1
|
Melugin PR, Nolan SO, Kandov E, Ferrara CF, Farahbakhsh ZZ, Siciliano CA. Medial prefrontal dopamine dynamics reflect allocation of selective attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583245. [PMID: 38496533 PMCID: PMC10942305 DOI: 10.1101/2024.03.04.583245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mesocortical dopamine system is comprised of midbrain dopamine neurons that predominantly innervate the medial prefrontal cortex (mPFC) and exert a powerful neuromodulatory influence over this region 1,2 . mPFC dopamine activity is thought to be critical for fundamental neurobiological processes including valence coding and decision-making 3,4 . Despite enduring interest in this pathway, the stimuli and conditions that engage mPFC dopamine release have remained enigmatic due to inherent limitations in conventional methods for dopamine monitoring which have prevented real-time in vivo observation 5 . Here, using a fluorescent dopamine sensor enabling time-resolved recordings of cortical dopamine activity in freely behaving mice, we reveal the coding properties of this system and demonstrate that mPFC dopamine dynamics conform to a selective attention signal. Contrary to the long-standing theory that mPFC dopamine release preferentially encodes aversive and stressful events 6-8 , we observed robust dopamine responses to both appetitive and aversive stimuli which dissipated with increasing familiarity irrespective of stimulus intensity. We found that mPFC dopamine does not evolve as a function of learning but displays striking temporal precedence with second-to-second changes in behavioral engagement, suggesting a role in allocation of attentional resources. Systematic manipulation of attentional demand revealed that quieting of mPFC dopamine signals the allocation of attentional resources towards an expected event which, upon detection triggers a sharp dopamine transient marking the transition from decision-making to action. The proposed role of mPFC dopamine as a selective attention signal is the first model based on direct observation of time-resolved dopamine dynamics and reconciles decades of competing theories.
Collapse
|
2
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
3
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
4
|
Enhanced CRFR1-Dependent Regulation of a Ventral Tegmental Area to Prelimbic Cortex Projection Establishes Susceptibility to Stress-Induced Cocaine Seeking. J Neurosci 2018; 38:10657-10671. [PMID: 30355627 DOI: 10.1523/jneurosci.2080-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
The ability of stress to trigger cocaine seeking in humans and rodents is variable and is determined by the amount and pattern of prior drug use. This study examined the role of a corticotropin releasing factor (CRF)-regulated dopaminergic projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-induced cocaine seeking and its recruitment under self-administration conditions that establish relapse vulnerability. Male rats with a history of daily long-access (LgA; 14 × 6 h/d) but not short-access (ShA; 14 × 2 h/d) self-administration showed robust shock-induced cocaine seeking. This was associated with a heightened shock-induced prelimbic cortex Fos response and activation of cholera toxin b retro-labeled VTA neurons that project to the prelimbic cortex. Chemogenetic inhibition of this pathway using a dual virus intersectional hM4Di DREADD (designer receptor exclusively activated by designer drug) based approach prevented shock-induced cocaine seeking. Both shock-induced reinstatement and the prelimbic cortex Fos response were prevented by bilateral intra-VTA injections of the CRF receptor 1 (CRFR1) antagonist, antalarmin. Moreover, pharmacological disconnection of the CRF-regulated dopaminergic projection to the prelimbic cortex by injection of antalarmin into the VTA in one hemisphere and the D1 receptor antagonist, SCH23390, into the prelimbic cortex of the contralateral hemisphere prevented shock-induced cocaine seeking. Finally, LgA, but not ShA, cocaine self-administration resulted in increased VTA CRFR1 mRNA levels as measured using in situ hybridization. Altogether, these findings suggest that excessive cocaine use may establish susceptibility to stress-induced relapse by recruiting CRF regulation of a stressor-responsive mesocortical dopaminergic pathway.SIGNIFICANCE STATEMENT Understanding the neural pathways and mechanisms through which stress triggers relapse to cocaine use is critical for the development of more effective treatment approaches. Prior work has demonstrated a critical role for the neuropeptide corticotropin releasing factor (CRF) in stress-induced cocaine seeking. Here we provide evidence that stress-induced reinstatement in a rat model of relapse is mediated by a CRF-regulated dopaminergic projection from the ventral tegmental area (VTA) that activates dopamine D1 receptors in the prelimbic cortex. Moreover, we report that this pathway may be recruited as a result of daily cocaine self-administration under conditions of extended drug access/heightened drug intake, likely as a result of increased CRFR1 expression in the VTA, thereby promoting susceptibility to stress-induced cocaine seeking.
Collapse
|
5
|
Park J, Wood J, Bondi C, Del Arco A, Moghaddam B. Anxiety Evokes Hypofrontality and Disrupts Rule-Relevant Encoding by Dorsomedial Prefrontal Cortex Neurons. J Neurosci 2016; 36:3322-35. [PMID: 26985040 PMCID: PMC4792942 DOI: 10.1523/jneurosci.4250-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Anxiety is a debilitating symptom of most psychiatric disorders, including major depression, post-traumatic stress disorder, schizophrenia, and addiction. A detrimental aspect of anxiety is disruption of prefrontal cortex (PFC)-mediated executive functions, such as flexible decision making. Here we sought to understand how anxiety modulates PFC neuronal encoding of flexible shifting between behavioral strategies. We used a clinically substantiated anxiogenic treatment to induce sustained anxiety in rats and recorded from dorsomedial PFC (dmPFC) and orbitofrontal cortex (OFC) neurons while they were freely moving in a home cage and while they performed a PFC-dependent task that required flexible switches between rules in two distinct perceptual dimensions. Anxiety elicited a sustained background "hypofrontality" in dmPFC and OFC by reducing the firing rate of spontaneously active neuronal subpopulations. During task performance, the impact of anxiety was subtle, but, consistent with human data, behavior was selectively impaired when previously correct conditions were presented as conflicting choices. This impairment was associated with reduced recruitment of dmPFC neurons that selectively represented task rules at the time of action. OFC rule representation was not affected by anxiety. These data indicate that a neural substrate of the decision-making deficits in anxiety is diminished dmPFC neuronal encoding of task rules during conflict-related actions. Given the translational relevance of the model used here, the data provide a neuronal encoding mechanism for how anxiety biases decision making when the choice involves overcoming a conflict. They also demonstrate that PFC encoding of actions, as opposed to cues or outcome, is especially vulnerable to anxiety. SIGNIFICANCE STATEMENT A debilitating aspect of anxiety is its impact on decision making and flexible control of behavior. These cognitive constructs depend on proper functioning of the prefrontal cortex (PFC). Understanding how anxiety affects PFC encoding of cognitive events is of great clinical and evolutionary significance. Using a clinically valid experimental model, we find that, under anxiety, decision making may be skewed by salient and conflicting environmental stimuli at the expense of flexible top-down guided choices. We also find that anxiety suppresses spontaneous activity of PFC neurons, and weakens encoding of task rules by dorsomedial PFC neurons. These data provide a neuronal encoding scheme for how anxiety disengages PFC during decision making.
