1
|
Rajasekhar S, Subramanyam MVV, Asha Devi S. Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes. Arch Physiol Biochem 2023; 129:1045-1057. [PMID: 33703969 DOI: 10.1080/13813455.2021.1894452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to elucidate the effects of grape seed proanthocyanidin extract (GSPE) on oxidative stress (OS), antioxidant enzymes, free radicals and cytokines in the pancreas of T1DM rats. METHODS Two-month-old Wistar rats were assigned to the control (CON), CON + GSPE (CON + PA), diabetics (STZ, 60 mg/kg b.w.), diabetes + GSPE (STZ + PA), diabetes + insulin (STZ + INS, 3 U/day) and diabetics + GSPE and INS (STZ + INS + PA) groups. GSPE (75 mg/kg b.w.) was administered daily either alone or with INS for 8 weeks. RESULTS Glutathione was lowest in diabetics while it increased in the STZ + INS + PA (p < .001) group, similar to catalase activity (p < .05). Hydrogen peroxide, superoxide and lipid peroxidation increased with iNOS, TNF-α and IL-1β in the diabetic pancreases, while GSPE decreased (p < .001). Further, reduced β-cells/islet number was improved in diabetics (p < .001) with treatment. CONCLUSION This study suggests that GSPE with INS is effective in minimising OS and pancreatic degeneration in T1DM rats.
Collapse
Affiliation(s)
- Sanna Rajasekhar
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| | | | - Sambe Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| |
Collapse
|
2
|
Developmental Programming and Glucolipotoxicity: Insights on Beta Cell Inflammation and Diabetes. Metabolites 2020; 10:metabo10110444. [PMID: 33158303 PMCID: PMC7694373 DOI: 10.3390/metabo10110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Stimuli or insults during critical developmental transitions induce alterations in progeny anatomy, physiology, and metabolism that may be transient, sometimes reversible, but often durable, which defines programming. Glucolipotoxicity is the combined, synergistic, deleterious effect of simultaneously elevated glucose (chronic hyperglycemia) and saturated fatty acids (derived from high-fat diet overconsumption and subsequent metabolism) that are harmful to organs, micro-organs, and cells. Glucolipotoxicity induces beta cell death, dysfunction, and failure through endoplasmic reticulum and oxidative stress and inflammation. In beta cells, the misfolding of pro/insulin proteins beyond the cellular threshold triggers the unfolded protein response and endoplasmic reticulum stress. Consequentially there is incomplete and inadequate pro/insulin biosynthesis and impaired insulin secretion. Cellular stress triggers cellular inflammation, where immune cells migrate to, infiltrate, and amplify in beta cells, leading to beta cell inflammation. Endoplasmic reticulum stress reciprocally induces beta cell inflammation, whereas beta cell inflammation can self-activate and further exacerbate its inflammation. These metabolic sequelae reflect the vicious cycle of beta cell stress and inflammation in the pathophysiology of diabetes.
Collapse
|
3
|
Kaviani M, Keshtkar S, Azarpira N, Aghdaei MH, Geramizadeh B, Karimi MH, Shamsaeefar A, Motazedian N, Nikeghbalian S, Al-Abdullah IH, Ghahremani MH. Cytoprotective effects of olesoxime on isolated human pancreatic islets in order to attenuate apoptotic pathway. Biomed Pharmacother 2019; 112:108674. [PMID: 30784942 DOI: 10.1016/j.biopha.2019.108674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Islet transplantation is considered as a promising approach in the treatment of diabetes type 1. In this regard, optimal culture of the pancreatic islets is promising in the success of transplantation. In the present study, the effect of olesoxime, as an antiapoptotic substance, was evaluated on human islet culture. EXPERIMENTAL APPROACH The pancreatic islets were isolated by mechanical and enzymatic techniques. After overnight recovery, the islets were treated by different concentrations of olesoxime for 24 and 72 h. Then, they were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through the glucose-induced insulin and C-peptide secretion assay. KEY RESULTS Our findings showed that the islets increased in apoptosis and the decreased in viability after 72 h; also, insulin and C-peptide secretion reduced. However, in the presence of olesoxime, BAX/BCL2 ratio and the activation of caspase-3 were decreased. Therefore, olesoxime could improve the viability of the islets with the decrease of apoptosis. CONCLUSION The application of olesoxime can reduce the stressful condition for the islets in vitro and subsequently improve their viability and functionality.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ye C, Driver JP. Suppressors of Cytokine Signaling in Sickness and in Health of Pancreatic β-Cells. Front Immunol 2016; 7:169. [PMID: 27242781 PMCID: PMC4860527 DOI: 10.3389/fimmu.2016.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) are a family of eight proteins that negatively regulate Janus kinase and signal transducers and activators of transcription signaling in cells that utilize this pathway to respond to extracellular stimuli. SOCS are best known for attenuating cytokine signaling in the immune system. However, they are also expressed in many other cell types, including pancreatic β-cells, where there is considerable interest in harnessing SOCS molecules to prevent cytokine-mediated apoptosis during diabetes and allogeneic transplantation. Apart from their potential as therapeutic targets, SOCS molecules play a central role for regulating important functions in β-cells, including growth, glucose sensing, and insulin secretion. This review will discuss SOCS proteins as central regulators for diverse cellular processes important for normal β-cell function as well as their protective anti-apoptotic effects during β-cell stress.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| | - John P Driver
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| |
Collapse
|
5
|
Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181643. [PMID: 26257839 PMCID: PMC4516838 DOI: 10.1155/2015/181643] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation.
Collapse
|
6
|
García-Galicia MC, Burgueño-Tapia E, Romero-Rojas A, García-Zebadúa JC, Cornejo-Garrido J, Ordaz-Pichardo C. Anti-hyperglycemic effect, inhibition of inflammatory cytokines expression, and histopathology profile in streptozotocin-induced diabetic rats treated with Arracacia tolucensis aerial-parts extracts. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:91-98. [PMID: 24373809 DOI: 10.1016/j.jep.2013.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arracacia tolucensis is a medicinal plant used in northeast of Mexico as a remedy to treat people with Diabetes mellitus (DM); however, there are no scientific studies that support this information. Thus, we evaluated the anti-hyperglycemic effect of the hexane, ethyl acetate and ethanol extracts from aerial parts in streptozotocin-induced diabetic rats. MATERIALS AND METHODS DM was induced in Wistar male rats by single intraperitoneal injection of streptozotocin (STZ 50mg/kg). After STZ-induction, hyperglycemic rats were treated with all three extracts orally at a single dose (250 mg/kg) each 48 h for 21 days. Glibenclamide (1mg/kg) was used as a reference drug. The fasting blood glucose levels, the hematic biometry and biochemical profiles, and the inhibition of inflammatory cytokines expression were estimated. Histopathology analysis of pancreas, liver, spleen, and kidney tissue was carried out. RESULTS Ours results showed that ethyl acetate extract decreased blood glucose levels significantly (75%, p< 0.05) when compared to diabetic rats and controlled the body weight loss; the lipids level did not change, but the enzyme levels of aspartate aminotransferase and alanine aminotransferase decreased significantly (60.83% and 66.16%, respectively, p< 0.05) and inhibited the expression of inflammatory cytokines,with respect to diabetic rats. Histopathology injury was not observed; by contrast repair of islet of Langerhans was exhibited. CONCLUSION These results validate the use of Arracacia tolucensis as a treatment against DM and suggests it is suitable to continue studies for its safe therapeutic use.
Collapse
Affiliation(s)
- Mary Carmen García-Galicia
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, C.P. 07320 México, D.F., México
| | - Eleuterio Burgueño-Tapia
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340 México, D.F., México
| | - Andrés Romero-Rojas
- Centro Universitario de Diagnóstico y Laboratorio de Inmunología de la Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo s/n, Col. Santa María Las Torres, C.P. 54740 Cuautitlán, Estado de México, México
| | - Julio César García-Zebadúa
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, C.P. 07320 México, D.F., México
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, C.P. 07320 México, D.F., México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, C.P. 07320 México, D.F., México.
| |
Collapse
|
7
|
Jalili RB, Moeen Rezakhanlou A, Hosseini-Tabatabaei A, Ao Z, Warnock GL, Ghahary A. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. J Cell Physiol 2011; 226:1813-9. [PMID: 21506112 DOI: 10.1002/jcp.22515] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.
Collapse
Affiliation(s)
- Reza B Jalili
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Terra LF, Garay-Malpartida MH, Wailemann RAM, Sogayar MC, Labriola L. Recombinant human prolactin promotes human beta cell survival via inhibition of extrinsic and intrinsic apoptosis pathways. Diabetologia 2011; 54:1388-97. [PMID: 21394492 DOI: 10.1007/s00125-011-2102-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/04/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. METHODS Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. RESULTS The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. CONCLUSIONS/INTERPRETATION Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.
