1
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
2
|
Salazar D, Kloke KM, Guerrero RB, Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic disorders. XI. Gastrointestinal symptoms. Mol Genet Metab 2023; 138:107528. [PMID: 36774919 PMCID: PMC10509718 DOI: 10.1016/j.ymgme.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Inherited metabolic disorders presenting with gastrointestinal (GI) symptoms are characterized by the dysfunction of the esophagus, stomach, small and large intestines, and pancreas. We have summarized associations of signs and symptoms in 339 inherited metabolic diseases presenting with GI symptoms. Feeding difficulties represent the most common abnormality reported for IMDs with GI involvement (37%) followed by intestinal problems (30%), vomiting (22%), stomach and pancreas involvement (8% each), and esophagus involvement (4%). This represents the eleventh of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Denise Salazar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States of America.
| | - Karen M Kloke
- Mayo Clinic Laboratories, Rochester, MN, United States of America.
| | | | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
3
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Ali H, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Kanemaru K, Tsuchiya K, Sango K, Tanaka T. Characterization of uptake and metabolism of very long-chain fatty acids in peroxisome-deficient CHO cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159088. [PMID: 34848380 DOI: 10.1016/j.bbalip.2021.159088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
6
|
Kumar P, Nerakh G, Katam P, Pratap Oleti T, Pawar S. A Floppy Infant with Facial Dysmorphism. Neoreviews 2022; 23:e45-e48. [PMID: 34970661 DOI: 10.1542/neo.23-1-e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Praneeth Kumar
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Gayatri Nerakh
- Department of Fetal Medicine and Genetics, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Priyanka Katam
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Tejo Pratap Oleti
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| | - Sunil Pawar
- Department of Neonatology, Fernandez Hospital, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
7
|
Ophthalmic Diagnosis and Novel Management of Infantile Refsum Disease with Combination Docosahexaenoic Acid and Cholic Acid. Case Rep Ophthalmol Med 2021; 2021:1345937. [PMID: 34664020 PMCID: PMC8520494 DOI: 10.1155/2021/1345937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Infantile Refsum disease is a rare peroxisomal biogenesis disorder characterized by impaired alpha-oxidation and accumulation of phytanic acid in the tissues. Patients often present with fundus changes resembling retinitis pigmentosa, developmental delay, sensorineural hearing loss, ataxia, and hepatomegaly. Traditionally, mainstay treatment for this condition has been a phytanic acid-restricted diet, although supplementation with either docosahexaenoic acid or cholic acid has rarely been described in the literature. We present a case of infantile Refsum disease in a child with retinitis pigmentosa-like ocular findings, sensorineural hearing loss, and self-resolving hepatic disease, who developed novel findings of macular edema refractory to carbonic anhydrase inhibitors. We describe management with a phytanic acid-restricted diet and combination docosahexaenoic acid, and cholic acid therapy, which helped to limit progression of her disease.
Collapse
|
8
|
Lu P, Ma L, Sun J, Gong X, Cai C. A Chinese newborn with Zellweger syndrome and compound heterozygous mutations novel in the PEX1 gene: a case report and literature review. Transl Pediatr 2021; 10:446-453. [PMID: 33708531 PMCID: PMC7944177 DOI: 10.21037/tp-20-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we report a male newborn with severe Zellweger spectrum disorder (ZSDs) presenting asphyxia, hypotonia, poor feeding, and dysmorphic facial features. Despite intensive supportive treatment, the boy's condition deteriorated progressively. The patient's diagnosis was made by delayed results after his death. His genetic analysis showed that the boy carried novel compound heterozygous mutation in PEX1 gene (c.2050C > T and c.782_783del). We conducted a literature search and identified 316 patients with ZSD caused by mutations in the PEX1 gene. The p.G843D and p.I700Yfs*42 were the most commonly reported mutations. Among the 316 patients, clinical manifestations were available in 265 patients. The segregation of these patients' manifestation showed that patients with missense PEX1 mutations have a milder phenotype than those with truncating mutations, while the common p.G843D mutations are milder than other missense mutations. Nearly all truncating mutations in PEX1 except for those with premature stop codons near the end of the gene were associated with a severe disease phenotype. These results indicated that all domains of PEX1 were important in the maintenance of normal peroxisome function. The correlation between severity of the disease and type of mutations in PEX1 can be helpful in predicting prognosis among patients with ZSD caused by mutated PEX1.
Collapse
Affiliation(s)
- Pei Lu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Sun
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Daich Varela M, Jani P, Zein WM, D'Souza P, Wolfe L, Chisholm J, Zalewski C, Adams D, Warner BM, Huryn LA, Hufnagel RB. The peroxisomal disorder spectrum and Heimler syndrome: Deep phenotyping and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:618-630. [PMID: 32866347 DOI: 10.1002/ajmg.c.31823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The spectrum of peroxisomal disorders is wide and comprises individuals that die in the first year of life, as well as people with sensorineural hearing loss, retinal dystrophy and amelogenesis imperfecta. In this article, we describe three patients; two diagnosed with Heimler syndrome and a third one with a mild-intermediate phenotype. We arrived at these diagnoses by conducting complete ophthalmic (National Eye Institute), auditory (National Institute of Deafness and Other Communication Disorders), and dental (National Institute of Dental and Craniofacial Research) evaluations, as well as laboratory and genetic testing. Retinal degeneration with macular cystic changes, amelogenesis imperfecta, and sensorineural hearing loss were features shared by the three patients. Patients A and C had pathogenic variants in PEX1 and Patient B, in PEX6. Besides analyzing these cases, we review the literature regarding mild peroxisomal disorders, their pathophysiology, genetics, differential diagnosis, diagnostic methods, and management. We suggest that peroxisomal disorders are considered in every child with sensorineural hearing loss and retinal degeneration. These patients should have a dental evaluation to rule out amelogenesis imperfecta as well as audiologic examination and laboratory testing including peroxisomal biomarkers and genetic testing. Appropriate diagnosis can lead to better genetic counseling and management of the associated comorbidities.
