindsay C, Han MM, Frizzi K, Sambhwani S, Murphy A, Achim CL, Ellis RJ, Calcutt NA. Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice. Sci Rep 2019; 9:17158. [PMID: 31748578 PMCID: PMC6868155 DOI: 10.1038/s41598-019-53466-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Mary K Swinton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aliyah Carson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Charmaine Lindsay
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - May Madi Han
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Katie Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shrey Sambhwani
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Anne Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cristian L Achim
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Gonzalez S, Fernando R, Berthelot J, Perrin-Tricaud C, Sarzi E, Chrast R, Lenaers G, Tricaud N. In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. Mitochondrion 2015; 23:32-41. [PMID: 26031781 DOI: 10.1016/j.mito.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The myelin sheath that covers a large amount of neurons is critical for their homeostasis, and myelinating glia mitochondria have recently been shown to be essential for neuron survival. However morphological and physiological properties of these organelles remain elusive. Here we report a method to analyze mitochondrial dynamics and morphology in myelinating Schwann cells of living mice using viral transduction and time-lapse multiphoton microscopy. We describe the distribution, shape, size and dynamics of mitochondria in live cells. We also report mitochondrial alterations in Opa1(delTTAG) mutant mice cells at presymptomatic stages, suggesting that mitochondrial defects in myelin contribute to OPA1 related neuropathy and represent a biomarker for the disease.
Collapse
Affiliation(s)
- Sergio Gonzalez
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France
| | - Ruani Fernando
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France
| | - Jade Berthelot
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France
| | - Claire Perrin-Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France
| | - Emmanuelle Sarzi
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France
| | - Roman Chrast
- Karolinska Institutet, Department of Clinical Neuroscience, Department of Neuroscience, Stockhom 171 77, Sweden
| | - Guy Lenaers
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France; Mitochondrial Medicine Research Centre, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Université d'Angers, Angers 49933, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier, Montpellier 34091, France.
| |
Collapse
|
6
|
Abstract
The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Zhang Y, Song F, Gao Z, Ding W, Qiao L, Yang S, Chen X, Jin R, Chen D. Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons. PLoS One 2014; 9:e85637. [PMID: 24465628 PMCID: PMC3896403 DOI: 10.1371/journal.pone.0085637] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022] Open
Abstract
Nucleoside analogue reverse transcriptase inhibitor (NRTI), an integral component of highly active antiretroviral therapy (HAART), was widely used to inhibit HIV replication. Long-term exposure to NRTIs can result in mitochondrial toxicity which manifests as lipoatrophy, lactic acidosis, cardiomyopathy and myopathy, as well as polyneuropathy. But the cerebral neurotoxicity of NRTIs is still not well known partly due to the restriction of blood-brain barrier (BBB) and the complex microenvironment of the central nervous system (CNS). In this study, the Balb/c mice were administered 50 mg/kg stavudine (D4T), 100 mg/kg zidovudine (AZT), 50 mg/kg lamivudine (3TC) or 50 mg/kg didanosine (DDI) per day by intraperitoneal injection, five days per week for one or four months, and primary cortical neurons were cultured and exposed to 25 µM D4T, 50 µM AZT, 25 µM 3TC or 25 µM DDI for seven days. Then, single neuron was captured from mouse cerebral cortical tissues by laser capture microdissection. Mitochondrial DNA (mtDNA) levels of the primary cultured cortical neurons, and captured neurons or glial cells, and the tissues of brains and livers and muscles were analyzed by relative quantitative real-time PCR. The data showed that mtDNA did not lose in both NRTIs exposed cultured neurons and one month NRTIs treated mouse brains. In four months NRTIs treated mice, brain mtDNA levels remained unchanged even if the mtDNA levels of liver (except for 3TC) and muscle significantly decreased. However, mtDNA deletion was significantly higher in the captured neurons from mtDNA unchanged brains. These results suggest that long-term exposure to NRTIs can result in mtDNA deletion in mouse cortical neurons.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Fengli Song
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Ziyun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Ding
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Luxin Qiao
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Sufang Yang
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Otolaryngology, The First Affiliated Hospital Of Nanjing Medical University, Nanjing, China
- * E-mail: (DC); (RJ); (XC)
| | - Ronghua Jin
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
- * E-mail: (DC); (RJ); (XC)
| | - Dexi Chen
- Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
- * E-mail: (DC); (RJ); (XC)
| |
Collapse
|
8
|
Di Cesare Mannelli L, Zanardelli M, Ghelardini C. Nicotine is a pain reliever in trauma- and chemotherapy-induced neuropathy models. Eur J Pharmacol 2013; 711:87-94. [DOI: 10.1016/j.ejphar.2013.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023]
|
9
|
|
10
|
|
11
|
Dagan T, Sable C, Bray J, Gerschenson M. Mitochondrial dysfunction and antiretroviral nucleoside analog toxicities: what is the evidence? Mitochondrion 2002; 1:397-412. [PMID: 16120293 DOI: 10.1016/s1567-7249(02)00003-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2001] [Revised: 01/02/2002] [Accepted: 01/03/2002] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction has been associated with long-term toxicities of human immunodeficiency virus (HIV) therapy, particularly with the nucleoside analog reverse transcriptase inhibitors (NRTIs). Lactic acidosis, hepatic steatosis, myopathies, cardiomyopathies, neuropathies, and lipodystrophy are frequently attributed to mitochondrial toxicity. Since mitochondrial toxicity could pose a major threat to the long-term success of HIV therapy, the scientific evidence underlying an association between mitochondrial toxicity and antiretroviral therapies, must be carefully examined. There is some data to support the association between NRTIs and mitochondria dysfunction. In this review, we examine human, animal, and in vitro data implicating mitochondrial dysfunction as the causal mechanism of NRTI-associated toxicity in HIV-infected patients.