Collapse
Affiliation(s)
- L F Terra
- NUCEL, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
9
|
Malaguti C, Vilella CA, Vieira KP, Souza GHMF, Hyslop S, Zollner RDL. Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice. Int Immunopharmacol 2008; 8:782-91. [PMID: 18442781 DOI: 10.1016/j.intimp.2008.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/26/2022]
Abstract
NOD mice are used as experimental models as they develop type 1 diabetes mellitus (DM-1) spontaneously, with a strong similarity to the human disease. Diabetes mellitus type 1 is characterized by the destruction of the islet, orchestrated by T lymphocytes that induce cytokine release like IL-1beta, promoting an inflammatory process. Diacerhein has antiinflammatory properties, inhibiting IL-1. However, the mechanisms involved in immune modulation are not completely understood. In the present study, serum and pancreatic islets were isolated to investigate the relationship between IL-1beta, IFN-gamma, IL-12 and TNF-alpha expression and diabetes onset, morphological aspects, and diacerhein dose dependence in animals treated with different doses (5, 10 and 50 mg/kg/day) and the control group (saline solution). The results demonstrated upregulation of mRNA islets and downregulation of the serum concentration of IL-1beta, IL-12 and TNF-alpha in the group treated with 5 and 10 mg/kg/day diacerhein, when compared with the saline group, and increased IFN-gamma serum concentration in the group treated with 50 mg/kg/day. These results suggest that diacerhein in NOD mice, decreases, in a dose-dependent manner, the diabetes frequency downregulating proinflammatory cytokines, such as IL-1beta, TNF-alpha, IFN-gamma and IL-12 at posttranscriptional or posttranslational level. Furthermore, using the HPLC method, diacerhein and rhein (active metabolite) were detected in serum and pancreas of treated mice.
Collapse
Affiliation(s)
- Carina Malaguti
- Laboratory of Immunology & Experimental Allergy - Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Pearl-Yafe M, Iskovich S, Kaminitz A, Stein J, Yaniv I, Askenasy N. Does physiological β cell turnover initiate autoimmune diabetes in the regional lymph nodes? Autoimmun Rev 2006; 5:338-43. [PMID: 16782559 DOI: 10.1016/j.autrev.2006.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The initial immune process that triggers autoimmune beta cell destruction in type 1 diabetes is not fully understood. In early infancy there is an increased beta cell turnover. Recurrent exposure of tissue-specific antigens could lead to primary sensitization of immune cells in the draining lymph nodes of the pancreas. An initial immune injury to the beta cells can be inflicted by several cell types, primarily macrophages and T cells. Subsequently, infiltrating macrophages transfer antigens exposed by apoptotic beta cells to the draining lymph nodes, where antigen presenting cells process and amplify a secondary immune reaction. Antigen presenting cells evolve as dual players in the activation and suppression of the autoimmune reaction in the draining lymph nodes. We propose a scenario where destructive insulitis is caused by recurrent exposure of specific antigens due to the physiological turnover of beta cells. This sensitization initiates the evolution of reactive clones that remain silent in the regional lymph nodes, where they succeed to evade regulatory clonal deletion.
Collapse
Affiliation(s)
- Michal Pearl-Yafe
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Xu W, Gao Z, Wu J, Wolf BA. Interferon-gamma-induced regulation of the pancreatic derived cytokine FAM3B in islets and insulin-secreting betaTC3 cells. Mol Cell Endocrinol 2005; 240:74-81. [PMID: 16006032 DOI: 10.1016/j.mce.2005.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
The pancreatic-derived factor (PANDER, FAM3B) is a novel protein that is beta-cell specific and induces beta-cell death. PANDER is localized to insulin-containing granules-based on confocal microscopy and immunogold electron microscopy. PANDER protein was detected in the conditioned medium of betaTC3 cells. Using real-time reverse transcription-polymerase chain reaction, treatment of betaTC3 cells with IL-1beta + TNFalpha + IFNgamma induced a significant seven-fold increase in PANDER mRNA expression (n = 3; p < 0.01 at 24 h, p < 0.05 at 48 h), while IFNgamma alone caused a 3.2-fold increase (n = 3; p < 0.01 at 24 h) compared to unstimulated and time-matched vehicle controls. IL-1beta or TNFalpha alone had no effect. Under those conditions, a similar up-regulation was also observed in mouse islet cells, with increases in PANDER mRNA of 5.9-fold and 5.0-fold after treatment with IL-1beta + TNFalpha + IFNgamma or IFNgamma alone. Because PANDER mRNA expression is up-regulated by IFNgamma, a cytokine implicated in the pathogenesis of type 1 diabetes, PANDER may contribute to the pathogenesis of beta-cell death.
Collapse
Affiliation(s)
- Weizhen Xu
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 19104, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Type 1 diabetes results from the progressive destruction of insulin-producing pancreatic beta cells. Although the etiology of type 1 diabetes is believed to have a major genetic component, studies on the risk of developing type 1 diabetes suggest that environmental factors, such as viruses, may be important etiological determinants. Among the viruses, the most clear and unequivocal evidence that a virus induces type 1 diabetes in animals comes from studies on the D variant of encephalomyocarditis (EMC-D) virus in mice and Kilham rat virus (KRV) in rats. A high titer of EMC-D viral infection results in the development of diabetes within 3 days, primarily due to the rapid destruction of beta cells by viral replication within the cells. A low titer of EMC-D viral infection results in the recruitment of macrophages to the islets. Soluble mediators produced by the activated macrophages such as interleukin-1Beta, tumor necrosis factor-alpha, and nitric oxide play a critical role in the destruction of residual beta cells. KRV causes autoimmune type 1 diabetes in diabetes resistant-BioBreeding rats by breakdown of immune balance, including the preferential activation of effector T cells, such as Th1-like CD45RC+CD4+ T cells and CD8+ T cells, and down-regulation of Th2-like CD45RC-CD4+ and CD4+CD25+ T cells, rather than by direct infection of pancreatic beta cells.
Collapse
Affiliation(s)
- Ji-Won Yoon
- Center for Immunologic Research, Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, The Chicago Medical School, North Chicago, IL, USA
| | | |
Collapse
|
13
|
Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the Pathogenesis of Type 1 Diabetes with Proteomics: Present And Future Directions. Mol Cell Proteomics 2005; 4:441-57. [PMID: 15699484 DOI: 10.1074/mcp.r500002-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.
Collapse
|
14
|
Téllez N, Montolio M, Biarnés M, Castaño E, Soler J, Montanya E. Adenoviral overexpression of interleukin-1 receptor antagonist protein increases β-cell replication in rat pancreatic islets. Gene Ther 2004; 12:120-8. [PMID: 15578044 DOI: 10.1038/sj.gt.3302351] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naturally occurring inhibitor of interleukin-1 (IL-1) action, interleukin-1 receptor antagonist protein (IRAP), binds to the type 1 IL-1 receptor but does not initiate IL-1 signal transduction. In this study, we have determined the effects of IL-1beta and IRAP overexpression on adult beta-cell replication and viability. IL-1beta reduced dramatically beta-cell replication in adult rat islets both at 5.5 mM (control: 0.29+/-0.04%; IL-1beta: 0.02+/-0.02%, P<0.05) and 22.2 mM glucose (control: 0.84+/-0.2%; IL-1beta: 0.05+/-0.05%, P<0.05). This effect was completely prevented in islets overexpressing IRAP after adenoviral gene transfer at 5.5 mM (Ad-IL-1Ra+IL-1beta: 0.84+/-0.1%, P<0.05) and 22.2 mM glucose (Ad-IL-1Ra+IL-1beta: 1.22+/-0.2%, P<0.05). Moreover, overexpression of IRAP increased glucose-stimulated beta-cell replication in the absence of IL-1beta exposure (Ad-IL-1Ra: 1.59+/-0.5%, P<0.05). beta-Cell death (TUNEL technique) was increased in IL-1beta-exposed islets but not in Ad-IL-1Ra-infected islets (control: 0.82+/-0.2%; control+IL-1beta: 1.77+/-0.2; IRAP: 0.61+/-0.2%; IRAP+IL-1beta: 0.86+/-0.1%, P<0.05). Comparable results were obtained by flow cytometry. To determine the effect of IRAP overexpression on beta-cell replication in vivo, Ad-IL-1Ra-transduced islets were transplanted into streptozotocin diabetic rats. beta-Cell replication was significantly increased in IRAP-overexpressing islet grafts (0.98+/-0.3%, P<0.05) compared to normal pancreas (0.35+/-0.02%), but not in control islet grafts (0.50+/-0.1%). This study shows that in addition to the effects of IL-1beta on beta-cell viability, this cytokine exerts a deleterious action on beta-cell replication, which can be prevented by IRAP overexpression, and provides support for the potential use of IRAP as a therapeutic tool.