Collapse
Affiliation(s)
- Malena Daich Varela
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Jennifer Chisholm
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - David Adams
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.,Undiagnosed Diseases Program, Common Fund, NIH, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
10
|
Cheillan D. Zellweger Syndrome Disorders: From Severe Neonatal Disease to Atypical Adult Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:71-80. [PMID: 33417208 DOI: 10.1007/978-3-030-60204-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zellweger syndrome disorders (ZSD) is the principal group of peroxisomal disorders characterized by a defect of peroxisome biogenesis due to mutations in one of the 13 PEX genes. The clinical spectrum is very large with a continuum from antenatal forms to adult presentation. Whereas biochemical profile in body fluids is classically used for their diagnosis, the revolution of high-throughput sequencing has extended the knowledge about these disorders. The aim of this review is to offer a large panorama on molecular basis, clinical presentation and treatment of ZSD, and to update the diagnosis strategy of these disorders in the era of next-generation sequencing (NGS).
Collapse
Affiliation(s)
- David Cheillan
- Inserm U1060 - CarMeN Laboratory, Lyon University, Pierre-Bénite, France.
- Service Biochimie et Biologie Moléculaire Grand Est - Centre de Biologie Est, Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
11
|
Tian Y, Zhang L, Li Y, Gao J, Yu H, Guo Y, Jia L. Variant analysis of PEX11B gene from a family with peroxisome biogenesis disorder 14B by whole exome sequencing. Mol Genet Genomic Med 2019; 8. [PMID: 31724321 PMCID: PMC6978261 DOI: 10.1002/mgg3.1042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/30/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxisome biogenesis disorder 14B (PBD14B) is an autosomal recessive peroxisome biogenesis disorder characterized clinically by mild intellectual disability, congenital cataracts, progressive hearing loss, and polyneuropathy peroxisome biogenesis disorders are genetically heterogeneous group of disorders caused by biallelic mutations in peroxin (PEX) genes. METHODOLOGY/LABORATORY EXAMINATION DNA of the family was extracted and sequenced by whole exome sequencing. The results were validated with Sanger sequencing analyzed with Bioinformatics software. RESULTS Sequencing result showed that the patient has carried a homozygous variant of c.277C>T of the PEX11B gene. The patient's brother has carried a homozygous variant of c.277C>T of the PEX11B gene and their variants of c.277C>T of the PEX11B gene were inherited, respectively, from his mother and father. DISCUSSION AND CONCLUSION The homozygous variant of c.277C>T of the PEX11B gene probably underlie the disease in this child and her brother.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinshuang Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Yu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaqing Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liting Jia
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
13
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
14
|
Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015; 10:151. [PMID: 26627182 PMCID: PMC4666198 DOI: 10.1186/s13023-015-0368-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/15/2022] Open
Abstract
Zellweger spectrum disorders (ZSDs) represent the major subgroup within the peroxisomal biogenesis disorders caused by defects in PEX genes. The Zellweger spectrum is a clinical and biochemical continuum which can roughly be divided into three clinical phenotypes. Patients can present in the neonatal period with severe symptoms or later in life during adolescence or adulthood with only minor features. A defect of functional peroxisomes results in several metabolic abnormalities, which in most cases can be detected in blood and urine. There is currently no curative therapy, but supportive care is available. This review focuses on the management of patients with a ZSD and provides recommendations for supportive therapeutic options for all those involved in the care for ZSD patients.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Konkoľová J, Petrovič R, Chandoga J, Halasová E, Jungová P, Böhmer D. A novel mutation in the PEX12 gene causing a peroxisomal biogenesis disorder. Mol Biol Rep 2015; 42:1359-63. [PMID: 26094004 DOI: 10.1007/s11033-015-3885-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022]
Abstract
The peroxisomal biogenesis disorders are autosomal recessive diseases morphologically characterised by lacking peroxisomes, biochemically by generalised deficiency of peroxisomal constituent and clinically manifested by serious health problems. Genes involved in the peroxisomal biogenesis are defined as the PEX genes encoding proteins called the peroxins. These peroxins are required for function in assembly of the peroxisomal membrane or in import of the enzymes into the peroxisomes. In this study we present a full overview of the clinical presentation, biochemical and molecular data of patient with Zellweger syndrome from Slovakia. We investigated biochemical metabolites using gas chromatography/mass spectrometry. The presence of causal ins/del mutations we identified by a Sanger sequencing and RFLP. We reported that the patient was a compound heterozygote for mutations in the gene PEX12: a 2-bp insertion (c.767_768dupAT) and a 2-bp deletion (c.887_888delTC). The first one mentioned is a novel mutation, which has not been reported before. Both mutations create a frameshift of the open reading frame which result a premature STOP codon and generate a complete loss of the C-terminal RING finger domain that is crucial for the correct import of proteins into peroxisomes. We found causal mutations responsible for a severe phenotype, and moreover we noted a novel mutation c.767_768dupAT that has not been reported before. The presence of mutations was studied in all family members, and the resulting data were successfully utilized for prenatal diagnosis.
