1
|
Complete Genome Sequences of the Soil Oxalotrophic Bacterium Cupriavidus oxalaticus Strain Ox1 and Its Derived mCherry-Tagged Strain. Microbiol Resour Announc 2022; 11:e0018122. [PMID: 35924938 PMCID: PMC9476978 DOI: 10.1128/mra.00181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequences of the soil oxalotrophic bacterium Cupriavidus oxalaticus Ox1 and a derived mCherry-tagged strain. The genome size is approximately 6.69 Mb, with a GC content of 66.9%. The genome sequence of C. oxalaticus Ox1 contains a complete operon for the degradation and assimilation of oxalate.
Collapse
|
2
|
Guo S, Asset T, Atanassov P. Catalytic Hybrid Electrocatalytic/Biocatalytic Cascades for Carbon Dioxide Reduction and Valorization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04862] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Tristan Asset
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Palmieri F, Estoppey A, House GL, Lohberger A, Bindschedler S, Chain PSG, Junier P. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. ADVANCES IN APPLIED MICROBIOLOGY 2018; 106:49-77. [PMID: 30798804 DOI: 10.1016/bs.aambs.2018.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxalic acid is the most ubiquitous and common low molecular weight organic acid produced by living organisms. Oxalic acid is produced by fungi, bacteria, plants, and animals. The aim of this review is to give an overview of current knowledge about the microbial cycling of oxalic acid through ecosystems. Here we review the production and degradation of oxalic acid, as well as its implications in the metabolism for fungi, bacteria, plants, and animals. Indeed, fungi are well known producers of oxalic acid, while bacteria are considered oxalic acid consumers. However, this framework may need to be modified, because the ability of fungi to degrade oxalic acid and the ability of bacteria to produce it, have been poorly investigated. Finally, we will highlight the role of fungi and bacteria in oxalic acid cycling in soil, plant and animal ecosystems.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andrea Lohberger
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A. The formate bio-economy. Curr Opin Chem Biol 2016; 35:1-9. [DOI: 10.1016/j.cbpa.2016.07.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
5
|
Urschel MR, Hamilton TL, Roden EE, Boyd ES. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote. FEMS Microbiol Ecol 2016; 92:fiw069. [PMID: 27037359 DOI: 10.1093/femsec/fiw069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 11/12/2022] Open
Abstract
Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.
Collapse
Affiliation(s)
- Matthew R Urschel
- Department of Microbiology and Immunology and the Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Eric E Roden
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Ames Research Center, Moffett Field, CA 94035, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology and the Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
6
|
Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol 2014; 197:65-77. [PMID: 25381572 DOI: 10.1007/s00203-014-1055-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/12/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.
Collapse
|
7
|
Bravo D, Braissant O, Solokhina A, Clerc M, Daniels AU, Verrecchia E, Junier P. Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity. FEMS Microbiol Ecol 2011; 78:266-74. [PMID: 21696406 DOI: 10.1111/j.1574-6941.2011.01158.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Isothermal microcalorimetry (IMC) has been used in the past to monitor metabolic activities in living systems. A few studies have used it on ecological research. In this study, IMC was used to monitor oxalotrophic activity, a widespread bacterial metabolism found in the environment, and particularly in soils. Six model strains were inoculated in solid angle media with K-oxalate as the sole carbon source. Cupriavidus oxalaticus, Cupriavidus necator, and Streptomyces violaceoruber presented the highest activity (91, 40, and 55 μW, respectively) and a maximum growth rate (μmax h(-1) ) of 0.264, 0.185, and 0.199, respectively, among the strains tested. These three strains were selected to test the incidence of different oxalate sources (Ca, Cu, and Fe-oxalate salts) in the metabolic activity. The highest activity was obtained in Ca-oxalate for C. oxalaticus. Similar experiments were carried out with a model soil to test whether this approach can be used to measure oxalotrophic activity in field samples. Although measuring oxalotrophic activity in a soil was challenging, there was a clear effect of the amendment with oxalate on the metabolic activity measured in soil. The correlation between heat flow and growth suggests that IMC analysis is a powerful method to monitor bacterial oxalotrophic activity.