Collapse
Affiliation(s)
- N Téllez
- Laboratory of Diabetes and Experimental Endocrinology, Endocrine Unit, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Chen W, Salojin KV, Mi QS, Grattan M, Meagher TC, Zucker P, Delovitch TL. Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex: therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology 2004; 145:627-38. [PMID: 14617576 DOI: 10.1210/en.2003-1274] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IGF-I regulates islet beta-cell growth, survival, and metabolism and protects against type 1 diabetes (T1D). However, the therapeutic efficacy of free IGF-I may be limited by its biological half-life in vivo. We investigated whether prolongation of its half-life as an IGF-I/IGF binding protein (IGFBP)-3 complex affords increased protection against T1D and whether this occurs by influencing T cell function and/or islet beta-cell growth and survival. Administration of IGF-I either alone or as an IGF-I/IGFBP-3 complex reduced the severity of insulitis and delayed the onset of T1D in nonobese diabetic mice, but IGF-I/IGFBP-3 was significantly more effective. Protection from T1D elicited by IGF-I/IGFBP-3 was mediated by up-regulated CCL4 and down-regulated CCL3 gene expression in pancreatic draining lymph nodes, activation of the phosphatidylinositol 3-kinase and Akt/protein kinase B signaling pathway of beta-cells, reduced beta-cell apoptosis, and stimulation of beta-cell replication. Reduced beta-cell apoptosis resulted from elevated Bcl-2 and Bcl-X(L) activity and diminished caspase-9 activity, indicating a novel role for a mitochondrial-dependent pathway of beta-cell death. Thus, IGF-I/IGFBP-3 affords more efficient protection from insulitis, beta-cell destruction, and T1D than IGF-I, and this complex may represent an efficacious therapeutic treatment for the prevention of T1D.
Collapse
Affiliation(s)
- Wei Chen
- Autoimmunity/Diabetes Group, Robarts Research Institute, 1400 Western Road, London, Ontario N6G 2V4, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Allaman-Pillet N, Størling J, Oberson A, Roduit R, Negri S, Sauser C, Nicod P, Beckmann JS, Schorderet DF, Mandrup-Poulsen T, Bonny C. Calcium- and proteasome-dependent degradation of the JNK scaffold protein islet-brain 1. J Biol Chem 2003; 278:48720-6. [PMID: 14507925 DOI: 10.1074/jbc.m306745200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In models of type 1 diabetes, cytokines induce pancreatic beta-cell death by apoptosis. This process seems to be facilitated by a reduction in the amount of the islet-brain 1/JNK interacting protein 1 (IB1/JIP1), a JNK-scaffold with an anti-apoptotic effect. A point mutation S59N at the N terminus of the scaffold, which segregates in diabetic patients, has the functional consequence of sensitizing cells to apoptotic stimuli. Neither the mechanisms leading to IB1/JIP1 down-regulation by cytokines nor the mechanisms leading to the decreased capacity of the S59N mutation to protect cells from apoptosis are understood. Here, we show that IB1/JIP1 stability is modulated by intracellular calcium. The effect of calcium depends upon JNK activation, which primes the scaffold for ubiquitination-mediated degradation via the proteasome machinery. Furthermore, we observe that the S59N mutation decreases IB1/JIP1 stability by sensitizing IB1/JIP1 to calcium- and proteasome-dependent degradation. These data indicate that calcium influx initiated by cytokines mediates ubiquitination and degradation of IB1/JIP1 and may, therefore, provide a link between calcium influx and JNK-mediated apoptosis in pancreatic beta-cells.
Collapse
Affiliation(s)
- Nathalie Allaman-Pillet
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Efrat S. Preventing type 1 diabetes mellitus: the promise of gene therapy. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:129-34. [PMID: 12083947 DOI: 10.2165/00129785-200202020-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 (insulin-dependent) diabetes mellitus is an autoimmune disease that has no cure. Closed-loop insulin administration strategies and approaches for replacement of the insulin-producing beta cells may offer improved treatments, which could delay or prevent diabetes complications. In the long run, however, prevention of type 1 diabetes in susceptible individuals represents the best chance for reducing the toll of the disease. Prevention of type 1 diabetes will require reliable methods for early diagnosis of predisposition to the disease, using improved genetic and serological screening on a wide scale. Identification of the primary antigenic target(s) for autoimmunity will allow intervention in prediabetes stages aimed at the induction of antigen-specific tolerance. In addition to manipulation of the immune system, the susceptibility of beta cells to autoimmunity could be reduced. A number of genes have been shown to increase beta-cell resistance to immune effector molecules in animal models and cultured beta-cell lines. These genes could be used for preventive gene therapy of type 1 diabetes mellitus if expressed in beta cells prior to the onset of autoimmune destruction. This prospect depends on the development of safe and efficient vectors, and approaches for cell-specific targeting of these vectors to beta cells in vivo.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
de Vos P, van Hoogmoed CG, de Haan BJ, Busscher HJ. Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:430-7. [PMID: 12209929 DOI: 10.1002/jbm.10345] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alginate-polylysine (PLL) capsules are commonly applied for immunoisolation of living cells for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules with failure of the grafts as a consequence. Most studies addressing biocompatibility issues of alginate-PLL capsules have focused on the degree of overgrowth on the capsules after graft failure and not on the reaction against the capsules in the immediate posttransplant period. Therefore, capsules were implanted in the peritoneal cavity of rats and retrieved 1, 5, and 7 days later for histological examination and X-ray photoelectron spectroscopy analysis for evaluation of chemical changes at the capsule surface. After implantation, the nitrogen signal increased from 5% on day 0, to 8.6% on day 7, illustrating protein adsorption on the capsule's surface. This increase in protein content of the membrane was accompanied by an increase in the percentage of overgrown capsules from 0.5 +/- 0.3% on day 1 to 3.3 +/- 1.6% on day 7. The cellular overgrowth was composed of monocytes/macrophages, granulocytes, fibroblasts, erythrocytes, multinucleated giant cells, and basophils. This overgrowth was not statical as generally assumed but rather dynamic as illustrated by our observation that at day 1 after implantation we mainly found monocytes/macrophages and granulocytes that on later time points were substituted by fibroblasts. As the inflammatory reaction predictably interfere with survival of encapsulated cells, efforts should be made to suppress activities or recruitment of inflammatory cells. These efforts may be temporary rather than permanent because most inflammatory cells have disappeared after 2 weeks of implantation.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology, Section of Medical Biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Risbud MV, Bhonde RR. Islet immunoisolation: experience with biopolymers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:1243-52. [PMID: 11853389 DOI: 10.1163/156856201753395770] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Incidence of Type I diabetes is increasing globally and has become a major health concern. There is enough evidence suggesting involvement of autoimmunity in destruction of insulin-producing islets of langerhans which leads to impaired glucose homeostasis. Islet transplantation is one of the approaches that received wide attention. Due to the autoimmune nature of the disease. strategies to protect transplanted islet graft from rejection are sought. Immunoisolation of islets inside semipermeable biocompatible materials is amongst them. Natural biopolymers have been used extensively as immunoisolation materials due to their satisfactory biocompatiblity and tissue tolerance. Here we attempt to address the need for islet immunoisolation and our experience in using natural biopolymers such as chitosan, cellulose and alginate for this application.
Collapse
Affiliation(s)
- M V Risbud
- Tissue Engineering and Banking Laboratory, National Centre for Cell Sciences, Ganeshkhind, Pune, India.
| | | |
Collapse
|
20
|
Chen M, Yang Z, Wu R, Nadler JL. Lisofylline, a novel antiinflammatory agent, protects pancreatic beta-cells from proinflammatory cytokine damage by promoting mitochondrial metabolism. Endocrinology 2002; 143:2341-8. [PMID: 12021199 DOI: 10.1210/endo.143.6.8841] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proinflammatory cytokine-mediated pancreatic beta-cell dysfunction is a key pathological event in type I diabetes mellitus. Lisofylline (LSF), an anti-inflammatory agent, has been shown to protect pancreatic islets from IL-1 beta-induced inhibitory effects on insulin release. However, the mechanism of LSF action is not known. Increasing evidence suggests that the mitochondria play an important role in regulating the beta-cell insulin release capacity and the control of cellular viability. To examine the direct effects of LSF on beta-cells, insulin-secreting INS-1 cells were exposed to a combination of recombinant IL-1 beta, TNF alpha, and IFN gamma with or without LSF for 18 h. Basal and glucose-stimulated static insulin release were measured using RIA. INS-1 cell viability was determined using in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and LIVE/DEAD dual fluorescence labeling. To evaluate INS-1 mitochondrial function, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) metabolism, change in mitochondrial membrane potential, and intracellular ATP levels were assessed. Cytokine addition reduced basal (7.8 +/- 0.30 vs. 10.0 +/- 0.46 ng/ml.h; P < 0.005), glucose-stimulated insulin secretion (11.6 +/- 0.86 vs. 17.4 +/- 1.86 ng/ml.h; P < 0.005), and MTT metabolism in INS-1 cells. Over 40% of the cytokine-treated beta-cells exhibited nuclear DNA breakage, whereas the control cell death rate remained at 1-2%. Simultaneous application of LSF and cytokines to INS-1 cells restored insulin secretion, MTT metabolism, mitochondrial membrane potential, and cell viability to control levels. LSF increased beta-cell MTT metabolism as well as insulin release and glucose responsiveness. In summary, proinflammatory cytokines lead to a reduction of glucose-induced insulin secretion, mitochondrial activity, and viability in INS-1 cells. LSF at concentrations achievable in vivo protected beta-cells from the cytokine effects. The mechanism of LSF-induced protection may be by promoting mitochondrial metabolism.