Collapse
Affiliation(s)
- Jana Konkoľová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine & University Hospital Bratislava, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia,
| | | | | | | | | | | |
Collapse
|
16
|
Garcia-Cazorla À, Mochel F, Lamari F, Saudubray JM. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 2015; 38:19-40. [PMID: 25413954 DOI: 10.1007/s10545-014-9776-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Over one hundred diseases related to inherited defects of complex lipids synthesis and remodeling are now reported. Most of them were described within the last 5 years. New descriptions and phenotypes are expanding rapidly. While the associated clinical phenotype is currently difficult to outline, with only a few patients identified, it appears that all organs and systems may be affected. The main clinical presentations can be divided into (1) Diseases affecting the central and peripheral nervous system. Complex lipid synthesis disorders produce prominent motor manifestations due to upper and/or lower motoneuron degeneration. Motor signs are often complex, associated with other neurological and extra-neurological signs. Three neurological phenotypes, spastic paraparesis, neurodegeneration with brain iron accumulation and peripheral neuropathies, deserve special attention. Many apparently well clinically defined syndromes are not distinct entities, but rather clusters on a continuous spectrum, like for the PNPLA6-associated diseases, extending from Boucher-Neuhauser syndrome via Gordon Holmes syndrome to spastic ataxia and pure hereditary spastic paraplegia; (2) Muscular/cardiac presentations; (3) Skin symptoms mostly represented by syndromic (neurocutaneous) and non syndromic ichthyosis; (4) Retinal dystrophies with syndromic and non syndromic retinitis pigmentosa, Leber congenital amaurosis, cone rod dystrophy, Stargardt disease; (5) Congenital bone dysplasia and segmental overgrowth disorders with congenital lipomatosis; (6) Liver presentations characterized mainly by transient neonatal cholestatic jaundice and non alcoholic liver steatosis with hypertriglyceridemia; and (7) Renal and immune presentations. Lipidomics and molecular functional studies could help to elucidate the mechanism(s) of dominant versus recessive inheritance observed for the same gene in a growing number of these disorders.
Collapse
Affiliation(s)
- Àngels Garcia-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain,
| | | | | | | |
Collapse
|
17
|
Berendse K, Ebberink MS, Ijlst L, Poll-The BT, Wanders RJA, Waterham HR. Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder. Orphanet J Rare Dis 2013; 8:138. [PMID: 24016303 PMCID: PMC3844471 DOI: 10.1186/1750-1172-8-138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/13/2023] Open
Abstract
Background Zellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine. Methods Fibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid. Results Peroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine. Conclusion Arginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorder.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University Hospital of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The peroxisomal disorders represent a group of genetic diseases in man in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are subdivided into three subgroups comprising: (1) the peroxisome biogenesis disorders (PBDs); (2) the single peroxisomal (enzyme-) protein deficiencies; and (3) the single peroxisomal substrate transport deficiencies. The PBD group comprises four different disorders that include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). ZS, NALD, and IRD are clearly distinct from RCDP and are usually referred to as the Zellweger spectrum with ZS being the most severe, and IRD the less severe disorder, with sometimes onset in adulthood. The single peroxisomal enzyme deficiency group comprises seven different disorders, of which D-bifunctional protein and phytanoyl-CoA hydroxylase (adult Refsum disease) deficiencies are the most frequent. The single peroxisomal substrate transport deficiency group consists of only one disease, X-linked adrenoleukodystrophy. It is the purpose of this chapter to describe the current state of knowledge about the clinical, biochemical, cellular, and molecular aspects of peroxisomal diseases, and to provide guidelines for their post- and prenatal diagnosis. Therapeutic interventions are mostly limited to X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Patrick Aubourg
- Department of Pediatric Neurology, INSERM UM745, University Paris-Descartes, Hôpital Bicêtre-Paris Sud, Paris, France.
| | | |
Collapse
|
19
|
Poll-The BT, Gärtner J. Clinical diagnosis, biochemical findings and MRI spectrum of peroxisomal disorders. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1421-9. [DOI: 10.1016/j.bbadis.2012.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 12/26/2022]
|
20
|
Acharya BS, Ritwik P, Velasquez GM, Fenton SJ. Medical-dental findings and management of a child with infantile Refsum disease: a case report. SPECIAL CARE IN DENTISTRY 2012; 32:112-7. [PMID: 22591434 DOI: 10.1111/j.1754-4505.2012.00248.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infantile Refsum disease (IRD) is a peroxisome biogenesis disorder (PBD), and is part of a larger group of diseases called leukodystrophies, which are inherited conditions that damage the white matter of the brain and affect motor movements. Multiple signs and symptoms of IRD begin in infancy and progress through early childhood, including hearing and visual impairment, intellectual and growth impairment, seizures, liver involvement, and orofacial and dental abnormalities. This paper presents a case history of a 12-year-old female patient with IRD who underwent dental rehabilitation in the operating room under general anesthesia and includes a 2-year follow-up. Medical, dental, and management considerations in the care of this child's condition are presented. This paper also discusses the importance of a multidisciplinary approach in the management of children with special needs.
Collapse
Affiliation(s)
- Bhavini S Acharya
- Department of Pediatric Dentistry, University of Texas at Houston, School of Dentistry, Houston, Texas, USA.
| | | | | | | |
Collapse
|
21
|
Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1430-41. [PMID: 22871920 DOI: 10.1016/j.bbadis.2012.04.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs.
Collapse
|
22
|
Abstract
The group of peroxisomal disorders now includes 17 different disorders with Zellweger syndrome as prototype. Thanks to the explosion of new information about the functions and biogenesis of peroxisomes, the metabolic and molecular basis of most of the peroxisomal disorders has been resolved. A review of peroxisomal disorders is provided in this paper.
Collapse
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children's Hospital, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Gootjes J, Schmohl F, Waterham HR, Wanders RJA. Novel mutations in the PEX12 gene of patients with a peroxisome biogenesis disorder. Eur J Hum Genet 2004; 12:115-20. [PMID: 14571262 DOI: 10.1038/sj.ejhg.5201090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS), with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness are common to PBDs. PBD patients belonging to complementation group 3 (CG3) have mutations in the PEX12 gene, which codes for a protein (PEX12) that contains two transmembrane domains, and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of five PBD patients belonging to CG3. Sequence analysis of their PEX12 genes revealed five different mutations, four of which have not been reported before. Four of the patients have mutations that disrupt the translation frame and/or create an early termination codon in the PEX12 open reading frame predicted to result in truncated protein products, lacking at least the COOH-terminal zinc-binding domain. All these patients display the more severe phenotypes (ZS or NALD). The fifth patient expresses two PEX12 alleles capable of encoding a protein that does contain the zinc-binding domain and displayed a milder phenotype (IRD). The three biochemical markers measured in fibroblasts (DHAPAT activity, C26:0 beta-oxidation and pristanic acid beta-oxidation) also correlated with the genotypes. Thus, the genotypes of our CG3 patients show a good correlation with the biochemical and clinical phenotype of the patients.
