1
|
Petroccione MA, Melone M, Rathwell TJ, Dwivedi N, Grienberger C, Conti F, Scimemi A. An unsuspected physiological role for mGluRIII glutamate receptors in hippocampal area CA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646479. [PMID: 40236245 PMCID: PMC11996470 DOI: 10.1101/2025.03.31.646479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Group III metabotropic glutamate receptors (mGluRIII) are expressed broadly throughout the neocortex and hippocampus but are thought to inhibit neurotransmitter release only at a subset of synapses and in a target cell- specific manner. Accordingly, previous slice physiology experiments in hippocampal area CA1 showed that mGluRIII receptors inhibit glutamate and GABA release only at excitatory and inhibitory synapses formed onto GABAergic interneurons, not onto pyramidal cells. Here, we show that the supposed target cell-specific modulation of GABA release only occurs when the extracellular calcium concentration in the recording solution is higher than its physiological concentration in the cerebrospinal fluid. Under more physiological conditions, mGluRIII receptors inhibit GABA release at synapses formed onto both interneurons and pyramidal cells but limit glutamate release only onto interneurons. This previously unrecognized form of mGluRIII-dependent, pre-synaptic modulation of inhibition onto pyramidal cells is accounted for by a reduction in the size of the readily releasable pool, mediated by protein kinase A and its vesicle-associated target proteins, synapsins. Using in vivo whole-cell recordings in behaving mice, we demonstrate that blocking mGluRIII activation in the intact CA1 network results in net effects consistent with decreased inhibition and significantly alters CA1 place cell activity. Together, these findings challenge our current understanding of the role of mGluRIII receptors in the control of synaptic transmission and encoding of spatial information in the hippocampus.
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Pál B. Recording of Age-Related Changes on Murine and Human Brain Slices. Methods Mol Biol 2025; 2857:147-158. [PMID: 39348063 DOI: 10.1007/978-1-0716-4128-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Preparation of brain slices for electrophysiological and imaging experiments has been developed several decades ago, and the method is still widely used due to its simplicity and advantages over other techniques. It can be easily combined with other well established and recently developed methods as immunohistochemistry and morphological analysis or opto- and chemogenetics. Several aspects of this technique are covered by a plethora of excellent and detailed review papers, in which one can gain a deep insight of variations in it. In this chapter, I briefly describe the solutions, equipment, and preparation techniques routinely used in our laboratory. I also aim to present how certain "old school" brain slice lab devices can be made in a cost-efficient way. These devices can be easily adapted for the special needs of the experiments. I also aim to present some differences in the preparatory techniques of acutely isolated human brain tissue.
Collapse
Affiliation(s)
- Balázs Pál
- Faculty of Medicine, Department of Physiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Hanuska A, Ribiczey P, Kató E, Papp ZT, Varga ZV, Giricz Z, Tóth ZE, Könczöl K, Zsembery Á, Zelles T, Harsing LG, Köles L. Potentiation of NMDA Receptors by AT1 Angiotensin Receptor Activation in Layer V Pyramidal Neurons of the Rat Prefrontal Cortex. Int J Mol Sci 2024; 25:12644. [PMID: 39684355 DOI: 10.3390/ijms252312644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
NMDA receptors in the prefrontal cortex (PFC) play a crucial role in cognitive functions. Previous research has indicated that angiotensin II (Ang II) affects learning and memory. This study aimed to examine how Ang II impacts NMDA receptor activity in layer V pyramidal cells of the rat PFC. Whole-cell patch-clamp experiments were performed in pyramidal cells in brain slices of 9-12-day-old rats. NMDA (30 μM) induced inward currents. Ang II (0.001-1 µM) significantly enhanced NMDA currents in about 40% of pyramidal cells. This enhancement was reversed by the AT1 antagonist eprosartan (1 µM), but not by the AT2 receptor antagonist PD 123319 (5 μM). When pyramidal neurons were synaptically isolated, the increase in NMDA currents due to Ang II was eliminated. Additionally, the dopamine D1 receptor antagonist SCH 23390 (10 μM) reversed the Ang II-induced enhancement, whereas the D2 receptor antagonist sulpiride (20 μM) had no effect. The potentiation of NMDA currents in a subpopulation of layer V pyramidal neurons by Ang II, involving AT1 receptor activation and dopaminergic signaling, may serve as an underlying mechanism for the effects of the renin-angiotensin system (RAS) elements on neuronal functions.