Collapse
Affiliation(s)
- Meng Chen
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
21
|
Contreras JL, Bilbao G, Smyth CA, Eckhoff DE, Jiang XL, Jenkins S, Thomas FT, Curiel DT, Thomas JM. Cytoprotection of pancreatic islets before and early after transplantation using gene therapy. Kidney Int 2002; 61:S79-84. [PMID: 11841618 DOI: 10.1046/j.1523-1755.2002.0610s1079.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pancreatic islet transplantation (PIT) is an attractive alternative to insulin-dependent diabetes treatment but is not yet a clinical reality. The first few days after PIT are characterized by substantial pancreatic islet dysfunction and death. Apoptosis has been documented in PI after extracellular matrix removal, during culture time, after exposure to proinflammatory cytokines, hypoxic conditions before islet revascularization, and rejection. Targeting the apoptosis pathway by adenoviral-mediated gene transfer of the anti-apoptotic Bcl-2 gene exerts a major cytoprotective effect on isolated macaque pancreatic islets. Bcl-2 transfection ex vivo protects islets from apoptosis induced by disruption of the islet extracellular matrix during pancreatic digestion. Additionally, over-expression of Bcl-2 confers long-term, stable protection and maintenance of functional islet mass after transplantation into diabetic SCID mice. Genetic modification of PI also reduced the islet mass required to achieve stable euglycemia. Ex vivo gene transfer of anti-apoptotic genes has potential as a therapeutic approach to both minimize loss of functional islet mass post-transplant and reduce the high islet requirement currently needed for successful stable reversal of insulin-dependent diabetes [1, 2].
Collapse
Affiliation(s)
- Juan L Contreras
- Transplant Center and Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chong MM, Thomas HE, Kay TW. gamma-Interferon signaling in pancreatic beta-cells is persistent but can be terminated by overexpression of suppressor of cytokine signaling-1. Diabetes 2001; 50:2744-51. [PMID: 11723057 DOI: 10.2337/diabetes.50.12.2744] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proinflammatory cytokines, including gamma-interferon (IFN-gamma), have been implicated in the destruction of beta-cells in autoimmune diabetes. IFN-gamma signaling is transient in some cell types, but there is indirect evidence that it may be prolonged in beta-cells. In this study, we have shown that IFN-gamma signaling, measured by signal transducer and activator of transcription-1 (STAT1) activation and the expression of IFN-gamma-responsive genes, is persistent in beta-cells for as long as the cytokine is present. Because members of the suppressor of cytokine signaling (SOCS) family may regulate the duration of IFN-gamma signaling, their expression was investigated in beta-cells. We found that cytokine-inducible SH2-containing protein, SOCS-1, and SOCS-2 are expressed in primary islets and NIT-1 insulinoma cells, both at the mRNA and protein levels, after treatment with IFN-gamma and other proinflammatory cytokines. Transfected SOCS-1 was found to inhibit responses to IFN-gamma in NIT-1 insulinoma cells, including STAT1 activation, class I major histocompatibility complex upregulation, and IFN-gamma-induced cell death, but only when expressed at levels higher than those found in untransfected cells. Consistent with this, IFN-gamma signaling was not affected in SOCS-1-deficient beta-cells. Therefore, persistent IFN-gamma signaling in beta-cells is associated with SOCS-1 expression that is not sufficient to terminate signaling. Because overexpression of SOCS-1 can suppress responses to IFN-gamma, this may be a useful strategy for protecting beta-cells from cytotoxicity mediated by IFN-gamma and possibly other proinflammatory cytokines.
Collapse
Affiliation(s)
- M M Chong
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
23
|
Contreras JL, Bilbao G, Smyth CA, Jiang XL, Eckhoff DE, Jenkins SM, Thomas FT, Curiel DT, Thomas JM. Gene transfer of the Bcl-2 gene confers cytoprotection to isolated adult porcine pancreatic islets exposed to xenoreactive antibodies and complement. Surgery 2001; 71:1015-23. [PMID: 11374395 DOI: 10.1097/00007890-200104270-00001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposing adult porcine pancreatic islets (PI) to xenoreactive natural antibodies (XNA) induces brisk inflammatory injury that involves activation of the complement system. Gene transfer of Bcl-2 has been shown to protect PI from apoptosis and necrosis in several models. In this study, we investigated the effect of Bcl-2 gene transfer on protection of PI from primate XNA and complement-mediated injury. METHODS The PI were isolated from adult female sows. Only islet preparations that exhibited >90% viability and purity were used. Fresh rhesus monkey serum served as the XNA source. Gene transfer of Bcl-2 was achieved with an adenoviral vector (AdBcl-2) at 500 particle forming units (pfu)/cell. The Bcl-2 expression was confirmed by Western blot technique. Untransfected and transfected PI were incubated in 50% fresh complete serum (CS) or heat-inactivated (HI) rhesus serum for 24 hours. The PI viability was analyzed with acridine orange and ethidium bromide staining. Antibody and complement-mediated cytotoxicity were tested by intracellular lactate dehydrogenase (LDH) release. The PI function was assessed in vitro by static incubation studies and in vivo after intraportal transplantation in diabetic severe combined immunodeficiency (SCID) mice. RESULTS The AdBcl-2 gene transfer resulted in Bcl-2 gene expression in >90% of PI cells. Following exposure to XNA, <15% of the untransfected cells were viable. Similar results were obtained in PI transfected with a similar recombinant adenovirus encoding the reporter gene E coli beta-galactosidase (AdLacZ), an irrelevant gene. A significant increase in LDH release was observed in control PI after exposure to CS compared with PI that overexpressed Bcl-2 (82.89% +/- 7.78% vs 34.31% +/- 5.4%, P <.005). Higher insulin release was observed in vitro in PI transfected with Bcl-2 compared with untransfected PI or islets transfected with AdLacZ (stimulation index of 0.9 +/- 0.31, 0.9 +/- 0.3 vs 2.67 +/- 0.4, respectively). Only PI treated with AdBcl-2 were able to achieve euglycemia after exposure to XNA and complement after transplantation. CONCLUSIONS Transfer of the antiapoptotic and antinecrotic Bcl-2 gene into PI can reduce primate XNA and complement-mediated lysis. Cytoprotection of PI with Bcl-2 has potential to improve survival of PI xenotransplants.
Collapse
Affiliation(s)
- J L Contreras
- Transplant Immunobiology Division, Transplant Center, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pileggi A, Ricordi C, Alessiani M, Inverardi L. Factors influencing Islet of Langerhans graft function and monitoring. Clin Chim Acta 2001; 310:3-16. [PMID: 11485749 DOI: 10.1016/s0009-8981(01)00503-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transplantation of islet of Langerhans represents a viable therapeutic option for insulin-dependent diabetes mellitus. Dramatic progress has been recently reported with the introduction of a glucocorticoid-free immunosuppressive regimen that improved success rate, namely, insulin independence for 1 year or more, from 8% to 100%. The fate of islet grafts is determined by many concurrent phenomena, some of which are common to organ grafts (i.e. rejection), while others are unique to nonvascularized cell transplants, including transplant cell mass and viability, as well as nonspecific inflammation at the site of implant. Moreover, islet grafts lack clinical markers of early rejection, making it difficult to recognize imminent rejection and to implement intervention with graft-saving immunosuppressive regimens. In the present review, we will address the problems influencing islet graft success and the monitoring of islet cell graft function.