Collapse
Affiliation(s)
- Jeannette Gootjes
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
24
|
Gootjes J, Schmohl F, Mooijer PAW, Dekker C, Mandel H, Topcu M, Huemer M, Von Schütz M, Marquardt T, Smeitink JA, Waterham HR, Wanders RJA. Identification of the molecular defect in patients with peroxisomal mosaicism using a novel method involving culturing of cells at 40°C: Implications for other inborn errors of metabolism. Hum Mutat 2004; 24:130-9. [PMID: 15241794 DOI: 10.1002/humu.20062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The peroxisome biogenesis disorders (PBDs), which comprise Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD), represent a spectrum of disease severity, with ZS being the most severe, and IRD the least severe disorder. The PBDs are caused by mutations in one of the at least 12 different PEX genes encoding proteins involved in the biogenesis of peroxisomes. We report the biochemical characteristics and molecular basis of a subset of atypical PBD patients. These patients were characterized by abnormal peroxisomal plasma metabolites, but otherwise normal to very mildly abnormal peroxisomal parameters in cultured skin fibroblasts, including a mosaic catalase immunofluorescence pattern in fibroblasts. Since this latter feature made standard complementation analysis impossible, we developed a novel complementation technique in which fibroblasts were cultured at 40 degrees C, which exacerbates the defect in peroxisome biogenesis. Using this method, we were able to assign eight patients to complementation group 3 (CG3), followed by the identification of a single homozygous c.959C>T (p.S320F) mutation in their PEX12 gene. We also investigated various peroxisomal biochemical parameters in fibroblasts at 30 degrees C, 37 degrees C, and 40 degrees C, and found that all parameters showed a temperature-dependent behavior. The principle of culturing cells at elevated temperatures to exacerbate the defect in peroxisome biogenesis, and thereby preventing certain mutations from being missed, may well have a much wider applicability for a range of different inborn errors of metabolism.
Collapse
Affiliation(s)
- Jeannette Gootjes
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gootjes J, Elpeleg O, Eyskens F, Mandel H, Mitanchez D, Shimozawa N, Suzuki Y, Waterham HR, Wanders RJA. Novel mutations in the PEX2 gene of four unrelated patients with a peroxisome biogenesis disorder. Pediatr Res 2004; 55:431-6. [PMID: 14630978 DOI: 10.1203/01.pdr.0000106862.83469.8d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS) with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Common to PBDs are liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness. PBD patients belonging to complementation group 10 (CG10) have mutations in the PEX2 gene (PXMP3), which codes for a protein (PEX2) that contains two transmembrane domains and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of four PBD patients belonging to CG10. Sequence analysis of their PEX2 genes revealed 4 different mutations, 3 of which have not been reported before. Two of the patients had homozygous mutations leading to truncated proteins lacking both transmembrane domains and the zinc-binding domain. These mutations correlated well with their severe phenotypes. The third patient had a homozygous mutation leading to the absence of the zinc-binding domain (W223X) and the fourth patient had a homozygous mutation leading to the change of the second cysteine residue of the zinc-binding domain (C247R). Surprisingly, the patient lacking the domain had a mild phenotype, whereas the C247R patient had a severe phenotype. This might be due to an increased instability of PEX2 due to the R for C substitution or to a dominant negative effect on interacting proteins.
Collapse
Affiliation(s)
- Jeannette Gootjes
- Lab. Genetic Metabolic Diseases (F0-224), Department of Clinical Chemistry and Peadiatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Poll-The BT, Gootjes J, Duran M, De Klerk JBC, Wenniger-Prick LJMDB, Admiraal RJC, Waterham HR, Wanders RJA, Barth PG. Peroxisome biogenesis disorders with prolonged survival: Phenotypic expression in a cohort of 31 patients. ACTA ACUST UNITED AC 2004; 126A:333-8. [PMID: 15098231 DOI: 10.1002/ajmg.a.20664] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The peroxisome biogenesis disorders (PBDs) with generalized peroxisomal dysfunction include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). There is clinical, biochemical, and genetic overlap among the three phenotypes, also known as Zellweger spectrum disorders. Clinical distinctions between the phenotypes are not sharply defined. Only limited sources are available to serve as a background for prognosis in PBD, especially in case of prolonged survival. We delineated the natural history of 31 PBD patients (age 1.2-24 years) through systematic clinical and biochemical investigations. We excluded classical ZS from our study, and included all patients with a biochemically confirmed generalized peroxisomal disorder over 1 year of age, irrespective of the previously diagnosed phenotype. The initial clinical suspicion, age at diagnosis, growth, development, neurological symptoms, organ involvements, and survival are summarized. Common to all patients were cognitive and motor dysfunction, retinopathy, sensorineural hearing impairment, and hepatic involvement. Many patients showed postnatal growth failure, 10 patients displayed hyperoxaluria of whom 4 had renal stones. Motor skills ranged from sitting with support to normal gait. Speech development ranged from non-verbal expression to grammatical speech and comprehensive reading. The neurodevelopmental course was variable with stable course, rapid decline with leukodystrophy, spinocerebellar syndrome, and slow decline over a wide range of faculties as outcome profiles. At the molecular level, 21 patients had mutations in the PEX1 gene. The two most common PEX1 mutations were the G843D (c.2528G-->A) missense and the c.2097insT frameshift mutation. Patients having the G843D/G843D or the G843D/c.2097insT genotypes were compared. Patients homozygous for G843D generally had a better developmental outcome. However, one patient who was homozygous for the "mild" G843D mutation had an early lethal disease, whereas two other patients had a phenotype overlapping with the G843D/c.2097insT group. This indicates that next to the PEX1 genotype other yet unknown factors determine the ultimate phenotype.