Collapse
Affiliation(s)
- Junchol Park
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jesse Wood
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Corina Bondi
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Alberto Del Arco
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bita Moghaddam
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
6
|
Hermans EJ, Henckens MJ, Joëls M, Fernández G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 2014; 37:304-14. [DOI: 10.1016/j.tins.2014.03.006] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
|
7
|
Ahmadi H, Nasehi M, Rostami P, Zarrindast MR. Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013; 71:112-23. [DOI: 10.1016/j.neuropharm.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/21/2023]
|
8
|
Lawrence AD, Brooks DJ, Whone AL. Ventral striatal dopamine synthesis capacity predicts financial extravagance in Parkinson's disease. Front Psychol 2013; 4:90. [PMID: 23450713 PMCID: PMC3583186 DOI: 10.3389/fpsyg.2013.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
Collapse
|
9
|
Effects of dopamine receptor agonist and antagonists on cholestasis-induced anxiolytic-like behaviors in rats. Eur J Pharmacol 2013; 702:25-31. [DOI: 10.1016/j.ejphar.2013.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 12/20/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
|
10
|
Zarrindast MR, Nasehi M, Pournaghshband M, Ghorbani Yekta B. Dopaminergic system in CA1 modulates MK-801 induced anxiolytic-like responses. Pharmacol Biochem Behav 2012; 103:102-10. [DOI: 10.1016/j.pbb.2012.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/26/2022]
|
11
|
Nasehi M, Mafi F, Oryan S, Nasri S, Zarrindast MR. The effects of dopaminergic drugs in the dorsal hippocampus of mice in the nicotine-induced anxiogenic-like response. Pharmacol Biochem Behav 2011; 98:468-73. [PMID: 21354200 DOI: 10.1016/j.pbb.2011.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 11/28/2022]
Abstract
RATIONALE Nicotine, an active alkaloid of tobacco has an acetylcholine property that alters anxiety-like behaviors in rodents. Moreover, several investigations suggest that the mesolimbic/cortical dopamine systems to be involved in the drugs affecting anxiety. The dopaminergic modulation of acetylcholine synaptic transmission has also been also suggested by different studies. Furthermore, modulation of such behaviors in rodents may be mediated through the dorsal hippocampus. OBJECTIVES In the present study, a possible role of the dorsal hippocampal acetylcholine receptor mechanism in nicotine's influence on anxiogenic-like responses has been investigated. METHODS During test sessions, the hole-board was used to investigate the effects of SCH23390, sulpiride, SKF38393 and quipirole on nicotine response in mice. RESULTS Intraperitoneal (i.p.) administration of nicotine (0.5 mg/kg) decreased the number of head dips but had no effect on other behaviors. Intra-dorsal hippocampal injections of ineffective doses of SCH23390 (SCH; 0.125 and 0.25 μg/mouse) or sulpiride (SUL; 0.5 and 0.75 μg/mouse) reversed head dips induced by nicotine but did not impact other exploratory behaviors. Furthermore, co-administration of ineffective doses of SKF38393 (SKF; 4 μg/mouse, dorsal hippocampus) or quipirole (QUI; 0.5 μg/mouse) in conjunction with an ineffective dose of nicotine (0.25 mg/kg, i.p.) decreased head dips induced by nicotine, but were otherwise ineffective. CONCLUSION These results may indicate a modulatory effect for the dorsal hippocampus dopamine receptors (D₁ and D₂) on an anxiogenic-like response induced by nicotine.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Garmsar Branch, Semnan, Iran
| | | | | | | | | |
Collapse
|
12
|
Diamond A. Biological and social influences on cognitive control processes dependent on prefrontal cortex. PROGRESS IN BRAIN RESEARCH 2011; 189:319-39. [PMID: 21489397 DOI: 10.1016/b978-0-444-53884-0.00032-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cognitive control functions ("executive functions" [EFs] such as attentional control, self-regulation, working memory, and inhibition) that depend on prefrontal cortex (PFC) are critical for success in school and in life. Many children begin school lacking needed EF skills. Disturbances in EFs occur in many mental health disorders, such as ADHD and depression. This chapter addresses modulation of EFs by biology (genes and neurochemistry) and the environment (including school programs) with implications for clinical disorders and for education. Unusual properties of the prefrontal dopamine system contribute to PFC's vulnerability to environmental and genetic variations that have little effect elsewhere. EFs depend on a late-maturing brain region (PFC), yet they can be improved even in infants and preschoolers, without specialists or fancy equipment. Research shows that activities often squeezed out of school curricula (play, physical education, and the arts) rather than detracting from academic achievement help improve EFs and enhance academic outcomes. Such practices may also head off problems before they lead to diagnoses of EF impairments, including ADHD. Many issues are not simply education issues or health issues; they are both.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia and Children’s Hospital, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Diamond A. Consequences of variations in genes that affect dopamine in prefrontal cortex. Cereb Cortex 2007; 17 Suppl 1:i161-70. [PMID: 17725999 PMCID: PMC2238775 DOI: 10.1093/cercor/bhm082] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patricia Goldman-Rakic played a groundbreaking role in investigating the cognitive functions subserved by dorsolateral prefrontal cortex and the key role of dopamine in that. The work discussed here builds on that including: 1) Studies of children predicted to have lower levels of prefrontal dopamine but otherwise basically normal brains (children treated for phenylketonuria [PKU]). Those studies changed medical guidelines, improving the children's lives. 2) Studies of visual impairments (in contrast sensitivity and motion perception) in PKU children due to reduced retinal dopamine and due to excessive phenylalanine during the first postnatal weeks. Those studies, too, changed medical guidelines. 3) Studies of working memory and inhibitory control differences in typically developing children due to differences in catechol-O-methyltransferase (COMT) genotype, which selectively affect prefrontal dopamine levels. 4) Studies of gender differences in the effect of COMT genotype on cognitive performance in older adults. 5) A hypothesis about fundamental differences between attention deficit hyperactivity disorder (ADHD) that includes hyperactivity and ADHD of the inattentive type. Those disorders are hypothesized to differ in the affected neural system, underlying genetics, responsiveness to medication, comorbidities, and cognitive and behavioral profiles. These sound quite disparate but they all grew systematically out the base laid down by Patricia Goldman-Rakic.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia, BC Children's Hospital, Vancouver, Canada.
| |
Collapse
|
14
|
Samson J, Sheela Devi R, Ravindran R, Senthilvelan M. Biogenic amine changes in brain regions and attenuating action of Ocimum sanctumin noise exposure. Pharmacol Biochem Behav 2006; 83:67-75. [PMID: 16427690 DOI: 10.1016/j.pbb.2005.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 12/02/2005] [Accepted: 12/09/2005] [Indexed: 12/16/2022]
Abstract
Broadband white noise exposure (100 dB) in wistar strain male albino rats significantly increased the levels of dopamine (DA), serotonin (5-HT) and 5-HT turnover in many of the discrete brain regions (cerebral cortex, cerebellum, hypothalamus, hippocampus, pons-medulla and corpus striatum) during sub-chronic noise exposure (4 h daily for 15 days). In acute (4 h for 1 day) and chronic noise exposures (4 h daily for 30 days) the levels were significantly altered only in certain regions. The turnover study of serotonin clearly indicates that neurotransmitter level alone cannot be an indicator, as in some brain regions the rate of synthesis matched with the degradation in order to maintain the normal levels. The intraperitoneal administration of 70% ethanolic extract of Ocimum sanctum(OS) at the dosage of 100 mg/kg body weight to animals subjected to noise exposure has prevented the noise induced increase in neurotransmitter levels without affecting the normal levels. This indicates that OS can be a probable herbal remedy for noise induced biogenic amine alterations.
Collapse
Affiliation(s)
- J Samson
- Department of Physiology, ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India.
| | | | | | | |
Collapse
|
15
|
Taysse L, Christin D, Delamanche S, Bellier B, Breton P. Peripheral ChE Inhibition Modulates Brain Monoamines Levels and c-fos Oncogene in Mice Subjected to a Stress Situation. Neurochem Res 2005; 30:391-402. [PMID: 16018584 DOI: 10.1007/s11064-005-2614-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study examined, in mice, whether regional patterns of brain monoamines concentrations (DA, 5-HT and their metabolites) and expression of c-Fos protein, that may represent a prolonged functional change in neurons, could be changed after a combined exposure to stress and the peripheral cholinesterase reversible inhibitor pyridostigmine (PYR). Animals were subjected every day to a random combination of mild unescapable electric footshocks and immobilization over a 12-day period, resulting in a significant increase of glucocorticoids levels and an activation of c-fos in hippocampus, thalamus and piriform cortex. This stress protocol induced a significant increase of 5-HT levels in striatum, hippocampus and ponto mesencephalic area (PMA) but failed to induce any DA activation. When PYR (0.2 mg/kg s.c. inducing 19-35% inhibition of the plasmatic ChE activity) was administered twice a day during the last 5 days of the stress session, 5-HIAA levels and expression of c-fos oncogene were significantly increased in the most of the brain areas studied. DA levels were also enhanced in striatum/hippocampus as a result of a possible activation of mesolimbic and nigrostriatal dopamine systems. Taken together, these results suggest that a combined exposure to certain stress conditions and PYR leads, in mice, to functional changes in neurons and may affect centrally controlled functions. The mechanisms underlying these modifications and their behavioral implications remain to be further investigated.