Collapse
Affiliation(s)
- A Pileggi
- Diabetes Research Institute, Cell Transplantation Center, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
25
|
McGrowder D, Ragoobirsingh D, Dasgupta T. Effects of S-nitroso-N-acetyl-penicillamine administration on glucose tolerance and plasma levels of insulin and glucagon in the dog. Nitric Oxide 2001; 5:402-12. [PMID: 11485378 DOI: 10.1006/niox.2001.0360] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been suggested that nitric oxide (NO, nitrogen monoxide) is a regulator of carbohydrate metabolism in skeletal muscle. The present study was undertaken to investigate the acute effects of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) on blood glucose levels and on the gluco-regulatory hormones insulin and glucagon in healthy dogs. The acute effects of SNAP on mean arterial pressure and heart rate were also investigated. The drug was administered intravenously and the pre- and postprandial blood glucose, plasma insulin, and glucagon concentrations were determined at half-hour time intervals postadministration after a glucose challenge. The plasma nitrate and nitrite concentrations were measured and taken as the biochemical markers of in vivo NO formation. The oral glucose tolerance test revealed an impaired glucose tolerance in SNAP-treated dogs as reflected by the area under the glucose curve, 1150.50 +/- 63.00 mmol x 150 min and 1355.25 +/- 102.01 mmol/L x 150 min in dogs treated with 10 and 20 mg/kg of SNAP, respectively, compared with 860.25 +/- 60.68 mmol/L x 150 min in captopril-treated controls (P < 0.05). The 2-h blood glucose concentration in dogs treated with 20 mg/kg body wt of SNAP was 9.17 +/- 1.10 mmol/L compared with 5.59 +/- 0.26 mmol/L for captopril-treated controls (P = 0.015). The oral glucose tolerance test also confirmed an impaired insulin secretion in the SNAP-treated dogs. While the plasma insulin concentration increased gradually in the captopril-treated controls to a peak value of 39.50 +/- 2.55 microIU/ml, 1.5 h after a glucose challenge there was a decrease in the plasma insulin concentration in SNAP-treated dogs to a low value of 20.67 +/- 0.88 microIU/ml (P = 0.006). In contrast, there were no significant differences in plasma glucagon concentration in SNAP-treated dogs and captopril-treated dogs at any time points. Using the Griess reaction, we found that there was a 27-95% increase in plasma nitrate/nitrite concentration on administration of SNAP. The sustained hyperglycemic effect observed in SNAP-treated dogs was accompanied by a marginal decrease in the mean arterial blood pressure and a significant increase in heart rate (P < 0.05). We conclude that acute administration of SNAP in the oral glucose tolerance test releases NO that modulates the parameters of carbohydrate metabolism.
Collapse
Affiliation(s)
- D McGrowder
- Department of Basic Medical Sciences (Biochemistry Section), University of the West Indies, Mona, Kingston, 7, Jamaica, West Indies
| | | | | |
Collapse
|
26
|
Cottet S, Dupraz P, Hamburger F, Dolci W, Jaquet M, Thorens B. SOCS-1 protein prevents Janus Kinase/STAT-dependent inhibition of beta cell insulin gene transcription and secretion in response to interferon-gamma. J Biol Chem 2001; 276:25862-70. [PMID: 11342558 DOI: 10.1074/jbc.m103235200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.
Collapse
Affiliation(s)
- S Cottet
- Institute of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Annerén C, Welsh M. Increased Cytokine-Induced Cytotoxicity of Pancreatic Islet Cells from Transgenic Mice Expressing the Src-like Tyrosine Kinase GTK. Mol Med 2001. [DOI: 10.1007/bf03402213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Suk K, Kim S, Kim YH, Kim KA, Chang I, Yagita H, Shong M, Lee MS. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4481-9. [PMID: 11254704 DOI: 10.4049/jimmunol.166.7.4481] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/prevention & control
- Caspase 1/biosynthesis
- Caspases/biosynthesis
- Caspases, Initiator
- Cell Death/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Drug Synergism
- Enzyme Induction/immunology
- Immune Sera/administration & dosage
- Infusions, Intravenous
- Interferon Regulatory Factor-1
- Interferon-gamma/toxicity
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Mice
- Mice, Inbred ICR
- Mice, Inbred NOD
- Phosphoproteins/biosynthesis
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Phosphorylation
- STAT1 Transcription Factor
- Signal Transduction/immunology
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/toxicity
- Up-Regulation/immunology
Collapse
Affiliation(s)
- K Suk
- Clinical Research Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cattan P, Berney T, Schena S, Molano RD, Pileggi A, Vizzardelli C, Ricordi C, Inverardi L. EARLY ASSESSMENT OF APOPTOSIS IN ISOLATED ISLETS OF LANGERHANS1. Transplantation 2001; 71:857-62. [PMID: 11349716 DOI: 10.1097/00007890-200104150-00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is substantial evidence to link early graft loss after islet transplantation to isolation-induced islet cell apoptosis. Measurement of caspase 3 activity and detection of the lost cell membrane asymmetry, revealed by annexin V binding, are newly available assays that allow the analysis of early events of apoptosis. METHODS In this study, we compared these tests with the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and analysis of DNA fragmentation after gel electrophoresis in freshly isolated islets obtained from rats, before and after treatment with interleukin-1 beta, interferon gamma, and tumor necrosis factor a, cytokines known to induce islet cell damage. RESULTS A measurable level of apoptosis was observed the day after isolation when caspase 3 activity and annexin V binding were used as assays, although no substantial DNA fragmentation was detected with TUNEL assay and DNA gel electrophoresis. Baseline caspase 3 activity was 0.8+/-0.3 U/100 islet equivalents and it increased to 1.4+/-0.45 U/100 islet equivalents 3 hr after cytokine stimulation (P<0.05 vs. unstimulated islets). The baseline level of apoptosis, as detected by annexin V binding, was 21.1%+/-5.8%, and it increased to 27.5%+/-8.1% 6 hr after addition of the cytokine cocktail (P<0.01 vs. unstimulated islets). An increase in the number of TUNEL-positive nuclei was detected 24 hr after stimulation and peaked at 48 hr. DNA laddering was also evident 24 hr after cytokine treatment. CONCLUSION These data suggest that measurement of caspase 3 activity and annexin V binding analysis might represent reliable markers of early events of islet cell apoptosis.
Collapse
Affiliation(s)
- P Cattan
- Diabetes Research Institute, and the Division of Cardiothoracic Surgery, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoorens A, Stangé G, Pavlovic D, Pipeleers D. Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes 2001; 50:551-7. [PMID: 11246874 DOI: 10.2337/diabetes.50.3.551] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interleukin (IL)-1beta is known to cause beta-cell death in isolated rat islets. This effect has been attributed to induction of nitric oxide (NO) synthase in beta-cells and subsequent generation of toxic NO levels; it was not observed, however, in dispersed rat beta-cells. The present study demonstrates that IL-1beta induces NO-dependent necrosis in rat beta-cells cultured for 3 days at high cell density or in cell aggregates but not as single cells. Its cytotoxic condition is not explained by higher NO production rates but might result from higher intercellular NO concentrations in statically cultured cell preparations with cell-to-cell contacts; nitrite levels in collected culture medium are not a reliable index for these intercellular concentrations. Absence of IL-1-induced necrosis in rat alpha-cells or in human beta-cells is attributed to the cytokine's failure to generate NO in these preparations, not to their reduced sensitivity to NO: the NO donor GEA 3162 (15 min, 50-100 micromol/l) exerts a comparable necrotic effect in rat and human alpha- or beta-cells. In preparations in which IL-1beta does not cause beta-cell necrosis, its combination with gamma-interferon (IFN-gamma) results in NO-independent apoptosis, starting after 3 days and increasing with the duration of exposure. Because IFN-gamma alone was apoptotic for rat alpha-cells, it is proposed that IL-1beta can make beta-cells susceptible to this effect, conceivably through altering their phenotype. It is concluded that IL-1beta can cause NO-dependent necrosis or NO-independent apoptosis of islet cells, depending on the species and on the environmental conditions. The experiments in isolated human beta-cell preparations suggest that these cells may preferentially undergo apoptosis when exposed to IL-1beta plus IFN-gamma unless neighboring non-beta-cells produce toxic NO levels.