Collapse
Affiliation(s)
- Bwee Tien Poll-The
- Department of Pediatrics, Emma Children's Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oettl K, Höfler G, Ness GC, Sattler W, Malle E. An apparent decrease in cholesterol biosynthesis in peroxisomal-defective Chinese hamster ovary cells is related to impaired mitochondrial oxidation. Biochem Biophys Res Commun 2003; 305:957-63. [PMID: 12767923 DOI: 10.1016/s0006-291x(03)00855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent data suggest that impaired mitochondrial activities in Zellweger fibroblasts are related to defective peroxisome biogenesis and vice versa. To investigate the contribution of functional mitochondria to cholesterol biosynthesis, radioactive precursor molecules that form acetyl-CoA via beta-oxidation-independent (pyruvate) or -dependent (palmitate and octanoate) pathways were used. Production of both 14C-labeled cholesterol and 14C-labeled CO(2) from these radioactive tracers was significantly impaired in peroxisomal-defective ZR-82 Chinese hamster ovary cells in comparison to controls. In contrast, cholesterol synthesis from acetate--a tracer directly converted to acetyl-CoA without the involvement of mitochondrial activities--was threefold higher in ZR-82 cells than in controls. Pathways further contributing to cellular cholesterol homeostasis, i.e., receptor-mediated binding of exogenous lipoprotein-associated cholesterol as well as intracellular mobilization of cholesteryl ester deposits were similar in ZR-82 and controls. From these findings, we propose that peroxisomal dysfunction in ZR-82 cells is tightly coupled to impaired mitochondrial activities, e.g., defective mitochondrial beta-oxidation and formation of acetyl-CoA from short chain fatty acids resulting in a decreased rate of CO(2) production, and an apparent decrease in cholesterol biosynthesis. Actually, cholesterol biosynthesis from acetate is increased in the peroxisomal-defective cells. This explains previous conflicting conclusions.
Collapse
Affiliation(s)
- Karl Oettl
- Institute of Medical Biochemistry and Molecular Biology, Karl-Franzens University Graz, Harrachgasse 21, Graz A-8010, Austria
| | | | | | | | | |
Collapse
|
28
|
Gootjes J, Mandel H, Mooijer PAW, Roels F, Waterham HR, Wanders RJA. Resolution of the Molecular Defect in a Patient with Peroxisomal Mosaicism in the Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:107-11. [PMID: 14713221 DOI: 10.1007/978-1-4419-9072-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Jeannette Gootjes
- Laboratory Genetic Metabolic Diseases and the Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
30
|
Abstract
Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes is stressed by the existence of an expanding number of genetic diseases in which there is an impairment of one or more peroxisomal functions. The prototype of this group of diseases is the cerebro-hepato-renal syndrome of Zellweger (ZS), first described as a familial syndrome of multiple congenital defects in 1964. ZS is characterized by the presence of dysmorphias and polymalformative syndrome, severe neurologic abnormalities including neurosensory defects and hepato-intestinal dysfunction with failure to thrive and usually early death. Other peroxisomal disorders share some of these symptoms, but with varying degrees of organ involvement, severity of dysfunction and duration of survival. This paper provides an overview of the peroxisomal disorders including their clinical, biochemical and molecular characteristics with particular emphasis on the clinical presentation in neonates.
Collapse
|
31
|
Hogenboom S, Romeijn GJ, Houten SM, Baes M, Wanders RJ, Waterham HR. Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30191-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Vanhorebeek I, Baes M, Declercq PE. Isoprenoid biosynthesis is not compromised in a Zellweger syndrome mouse model. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:28-36. [PMID: 11420171 DOI: 10.1016/s1388-1981(01)00108-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Because several studies indicated that peroxisomes are important for the biosynthesis of isoprenoids, we wanted to investigate whether a reduced availability of isoprenoids could be one of the pathogenic factors contributing to the severe phenotype of the Pex5(-/-) mouse, a model for Zellweger syndrome. Total cholesterol was determined in plasma, brain and liver of newborn mice. In none of these tissues a significant difference was observed between Pex5(-/-) and wild type or heterozygous mice. The hepatic ubiquinone content was found to be even higher in Pex5(-/-) mice as compared to wild type or heterozygous littermates. To investigate whether the Pex5(-/-) fetuses are able to synthesise their own isoprenoids, fibroblasts derived from these mice were incubated with radiolabeled mevalonolactone as a substrate for isoprenoid synthesis. No significant difference was observed between the cholesterol production rates of Pex5(-/-) and normal fibroblasts. Our results show that there is no deficiency of isoprenoids in newborn Pex5(-/-) mice, excluding the possibility that a lack of these compounds is a determinant factor in the development of the disease state before birth.
Collapse
Affiliation(s)
- I Vanhorebeek
- Laboratory of Clinical Chemistry, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N, Herestraat 49, 3000, Leuven, Belgium
| | | | | |
Collapse
|
33
|
Wei H, Kemp S, McGuinness MC, Moser AB, Smith KD. Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200003)47:3<286::aid-ana3>3.0.co;2-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:89-102. [PMID: 11111079 DOI: 10.1016/s1388-1981(00)00139-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. Recently, it has been demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biogenesis that previously were considered to be cytosolic or located in the endoplasmic reticulum. Peroxisomes have been shown to contain acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase and FPP synthase. Moreover, the activities of these enzymes are also significantly decreased in liver tissue and fibroblast cells obtained from patients with peroxisomal deficiency diseases. In addition, the cholesterol biosynthetic capacity is severely impaired in cultured skin fibroblasts obtained from patients with peroxisomal deficiency diseases. These findings support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis. This paper presents a review of peroxisomal protein targeting and of recent studies demonstrating the localization of cholesterol biosynthetic enzymes in peroxisomes and the identification of peroxisomal targeting signals in these proteins.