Collapse
Affiliation(s)
- L Taysse
- Centre études du Bouchet (Defence Research Center), 91710, Vert le Petit, France.
| | | | | | | | | |
Collapse
|
16
|
Ravindran R, Rathinasamy SD, Samson J, Senthilvelan M. Noise-Stress-Induced Brain Neurotransmitter Changes and the Effect of Ocimum sanctum (Linn) Treatment in Albino Rats. J Pharmacol Sci 2005; 98:354-60. [PMID: 16113498 DOI: 10.1254/jphs.fp0050127] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In this modern world, stress and pollution are unavoidable phenomena affecting the body system at various levels. A large number of people are exposed to potentially hazardous noise levels in daily modern life, such as noise from work environments, urban traffic, and household appliances. A variety of studies have suggested an association between noise exposure and the occurrence of disorders involving extra-auditory organs such as disorders of the nervous, endocrine, and cardiovascular systems. In this study, Wistar strain albino rats were subjected to 100 dB broadband white noise, 4 h daily for 15 days. The high-pressure liquid chromatographic estimation of norepinephrine, epinephrine, dopamine, and serotonin in discrete regions of the rat brain indicates that noise stress can alter the brain biogenic amines after 15 days of stress exposure. Ocimum sanctum (OS), a medicinal herb that is widely claimed to posses antistressor activity and used extensively in the Indian system of medicine for a variety of disorders, was chosen for this study. Administration of the 70% ethanolic extract of OS had a normalizing action on discrete regions of brain and controlled the alteration in neurotransmitter levels due to noise stress, emphasizing the antistressor potential of this plant.
Collapse
Affiliation(s)
- Rajan Ravindran
- Department of Physiology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai - 600 113
| | | | | | | |
Collapse
|
17
|
Pomara N, Willoughby LM, Hashim A, Sershen H, Sidtis JJ, Wesnes K, Greenblatt DJ, Lajtha A. Effects of acute lorazepam administration on aminergic activity in normal elderly subjects: relationship to performance effects and apolipoprotein genotype. Neurochem Res 2004; 29:1391-8. [PMID: 15202770 DOI: 10.1023/b:nere.0000026402.09466.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of acute lorazepam challenges on plasma (p) HVA, MHPG, and 5-HIAA, and their relationship to drug-induced cognitive and motor deficits and the apolipoprotein (APOE)-epsilon4 allele were examined. Eighteen healthy elderly (8 epsilon4 carriers) received placebo or acute oral lorazepam doses (0.5 mg or 1 mg) in random sequence, 1-week apart. Cognitive assessment and plasma levels of pHVA, pMHPG, and p5-HIAA were determined at baseline and at 1, 2.5, and 5 h postchallenge. There was no drug-to-placebo difference in monoamine levels and no consistent relationship between changes in monoamine levels and cognitive performance, regardless of epsilon4 status. However, the 1.0 mg dose increased p5-HIAA in epsilon4 carriers, whereas it caused a reduction in noncarriers. Higher baseline pMHPG and p5-HIAA levels were associated with better baseline memory. The epsilon4 allele may modulate the effect of lorazepam on p5-HIAA, but further studies are needed to confirm this finding and elucidate its possible significance.
Collapse
Affiliation(s)
- Nunzio Pomara
- Geriatric Psychiatry Program, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hutson PH, Patel S, Jay MT, Barton CL. Stress-induced increase of cortical dopamine metabolism: attenuation by a tachykinin NK1 receptor antagonist. Eur J Pharmacol 2004; 484:57-64. [PMID: 14729382 DOI: 10.1016/j.ejphar.2003.10.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study examined the potential role of tachykinin NK1 receptors in modulating immobilisation stress-induced increase of dopamine metabolism in rat medial prefrontal cortex. In agreement with previous studies, 20 min immobilisation stress significantly increased medial prefrontal cortex dopamine metabolism as reflected by the concentration of the dopamine metabolite dihydroxyphenylacetic acid (DOPAC). Pretreatment with the high affinity, selective, tachykinin NK1 receptor antagonist (3(S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethyl amino)-2(S)-phenylpiperidine) ((S)-GR205171, 10 mg/kg, s.c.), a dose that in ex vivo binding studies extensively occupied rat brain tachykinin NK1 receptors for approximately 60 min, significantly attenuated the stress-induced increase of mesocortical DOPAC concentration without affecting cortical DOPAC levels per se. In contrast, pretreatment of animals with the less active enantiomer (R)-GR205171 (10 mg/kg, s.c.), which demonstrated negligible tachykinin NK1 receptor occupancy ex vivo, failed to affect either basal or stress-induced DOPAC concentration in medial prefrontal cortex. Furthermore, pretreatment of animals with the benzodiazepine/GABAA receptor antagonist, flumazenil (15 mg/kg, i.p.), did not affect the ability of (S)-GR205171 to attenuate the increase of medial prefrontal cortex DOPAC concentration by acute stress. Results demonstrate that the selective tachykinin NK1 receptor antagonist, (S)-GR205171, attenuated the stress-induced activation of mesocortical dopamine neurones by a mechanism independent of the benzodiazepine modulatory site of the GABAA receptor.
Collapse
Affiliation(s)
- Peter H Hutson
- Merck, Sharp and Dohme, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, CM20 2QR, Essex, UK.
| | | | | | | |
Collapse
|
19
|
Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 2003; 27:33-44. [PMID: 12732221 DOI: 10.1016/s0149-7634(03)00007-1] [Citation(s) in RCA: 834] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Early severe stress and maltreatment produces a cascade of neurobiological events that have the potential to cause enduring changes in brain development. These changes occur on multiple levels, from neurohumoral (especially the hypothalamic-pituitary-adrenal [HPA] axis) to structural and functional. The major structural consequences of early stress include reduced size of the mid-portions of the corpus callosum and attenuated development of the left neocortex, hippocampus, and amygdala. Major functional consequences include increased electrical irritability in limbic structures and reduced functional activity of the cerebellar vermis. There are also gender differences in vulnerability and functional consequences. The neurobiological sequelae of early stress and maltreatment may play a significant role in the emergence of psychiatric disorders during development.
Collapse
Affiliation(s)
- Martin H Teicher
- Department of Psychiatry, Harvard Medical School, and Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Martijena ID, Rodríguez Manzanares PA, Lacerra C, Molina VA. Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse 2002; 45:86-94. [PMID: 12112401 DOI: 10.1002/syn.10085] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GABAergic neurotransmission is thought to play an important role in the modulation of the central response to stress. In the present study we evaluate the influence of a brief restraint exposure on GABA-stimulated chloride influx in diverse brain areas presumed to have a major role in the mediation of emotional behaviors following aversive stimulation. A reduced chloride uptake after stress exposure was only observed in frontal cortex and amygdala. Moreover, rats subjected to such stressor performed an anxiogenic behavior when exposed later to the elevated plus-maze. A comparable behavior in the elevated plus-maze was observed between animals that were allowed to chew during the restraint experience and those without any stressful manipulation, suggesting that chewing served as an efficient coping behavioral strategy during such threatening situations. In order to explore if chewing during the restraint experience could suppress the reduction in GABA-stimulated chloride uptake induced by this stressor, rats were allowed or not to chew during restraint and in both cases GABA-stimulated chloride influx was assayed in frontal cortex and amygdala. The finding of this experiment showed that restrained rats that have the possibility to chew exhibited a similar GABA-stimulated chloride uptake in cortical tissue to that shown by control, unstressed rats. Moreover, chewing in response to restraint attenuated the reduction of GABA-stimulated chloride uptake in amygdala, supporting the notion that chewing is an effective coping response to restraint. These experiments suggest that a reduced GABAergic inhibitory control in these areas could be implicated in the emotional sequelae generated by this uncontrollable stressor and that the suppression of this reduction seems to be associated with the occurrence of coping behavioral response to such fear-inducing stimulus.
Collapse
Affiliation(s)
- I D Martijena
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
21
|
Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am 2002; 25:397-426, vii-viii. [PMID: 12136507 DOI: 10.1016/s0193-953x(01)00003-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe early stress and maltreatment produces a cascade of events that have the potential to alter brain development. The first stage of the cascade involves the stress-induced programming of the glucocorticoid, noradrenergic, and vasopressin-oxytocin stress response systems to augment stress responses. These neurohumors then produce effects on neurogenesis, synaptic overproduction and pruning, and myelination during specific sensitive periods. Major consequences include reduced size of the mid-portions of the corpus callosum; attenuated development of the left neocortex, hippocampus, and amygdala along with abnormal frontotemporal electrical activity; and reduced functional activity of the cerebellar vermis. These alterations, in turn, provide the neurobiological framework through which early abuse increases the risk of developing post-traumatic stress disorder (PTSD), depression, symptoms of attention-deficit/hyperactivity, borderline personality disorder, dissociative identity disorder, and substance abuse.