Collapse
Affiliation(s)
- Daniel Bravo
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Daniel SL, Pilsl C, Drake HL. Oxalate metabolism by the acetogenic bacteriumMoorella thermoacetica. FEMS Microbiol Lett 2004; 231:39-43. [PMID: 14769464 DOI: 10.1016/s0378-1097(03)00924-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Revised: 11/26/2003] [Accepted: 12/02/2003] [Indexed: 11/18/2022] Open
Abstract
Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO(2), KNO(3), or Na(2)S(2)O(3). Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 micromol oxalate oxidized min(-1) mg protein(-1). Extracts also catalyzed the formate-dependent reduction of NADP(+); however, oxalate-dependent reduction of NADP(+) was negligible. Oxalate- or formate-dependent reduction of NAD(+) was not observed. Addition of coenzyme A (CoA), acetyl-CoA, or succinyl-CoA to the assay had a minimal effect on the oxalate-dependent reduction of benzyl viologen. These results suggest that oxalate metabolism by M. thermoacetica requires a utilizable electron acceptor and that CoA-level intermediates are not involved.
Collapse
Affiliation(s)
- Steven L Daniel
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, USA.
| | | | | |
Collapse
|
9
|
Tamer AU, Aragno M, Sahin N. Isolation and characterization of a new type of aerobic, oxalic acid utilizing bacteria, and proposal of Oxalicibacterium flavum gen. nov., sp. nov. Syst Appl Microbiol 2002; 25:513-9. [PMID: 12583711 DOI: 10.1078/07232020260517643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mesophilic, aerobic oxalic acid utilizing yellow-pigmented bacterium has been isolated from litter of oxalate producing plants in the region of Izmir (Turkey). It is motile by means of 1-3 polar flagella. Optimal growth occurred between 25-30 degrees C at pH 6.9. The G+C content of DNA is 62-64 mol % (Tm). Based on its morphological and biochemical features the organism belongs to the genus Pseudomonas, but differs from all the previously described species. The taxonomic relationships among strains described as or previously tentatively assigned to the genus Pseudomonas were investigated using numerical classification, DNA base composition and DNA-DNA hybridization. 16S rDNA sequences were determined for the strain TA17. On the basis of 16S rDNA sequence comparisons, physiological and biochemical characteristics, it is proposed to classify TA17T in a new genus and species for which the name Oxalicibacterium flavum gen. nov., sp. nov. is proposed. The type strain is TA17T (= NEU98T, = LMG 21571T).
Collapse
Affiliation(s)
- Abdurrahman U Tamer
- Celal Bayar Universitesi, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Manisa, Turkey
| | | | | |
Collapse
|
10
|
Abstract
Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of agricultural commodities and for the protection of crops from phytotoxic effects of fungal metabolites. This review summarizes research on the biological detoxification of fungal toxins by microorganisms and plants and its practical applications. Some mycotoxins are detoxified during ensiling and other fermentation processes (aflatoxins, alternariol, mycophenolic acid, patulin, PR toxin) while others are transformed into toxic products or survive fermentation unchanged. Plants can detoxify fomannoxin, fusaric acid, HC-toxin, ochratoxin A and oxalate but the degradation of deoxynivalenol has yet to be proven. Microflora of the digestive tract of vertebrates and invertebrates exhibit detoxification activities towards aflatoxins, ochratoxin A, oxalate and trichothecenes. Some toxin-producing fungi are able to degrade or transform their own products under suitable conditions. Pure cultures of bacteria and fungi which detoxify mycotoxins have been isolated from complex microbial populations by screening and enrichment culture techniques. Genes responsible for some of the detoxification activities have been cloned and expressed in heterologous hosts. The detoxification of aflatoxins, cercosporin, fumonisins, fusaric acid, ochratoxin A, oxalic acid, patulin, trichothecenes and zearalenone by pure cultures is reviewed. Finally, current application of these results in food and feed production and plant breeding is summarized and expected future developments are outlined.
Collapse
Affiliation(s)
- P Karlovsky
- University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
11
|
Weusthuis RA, Adams H, Scheffers WA, van Dijken JP. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Appl Environ Microbiol 1993; 59:3102-9. [PMID: 8215379 PMCID: PMC182412 DOI: 10.1128/aem.59.9.3102-3109.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Saccharomyces cerevisiae, maltose is transported by a proton symport mechanism, whereas glucose transport occurs via facilitated diffusion. The energy requirement for maltose transport was evaluated with a metabolic model based on an experimental value of YATP for growth on glucose and an ATP requirement for maltose transport of 1 mol.mol-1. The predictions of the model were verified experimentally with anaerobic, sugar-limited chemostat cultures growing on a range of maltose-glucose mixtures at a fixed dilution rate of 0.1 h-1. The biomass yield (grams of cells.gram of sugar-1) decreased linearly with increasing amounts of maltose in the mixture. The yield was 25% lower during growth on maltose than during that on glucose, in agreement with the model predictions. During sugar-limited growth, the residual concentrations of maltose and glucose in the culture increased in proportion to their relative concentrations in the medium feed. From the residual maltose concentration, the in situ rates of maltose consumption by cultures, and the Km of the maltose carrier for maltose, it was calculated that the amount of this carrier was proportional to the in situ maltose consumption rate. This was also found for the amount of intracellular maltose. These two maltose-specific enzymes therefore exert high control over the maltose flux in S. cerevisiae in anaerobic, sugar-limited, steady-state cultures.