Collapse
Affiliation(s)
- L M Olivier
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
35
|
Al-Essa MA, Chaves-Carballo E, Ozand PT. Hyperpipecolic acidemia: clinical, biochemical, and radiologic observations. Pediatr Neurol 1999; 21:826-9. [PMID: 10593675 DOI: 10.1016/s0887-8994(99)00085-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pipecolic acid is a biochemical marker frequently detected in group 1 peroxisomal disorders (peroxisomal biogenesis disorders). Its presence, in addition to the constellation of particular phenotypic manifestations and pathologic findings, has led to its recent classification under disorders of peroxisomal biogenesis as a separate disease entity (hyperpipecolic acidemia or hyperpipecolatemia). The clinical, biochemical, and radiologic findings observed in three patients diagnosed with hyperpipecolic acidemia are reported.
Collapse
Affiliation(s)
- M A Al-Essa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
36
|
Abstract
Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. Much has been learned in recent years about these functions and many of the enzymes involved have been characterized, purified and their cDNAs cloned. This has allowed resolution of the enzymatic and molecular basis of many of the single peroxisomal enzyme deficiencies. Similarly, the molecular basis of the peroxisome biogenesis disorders is also being resolved rapidly thanks to the successful use of CHO as well as yeast mutants. In this paper we will provide an overview of the peroxisomal disorders with particular emphasis on their clinical, biochemical and molecular characteristics.
Collapse
Affiliation(s)
- R J Wanders
- University of Amsterdam, Academic Medical Centre, Dept. Pediatrics, Emma Children's Hospital and Clinical Biochemistry, The Netherlands.
| |
Collapse
|
37
|
DeMar JC, Rundle DR, Wensel TG, Anderson RE. Heterogeneous N-terminal acylation of retinal proteins. Prog Lipid Res 1999; 38:49-90. [PMID: 10396602 DOI: 10.1016/s0163-7827(98)00020-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J C DeMar
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Baumgartner MR, Poll-The BT, Verhoeven NM, Jakobs C, Espeel M, Roels F, Rabier D, Levade T, Rolland MO, Martinez M, Wanders RJ, Saudubray JM. Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Ann Neurol 1998; 44:720-30. [PMID: 9818927 DOI: 10.1002/ana.410440505] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To illustrate the clinical and biochemical heterogeneity of peroxisomal disorders, we report our experience with 27 patients seen personally between 1982 and 1997. Twenty patients presented with a phenotype corresponding either to Zellweger syndrome, neonatal adrenoleukodystrophy, or infantile Refsum disease, 3 of whom had a peroxisomal disorder due to a single enzyme defect. One patient had a mild form of rhizomelic chondrodysplasia punctata, 1 had classic Refsum disease. Finally, 5 patients presented with clinical manifestations that were either unusually mild or completely atypical, and initially did not arouse suspicion of a peroxisomal disorder. They showed multiple defects of peroxisomal functions with one or several functions remaining intact, suggesting a peroxisome biogenesis disorder. The defect in peroxisome biogenesis was further characterized by variable expression in different tissues and/or individual cells in 5 patients. Studies restricted to fibroblasts failed to identify abnormalities in this group. We demonstrate that clinical manifestations of peroxisomal disorders may be very mild or completely atypical, and therefore, peroxisomal disorders should be considered in a variety of clinical settings. Furthermore, we suggest performing extensive peroxisomal investigations in every patient suspected of suffering from a peroxisomal disorder, even when the clinical presentation is typical.
Collapse
Affiliation(s)
- M R Baumgartner
- Department of Pediatrics, Höpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Søvik O, Månsson JE, Bjorke Monsen AL, Jellum E, Berge RK. Generalized peroxisomal disorder in male twins: fatty acid composition of serum lipids and response to n-3 fatty acids. J Inherit Metab Dis 1998; 21:662-70. [PMID: 9762602 DOI: 10.1023/a:1005484617709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Male, identical twins presented with hypotonia, hypoglycaemia, dysmorphic facies, feeding problems, discoloured stools, hepatomegaly, and nephrolithiasis. Elevated blood levels of very long-chain fatty acids and bile acids suggested a peroxisomal disorder. Plasmalogen biosynthesis in cultured fibroblasts was reduced. Morphologically distinct peroxisomes were undetectable in liver. Twin 1 suffered from nephrocalcinosis and severe infection, and died at 18 months of age. Twin 2 was blind and physically severely retarded with epilepsy, but survived up to the age of 5 years. Studies of the fatty acid composition of serum lipids showed barely detectable values of eicosapentaenoic (EPA) and docosahexaenoic acid (DHA). During long-term treatment with these n-3 fatty acids, started at age 10 months, the fatty acid profile of the serum lipids was improved or normalized. Since n-3 fatty acids are essential elements in normal development, notably of the nervous system, we suggest that treatment with EPA and DHA should be started as early as possible in general peroxisomal disorders.
Collapse
Affiliation(s)
- O Søvik
- Department of Pediatrics, Haukeland Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
40
|
Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 1998; 273:15639-45. [PMID: 9624157 DOI: 10.1074/jbc.273.25.15639] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisomal beta-oxidation system consists of four consecutive reactions to preferentially metabolize very long chain fatty acids. The first step of this system, catalyzed by acyl-CoA oxidase (AOX), converts fatty acyl-CoA to 2-trans-enoyl-CoA. Herein, we show that mice deficient in AOX exhibit steatohepatitis, increased hepatic H2O2 levels, and hepatocellular regeneration, leading to a complete reversal of fatty change by 6 to 8 months of age. The liver of AOX-/- mice with regenerated hepatocytes displays profound generalized spontaneous peroxisome proliferation and increased mRNA levels of genes that are regulated by peroxisome proliferator-activated receptor alpha (PPARalpha). Hepatic adenomas and carcinomas develop in AOX-/- mice by 15 months of age due to sustained activation of PPARalpha. These observations implicate acyl-CoA and other putative substrates for AOX, as biological ligands for PPARalpha; thus, a normal AOX gene is indispensable for the physiological regulation of PPARalpha.