Collapse
Affiliation(s)
- Martin H Teicher
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Falzone TL, Gelman DM, Young JI, Grandy DK, Low MJ, Rubinstein M. Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur J Neurosci 2002; 15:158-64. [PMID: 11860516 DOI: 10.1046/j.0953-816x.2001.01842.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prefrontal cortex receives a major dopaminergic input from the ventral tegmental area, which plays an important role in the integration of neuronal signals influencing behavioural responses to stressful environmental stimuli. The dopamine D4 receptor (D4R) is expressed at highest levels in the prefrontal cortex and is the predominant D2-like receptor localized in this brain area. To investigate the functional significance of D4Rs in dopamine-mediated responses we have analysed a strain of mice lacking this receptor subtype (Drd4-/-). Wild-type and Drd4-/- mice were challenged in two different approach/avoidance conflict paradigms: the elevated plus maze and the light/dark preference exploration test. By these behavioural measures Drd4-/- mice showed heightened avoidance to the more fear-provoking areas of each maze as demonstrated by reduced exploration of the open arms of the plus maze and longer latencies to explore the illuminated compartment of the light/dark shuttle box. These exaggerated avoidance behaviours were further enhanced by an additional handling stress but completely prevented by anxiolytic agents such as the benzodiazepine midazolam and ethanol. Although Drd4-/- mice displayed heightened anxiety, they exhibited normal ethanol preference and consumption in a two-bottle choice test. Learned fear responses evaluated by contextual, cued and instrumental fear-conditioning tests showed no difference between wild-type and Drd4-/- mice. Taken together these results indicate that the absence of D4Rs increases avoidance behaviour to unconditioned stimuli and does not impair behavioural reactions to Pavlovian fear-conditioning, suggesting that the D4R could play a key role in the dopaminergic modulation of cortical signals triggered by environmental stimuli.
Collapse
Affiliation(s)
- Tomás L Falzone
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Beaufour CC, Le Bihan C, Hamon M, Thiébot M. Extracellular dopamine in the rat prefrontal cortex during reward-, punishment- and novelty-associated behaviour. Effects of diazepam. Pharmacol Biochem Behav 2001; 69:133-42. [PMID: 11420078 DOI: 10.1016/s0091-3057(01)00492-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Variations of extracellular dopamine (DA(ext)) levels in prefrontal cortex were assessed by in vivo microdialysis. In rats trained in an operant fixed interval (FI(30s)) schedule of food delivery, acute exposure to contingent foot shocks resulted in a suppression of responding that was reversed by diazepam (4 mg/kg, ip). No changes in cortical DA(ext) levels occurred during this period in both control and treated rats. By contrast, in control rats, cortical DA(ext) levels increased (+25-40%) during the nonpunished component of the operant session, and during noncontingent food delivery (+25%). Control rats placed into an unfamiliar brightly lit openfield exhibited a marked increase in cortical DA(ext) levels (+100%). This effect occurred neither in rats given diazepam at a dose (2 mg/kg) which stimulated motor activity, nor during a second exposure to the openfield. In conclusion, a benzodiazepine-sensitive activation of mesoprefrontal DA neurones is induced by exposure to novel stressful surroundings and by food availability and consumption. The fact that cortical DA(ext) levels remained unchanged in rats that exerted complete control upon negative stimuli indicates that an activation of the mesoprefrontal DA system is not required for punishment-induced behavioural blockade.
Collapse
Affiliation(s)
- C C Beaufour
- INSERM U. 288, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75634 Cedex 13, Paris, France
| | | | | | | |
Collapse
|
24
|
Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 2001; 100:749-68. [PMID: 11036209 DOI: 10.1016/s0306-4522(00)00336-5] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rearing rats in isolation has been shown to be a relevant paradigm for studying early life stress and understanding the genesis of depression and related affective disorders. Recent studies from our laboratory point to the relevance of studying the social isolation syndrome as a function of home caging conditions. Accordingly, the present series of experiments assessed the contribution of each condition to the expression of the prepulse inhibition of the acoustic startle, food hoarding and spontaneous locomotor activity. In addition, ex vivo neurochemical changes in the brains of isolated and grouped rats reared either in sawdust-lined or in grid-floor cages were determined by measuring dopamine and serotonin as well as their major metabolites in a "psychosis circuit" that includes mainly the hippocampus and selected hippocampal efferent pathways projecting towards the anterior cingulate and infralimbic cortices, nucleus accumbens, dorsolateral caudate nucleus, amygdala and entorhinal cortex. The results of the present study demonstrate that rearing rats in isolation (i) produces a syndrome of generalized locomotor hyperactivity; (ii) increases the startle response; (iii) impairs prepulse inhibition; (iv) tends to increase food hoarding behavior; (v) increases basal dopamine turnover in the amygdaloid complex; (vi) decreases basal dopamine turnover in the infralimbic part of the medial prefrontal cortex; and (vii) decreases basal turnover of serotonin in the nucleus accumbens. In the entorhinal cortex, dopamine neurotransmission seemed to be more sensitive to the caging conditions since a decreased basal turnover of dopamine was observed in grid-reared animals. Plasma corticosterone levels were also increased in grid-reared animals compared with rats reared in sawdust cages. Finally, isolates reared on grids showed a significant positive correlation between plasma corticosterone levels and dopamine in the left nucleus accumbens.Altogether, these results support the contention that there is a link between social isolation, attention deficit, spontaneous locomotor hyperactivity and reduced dopamine turnover in the medial prefrontal cortex. Furthermore, our data demonstrate that rearing rats in grid-floor cages represents a form of chronic mild stress associated with increased corticosterone levels, decreased basal turnover of entorhinal dopamine and increased dopamine activity in the left nucleus accumbens. Finally, a significant and selective decrease in the basal turnover of serotonin in the nucleus accumbens of isolated rats may be linked to the isolation-induced locomotor hyperactivity.
Collapse
Affiliation(s)
- C A Heidbreder
- SmithKline Beecham Pharmaceuticals, Department of Neuroscience, New Frontiers Science Park (North), Building H25, Room 104A, Essex CM19 5AW, Harlow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Several studies have shown that 1 h of immobilisation stress during the rat's active period results in rebound of paradoxical (PS) and slow wave sleep (SWS). Since the effects of stress on behaviour and physiological parameters vary according to the stimulus, the present study sought to examine the activation of the hypothalamic-pituitary-adrenal (HPA) axis and the sleep pattern of rats submitted to 1 h of footshock, immobilisation or cold, or 18 h of PS deprivation (PSD). Stress sessions began between 0900 and 0930 h. Immediately after the end of the stress session, or at the corresponding time for controls, animals were blood sampled for determination of ACTH and corticosterone (CORT) plasma levels. In Experiment 2, animals were implanted with electrodes for basal and post-stress polysomnographic recording (6 h long). The results showed that all stressors produced an activation of the HPA axis; however, footshock induced the largest ACTH levels, whereas cold resulted in the highest CORT levels. In regard to the sleep data, immobilisation and PSD led to a rebound of SWS (+16.87% and +9.37%, respectively) and PS (+42.45% and +55.25%, respectively). Immobilisation, however, induced an increased number of PS episodes, whereas PSD resulted in longer PS episodes. Cold stress produced an exclusive rebound of SWS (+14.23%) and footshock promoted sustained alertness during the animal's resting period (+47.18%). These results indicate that different stimuli altered the sleep pattern in a distinct manner; and these alterations might be related to the state of the HPA axis activation.