Collapse
Affiliation(s)
- R A Weusthuis
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | |
Collapse
|
12
|
Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 1993; 42:509-19. [DOI: 10.1002/bit.260420415] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Pronk JT, Meijer WM, Hazeu W, van Dijken JP, Bos P, Kuenen JG. Growth of
Thiobacillus ferrooxidans
on Formic Acid. Appl Environ Microbiol 1991; 57:2057-62. [PMID: 16348525 PMCID: PMC183521 DOI: 10.1128/aem.57.7.2057-2062.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of acidophilic microorganisms were shown to be capable of oxidizing formate. These included
Thiobacillus ferrooxidans
ATCC 21834, which, however, could not grow on formate in normal batch cultures. However, the organism could be grown on formate when the substrate supply was growth limiting, e.g., in formate-limited chemostat cultures. The cell densities achieved by the use of the latter cultivation method were higher than cell densities reported for growth of
T. ferrooxidans
on ferrous iron or reduced sulfur compounds. Inhibition of formate oxidation by cell suspensions, but not cell extracts, of formate-grown
T. ferrooxidans
occurred at formate concentrations above 100 μM. This observation explains the inability of the organism to grow on formate in batch cultures. Cells grown in formate-limited chemostat cultures retained the ability to oxidize ferrous iron at high rates. Ribulose 1,5-bisphosphate carboxylase activities in cell extracts indicated that
T. ferrooxidans
employs the Calvin cycle for carbon assimilation during growth on formate. Oxidation of formate by cell extracts was NAD(P) independent.
Collapse
Affiliation(s)
- J T Pronk
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP. A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 1991; 59:49-63. [PMID: 2059011 DOI: 10.1007/bf00582119] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on glucose both organisms had the same cell yield. This can be attributed to two factors: --S. cerevisiae had a lower protein content than C. utilis; --uptake of glucose by C. utilis requires energy whereas in S. cerevisiae it occurs via facilitated diffusion. Theoretical calculations showed that, as a result of these two factors, the ATP requirement for biomass formation in C. utilis is 35% higher than in S. cerevisiae (theoretical YATP values of 20.8 and 28.1, respectively). The experimental YATP for anaerobic growth of S. cerevisiae on glucose was 16 g biomass.mol ATP-1. In vivo P/O-ratios can be calculated for aerobic growth on ethanol and acetate, provided that the gap between the theoretical and experimental ATP requirements as observed for growth on glucose is taken into account. This was done in two ways: --via the assumption that the gap is independent of the growth substrate (i.e. a fixed amount of ATP bridges the difference between the theoretical and experimental values). --alternatively, on the assumption that the difference is a fraction of the total ATP expenditure, that is dependent on the substrate. Calculations of P/O-ratios for growth of both yeasts on glucose, ethanol, and acetate made clear that only by assuming a fixed difference between theoretical and experimental ATP requirements, the P/O-ratios are more or less independent of the growth substrate. These P/O-ratios are approximately 30% lower than the calculated mechanistic values.
Collapse
Affiliation(s)
- C Verduyn
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | | | | | |
Collapse
|
15
|
Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch Microbiol 1989. [DOI: 10.1007/bf00277545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Baetz AL, Allison MJ. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J Bacteriol 1989; 171:2605-8. [PMID: 2708315 PMCID: PMC209940 DOI: 10.1128/jb.171.5.2605-2608.1989] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Oxalyl-coenzyme A (oxalyl-CoA) decarboxylase was purified from Oxalobacter formigenes by high-pressure liquid chromatography with hydrophobic interaction chromatography, DEAE anion-exchange chromatography, and gel permeation chromatography. The enzyme is made up of four identical subunits (Mr, 65,000) to give the active enzyme (Mr, 260,000). The enzyme catalyzed the thiamine PPi-dependent decarboxylation of oxalyl-CoA to formate and carbon dioxide. Apparent Km and Vmax values, respectively, were 0.24 mM and 0.25 mumol/min for oxalyl-CoA and 1.1 pM and 0.14 mumol/min for thiamine pyrophosphate. The maximum specific activity was 13.5 microM oxalyl-CoA decarboxylated per min per mg of protein.