Collapse
Affiliation(s)
- C Y Fan
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | |
Collapse
|
41
|
Singh I, Voigt RG, Sheikh FG, Kremser K, Brown FR. Biochemical features of a patient with Zellweger-like syndrome with normal PTS-1 and PTS-2 peroxisomal protein import systems: a new peroxisomal disease. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 61:198-207. [PMID: 9259985 DOI: 10.1006/bmme.1997.2593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The peroxisomal disorders represent a group of inherited metabolic disorders that derive from defects of peroxisomal biogenesis and/or from dysfunction of single or multiple peroxisomal enzymes. We described earlier an 8 1/2 year-old with a history of progressive developmental delay, micronodular cirrhosis, and elevated very long chain fatty acids in plasma and skin fibroblasts. These findings were felt to be compatible with both neonatal adrenoleukodystrophy (nALD) and Zellweger syndrome (ZS). This patient is now 21 years old and his clinical course, inconsistent with either nALD or ZS, led us to examine his peroxisomal status in light of a possible new peroxisomal disease. The normal levels of bile acid precursors found in this patient suggest that peroxisomal beta-oxidation is functional. The activities of dihydroxyacetone phosphate acyltransferase and oxidation of lignoceric acid and phytanic acid were 14, 17, and 15% of the control, respectively. This partial activity for oxidation and the normal levels of bile acid precursors suggests that this patient has peroxisomes containing beta-oxidation enzymes. Western blot analysis of subcellular organelles showed that beta-oxidation enzyme proteins are present at normal levels in catalase-negative peroxisomes of density equivalent to normal peroxisomes. The presence of acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in catalase-negative peroxisomes suggests that both peroxisomal targeting signal-1 (PTS-1), and peroxisomal targeting signal-2 (PTS-2)-mediated protein transport processes into peroxisomes are normal in this patient. These findings of catalase-negative peroxisomes of normal density and normal PTS-1 and PTS-2 import machinery with partial peroxisomal functions clearly demonstrate that this patient differs from those with known disorders of peroxisomal biogenesis.
Collapse
Affiliation(s)
- I Singh
- Pediatrics Department, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- H W Moser
- Kennedy Krieger Institute, Johns Hopkins University Baltimore, Maryland 21205, USA
| | | |
Collapse
|
43
|
Abstract
Thus, the results showing the presence of cholesterol synthetic enzymes in peroxisomes (see references 1, 4, 5, 6, 7, 8, 12, 13, 20, 21, 22, 24, 25, and 26), the reduced levels of cholesterol synthesis enzymes and cholesterol synthetic capacity of cells and tissues lacking peroxisomes, 26, 37, 39 and the low serum cholesterol levels in patients suffering from peroxisomal deficiency diseases40-43 demonstrate that peroxisomes are essential for normal cholesterol synthesis. A number of metabolic pathways require co-participation of enzymes located in both peroxisomes as well as enzymes found in other intracellular compartments. For example, the first steps of plasmalogen synthesis occur in the peroxisomes, while the terminal reactions are completed in the endoplasmic reticulum. Similarly, the oxidation of cholesterol to bile acids requires the participation of enzymes localized in the endoplasmic reticulum as well as peroxisomes. Little is known about the regulation of such pathways or about the shuttling of intermediates between compartments. The physiological importance of peroxisomal enzymes in the regulation of sterol metabolism remains to be clarified.
Collapse
Affiliation(s)
- S K Krisans
- Department of Biology, San Diego State University, California 92182, USA
| |
Collapse
|
44
|
DeMar JC, Wensel TG, Anderson RE. Biosynthesis of the unsaturated 14-carbon fatty acids found on the N termini of photoreceptor-specific proteins. J Biol Chem 1996; 271:5007-16. [PMID: 8617777 DOI: 10.1074/jbc.271.9.5007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the vertebrate retina, a number of proteins involved in signal transduction are known to be N-terminal acylated with the unusual 14 carbon fatty acids 14:1n-9 and 14:2n-6. We have explored possible pathways for producing these fatty acids in the frog retina by incubation in vitro with candidate precursor fatty acids bearing radiolabels, including [3H]14:0, [3H]18:1n-9, [3H]18:2n-6, and [3H]18:3n-3. Rod outer segments were prepared from the radiolabeled retinas for analysis of protein-linked fatty acids, and total lipids were extracted from the remaining retinal pellet. Following saponification of extracted lipids, fatty acid phenacyl esters were prepared and analyzed by high pressure liquid chromatography (HPLC) with detection by continuous scintillation counting. Transducin, whose alpha-subunit (Gt alpha) is known to bear N-terminal acyl chains, was extracted from the rod outer segments and subjected to SDS-polyacrylamide gel electrophoresis and fluorography to detect radiolabeled proteins. Gt alpha was also subjected to methanolysis, and the resulting fatty acyl methyl esters were analyzed by HPLC. The identities of HPLC peaks coinciding with unsaturated species of both phenacyl esters and methyl esters were confirmed by reanalyzing them after catalytic hydrogenation. The results showed that 14:1n-9 can be derived in the retina from 18:1n-9 and 14:2n-6 from 18:2n-6, most likely by two rounds of beta-oxidation, but that neither is produced in detectable amounts from 14:0. Retroconversion of unsaturated 18 carbon fatty acids to the corresponding 14 carbon species showed specificity, in that 18:3n-3 was not converted to 14 carbon fatty acids in detectable amounts. Myristic acid (14:0), 14:1n-9, and 14:2n-6 were all incorporated into Gt alpha. A much less efficient incorporation of 18:1n-9 into Gt alpha was also observed, but no radiolabeling of Gt alpha was observed in retinas incubated with 18:3n-3. Thus, retroconversion by limited beta-oxidation of longer chain unsaturated fatty acids appears to be the most likely metabolic source of the unusual fatty acids found on the N termini of signal transducing proteins in the retina.