Collapse
Affiliation(s)
- B D Palma
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
27
|
Doherty MD, Gratton A. Effects of medial prefrontal cortical injections of GABA receptor agonists and antagonists on the local and nucleus accumbens dopamine responses to stress. Synapse 1999; 32:288-300. [PMID: 10332804 DOI: 10.1002/(sici)1098-2396(19990615)32:4<288::aid-syn5>3.0.co;2-u] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stress stimulates dopamine (DA) release in nucleus accumbens (NAcc) but will do so more strongly in medial prefrontal cortex (PFC). Evidence indicates, however, that the cortical DA response to stress acts to dampen the concurrent increase in NAcc DA release. In the present study, we used voltammetry to investigate the role of PFC GABA in regulating the NAcc DA response to stress. The results of Experiment 1 show that the NAcc stress response is inhibited following bilateral cortical microinjections of baclofen (GABAB receptor agonist). While phaclofen (GABAB receptor antagonist) blocked the effect of baclofen, it had no significant effect of its own. Intra-PFC injections of muscimol (GABAA receptor agonist) and bicuculline (GABAA receptor antagonist) had no effect on the DA stress response in NAcc. In Experiment 2, we explored the possibility that GABA influences the NAcc DA stress response indirectly by modulating stress-induced DA release in PFC. None of the drugs tested had an effect on the PFC stress response at a dose (1 nmol) that produced reliable effects on the NAcc stress response. At an order of magnitude higher dose, however, locally applied phaclofen and muscimol enhanced and attenuated, respectively, the DA stress response in PFC. These results were validated in Experiment 3 by showing that intra-PFC injections of GBR-12395 (DA uptake blocker) and quinpirole (D2/D3 receptor agonist) dose-dependently enhanced and inhibited, respectively, the local DA stress response. Together, these findings indicate that increased GABA transmission in PFC exerts an inhibitory influence on the NAcc DA response to stress, and that this action is mediated primarily but not exclusively by GABAB receptors which may be located both on cortical output neurons and on DA terminals.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | | |
Collapse
|
28
|
Areso MP, Giralt MT, Sainz B, Prieto M, García-Vallejo P, Gómez FM. Occlusal disharmonies modulate central catecholaminergic activity in the rat. J Dent Res 1999; 78:1204-13. [PMID: 10371243 DOI: 10.1177/00220345990780060301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Occlusal disharmonies have classically been thought to be involved in the etiopathogenesis of bruxism, as have, more recently, alterations in central neurotransmission, particularly dopaminergic neurotransmission. However, the connection between these two factors has still not been established. In this study, we assessed the effects of diverse occlusal disharmonies, maintained for either 1 day or 14 days, on neurochemical indices of dopaminergic and noradrenergic activity in the striatum, frontal cortex, and hypothalamus of the rat. The in vivo activity of tyrosine hydroxylase, determined as the accumulation of 3,4-dihydroxyphenylalanine (DOPA), 30 min after the administration of 3-hydroxybenzylhydrazine, a DOPA decarboxylase inhibitor, and dopamine and noradrenaline contents were quantified by high-performance liquid chromatography with electrochemical detection. The wearing of an acrylic cap on both lower incisors for 1 day induced a significant increase in DOPA accumulation in the regions analyzed, with parallel increases in dopamine levels in the hypothalamus and dopamine and noradrenaline in the frontal cortex. After the cap was maintained for 14 days, DOPA accumulation tended to return to control values, except in the left striatum, thereby causing an imbalance between hemispheres. In contrast, 1 or 14 days after the lower left and the upper right incisors were cut, less pronounced changes in catecholaminergic neurotransmission were found in the brain areas studied. Moreover, the cutting of one lower incisor did not modify either DOPA accumulation or dopamine and noradrenaline contents in the striatum or hypothalamus. These results provide experimental evidence of a modulation of central catecholaminergic neurotransmission by occlusal disharmonies, being dependent on the nature of the incisal alteration and on the time during which it was maintained.
Collapse
Affiliation(s)
- M P Areso
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Nielsen DM, Crosley KJ, Keller RW, Glick SD, Carlson JN. Ethanol induced differences in medial prefrontal cortex dopamine asymmetry and in nucleus accumbens dopamine metabolism in left- and right-turning rats. Brain Res 1999; 823:207-12. [PMID: 10095029 DOI: 10.1016/s0006-8993(99)01129-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ethanol (0.5 g/kg i.p.) 15 min prior to sacrifice increased homovanillic acid (HVA) levels in the left medial prefrontal cortex (mPFC) of left-turning rats and in the right mPFC of right-turning rats. In the nucleus accumbens (NAS), ethanol decreased dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and HVA levels in rats that exhibited low levels of locomotor activity but not in rats that exhibited high levels of locomotor activity. This laboratory has previously shown that rats exhibiting differences in turning and locomotor activity behavior display different preferences for ethanol. The present results suggest that ethanol-induced differences in mPFC and NAS DA activity may be related to individual differences in the susceptibility to abuse ethanol.
Collapse
Affiliation(s)
- D M Nielsen
- Department of Pharmacology and Neuroscience, Mail Code 136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
30
|
Enrico P, Bouma M, de Vries JB, Westerink BH. The role of afferents to the ventral tegmental area in the handling stress-induced increase in the release of dopamine in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain. Brain Res 1998; 779:205-13. [PMID: 9473673 DOI: 10.1016/s0006-8993(97)01132-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was aimed to identify the neuronal pathways that mediate the handling stress induced increase in the release of dopamine in the medial prefrontal cortex (mPFC) of the rat brain. For that purpose a microdialysis probe was implanted in the ventral tegmental area (VTA) and a second probe was placed in the ipsilateral mPFC. Receptor specific compounds acting on GABA(A) (20 microM muscimol), GABA(B) (50 microM baclofen), acetylcholine (100 microM atropine, 100 microM mecamylamine), NMDA (30, 100 and 300 microM CPP; 300 microM AP-5, 1 mM (+)-HA-966) and non-NMDA receptors (500 microM CNQX) were infused into the VTA by retrograde dialysis, whereas extracellular dopamine was recorded in the ipsilateral mPFC. Intrategmental infusion of muscimol, baclofen, CPP, AP-5, (+)-HA-966 and CNQX decreased extracellular dopamine in the ipsilateral mPFC; atropine and mecamylamine were without effect on the basal values. During infusion of the various compounds rats were gently handled for 15 min. The infusions of muscimol, atropine, mecamylamine and (+)-HA-966 did not modify the handling stress induced increase in extracellular dopamine in the mPFC. However, during intrategmental infusion of baclofen, CPP, AP-5 and CNQX the handling stress induced increase in extracellular dopamine (expressed as % of controls) in the mPFC was suppressed. These results indicate that a glutamatergic projection to the VTA, acting via both NMDA and non-NMDA-glutamate receptors, play a major role in the handling stress-induced increase in dopamine release in the mPFC. In addition the results suggest a certain role for GABAergic neurones, acting via GABA(B) receptors, in the handling response.
Collapse
Affiliation(s)
- P Enrico
- Institute of Pharmacology, University of Sassari, Italy
| | | | | | | |
Collapse
|
31
|
Petty F, Jordan S, Kramer GL, Zukas PK, Wu J. Benzodiazepine prevention of swim stress-induced sensitization of cortical biogenic amines: an in vivo microdialysis study. Neurochem Res 1997; 22:1101-4. [PMID: 9251099 DOI: 10.1023/a:1027309117349] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vivo microdialysis was used to determine the effect of diazepam, flumazenil and FG-7142 upon the biogenic amine response to acute and repeated swim stress in the medial prefrontal cortex of the rat. Acute swim stress increased norepinephrine levels, although dopamine and serotonin levels remained stable. Upon re-exposure to swim stress twenty-four hours later, sustained increases (200-300% of baseline) in all three biogenic amines were detected. This enhanced response to re-stress was not seen in rats pretreated with either a benzodiazepine: agonist (diazepam, 2 mg/kg), an antagonist (flumazenil, 10 mg/kg), or an inverse agonist (FG-7142, 10 mg/kg) given prior to the first swim stress. Therefore, the sensitization of biogenic amine response to re-stress may be prevented by compounds which differ in their activity at the benzodiazepine receptor.
Collapse
Affiliation(s)
- F Petty
- Veterans Affairs Medical Center, University of Texas Southwestern Medical School, Dallas 75216, USA. PETTY.FREDERICK/DALLAS.VA.GOV
| | | | | | | | | |
Collapse
|
32
|
Teicher MH, Ito Y, Glod CA, Andersen SL, Dumont N, Ackerman E. Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Ann N Y Acad Sci 1997; 821:160-75. [PMID: 9238202 DOI: 10.1111/j.1749-6632.1997.tb48277.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M H Teicher
- Department of Psychiatry, Harvard Medical School, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hutson PH, Barton CL. L-701,324, a glycine/NMDA receptor antagonist, blocks the increase of cortical dopamine metabolism by stress and DMCM. Eur J Pharmacol 1997; 326:127-32. [PMID: 9196264 DOI: 10.1016/s0014-2999(97)85406-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopamine metabolism, as reflected by the concentration of dihydroxyphenylacetic acid (DOPAC), in the medial prefrontal cortex was significantly increased following 30 min immobilisation stress or systemic administration of the benzodiazepine/GABA(A) receptor inverse agonist methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The response to stress was attenuated by pretreatment of rats with the benzodiazepine/GABA(A) receptor agonists diazepam and zolpidem. Furthermore, pretreatment with R-(+)-3-amino-1-hydroxypyrrolid-2-one (R-(+)-HA-966), a low efficacy partial agonist, and 7-chloro-4-hydroxy-3(3-phenoxy) phenylquinolin-2-(H)-one (L-701,324) a novel, high affinity, full antagonist at the glycine/NMDA receptor attenuated the response to both stress and DMCM. These results demonstrate that antagonists at the glycine/NMDA receptor complex are comparable with benzodiazepine/GABA(A) receptor agonists in their ability to prevent activation of the mesocortical dopamine system by stress and GABA(A) receptor inverse agonists. Results are discussed in relation to the interaction between glycine/NMDA receptor antagonists, the mesocorticolimbic dopamine system and stress related disorders.