Collapse
Affiliation(s)
- Adrienn Hanuska
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Zsuzsanna E Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
5
|
Dorst M, Vervaeke K. A low-cost perfusion heating system for slice electrophysiology. Sci Rep 2024; 14:28521. [PMID: 39557993 PMCID: PMC11574319 DOI: 10.1038/s41598-024-79856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Temperature-critical applications, such as patch-clamp electrophysiology, require constant perfusion at a fixed temperature. However, maintaining perfusate at a specific temperature throughout various applications requires heaters or coolers with integrated feedback systems, which has historically increased complexity and cost. This makes such systems prohibitively expensive in research environments with lower funding rates, particularly in developing countries. We developed a custom temperature control system that relies on off-the-shelf components and few custom parts, which can be easily produced with common tools. Our system can be built for less than $30 and maintains a set perfusate temperature within 0.4 °C while introducing negligible electrical interference. Using this system, we demonstrate that Striatal Medium Spiny Neurons exhibit increased membrane resistance, longer membrane time constants, lower firing rates, and increased rheobase current at room temperature compared to physiological temperature.
Collapse
Affiliation(s)
- Matthijs Dorst
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
- Department of Neurscience, Karolinska Institutet, Solna, Sweden.
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Zhu F, Shi Q, Jiang YH, Zhang YQ, Zhao H. Impaired synaptic function and hyperexcitability of the pyramidal neurons in the prefrontal cortex of autism-associated Shank3 mutant dogs. Mol Autism 2024; 15:9. [PMID: 38297387 PMCID: PMC10829216 DOI: 10.1186/s13229-024-00587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND SHANK3 gene is a highly replicated causative gene for autism spectrum disorder and has been well characterized in multiple Shank3 mutant rodent models. When compared to rodents, domestic dogs are excellent animal models in which to study social cognition as they closely interact with humans and exhibit similar social behaviors. Using CRISPR/Cas9 editing, we recently generated a dog model carrying Shank3 mutations, which displayed a spectrum of autism-like behaviors, such as social impairment and heightened anxiety. However, the neural mechanism underlying these abnormal behaviors remains to be identified. METHODS We used Shank3 mutant dog models to examine possible relationships between Shank3 mutations and neuronal dysfunction. We studied electrophysiological properties and the synaptic transmission of pyramidal neurons from acute brain slices of the prefrontal cortex (PFC). We also examined dendrite elaboration and dendritic spine morphology in the PFC using biocytin staining and Golgi staining. We analyzed the postsynaptic density using electron microscopy. RESULTS We established a protocol for the electrophysiological recording of canine brain slices and revealed that excitatory synaptic transmission onto PFC layer 2/3 pyramidal neurons in Shank3 heterozygote dogs was impaired, and this was accompanied by reduced dendrite complexity and spine density when compared to wild-type dogs. Postsynaptic density structures were also impaired in Shank3 mutants; however, pyramidal neurons exhibited hyperexcitability. LIMITATIONS Causal links between impaired PFC pyramidal neuron function and behavioral alterations remain unclear. Further experiments such as manipulating PFC neuronal activity or restoring synaptic transmission in Shank3 mutant dogs are required to assess PFC roles in altered social behaviors. CONCLUSIONS Our study demonstrated the feasibility of using canine brain slices as a model system to study neuronal circuitry and disease. Shank3 haploinsufficiency causes morphological and functional abnormalities in PFC pyramidal neurons, supporting the notion that Shank3 mutant dogs are new and valid animal models for autism research.