Collapse
Affiliation(s)
- J C DeMar
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | |
Collapse
|
45
|
Wanders RJ, Romeijn GJ. Cholesterol biosynthesis in Zellweger syndrome: normal activity of mevalonate kinase, mevalonate-5'-pyrophosphate decarboxylase and IPP-isomerase in patients' fibroblasts but deficient mevalonate kinase activity in liver. J Inherit Metab Dis 1996; 19:193-6. [PMID: 8739963 DOI: 10.1007/bf01799427] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R J Wanders
- Department of Clinical Chemistry, University Hospital Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Moser AB, Rasmussen M, Naidu S, Watkins PA, McGuinness M, Hajra AK, Chen G, Raymond G, Liu A, Gordon D. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr 1995; 127:13-22. [PMID: 7541833 DOI: 10.1016/s0022-3476(95)70250-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To use the technique of complementation analysis to help define genotype and classify patients with clinical manifestations consistent with those of the disorders of peroxisome assembly, namely the Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). STUDY DESIGN Clinical findings, peroxisomal function, and complementation groups were examined in 173 patients with the clinical manifestations of these disorders. RESULTS In 37 patients (21%), peroxisome assembly was intact and isolated deficiencies of one of five peroxisomal enzymes involved in the beta-oxidation of fatty acids or plasmalogen biosynthesis were demonstrated. Ten complementation groups were identified among 93 patients (54%) with impaired peroxisome assembly and one of three phenotypes (ZS, NALD, or IRD) without correlation between complementation group and phenotype. Forty-three patients (25%) had impaired peroxisome assembly associated with the RCDP phenotype and belonged to a single complementation group. Of the 173 patients, 10 had unusually mild clinical manifestations, including survival to the fifth decade or deficits limited to congenital cataracts. CONCLUSIONS At least 16 complementation groups, and hence genotypes, are associated with clinical manifestations of disorders of peroxisome assembly. The range of phenotype is wide, and some patients have mild involvement.
Collapse
Affiliation(s)
- A B Moser
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mandel H, Getsis M, Rosenblat M, Berant M, Aviram M. Reduced cellular cholesterol content in peroxisome-deficient fibroblasts is associated with impaired uptake of the patient's low density lipoprotein and with reduced cholesterol synthesis. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41145-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Poggi-Travert F, Fournier B, Poll-The BT, Saudubray JM. Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 1995; 18 Suppl 1:1-18. [PMID: 9053544 DOI: 10.1007/bf00711425] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
At least 21 genetic disorders have now been found that are linked to peroxisomal dysfunction. Whatever the genetic defect might be, peroxisomal disorders should be considered in various clinical conditions, dependent on the age of onset. The prototype of peroxisomal disorders is represented by 'classical' Zellweger syndrome (ZS) which is the most severe disorder combining all the characteristic symptoms. ZS is characterized by the association of errors of morphogenesis, severe neurological dysfunction, neurosensory defects, regressive changes, hepatodigestive involvement with failure to thrive, usually early death, and absence of recognizable liver peroxisomes. Other peroxisomal disorders (pseudo-Zellweger syndrome, neonatal adrenoleukodystrophy (NALD), pseudo-neonatal adrenoleukodystrophy, rhizomelic chondrodysplasia punctata (RCDP), and hyperpipecolic acidaemia) share some of these symptoms, but with varying organ involvement, severity of dysfunction, and duration of survival. The diagnosis should not cause difficulty when all the characteristic manifestations are present. Depending on the main presenting sign, peroxisomal disorders in neonates should be suspected in two categories of circumstances: polymalformative syndrome with craniofacial dysmorphism, and severe neurological dysfunction. During the first 6 months of life, the predominant symptoms may be hepatomegaly, prolonged jaundice, liver failure, anorexia, vomiting and diarrhoea leading to failure to thrive resembling a malabsorption syndrome; severe psychomotor retardation, hearing loss and ocular abnormalities become evident. Beyond 4 years of age, behavioural changes, intellectual deterioration, visual impairment and gait abnormalities may be the presenting symptoms. Independently of the clinical symptoms and age of onset, most peroxisomal disorders described so far can be clinically screened by recordings of electroretinogram, visual-evoked responses, and brain auditory-evoked responses, which are almost always abnormal. Nine of the 17 peroxisomal disorders with neurological involvement are associated with an accumulation of very long-chain fatty acids (VLCFA), which suggests that assay of plasma VLCFA should be used as a primary test. However, assays of plasma phytanic acid and plasma/urine bile acid intermediates should also be performed in view of the recent reports of atypical chondrodysplasia variants (without rhizomelic shortening) and isolated trihydroxycholestanoic aciduria. The differential diagnoses in various clinical conditions and age periods are discussed.
Collapse
Affiliation(s)
- F Poggi-Travert
- Department of Pediatrics, Hopital des Enfants-Malades, Paris, France
| | | | | | | |
Collapse
|
49
|
Kerckaert I, De Craemer D, Van Limbergen G. Practical guide for morphometry of human peroxisomes on electron micrographs. J Inherit Metab Dis 1995; 18 Suppl 1:172-80. [PMID: 9053550 DOI: 10.1007/bf00711438] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphometry of peroxisomes is performed on electron micrographs of ultrathin sections after staining for catalase activity with diaminobenzidine; specific peroxisomal labelling is preferred to guarantee recognition. Peroxisomal number, size, axial ratio and volume parameters are determined and compared to control values. Results from 19 patients with loss of peroxisomal functions are listed. In many patients alterations in peroxisomal morphometric features are found. A brief guideline for interpreting morphometric data is included. Diagnostically relevant morphometric alterations are summarized.
Collapse
Affiliation(s)
- I Kerckaert
- Department of Anatomy, University of Gent, Belgium
| | | | | |
Collapse
|
50
|
Affiliation(s)
- A J McColl
- Department of Pharmaceutical Sciences, University of Strathclyde, Glasgow, U.K
| | | |
Collapse
|