Collapse
Affiliation(s)
- P H Hutson
- MSD Neuroscience Research Centre, Terlings Park, Harlow, Essex, UK.
| | | |
Collapse
|
34
|
Fricchione G, Bush G, Fozdar M, Francis A, Fink M. Recognition and Treatment of the Catatonic Syndrome. J Intensive Care Med 1997. [DOI: 10.1177/088506669701200304] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We define the catatonic syndrome and review the history of the concept of catatonia, including its recent acceptance as a syndrome. Diagnosis of the catatonic syndrome, with its associated extensive differential diagnoses related to systemic and mental disorders, is addressed. Catatonia is related to variants of the syndrome, such as lethal (malignant) catatonia and the neuroleptic malignant syndrome (NMS). Medical sequelae of these conditions are outlined. The literature on the treatment of the catatonic syndrome is reviewed, and a suggested approach to treatment and management of catatonic patients in the intensive care unit is provided. An hypothesis regarding the neuropathophysiological basis for the syndrome is also offered.
Collapse
Affiliation(s)
- Gregory Fricchione
- From the Department of Medicine, Division of Psychiatry, Brigham and Women's Hospital, Boston, MA
| | - George Bush
- From the Department of Medicine, Division of Psychiatry, Brigham and Women's Hospital, Boston, MA
| | - Manish Fozdar
- From the Department of Medicine, Division of Psychiatry, Brigham and Women's Hospital, Boston, MA
| | - Andrew Francis
- From the Department of Medicine, Division of Psychiatry, Brigham and Women's Hospital, Boston, MA
| | - Max Fink
- From the Department of Medicine, Division of Psychiatry, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
35
|
Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci 1997. [PMID: 9030635 DOI: 10.1523/jneurosci.17-05-01769.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The noncompetitive NMDA receptor antagonist phencyclidine (PCP) has psychotomimetic properties in humans and activates the frontal cortical dopamine innervation in rats, findings that have contributed to a hyperdopaminergic hypothesis of schizophrenia. In the present studies, the effects of the enantiomers of 3-amino-1-hydroxypyrrolid-2-one (HA966) on PCP-induced changes in monoamine metabolism in the forebrain of rats and monkeys were examined, because HA966 has been shown previously to attenuate stress- or drug-induced activation of dopamine systems. In rats, PCP (10 mg/kg, i.p.) potently activated dopamine (DA) turnover in the medial prefrontal cortex (PFC) and nucleus accumbens. Serotonin utilization was also increased in PFC. Pretreatment with either R-(+)HA966 (15 mg/kg, i.p.) or S-(-)HA966 (3 mg/kg, i.p.) partially blocked PCP-induced increases in PFC DA turnover, whereas neither enantiomer altered the effect of PCP on DA turnover in the nucleus accumbens or the PCP-induced increases in serotonin turnover in PFC. PCP (0.3 mg/kg, i.m.) exerted regionally selective effects on the dopaminergic and serotonergic innervation of the monkey frontal cortex, effects blocked by pretreatment with S-(-)HA966 (3 mg/kg, i. m.). Importantly, these data demonstrate that in the primate, PCP has potent effects on dopamine transmission in the frontal cortex, a brain region thought to be dysfunctional in schizophrenia. In addition, a role for S-(-)HA966 as a modulator of cortical monoamine transmission in primates is posited.
Collapse
|
36
|
Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 1996; 20:1594-8. [PMID: 8986209 DOI: 10.1111/j.1530-0277.1996.tb05936.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been hypothesized that ethanol's actions on the dopamine (DA) system may participate in addiction. The purpose of this study was to evaluate the DA system in the brain of alcoholics. We evaluated 10 alcoholics and 17 nonalcoholics using positron emission tomography and [11C]raclopride to measure DA D2 receptors. In addition, in 5 of the alcoholics and 16 of the nonalcoholics, we also measured DA transporters with [11C]d-threo methylphenidate. The ratio of the distribution volumes in striatum to that in cerebellum, which corresponds to Bmax/Kd + 1, was used as model parameter of DA D2 receptor and transporter availability. Dopamine D2 receptor availability (Bmax/Kd) was significantly lower in alcoholics (2.1 +/- 0.5) than in nonalcoholics (2.7 +/- 0.6) (p < 0.05) and was not correlated with days since last alcohol use. Alcoholics showed DA transporter values similar to those in nonalcoholics. The ratio of DA D2 receptor to transporter availability was significantly higher in nonalcoholics (1.4 +/- 0.1) than in alcoholics (1.1 +/- 0.1) (p < 0.005). Alcoholics showed significant reductions in D2 receptors (postsynaptic marker) but not in DA transporter availability (presynaptic marker) when compared with nonalcoholics. Because D2 receptors in striatum are mainly localized in gamma-aminobutyric acid (GABA) cells these results provide evidence of GABAergic involvement in the dopaminergic abnormalities seen in alcoholics.
Collapse
Affiliation(s)
- N D Volkow
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci 1996. [PMID: 8764665 DOI: 10.1523/jneurosci.16-15-04787.1996] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to mild stress is known to activate dopamine (DA), serotonin (5-HT), and norepinephrine (NE) metabolism in the anteromedial prefrontal cortex (m-PFC). Neuroanatomical site(s) providing afferent control of the stress activation of the m-PFC monoaminergic systems is at present unknown. The present study used a conditioned stress model in which rats were trained to fear a substartle-threshold tone paired previously with footshock and assessed for behavioral, neuroendocrine, and neurochemical stress responses. Bilateral NMDA-induced excitotoxic lesioning of the basolateral and central nuclei of the amygdala was performed before or after training. Pretraining amygdala lesions blocked stress-induced freezing behavior, ultrasonic vocalizations, adrenocortical activation, and dopaminergic metabolic activation in the m-PFC. Post-training amygdala lesions blocked stress-induced m-PFC DA, 5-HT, and NE metabolic activation. Post-training amygdala lesions also blocked stress-induced freezing and defecation, and greatly attenuated adrenocortical activation. These data provide evidence of amygdalar control of stress-induced metabolic activation of the monoaminergic systems in the m-PFC, as well as amygdalar integration of behavioral and neuroendocrine components of the rat stress response. These results are discussed in terms of possible relevance to stress-induced exacerbation of schizophrenic symptoms and the pathophysiology of posttraumatic stress disorder.
Collapse
|
38
|
Rodgers RJ, Johnson NJ, Champion AJ, Mills S. Modulation of plus-maze behaviour in mice by the preferential D3-receptor agonist 7-OH-DPAT. Pharmacol Biochem Behav 1996; 54:79-84. [PMID: 8728542 DOI: 10.1016/0091-3057(95)02110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Differences in the behavioural profiles of dopamine D2 receptor antagonists (e.g., haloperidol vs. sulpiride) in a animal models of anxiety have prompted speculation concerning the importance of their relative affinities for D2-like receptor populations. In an initial attempt to investigate the involvement of D3 receptors in anxiety, the present study examined the effects of the preferential D3-receptor agonist, (+/-)7-OH-DPAT (0.01-10.0 mg/kg), on behaviours displayed by male mice in the elevated plus-maze paradigm. An ethological approach incorporating measurement of a range of defensive acts and postures in addition to conventional parameters was used to provide a comprehensive behavioural profile for the compound. Data analysis indicated a significant increase in percentage of open-arm entries at 10 mg/kg and an altered temporal distribution of behaviour at 1-10 mg/kg. Furthermore, risk-assessment measures (stretched attend postures, closed-arm returns) were dose dependently reduced by drug treatment. Although these behavioural changes would be consistent with anxiety reduction, such an interpretation is negated by dose-dependent decreases in all active behaviours (arm entries, rearing, and head-dipping) and by marked increases in entry latencies and nonexploratory behaviour at the highest dose tested. Overall, these effects are remarkably similar to those previously reported for quinpirole, suggesting either that D2 and D3 receptors exert similar behavioural control or that the agents employed are sufficiently potent at D2 receptors to prevent a resolution of D2 and D3 responses.