Collapse
Affiliation(s)
- Tamir Dagan
- Department of Cardiology, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
12
|
Dalakas MC, Semino-Mora C, Leon-Monzon M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2'3'-dideoxycytidine (ddC). J Transl Med 2001; 81:1537-44. [PMID: 11706061 DOI: 10.1038/labinvest.3780367] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 2'3'-dideoxycytidine (ddC), a nonazylated dideoxynucleoside analog used for the treatment of AIDS, causes a dose-dependent, painful, sensorimotor axonal peripheral neuropathy in up to 30% of the patients. To investigate the cause of the neuropathy, we performed morphological and molecular studies on nerve biopsy specimens from well-selected patients with ddC-neuropathy and from control subjects with disease, including patients with AIDS-related neuropathy never treated with ddC. Because ddC, in vitro, inhibits the replication of mitochondrial DNA (mtDNA), we counted the number of normal and abnormal mitochondria in a 0.04 mm(2) cross-sectional area of the nerves and quantified the copy numbers of mtDNA by competitive PCR in all specimens. A varying degree of axonal degeneration was present in all nerves. Abnormal mitochondria with enlarged size, excessive vacuolization, electron-dense concentric inclusions and degenerative myelin structures were prominent in the ddC-neuropathy and accounted for 55% +/- 2.5% of all counted mitochondria in the axon and Schwann cells, compared with 9% +/- 0.7% of the controls (p < 0.001). Significantly (p < 0.005) reduced copy numbers, with as high as 80% depletion, of the mtDNA was demonstrated in the nerves of the ddC-treated patients compared with the controls. We conclude that ddC induces a mitochondrial neuropathy with depletion of the nerve's mtDNA. The findings are consistent with the ability of ddC to selectively inhibit the gamma-DNA polymerase in neuronal cell lines. Toxicity to mitochondria of the peripheral nerve is a new cause of acquired neuropathy induced by exogenous toxins and may be the cause of neuropathy associated with the other neurotoxic antiretroviral drugs or toxic-metabolic conditions.
Collapse
Affiliation(s)
- M C Dalakas
- Neuromuscular Diseases SectionNational Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
13
|
Shevitz A, Wanke CA, Falutz J, Kotler DP. Clinical perspectives on HIV-associated lipodystrophy syndrome: an update. AIDS 2001; 15:1917-30. [PMID: 11600819 DOI: 10.1097/00002030-200110190-00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) remain the cornerstone of highly active antiretroviral therapy (HAART) combination regimens. However, it has been known for some time that these agents have the potential to cause varied side effects, many of which are thought to be due to their effects on mitochondria. Mitochondria, the key energy generating organelles in the cell, are unique in having their own DNA, a double stranded circular genome of about 16 000 bases. There is a separate enzyme present inside the cell that replicates mitochondrial DNA, polymerase gamma. NRTIs can affect the function of this enzyme and this may lead to depletion of mitochondrial DNA or qualitative changes. The study of inherited mitochondrial diseases has led to further understanding of the consequences of mutations or depletion in mitochondrial DNA. Key among these is the realisation that there may be substantial heteroplasmy among mitochondria within a given cell, and among cells in a particular tissue. The unpredictable nature of mitochondrial segregation during cellular replication makes it difficult to predict the likelihood of dysfunction in a given tissue. In addition, there is a threshold effect for the expression of mitochondrial dysfunction, both at the mitochondrial and cellular level. Various clinical and in vitro studies have suggested that NRTIs are associated with mitochondrial dysfunction in different tissues, although the weight of evidence is limited in many cases. The heterogeneity in the tissues affected by the different drugs raises interesting questions, and possible explanations include differential distribution or activation of these agents. This article reviews the major recognised toxicities associated with NRTI therapy and evidence for mitochondrial dysfunction in these complications. Data were identified through searching of online databases including Medline and Current Contents for relevant articles, along with abstracts and posters from recent conferences in the HIV and mitochondrial fields.