Collapse
Affiliation(s)
- A Hoorens
- Diabetes Research Center, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
31
|
Cattan P, Berney T, Schena S, Molano RD, Pileggi A, Vizzardelli C, Ricordi C, Inverardi L. Early assessment of apoptosis in isolated islets of Langerhans. Transplant Proc 2001; 33:264-5. [PMID: 11266811 DOI: 10.1016/s0041-1345(00)02006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P Cattan
- Diabetes Research Institute, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Berney T, Molano RD, Cattan P, Pileggi A, Vizzardelli C, Oliver R, Ricordi C, Inverardi L. Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation 2001; 71:125-32. [PMID: 11211177 DOI: 10.1097/00007890-200101150-00020] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Primary nonfunction resulting in immediate graft loss is responsible for the failure of a large number of islet transplants. Evidence is accumulating to single out endotoxin contamination of the various reagents needed for islet isolation as a major cause of early graft loss. METHODS Islets isolated with endotoxin-containing (400 endotoxin units/ml) collagenase type V and "endotoxin-free" (3.1 endotoxin units/ml) Liberase were compared. Graft function was assessed using a syngeneic murine model of marginal islet mass transplantation. Pro-inflammatory cytokine production by islets was measured by ELISA in culture supernatants, and quantitative reverse transcriptase-PCR. Islet cell apoptosis was measured using the annexin assay. RESULTS Graft function was significantly delayed when islets were isolated with endotoxin-containing collagenase. Addition of endotoxin to the Liberase solution similarly delayed graft function. After 18 hr in culture, collagenase-isolated islets released higher amounts of proinflammatory cytokines compared with Liberase-isolated islets (interleukin-6: 2,185+/-1,174 pg/ml vs. 520+/-201 pg/ml; tumor necrosis factor-alpha: 304+/-298 pg/ml vs. 0; IL-1beta: 12.5 pg/ml+/-12.5 vs. 0). This observation correlated with higher cytokine mRNA expression in collagenase-isolated islets. The percentage of apoptotic islet cells immediately after isolation was 17.2%+/-9.4 in collagenase-isolated islets and 7.1%+/-2.1 in Liberase-isolated islets. CONCLUSIONS We propose that endotoxin contamination is the primum movens of a chain of events that involves intra-islet cytokine production and release and islet cell apoptosis, and endotoxin contamination can ultimately lead to primary nonfunction in vivo. This emphasizes the fact that using endotoxin-free reagents during isolation is a key factor for successful islet transplantation.
Collapse
Affiliation(s)
- T Berney
- Diabetes Research Institute, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In the non-obese diabetic (NOD) mouse model of Type 1 (insulin-dependent) diabetes, evidence suggests that pancreatic beta cells are destroyed in part by apoptotic mechanisms. The precise mechanisms of beta cell destruction leading to diabetes remain unclear. The NOD mouse has been studied to gain insight into the cellular and molecular mediators of beta cell death, which are discussed in this review. Perforin, secreted by CD8(+) T cells, remains one of the only molecules confirmed to be implicated in beta cell death in the NOD mouse. There are many other molecules, including Fas ligand and cytokines such as interferon-gamma, interleukin-1 and tumor necrosis factor-alpha, which may lead to beta cell destruction either directly or indirectly via regulation of toxic molecules such as nitric oxide. As beta cell death can occur in the absence of perforin, these other factors, in addition to other as yet unidentified factors, may be important in the development of diabetes. Effective protection of NOD mice from beta cell destruction may therefore require inhibition of multiple effector mechanisms.
Collapse
Affiliation(s)
- H E Thomas
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia
| | | |
Collapse
|
34
|
O'Brien BA, Harmon BV, Cameron DP, Allan DJ. Nicotinamide prevents the development of diabetes in the cyclophosphamide-induced NOD mouse model by reducing beta-cell apoptosis. J Pathol 2000; 191:86-92. [PMID: 10767724 DOI: 10.1002/(sici)1096-9896(200005)191:1<86::aid-path573>3.0.co;2-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of diabetes in non-obese diabetic (NOD) mice, which normally takes between 3 and 7 months, can be accelerated by cyclophosphamide (CY) injections, with rapid progression to diabetes within only 2-3 weeks. This insulin-dependent diabetes mellitus (IDDM) can be prevented or delayed in CY-treated NOD mice by nicotinamide (NA). The present study was undertaken to determine the mode of cell death responsible for the development of IDDM in CY-treated male NOD mice and to investigate the effect of NA on beta-cell death. Apoptotic beta cells were present within the islets of Langerhans in haematoxylin and eosin-stained sections of the pancreata harvested from 3- and 12-week-old male NOD mice, from 8 h until 14 days after a single intraperitoneal injection of CY (150 mg/kg body weight). The maximum amount of beta-cell apoptosis in 3-week-old animals occurred 1-2 days after CY treatment (20 apoptotic cells per 100 islets), after which time levels of apoptosis declined steadily throughout the 14-day period studied. The incidence of beta-cell apoptosis in 12-week-old male NOD mice occurred in two peaks; the first was recorded 8-24 h after CY treatment (30 apoptotic cells/100 islets), while the second, at 7 days (36 apoptotic cells per 100 islets), coincided with increased insulitis. Administration of NA 15 min before CY treatment, and thereafter daily, substantially reduced the amount of apoptosis and effectively eliminated (4 apoptotic cells per 100 islets) the second wave of beta-cell apoptosis seen at day 7 in 12-week-old animals given CY alone. These results show that apoptosis is the mode of beta-cell death responsible for the development of CY-induced IDDM and that prevention of IDDM by NA is associated with a reduction in beta-cell apoptosis.
Collapse
Affiliation(s)
- B A O'Brien
- School of Life Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
| | | | | | | |
Collapse
|
35
|
Annerén C, Welsh M. Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Growth Factors 2000; 17:233-47. [PMID: 10801074 DOI: 10.3109/08977190009028969] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bsk/Iyk, a murine non-receptor-tyrosine kinase which is expressed in fetal and adult islet of Langerhans was previously found to decrease NIH3T3 cell proliferation when expressed as a Y497/504F-mutant. We presently wanted to determine the effects of Bsk/Iyk on the proliferation of insulin producing cells. Cells expressing Bsk/IykY497/504F and Bsk/IykY504F display a decreased proliferation rate and express higher levels of the cell cycle inhibitor p27/Kip1 compared to control cells. These mutants also conferred diminished cell viability in response to INF-gamma and IL-1beta and contain higher levels of glucagon mRNA. Wild-type Bsk/Iyk is mainly localized at the plasma membrane whereas mutant Bsk/Iyk can enter the nucleus. In vitro kinase reactions using an exogenous substrate indicate a complicated mode of regulation of kinase activity by Y497 and Y504 with the latter being homologous to Y527 in pp60c-Src. These findings suggest that Bsk/Iyk might play a role in inhibiting cell proliferation, transducing cytokine-induced cytotoxicity and regulating hormone production of endocrine pancreatic cells.
Collapse
Affiliation(s)
- C Annerén
- Department of Medical Cell Biology, Biomedicum Uppsala University, Sweden
| | | |
Collapse
|
36
|
|
37
|
|
38
|
Ishizuka N, Yagui K, Tokuyama Y, Yamada K, Suzuki Y, Miyazaki J, Hashimoto N, Makino H, Saito Y, Kanatsuka A. Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism 1999; 48:1485-92. [PMID: 10599977 DOI: 10.1016/s0026-0495(99)90234-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytokines induce apoptosis in pancreatic beta cells, but the exact mechanisms and sequence of events are not clear. Here, we investigate a role for tumor necrosis factor alpha (TNF-alpha) in the apoptosis of beta cells. Using the ribonuclease (RNase) protection assay and the reverse transcriptase-polymerase chain reaction (RT-PCR) method, we confirmed that TNF receptor 1 (TNFR1), TNFR1-associated death domain protein (TRADD), Fas receptor-associated intracellular protein with death domain (FADD), and FADD-like interleukin-1beta-converting enzyme (FLICE) were expressed in the pancreatic beta cell line, MIN6 cells. Fluorescent microscopic examination using Hoechst 33342 dye (Sigma, St Louis, MO) demonstrated that TNF-alpha induced time- and dose-dependent apoptotic nuclear changes in these beta cells. In situ end-labeling (ISEL) DNA analysis revealed that 10 nmol/L TNF-alpha generated new 3'-OH DNA strand breaks. Moreover, qualitative assessment of the induced DNA damage on agarose gels showed that 10 nmol/L TNF-alpha produced characteristic apoptotic patterns of DNA fragments formed by internucleosomal hydrolysis of static chromatin. In addition, C2-ceramides and natural ceramides dispersed in a solvent mixture of ethanol and dodecane induced characteristic features of apoptosis in MIN6 cells, mimicking TNF-induced DNA damage. We also determined endosomal ceramide production after TNF-alpha (10 nmol/L) treatment in MIN6 cells using the diacylglycerol kinase assay. These results suggest that TNF-alpha can cause apoptosis in pancreatic beta cells through TNFR1-linked apoptotic factors, TRADD, FADD, and FLICE, and TNF-induced ceramide production may be involved in the pathways.
Collapse
Affiliation(s)
- N Ishizuka
- Department of Internal Medicine II, Chiba University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tejedo J, Bernabé JC, Ramírez R, Sobrino F, Bedoya FJ. NO induces a cGMP-independent release of cytochrome c from mitochondria which precedes caspase 3 activation in insulin producing RINm5F cells. FEBS Lett 1999; 459:238-43. [PMID: 10518027 DOI: 10.1016/s0014-5793(99)01255-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.