Collapse
Affiliation(s)
- R J Rodgers
- Department of Psychology, University of Leeds, UK
| | | | | | | |
Collapse
|
39
|
Gil-Martín E, Colado I, Fernández-López A, Fernández-Briera A, Calvo P. Effects of chronic treatment with ethanol and withdrawal on levels of monoamines in rat cerebral cortex and striatum. Influence of midazolam, thiopenthal and somatostatin. Int J Biochem Cell Biol 1995; 27:1267-76. [PMID: 8581823 DOI: 10.1016/1357-2725(95)00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E Gil-Martín
- Department of Biochemistry and Molecular Biology, University of León, Spain
| | | | | | | | | |
Collapse
|
40
|
Agmo A, Galvan A, Heredia A, Morales M. Naloxone blocks the antianxiety but not the motor effects of benzodiazepines and pentobarbital: experimental studies and literature review. Psychopharmacology (Berl) 1995; 120:186-94. [PMID: 7480551 DOI: 10.1007/bf02246192] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of opioid systems in the anticonflict effect of chlordiazepoxide, diazepam and pentobarbital was evaluated with a modified Vogel procedure. First, morphine, ineffective by itself, was combined with subeffective or marginally effective doses of the benzodiazepines in order to detect possible potentiation. However, the combined treatment reduced licking in the Vogel procedure as well as in a licking test where no shock was administered. Several doses of the benzodiazepines and pentobarbital were then administered in combination with several doses of the opiate antagonist naloxone. A dose-dependent inhibition of anticonflict effect was obtained. In an additional experiment, it was shown that naloxone blocked the effects of diazepam in the elevated plus-maze procedure. Motor deficiencies, as evaluated with a rotarod test, produced by the benzodiazepines and pentobarbital could not be antagonized by naloxone. It is concluded that opioids are important for the anticonflict but not for the motor effects of these drugs. An analysis of published studies concerning the interaction of opioids and benzodiazepines in several procedures supposed to reflect anxiolytic effects shows that the inhibition obtained with naloxone is reliable and not procedure specific. The mechanisms by which opiate antagonists produce this inhibition of anticonflict activity are not known. It is tentatively suggested that opioid activation associated with stress may be a necessary component of anxiolysis.
Collapse
Affiliation(s)
- A Agmo
- Laboratoire de Psychophysiologie, Université de Tours, Faculté des Sciences, France
| | | | | | | |
Collapse
|
41
|
Lipton JW, Olsen RW, Ellison GD. Length of continuous cocaine exposure determines the persistence of muscarinic and benzodiazepine receptor alterations. Brain Res 1995; 676:378-85. [PMID: 7614009 DOI: 10.1016/0006-8993(95)00114-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of varied durations of cocaine (1, 3 or 5 days) on muscarinic (MSC) and benzodiazepine (BZD) binding sites in striatum and hippocampus were investigated using homogenate receptor binding. The progressive alterations in these receptor sites from a 5 day cocaine administration were also examined 12 h, 2 days or 21 days after drug exposure. Neither a one nor a three day exposure to cocaine produced any long-term alteration in BZD binding in either structure whereas a 5 day administration produced significant increases in binding. Decreases in MSC receptor binding were apparent in striatum from either a 3 or 5 day cocaine exposure and in hippocampus from a 5 day exposure. The 5 day cocaine exposure produced immediate increases in striatal and hippocampal BZD binding which persisted for 21 days. Conversely, 5 days of cocaine produced a short-term increase in MSC receptor binding in both structures which then became significantly decreased 21 days later. Based on the divergent pattern of changes in BZD and MSC receptor types over time in these structures, it appears that cocaine may induce such changes via separate mechanisms. In addition, it is apparent that changes in the numbers of these receptor sites after cocaine exposure can be quite dynamic, changing rapidly over time.
Collapse
Affiliation(s)
- J W Lipton
- Department of Psychology, University of California, Los Angeles 90024-1563, USA
| | | | | |
Collapse
|
42
|
Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 1995; 64:619-28. [PMID: 7715775 DOI: 10.1016/0306-4522(94)00331-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the effects of diazepam on the stress-induced increase in extracellular dopamine and norepinephrine in the medial prefrontal cortex using in vivo microdialysis. In naive rats, acute tail pressure (30 min) elicited an increase in the concentrations of dopamine and norepinephrine in extracellular fluid of medial prefrontal cortex (+54 and +50%, respectively). Diazepam (2.5 mg/kg, i.p.) decreased the basal concentration of extracellular dopamine and norepinephrine. Diazepam also attenuated the stress-evoked increase in the absolute concentrations of extracellular dopamine (+17%), but did not alter the stress-induced increase in norepinephrine (+41%). However, when the drug-induced decrease in basal dopamine and norepinephrine concentration was taken into account, the stress-induced net increase in dopamine above the new baseline was equivalent to that obtained in vehicle pretreated rats, whereas the net increase in norepinephrine was almost twice that obtained in control subjects. In rats previously exposed to chronic cold (three to four weeks at 5 degrees C), tail pressure again produced an increase in the concentrations of dopamine and norepinephrine in the medial prefrontal cortex (+42% and +92%, respectively). However, in these chronically stressed rats, diazepam no longer decreased basal dopamine or norepinephrine in extracellular fluid, nor did it affect the stress-induced increase in the concentrations of these catecholamines. These data indicate that diazepam has complex effects on the extracellular concentrations of dopamine and norepinephrine which vary depending upon whether the rat is undisturbed or stressed during the period of drug exposure as well as the rat's prior history of exposure to stress. Moreover, these data raise questions regarding the role of catecholamines in the mechanism by which diazepam exerts its anxiolytic properties.
Collapse
Affiliation(s)
- J M Finlay
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
43
|
Rodgers RJ, Nikulina EM, Cole JC. Dopamine D1 and D2 receptor ligands modulate the behaviour of mice in the elevated plus-maze. Pharmacol Biochem Behav 1994; 49:985-95. [PMID: 7886117 DOI: 10.1016/0091-3057(94)90253-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To further our understanding of the potential role of dopamine in mechanisms of anxiety, the effects of four dopamine receptor ligands were examined in an ethological version of the murine elevated plus-maze test. The D1 receptor partial agonist, SKF 38393 (2.5-20.0 mg/kg), had minimal behavioural activity in this test, whereas the selective D1 receptor antagonist, SCH 23390 (0.025-0.2 mg/kg), had dose-dependent but behaviourally nonspecific effects. Quinpirole (0.0625-0.5 mg/kg), a D2 receptor agonist, had no effects at low doses but severely disrupted locomotion and exploration at the highest doses tested. In marked contrast to the lack of effect or nonspecific effects seen with the other ligands tested, the D2 receptor antagonist, sulpiride (2.5-20.0 mg/kg), produced an unambiguous anxiolytic-like profile under present test conditions. Although none of the doses tested adversely affected general activity, clear antianxiety effects were observed on both traditional and novel (i.e., risk assessment) behavioural measures. Data are discussed in relation to the relative importance of D1 and D2 receptor mechanisms in plus-maze anxiety, and the need to further assess D2 involvement through the use of more selective compounds.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Anti-Anxiety Agents/pharmacology
- Anxiety/psychology
- Behavior, Animal/drug effects
- Benzazepines/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Ergolines/pharmacology
- Exploratory Behavior/drug effects
- Male
- Mice
- Mice, Inbred DBA
- Quinpirole
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D2/agonists
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- R J Rodgers
- Department of Psychology, University of Leeds
| | | | | |
Collapse
|
44
|
Matsuguchi N, Ida Y, Shirao I, Tsujimaru S. Blocking effects of ethanol on stress-induced activation of rat mesoprefrontal dopamine neurons. Pharmacol Biochem Behav 1994; 48:297-9. [PMID: 8029301 DOI: 10.1016/0091-3057(94)90530-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated the effects of ethanol on stress-induced activation of the brain dopamine (DA) systems in rats. Ethanol (0.5 and 1.0 g/kg) was injected IP 25 min before sacrifice (5 min before 20-min immobilization stress). Ethanol treatment by itself did not affect the levels of either DA or its major metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the mesoprefrontal cortex, cingulate cortex, olfactory tubercle, or caudate putamen. Immobilization stress for 20 min caused increases in DOPAC levels in the prefrontal cortex (160% of control) and cingulate cortex (135% of control), but not in the olfactory tubercle or caudate putamen. The stress had no effects on DA levels in any of the four brain regions studied. Pretreatment with ethanol blocked, in a dose-dependent manner, the stress-induced increases in DOPAC levels in the mesoprefrontal cortex. The present data suggest that ethanol exhibits a blocking effect on stress-induced activation of the mesoprefrontal DA neurons. This blocking effect may be related to the anxiolytic action of ethanol.