Collapse
Affiliation(s)
- A J White
- Anti-Infectives Clinical Development and Product Strategy, GlaxoSmithKline Research and Development, Greenford Road, Greenford, Middlesex, UB6 0HE, UK.
| |
Collapse
|
15
|
Lewis W, Copeland WC, Day BJ. Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. J Transl Med 2001; 81:777-90. [PMID: 11406640 DOI: 10.1038/labinvest.3780288] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- W Lewis
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
16
|
Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 2000; 22:685-708. [PMID: 10929917 DOI: 10.1016/s0149-2918(00)90004-3] [Citation(s) in RCA: 459] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This paper reviews the function of the mitochondria and the mechanisms by which nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs) cause mitochondrial toxicity. BACKGROUND Highly active antiretroviral therapy (HAART) reduces rates of morbidity and mortality due to HIV disease. However, long-term treatment with these drugs may be associated with adverse effects. Nucleoside and nucleotide analogues are potent inhibitors of HIV reverse transcriptase and have become the cornerstone of HAART. Unfortunately, these drugs have also been shown to inhibit cellular polymerases, most notably mitochondrial DNA polymerase gamma. RESULTS Studies of the NRTIs in enzyme assays and cell cultures demonstrate the following hierarchy of mitochondrial DNA polymerase gamma inhibition: zalcitabine > didanosine > stavudine > lamivudine > zidovudine > abacavir. In vitro investigations have also documented impairment of the mitochondrial enzymes adenylate kinase and the adenosine diphosphate/adenosine triphosphate translocator. Inhibition of DNA polymerase gamma and other mitochondrial enzymes can gradually lead to mitochondrial dysfunction and cellular toxicity. The clinical manifestations of NRTI-induced mitochondrial toxicity resemble those of inherited mitochondrial diseases (ie, hepatic steatosis, lactic acidosis, myopathy, nephrotoxicity, peripheral neuropathy, and pancreatitis). Fat redistribution syndrome, or HIV-associated lipodystrophy, is another side effect attributed in part to NRTI therapy. The morphologic and metabolic complications of this syndrome are similar to those of the mitochondrial disorder known as multiple symmetric lipomatosis: suggesting that this too may be related to mitochondrial toxicity. The pathophysiology of less common adverse effects of nucleoside analogue therapy, such as diabetes, ototoxicity, and retinal lesions, may be related to mitochondrial dysfunction but have not been adequately studied. CONCLUSION NRTls can block both HIV reverse transcriptase and mitochondrial DNA polymerase gamma. Inhibition of the latter enzyme is the most likely cause of the adverse effects associated with these drugs.
Collapse
Affiliation(s)
- T N Kakuda
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
17
|
Brinkman K, ter Hofstede HJ, Burger DM, Smeitink JA, Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 1998; 12:1735-44. [PMID: 9792373 DOI: 10.1097/00002030-199814000-00004] [Citation(s) in RCA: 602] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- K Brinkman
- Department of General Internal Medicine, University Hospital Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Benbrik E, Chariot P, Bonavaud S, Ammi-Saïd M, Frisdal E, Rey C, Gherardi R, Barlovatz-Meimon G. Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. J Neurol Sci 1997; 149:19-25. [PMID: 9168161 DOI: 10.1016/s0022-510x(97)05376-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) are the reference antiretroviral therapy in patients with AIDS. A toxic mitochondrial myopathy can be observed in patients treated with AZT, but not with ddI and ddC. All 3 compounds can inhibit mitochondrial (mt)DNA polymerase and cause termination of synthesis of growing mtDNA strands and mtDNA depletion. The propensity to injure particular target tissues is unexplained. In our work, cultured muscle cells prepared from human muscle biopsies, were exposed to various concentrations of AZT (4-5000 micromol/l), ddI (5-1000 micromol/l) and ddC (1-1000 micromol/l) for 10 days. We evaluated cell proliferation and differentiation and measured lipid droplet accumulation, lactate production and respiratory chain enzyme activities. All 3 compounds induced a dose-related decrease of cell proliferation and differentiation. AZT seemed to be the most potent inhibitor of cell proliferation. AZT, ddI and ddC induced cytoplasmic lipid droplet accumulations, increased lactate production and decreased activities of COX (complex IV) and SDH (part of complex II). NADHR (complex I) and citrate sinthase activities were unchanged. Zalcitabine (ddC) and, to a lesser extent, ddI, were the most potent inhibitors of mitochondrial function. In conclusion, AZT, ddI and ddC all exert cytotoxic effects on human muscle cells and induce functional alterations of mitochondria possibly due to mechanisms other than the sole mtDNA depletion. Our results provide only a partial explanation of the fact that AZT, but not ddI and ddC, can induce a myopathy in HIV-infected patients. AZT myopathy might not simply result from a direct mitochondrial toxic effect of crude AZT.
Collapse
Affiliation(s)
- E Benbrik
- Groupe d'Etudes et de Recherches sur le Muscle et le Nerf (GERMEN: ER 269 et 315, Université Paris XII), Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Clinical or sub-clinical impairment of central and peripheral myelin is often part of the overlapping multisystem disorders associated with a variety of mitochondrial (mt)DNA abnormalities. Suboptimal energy metabolism of the oligodendrocytes and Schwann cells carrying mitochondrial defects may cause insufficient production of myelin. Further, edema, vascular and toxic factors may directly damage myelin. The recognition that certain mtDNA point mutations are associated with inflammatory demyelination of the central nervous system suggests that additional mechanisms besides degeneration need to be considered in the development of some forms of myelin damage.
Collapse
Affiliation(s)
- B Kalman
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | | | | |
Collapse
|