Collapse
Affiliation(s)
- Feipeng Zhu
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Shi
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Hui Jiang
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yong Q Zhang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Sciences, Hubei University, Wuhan, 430415, China.
| | - Hui Zhao
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Kawatani M, Yamashita T. In Vivo Whole-Cell Recording from the Mouse Brain. Methods Mol Biol 2024; 2794:245-257. [PMID: 38630234 DOI: 10.1007/978-1-0716-3810-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Measuring the membrane potential dynamics of neurons offers a comprehensive understanding of the molecular and cellular mechanisms that form their spiking activity, thus playing a crucial role in unraveling the mechanistic processes governing brain function. Techniques for intracellular recordings of membrane potentials pioneered in the 1940s have witnessed significant advancements since their inception. Among these, whole-cell patch-clamp recording has emerged as a leading method for measuring neuronal membrane potentials due to its high stability and broad applicability ranging from cultured cells to brain slices and even behaving animals. This chapter provides a detailed protocol to acquire stable whole-cell recordings from neurons in the cerebral cortex of awake, head-restrained mice. Significant enhancements to our protocol include implanting a metal head-post using adhesive resin cement and preparing a recording pipette with a long shank for targeting deeper brain regions. This protocol, once implemented, enables whole-cell recordings up to 2.5 mM beneath the cortical surface.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
8
|
Nomura T. In Vitro Patch-Clamp. Methods Mol Biol 2024; 2794:221-244. [PMID: 38630233 DOI: 10.1007/978-1-0716-3810-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The patch-clamp technique is one of the most useful tools to analyze the function of electrically active cells such as neurons. This technique allows for the analysis of proteins (ion channels and receptors), cells (neurons), and synapses that are the building blocks of neuronal networks. Cortical development involves coordinated changes in functional measures at each of these levels of analysis that reflect both cellular and circuit maturation. This chapter explains the technical and theoretical basis of patch-clamp methodology and introduces several examples of how this technique can be applied in the context of cortical development.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Sakmann B, Stahnisch FW. Neuroscience history interview with Professor Bert Sakmann, Nobel Laureate in Physiology or Medicine (1991), Max Planck Society, Germany. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2023; 32:198-217. [PMID: 34129431 DOI: 10.1080/0964704x.2021.1898903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dr. Bert Sakmann (b. 1942) studied at the Universities of Tuebingen, Freiburg, Berlin, Paris, and Munich, graduating in 1967. Much of his professional life has been spent in various institutes of the Max Planck Society. In 1971, a British Council Fellowship took him to the Department of Biophysics of University College London to work with Bernard Katz (1911-2003). In 1974, he obtained his Ph.D. from the University of Goettingen and, with Erwin Neher (b. 1944) at the Max Planck Institute for Biophysical Chemistry, began work that would transform cellular biology and neuroscience, resulting in the 1991 Nobel Prize for Physiology or Medicine. In 2008, Dr. Sakmann returned to Munich, where he headed the research group "Cortical Columns in Silico" at the Max Planck Institute of Neurobiology in Martinsried. Here, their group discovered the cell-type specific sensory activation patterns in different layers of a column in the vibrissal area of rodents' somatosensory cortices.