Collapse
Affiliation(s)
- N Matsuguchi
- Department of Neuropsychiatry, Kurume University School of Medicine, Japan
| | | | | | | |
Collapse
|
45
|
Carlson JN, Fitzgerald LW, Keller RW, Glick SD. Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res 1993; 630:178-87. [PMID: 8118684 DOI: 10.1016/0006-8993(93)90655-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to stressors that are not controlled results in a variety of changes in behavior and in brain chemistry. Among these is the activation of dopamine-containing neuronal systems projecting to the medial prefrontal cortex (PFC), to a lesser extent the nucleus accumbens (NAC) and, in a few studies, the striatum. Previous data have shown that stressor evoked PFC activation is asymmetrical. The present experiments were designed to assess the effects of controlled and uncontrolled stressors on these DA systems using the procedures of the learned helplessness (LH) model. In a first experiment, 80 trials of either a controllable (ESC) or identical uncontrollable footshock stressor (YOK) caused an activation, as indicated by increased metabolite concentrations of DA in the PFC, NAC and striatum. In the PFC, YOK caused a bilateral DA depletion, relative to ESC and control animals, and a right > left increase in DOPAC/DA which was not seen in ESC animals. These findings suggested a preferential effect of YOK in the right PFC. A second experiment used rats that had been grouped according to their turning behavior, YOK right-biased rats showed an increase in DOPAC on the right side of the PFC and YOK left-biased rats displayed a similar increase on the left side in response to a brief (5 min) controllable footshock stressor. Since right-turning rats had been shown to be more sensitive to a LH behavioral phenomenon, the data suggested that right PFC activation is responsible for the greater LH sensitivity. A final experiment evaluated the neurochemical and behavioral responses to a prolonged footshock stressor 24 h after uncontrolled footshock. Right-biased YOK animals displayed depressed footshock escape behavior and a right > left depletion in PFC DA and HVA. Across-groups footshock escape performance was correlated with DA and HVA concentrations on the right but not on the left side of the PFC. Thus a disturbance of right PFC DA utilization was again associated with compromised coping behavior. The data suggest that the inability to control a stressor causes a lateralized alteration of PFC DA and this results in a disruption of the ability to respond to a new stressor. These findings indicate that the two sides of the PFC are differentially specialized for responding to a stressor.
Collapse
Affiliation(s)
- J N Carlson
- Department of Pharmacology and Toxicology, Albany Medical College, NY 12208
| | | | | | | |
Collapse
|
46
|
Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M. Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett 1993; 162:81-4. [PMID: 8121642 DOI: 10.1016/0304-3940(93)90565-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of psychological stress on serotonin (5-HT) release were studied in the basolateral amygdaloid nucleus and the prefrontal cortex in conscious rats with in vivo microdialysis. Psychological stress, wherein emotional factors were predominantly involved, significantly increased extracellular 5-HT levels in these two areas. These findings suggest that activation of serotonergic neurons in these brain regions is involved in the emotional and/or cognitive states in animals.
Collapse
Affiliation(s)
- H Kawahara
- Department of Dental Anesthesiology, Kyushu Dental College, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
47
|
Coco ML, Kuhn CM, Ely TD, Kilts CD. Selective activation of mesoamygdaloid dopamine neurons by conditioned stress: attenuation by diazepam. Brain Res 1992; 590:39-47. [PMID: 1422845 DOI: 10.1016/0006-8993(92)91079-t] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Populations of dopamine (DA) neurons in the rat brain are selectively activated by stress, and the response is attenuated by the administration of anxiolytics. Given the role of the component nuclei of the amygdaloid complex in conditioned associations, stress responses and the anxiolytic effects of benzodiazepines, we hypothesized that particular mesoamygdaloid DA projections might be especially sensitive to the effects of conditioned stress and to diazepam (DZ). We mapped the effect of a conditioned stressor on the concentration of the DA metabolite homovanillic acid (HVA) in distinct amygdaloid nuclei and other brain nuclei and areas and the effect of DZ (1 or 3 mg/kg) on the conditioned response in drug-experienced subjects. The conditioned stress paradigm resulted in significant elevations in classical indices of stress, including serum corticosterone and plasma epinephrine. Conditioned stress-induced increases in the estimated activity of DA neurons were specific for DA neurons projecting to the central, basolateral and lateral amygdaloid nuclei, and for DA projections to the dorsal septal nucleus. Conditioned stress-induced increases in the HVA concentration of responsive amygdaloid nuclei were antagonized by low, anxiolytic doses of DZ. These results indicate a role for a subset of mesoamygdaloid DA projections in transducing the impact of perceived stressors on the output of the amygdaloid complex. A role for particular amygdaloid DA projections in the formation of conditioned fear or anticipatory anxiety and its modulation by anxiolytics is also suggested.
Collapse
Affiliation(s)
- M L Coco
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
48
|
Doherty MD, Gratton A. High-speed chronoamperometric measurements of mesolimbic and nigrostriatal dopamine release associated with repeated daily stress. Brain Res 1992; 586:295-302. [PMID: 1325860 DOI: 10.1016/0006-8993(92)91639-v] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of repeated, once daily exposure to either restraint or tail pinch stress on extracellular levels of dopamine in nucleus accumbens and striatum were electrochemically monitored in conscious rats using high-speed chronoamperometry. Acutely, both tail pinch and restraint increased extracellular dopamine levels in both regions. However, the effect of restraint on mesolimbic and, to some extent, also on nigrostriatal dopamine neurotransmission increased progressively with each daily exposure. While increases in extracellular dopamine elicited by tail pinch varied across test days, no reliable daily enhancement of electrochemical responses to this stress were observed in either of the regions studied. Pretreatment with dopamine autoreceptor-specific doses of apomorphine (50 and 100 micrograms/kg s.c.) potently inhibited stress-elicited responses in nucleus accumbens, indicating that dopamine was the primary electroactive species contributing to the electrochemical signal. The results of this study indicate that the magnitude of stress-elicited increases in levels of extracellular dopamine is determined by the number of previous exposures to stress and are consistent with reports of sensitization to the behavioral effects of stress with repeated testing. The study also provides pharmacological data that are consistent with electrophysiological evidence of increased mesolimbic dopamine cell firing during exposure to stress.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montréal, Qué., Canada
| | | |
Collapse
|
49
|
Morinobu S, Kuwayama N, Kawanami T, Okuyama N, Takahashi M, Totsuka S, Endoh M. Influence of the acute stress on agonist-stimulated phosphoinositide hydrolysis in the rat cerebral cortex. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16:561-70. [PMID: 1353631 DOI: 10.1016/0278-5846(92)90061-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1. The present study was carried out in order to elucidate the influence of the acute stress on alpha 1-adrenergic, serotonin-2 (5-HT2) and muscarinic cholinergic (M-Ach) receptors-mediated phosphoinositide (PI) hydrolysis in rat cerebral cortex slices. 2. In rat cerebral cortex slices, noradrenaline (NA), serotonin (5-HT) and carbachol stimulated [3H]inositol-monophosphate (IP1) accumulation in a concentration-dependent manner. 3. The forced swimming test (FST) for 15 min induced a significant reduction of 5-HT-stimulated [3H]IP1 accumulation, but this stress situation did not produce a significant alteration of NA- and carbachol-stimulated [3H]IP1 accumulation. 4. The FST for 15 min did not affect the density and affinity of alpha 1-adrenergic, 5-HT2 and M-Ach receptors. 5. In a mild acute stress situation, the intracellular signal transduction mediated by 5-HT was promptly inhibited as compared to the signal transduction mediated by NA or carbachol. This inhibition may be induced by an acute uncoupling of 5-HT2 receptor-mediated intracellular signal transduction.
Collapse
Affiliation(s)
- S Morinobu
- Department of Neuro-Psychiatry, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- N E Goeders
- Department of Pharmacology, Louisiana State University Medical Center, Shreveport 71130
| |
Collapse
|