Collapse
Affiliation(s)
- A L Baetz
- National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa 50010
| | | |
Collapse
|
17
|
Rutgers M, van der Gulden HM, van Dam K. Thermodynamic efficiency of bacterial growth calculated from growth yield of Pseudomonas oxalaticus OX1 in the chemostat. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 973:302-7. [PMID: 2492828 DOI: 10.1016/s0005-2728(89)80436-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to determine the thermodynamic efficiency of bacterial growth, Pseudomonas oxalaticus OX1 was grown in carbon-limited continuous cultures. 11 different carbon sources, ranging from oxalate (most oxidised component) to ethanol (most reduced component), were used as limiting substrate in these experiments. From the experimental yield values (expressed as C-mol dry weight produced per C-mol carbon substrate consumed) the thermodynamic efficiencies were calculated. On substrates more reduced than biomass (such as ethanol and glycerol) the thermodynamic efficiency of growth of P. oxalaticus was negative but it reached a maximum of 23 +/- 3% with substrates with a degree of reduction of 3 (citrate) and lower. The actual concentrations of the components involved were incorporated into the calculations but this affected the overall thermodynamic efficiency only to a small extent. This result strengthens the conclusion of Westerhoff et al. (Westerhoff, H.V., Hellingwerf, K.J. and Van Dam, K. (1983) Proc. Natl. Acad. Sci. 80, 305-309) that bacteria have been optimised towards a theoretical thermodynamic efficiency of 24%, corresponding with maximisation of growth rate at optimal efficiency, with highly oxidised substrates.
Collapse
Affiliation(s)
- M Rutgers
- Laboratory of Biochemistry and Biotechnology Centre, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
|
19
|
Papoutsakis ET, Bussineau CM, Chu IM, Diwan AR, Huesemann M. Transport of substrates and metabolites and their effect on cell metabolism (in butyric-acid and methylotrophic fermentations). Ann N Y Acad Sci 1987; 506:24-50. [PMID: 2829684 DOI: 10.1111/j.1749-6632.1987.tb23808.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The two components, delta pH and delta psi, of the membrane protonmotive force (delta p) effect and are affected by the transport of many substrates and metabolites. Because the integrity (or restoration) of the delta p requires the expenditure of metabolic energy, such transport processes affect the overall cell bioenergetics. However, the transport or high concentrations of certain substrates and metabolites can have more serious effects on cell metabolism because they partially or completely abolish either or both the delta pH and delta psi. If the cells cannot eventually restore the collapsed component(s) of the delta p, complete growth inhibition and cell death become inevitable. In the butanol/acetone fermentation of Clostridium acetobutylicum, the transport and the presence of key metabolites (acetic and butyric acids, and butanol) have serious and some necessary effects on the delta p. Acetic and butyric acids act as uncouplers of the delta pH, thereby reducing the internal pH. Using other acid uncouplers (such as acetoacetate, which is metabolized by the cells, or FCCP, which is not metabolized by the cells), we found that a lower pHo combined with the metabolic-energy drain of the uncoupling effect and high internal acid concentrations are implicated in the mechanism(s) of solventogenesis. Thus, the production or presence (or both) of the two acids (acetic and butyric) is beneficial to the initiation of solvent production. The transport mechanisms of CH3OH, CH2O, and HCOOH in obligate CH3OH utilizers (methylotrophs) were also discussed in detail. We showed that CH3OH is actively transported by the cells at the expense of metabolic energy and that its transport significantly affects the dynamics of continuous bioreactors. The accumulation of CH2O was found to be driven by the membrane delta p. Finally, formate was accumulated by the delta pH according to the general transport mechanism of short-chain fatty acids. The inhibition of growth by formate was explained by its uncoupling effect on the cells. Growth inhibition by CH3OH appeared to be related to the severe reduction of the membrane delta pH and cell pHi by relatively low CH3OH concentrations.