Collapse
Affiliation(s)
- J Tejedo
- Laboratory of Biochemistry of the Immune System, Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, University of Sevilla, Avenida Dr. Fedriani s/n, 41018, Sevilla, Spain
| | | | | | | | | |
Collapse
|
40
|
Ludwig R, Kretschmer M, Caspar G, Bojunga J, Oldenburg A, Schumm-Draeger P, Stegmüller M, von Minckwitz G, Usadel KH, Kusterer K. In vivo microscopy of murine islets of Langerhans: increased adhesion of transferred lymphocytes to islets depends on macrophage-derived cytokines in a model of organ-specific insulitis. Immunology 1999; 98:111-5. [PMID: 10469241 PMCID: PMC2326899 DOI: 10.1046/j.1365-2567.1999.00826.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental factors contribute to the pathogenesis of type 1 diabetes (insulin-dependent diabetes mellitus). Multiple low doses of streptozotocin (MLDS) induce hyperglycaemia and insulitis in mice. Previously we demonstrated that adhesion of lymphocytes to endothelium of islets is only increased when donor animals were diabetic and recipient mice had received 5 mg/kg streptozotocin (STZ). Therefore we used streptozotocin to evaluate the immunological relevance of such an irritation of islets. Lymphocytes, separated from diabetic mice (MLDS), were fluorescently labelled and injected to recipient mice that had received 5 mg/kg STZ. With in vivo microscopy we measured lymphocyte flow and adherence in islets. Expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) in the pancreas was assessed using immunohistochemistry. Very late antigen-4 (VLA-4) and leucocyte function-associated antigen-1 (LFA-1) expression on transferred lymphocytes was measured with flow cytometry. Pretreatment of recipients with antibodies to cytokines or silica reduced lymphocyte adherence to islet endothelium from 2.04% (goat immunoglobulin G; IgG) or 1.82% (rat IgG) to 0.47, 0.58, 0.39 or 0. 19% for monoclonal antibody (mAb) interferon-gamma (IFN-gamma), polyclonal antibody (pAb) tumour necrosis factor-alpha (TNF-alpha), pAb interleukin (IL)-1alpha or silica, respectively. Reduced adhesion was associated with a decreased expression of VCAM-1 and ICAM-1 in islets of treated recipients compared with mice treated with 5 mg/kg STZ alone. In conclusion, pretreatment of recipients with 5 mg/kg STZ leads to an increased expression of adhesion molecules in the islets and lymphocyte adhesion to islet endothelium in vivo, demonstrating an immune response of the islets. Prevention of increased expression of ICAM-1 or VCAM-1 and reduction of lymphocyte adhesion in islets by silica or antibody indicate an involvement of macrophages and macrophage derived cytokines in the generation of this immune response.
Collapse
Affiliation(s)
- R Ludwig
- Department of Medicine I, J.W. Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, Kay TW. Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology 1999; 140:3219-27. [PMID: 10385418 DOI: 10.1210/endo.140.7.6873] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a potential mediator of beta cell destruction in insulin-dependent diabetes mellitus. We have studied TNF-responsive pathways leading to apoptosis in beta cells. Primary beta cells express low levels of the type I TNF receptor (TNFR1) but do not express the type 2 receptor (TNFR2). Evidence for TNFR1 expression on beta cells came from flow cytometry using monoclonal antibodies specific for TNFR1 and TNFR2 and from RT-PCR of beta cell RNA. NIT-1 insulinoma cells similarly expressed TNFR1 (at higher levels than primary beta cells) as detected by flow cytometry and radio-binding studies. TNF induced NF-kappaB activation in both primary islet cells and NIT-1 cells. Apoptosis in response to TNFalpha was observed in NIT-1 cells whereas apoptosis of primary beta cells required both TNFalpha and interferon-gamma (IFNgamma). Apoptosis could be prevented in NIT-1 cells by expression of dominant negative Fas-associating protein with death domain (dnFADD). Apoptosis in NIT-1 cells was increased by coincubation with IFNgamma, which also increased caspase 1 expression. These data show that TNF-activated pathways capable of inducing apoptotic cell death are present in beta cells. Caspase activation is the dominant pathway of TNF-induced cell death in NIT-1 cells and may be an important mechanism of beta cell damage in insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- L A Stephens
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Hadjivassiliou V, Green MH, James RF, Swift SM, Clayton HA, Green IC. Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide 1999; 2:429-41. [PMID: 10342486 DOI: 10.1006/niox.1998.0203] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokine-induced damage may contribute to destruction of insulin-secreting beta-cells in islets of Langerhans during autoimmune diabetes. There is considerable controversy (i) whether human and rat islets respond differently to cytokines, (ii) the extent to which cytokine damage is mediated by induction of nitric oxide formation, and (iii) whether the effects of nitric oxide on islets can be distinguished from those of reactive oxygen species or peroxynitrite. We have analyzed rat and human islet responses in parallel, 48 h after exposure to the nitric oxide donor S-nitrosoglutathione, the mixed donor 3-morpholinosydnonimine, hypoxanthine/xanthine oxidase, peroxynitrite, and combined cytokines (interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma). Insulin secretory response to glucose, insulin content, DNA strand breakage, and early-to-late stage apoptosis were recorded in each experiment. Rat islet insulin secretion was reduced by S-nitrosoglutathione or combined cytokines, but unexpectedly increased by peroxynitrite or hypoxanthine/xanthine oxidase. Effects on human islet insulin secretion were small; cytokines and S-nitrosoglutathione decreased insulin content. Both rat and human islets showed significant and similar levels of DNA damage following all treatments. Apoptosis in neonatal rat islets was increased by every treatment, but was at a low rate in adult rat or human islets and only achieved significance with cytokine treatment of human islets. All cytokine responses were blocked by an arginine analogue. We conclude: (i) Reactive oxygen species increased and nitric oxide decreased insulin secretory responsiveness in rat islets. (ii) Species differences lie mainly in responses to cytokines, applied at a lower dose and shorter time than in most studies of human islets. (iii) Cytokine effects were nitric oxide driven; neither reactive oxygen species nor peroxynitrite reproduced cytokine effects. (iv) Rat and human islets showed equal susceptibility to DNA damage. (v) Apoptosis was not the preferred death pathway in adult islets. (vi) We have found no evidence of human donor variation in the pattern of response to these treatments.
Collapse
Affiliation(s)
- V Hadjivassiliou
- Department of Biochemistry, University of Sussex, Brighton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Wang L, Bhattacharjee A, Zuo Z, Hu F, Honkanen RE, Berggren PO, Li M. A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 1999; 140:1200-4. [PMID: 10067844 DOI: 10.1210/endo.140.3.6556] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-dependent diabetes mellitus is characterized by the selective destruction of pancreatic beta-cells. Chronic treatment with cytokines induced a low voltage-activated (LVA) Ca2+ current in mouse beta-cells. The concomitant increase in the basal cytoplasmic free Ca2+ concentration ([Ca2+]i) was associated with DNA fragmentation and cell death. Antagonists of LVA Ca2+ channels prevented this elevation of basal [Ca2+]i and DNA fragmentation and reduced the percentage of cell death. Exposure to cytokines did not affect the profile of Ca2+ currents or basal [Ca2+]i in glucagon-secreting alpha-cells. An increased Ca2+ signal through LVA Ca2+ channels may thus be a key feature in cytokine-induced beta-cell destruction.
Collapse
Affiliation(s)
- L Wang
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile 36688, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. J Clin Invest 1998; 101:1811-20. [PMID: 9576743 PMCID: PMC508765 DOI: 10.1172/jci1489] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.
Collapse
Affiliation(s)
- H E Hohmeier
- Department of Biochemistry and Department of Internal Medicine, Gifford Laboratories for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
45
|
Mizuno N, Yoshitomi H, Ishida H, Kuromi H, Kawaki J, Seino Y, Seino S. Altered bcl-2 and bax expression and intracellular Ca2+ signaling in apoptosis of pancreatic cells and the impairment of glucose-induced insulin secretion. Endocrinology 1998; 139:1429-39. [PMID: 9492080 DOI: 10.1210/endo.139.3.5798] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis is the process of cellular self-destruction, and genes such as bcl-2 and bax are known to inhibit and promote apoptosis, respectively. In this study, we show that apoptosis can be induced in pancreatic beta-cell lines, and we investigate the apoptotic pathways through the bcl-2 and bax genes and intracellular Ca2+. Serum deprivation induces apoptosis in the MIN6 and RINm5F pancreatic beta-cell lines, and alters the bcl-2 messenger RNA (mRNA) and protein. KCl, BayK, A23187, and ionomycin elicit an elevation of cytosolic/nuclear Ca2+, which, however, is insufficient to evoke apoptosis or to alter bcl-2 or bax mRNA expression in MIN6 cells. The extracellular Ca2+ chelators, EGTA and 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetrapotassium salt, hydrate, evoke apoptosis and also alter the ratio of bcl-2 to bax mRNA and protein concomitantly with the depletion of cytosolic/nuclear Ca2+. This indicates that there are at least two apoptotic pathways in pancreatic beta-cells: through serum deprivation and through a decrease in cytosolic/nuclear Ca2+. MIN6 cells exhibit reduced insulin secretion induced by glucose regardless of the molecular pathway of apoptosis. Apoptosis in pancreatic beta-cells, therefore, may be closely related to the impairment of insulin secretion in certain pathological conditions such as diabetes mellitus.