Collapse
Affiliation(s)
- E T Papoutsakis
- Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892
| | | | | | | | | |
Collapse
|
20
|
Formate transport, growth inhibition and the membrane protonmotive force in two methylotrophs (T15 and L3). Appl Microbiol Biotechnol 1987. [DOI: 10.1007/bf00282151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Heijnen JJ, Roels JA. A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol Bioeng 1981. [DOI: 10.1002/bit.260230407] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Timer-ten Hoor A. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans. Antonie Van Leeuwenhoek 1981; 47:231-43. [PMID: 6791590 DOI: 10.1007/bf00403394] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
From cell yields of Thiomicrospira denitrificans grown inthe chemostat at different growth rates under anaerobic conditions a value of 1.4 mM S2O3 = per g dry wt and per h could be calculated for maintenance energy requirements, and of 5.65 dry wt per mole S2O3 = for the true growth yield. Cell yields of Thiomicrospira denitrificans appeared to be almost half of those of Thiobacillus denitrificans. Though in Thiobacillus denitrificans at D = 0.03 h(-1) under anaerobic conditions a value was found of 11.60 g dry wt per mole of thiosulphate used for energetic purposes, a value of 5.72 g dry wt per mole of thiosulphate was found under comparable conditions in Thiomicrospira denitrificans. Under aerobic conditions at D = 0.03 h(-1) values of 18.54 g dry wt per mole of thiosulphate were found in Thiobacillus denitrificans whereas Thiomicrospira denitrificans yielded only 9.38 g dry wt per mole of thiosulphate. As in Thiobacillus denitrificans anaerobic cell yields on sulphide were comparable to those on thiosulphate. Calculations have been made which indicate that the biosynthetic efficiency of Thiomicrospira denitrificans is lower than that of Thiobacillus denitrificans. This can only partly be explained by the absence of adenosine-phosphosulphate (APS) reductase.
Collapse
|
23
|
The Electron Transport System and Hydrogenase of Paracoccus denitrificans. CURRENT TOPICS IN BIOENERGETICS 1981. [DOI: 10.1016/b978-0-12-152512-5.50009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Dawson KA, Allison MJ, Hartman PA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 1980; 40:833-9. [PMID: 7425628 PMCID: PMC291667 DOI: 10.1128/aem.40.4.833-839.1980] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was directly related to the concentration of oxalate in the medium (1 to 111 mM), and cell yields were approximately 1.1 g (dry weight)/mol of oxalate degraded. Oxalate was stoichiometrically degraded to CO2 and formate. These anaerobes occupy a unique ecological niche and are distinct from any previously described oxalate-degrading bacteria.
Collapse
|
25
|
Jones RW. Proton translocation by the membrane-bound formate dehydrogenase ofEscherichia coli. FEMS Microbiol Lett 1980. [DOI: 10.1111/j.1574-6968.1980.tb05072.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Gottschal JC, Kuenen JG. Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. Arch Microbiol 1980. [DOI: 10.1007/bf00421888] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Dijkhuizen L, Harder W. Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture. Arch Microbiol 1979. [DOI: 10.1007/bf00403501] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture. Arch Microbiol 1979. [DOI: 10.1007/bf00403502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Dijkhuizen L, Timmerman J, Harder W. A pyridine nucleotide-independent membrane-bound formate dehydrogenase inPseudomonas oxalaticusOX1. FEMS Microbiol Lett 1979. [DOI: 10.1111/j.1574-6968.1979.tb04276.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Glund G, Schlee D, Reinbothe H. Citric Acid Cycle during Alkaloid Production in Claviceps purpurea. ACTA ACUST UNITED AC 1979. [DOI: 10.1016/s0015-3796(17)30625-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
van Verseveld HW, Stouthamer AH. Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate. Arch Microbiol 1978; 118:21-6. [PMID: 211973 DOI: 10.1007/bf00406069] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Dijkhuizen L, Knight M, Harder W. Metabolic regulation in Pseudomonas oxalaticus OX1. Autotrophic and heterotrophic growth on mixed substrates. Arch Microbiol 1978; 116:77-83. [PMID: 623498 DOI: 10.1007/bf00408736] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Dijkhuizen L, Groen L, Harder W, Konings WN. Active transport of oxalate by Pseudomonas oxalaticus OX1. Arch Microbiol 1977; 115:223-7. [PMID: 202212 DOI: 10.1007/bf00406378] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane vesicles isolated from oxalate-grown cells of Pseudomonas oxalaticus accumulated oxalate by an inducible transport system in unmodified form against a concentration gradient. This accumulation was dependent on the presence of a suitable electron donor system such as ascorbate-phenazine-methosulphate. In the presence of this energy source, steady state levels of accumulation of oxalate were 10--20-fold higher than in its absence. The oxalate transport system involved showed a high affinity for oxalate (Km = 11 micron) and was highly specific. Oxalate transport was not affected by the presence of other dicarboxylic acids, such as malate, succinate and fumarate and only partly inhibited by acetate. The energy requirement for oxalate transport is discussed and it is concluded that this requirement is most likely equivalent to 1 mole of ATP per mole of oxalate.
Collapse
|