Collapse
Affiliation(s)
- N Mizuno
- Department of Metabolism and Clinical Nutrition, Kyoto University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Rabinovitch A, Suarez-Pinzon W, Muhkerjee B, Brownlee M, Edelstein D, Federoff HJ. Expression of the bcl-2 gene from a defective HSV-1 amplicon vector protects pancreatic beta-cells from apoptosis. Hum Gene Ther 1996; 7:1719-26. [PMID: 8886842 DOI: 10.1089/hum.1996.7.14-1719] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It has been suggested that the mechanism of pancreatic beta-cell death in autoimmune diabetes mellitus and in immunoisolated transplantation devices involves cytokine-induced apoptosis. To explore the feasibility of a gene transfer strategy to protect beta-cells, we evaluated the use of replication defective HSV-1 amplicon vectors as gene transfer vehicles. Post-mitotic murine and human beta-cells were efficiently transduced by a herpes simplex virus (HSV) vector that expresses the reporting gene Escherichia coli lacZ under the transcriptional control of a HSV promoter (HSVlac) both as islets and as single cells. Insulin secretion, a marker of beta-cell function, was unaffected by HSVlac transduction of a beta-cell line. A HSV amplicon vector that expressed bcl-2 (HSVbcl2) in beta-cells was constructed, and its effects on cytokine-mediated apoptosis in both a beta-cell line and primary murine beta-cells assessed by measuring internucleosomal fragmentation. beta-Cell apoptosis was blocked by transduction with HSVbcl2 but not HSVlac. The prevention of cytokine-induced apoptosis in beta-cells by bcl-2 expression has the potential both to ameliorate primary autoimmune beta-cell destruction as type I diabetes develops, and to prevent the destruction of transplanted beta-cells inside immunoisolation devices.
Collapse
Affiliation(s)
- Y Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kato S, Ishida H, Tsuura Y, Tsuji K, Nishimura M, Horie M, Taminato T, Ikehara S, Odaka H, Ikeda I, Okada Y, Seino Y. Alterations in basal and glucose-stimulated voltage-dependent Ca2+ channel activities in pancreatic beta cells of non-insulin-dependent diabetes mellitus GK rats. J Clin Invest 1996; 97:2417-25. [PMID: 8647933 PMCID: PMC507326 DOI: 10.1172/jci118688] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In genetically occurring non-insulin-dependent diabetes mellitus (NIDDM) model rats (GK rats), the activities of L- and T-type Ca2+ channels in pancreatic beta cells are found to be augmented, by measuring the Ba2+ currents via these channels using whole-cell patch-clamp technique, while the patterns of the current-voltage curves are indistinguishable. The hyper-responsiveness of insulin secretion to nonglucose depolarizing stimuli observed in NIDDM beta cells could be the result, therefore, of increased voltage-dependent Ca2+ channel activity. Perforated patch-clamp recordings reveal that the augmentation of L-type Ca2+ channel activity by glucose is markedly less pronounced in GK beta cells than in control beta cells, while glucose-induced augmentation of T-type Ca2+ channel activity is observed neither in the control nor in the GK beta cells. This lack of glucose-induced augmentation of L-type Ca2+ channel activity in GK beta cells might be causatively related to the selective impairment of glucose-induced insulin secretion in NIDDM beta cells, in conjunction with an insufficient plasma membrane depolarization due to impaired closure of the ATP-sensitive K+ channels caused by the disturbed intracellular glucose metabolism in NIDDM beta cells.
Collapse
Affiliation(s)
- S Kato
- Department of Metabolism and Clinical Nutrition, Kyoto University Faculty of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Iwahashi H, Hanafusa T, Eguchi Y, Nakajima H, Miyagawa J, Itoh N, Tomita K, Namba M, Kuwajima M, Noguchi T, Tsujimoto Y, Matsuzawa Y. Cytokine-induced apoptotic cell death in a mouse pancreatic beta-cell line: inhibition by Bcl-2. Diabetologia 1996; 39:530-6. [PMID: 8739912 DOI: 10.1007/bf00403299] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytokines are thought to contribute to the induction of pancreatic beta-cell destruction in insulin-dependent diabetes mellitus. The molecular mechanisms that underlie beta-cell death were investigated by studying cytokine-induced cell death in beta-cell lines. A combination of three cytokines (interleukin-1 beta, tumour necrosis factor-alpha, and interferon-gamma) induced apoptotic cell death in the mouse pancreatic beta-cell line beta TC1, as judged from the appearance of cells with hypodiploid nuclei and oligonucleosomal DNA fragmentation. The same treatment also induced apoptosis in the mouse pancreatic alpha-cell line alpha TC1 and the NOD/Lt mouse beta-cell line NIT-1, although to a lesser extent than in beta TC1 cells. The abundance of endogenous Bcl-2 in beta TC1 cells was lower than that in the other two cell lines. Overexpression of human Bcl-2 in beta TC1 cells partially protected them from cytokine-induced cell death. These results suggest that apoptosis may be responsible, at least in part, for cytokine-induced beta-cell destruction and that Bcl-2 prevents apoptosis in pancreatic islet cells.
Collapse
Affiliation(s)
- H Iwahashi
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eizirik DL, Delaney CA, Green MH, Cunningham JM, Thorpe JR, Pipeleers DG, Hellerström C, Green IC. Nitric oxide donors decrease the function and survival of human pancreatic islets. Mol Cell Endocrinol 1996; 118:71-83. [PMID: 8735593 DOI: 10.1016/0303-7207(96)03768-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO) has been proposed as a possible mediator of beta-cell damage in human IDDM. This hypothesis is based on in vitro studies with rodent pancreatic islets. In the present study we examined whether human beta-cells are affected by NO. In view of species differences in beta-cell sensitivity to damaging agents, rat islets were investigated in parallel. Isolated islets were exposed for 90 min to different concentrations of three chemically unrelated NO donors, SIN-1, GSNO or RBS. At the end of this incubation, human insulin release was mostly similar in control and NO-treated islets but, 48 h later, islet retrieval, islet DNA and insulin content, and glucose-induced insulin release were markedly lower in islets exposed to NO donors. Rat islets were already inhibited during the initial 90 min; 48 h later their loss in beta-cell function was similar to that in human islets. Nicotinamide or succinic acid monomethyl ester partially protected against SIN-1 induced islet cell loss, but not against the functional inhibition of human pancreatic islets. Exposure of human or rat islets to RBS was associated with significant DNA strand breakage, as judged by the comet assay (single cell gel electrophoresis) and by ultrastructural signs of cell damage. DNA damage was more severe in rat islet cells exposed to similar amounts of RBS. It is concluded that NO donors can damage human pancreatic islets, an effect paralleled by induction of nuclear DNA strand breaks.
Collapse
Affiliation(s)
- D L Eizirik
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. EXPERIENTIA 1996; 52:344-7. [PMID: 8620938 DOI: 10.1007/bf01919538] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The impact of short term in vitro exposure to the diabetogenic drug streptozotocin on pancreatic islet glucose metabolism, insulin secretion, DNA fragmentation and cell viability, was studied. Streptozotocin impaired cell viability as well as insulin secretion and the oxidation of glucose. These effects were partially counteracted by inhibition of the inducible form of nitric oxide synthase with N-monomethyl-arginine and by scavenging oxygen free radicals with nicotinamide. Isolated islets underwent double strand DNA fragmentation after 24 h in culture. The degree of DNA breakdown was strongly enhanced by exposure of the islets to 0.55 mM streptozotocin for 30 min before culture. Prevention of streptozotocin-induced cleavage of islet DNA was obtained with N-monomethyl-arginine and nicotinamide. These data suggest that the generation of reactive oxygen and nitrogen species is involved in the deleterious action of streptozotocin on pancreatic islet tissue. A role for oxygen radicals generated during streptozotocin-induced islet cell damage as possible mediators of the expression of the inducible form of nitric oxide synthase and the scavenging action of nicotinamide on these radicals, is then proposed.
Collapse
Affiliation(s)
- F J Bedoya
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | | |
Collapse
|