Collapse
Affiliation(s)
- Bert Sakmann
- Emeritus Research Group, Max Planck Institute for Neurobiology, Martinsried, Germany
| | - Frank W Stahnisch
- Departments of Community Health Sciences and History, The University of Calgary, Calgary, Alberta, Canada
- Research Program on the History of the Max Planck Society, Max Planck Institute for the History of Science, Berlin, Germany
| |
Collapse
|
11
|
Wässle H, Topp S. The neurosciences at the Max Planck Institute for Biophysical Chemistry in Göttingen. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2023; 32:173-197. [PMID: 35180028 DOI: 10.1080/0964704x.2021.2021704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Max Planck Institute (MPI) for Biophysical Chemistry (Karl-Friedrich Bonhoeffer Institute) was founded in 1971 in Göttingen. Two of the 11 departments at the institute had a neuroscientific focus. Otto D. Creutzfeldt (1927-1992) and Victor P. Whittaker (1919-2016) were directors of the Neurobiological and Neurochemical Departments, respectively. Creutzfeldt's department researched the structure and function of the cerebral cortex, and Whittaker's department concentrated on the biochemical analysis of synapses and synaptic vesicles. Creutzfeldt and Whittaker were already internationally respected scientists when they were appointed to Göttingen. The next generation of departmental directors, Erwin Neher and Bert Sakmann, were "home-grown" researchers from the institute and, during their time as junior group leaders, they developed the so-called patch clamp technique, with which they were able to measure single ion channels in nerve cells. This technique revolutionized neurophysiology, and Neher and Sakmann were awarded the 1991 Nobel Prize in Physiology or Medicine for their work in this area. Neher was appointed director of the Membrane Biophysics Department in 1983 and, since then, his department has mainly examined the role of Ca2+ in the release of neurotransmitters at synapses and in the secretion of catecholamines from chromaffin cells. From 1985, Sakmann was director of the Cell Physiology Department, and his laboratory concentrated on the molecular and physiological characterization of transmitter receptors in postsynaptic membranes. In 1989, he was appointed to the MPI for Medical Research in Heidelberg. Reinhard Jahn became director of the Neurobiology Department in 1997, researching the molecular mechanisms of the release of neurotransmitters from the presynaptic terminals, and he discovered several proteins associated with the synaptic vesicles. With their work, Neher, Sakmann, and Jahn have made the MPI for Biophysical Chemistry one of the world's leading research centers for the transmission of signals at synapses.
Collapse
Affiliation(s)
- Heinz Wässle
- Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | - Sascha Topp
- Max Planck Institute of the History of Science, Berlin, Germany
| |
Collapse
|
12
|
Kharod SC, Monday HR, Yoon YJ, Castillo PE. Protocol to study presynaptic protein synthesis in ex vivo mouse hippocampal slices using HaloTag technology. STAR Protoc 2023; 4:101986. [PMID: 36853723 PMCID: PMC9871327 DOI: 10.1016/j.xpro.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Presynaptic boutons in the mammalian brain are typically small and difficult to manipulate and study. Here, we present a protocol applying HaloTag self-labeling technology to detect de novo local protein synthesis in intact presynaptic mossy fiber boutons from acute mouse hippocampal slices. We describe stereotaxic injection of HaloTag-expressing virus into the brain region of interest, followed by brain slice preparation. We then detail the labeling of HaloTag-fused protein and image acquisition to visualize the labeled protein in an intact circuit. For complete details on the use and execution of this protocol, please refer to Monday et al. (2022).1.
Collapse
Affiliation(s)
- Shivani C Kharod
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Young J Yoon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| |
Collapse
|
13
|
The laterodorsal tegmentum-ventral tegmental area circuit controls depression-like behaviors by activating ErbB4 in DA neurons. Mol Psychiatry 2023; 28:1027-1045. [PMID: 33990773 PMCID: PMC8590712 DOI: 10.1038/s41380-021-01137-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.
Collapse
|
14
|
Motori E, Giavalisco P. 13C Isotope Labeling and Mass Spectrometric Isotope Enrichment Analysis in Acute Brain Slices. Methods Mol Biol 2023; 2675:181-194. [PMID: 37258764 DOI: 10.1007/978-1-0716-3247-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Feeding of stable 13C-labeled compounds coupled to mass spectrometric analysis has enabled the characterization of dynamic metabolite partitioning in various experimental conditions. This information is particularly relevant for the study and functional understanding of brain metabolic heterogeneity. We here describe a protocol for the analysis of metabolic enrichment analysis upon feeding of murine acute cerebellar slices with 13C-labeled substrates.
Collapse
Affiliation(s)
- Elisa Motori
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | | |
Collapse
|
15
|
Pavón Arocas O, Branco T. Preparation of acute midbrain slices containing the superior colliculus and periaqueductal Gray for patch-clamp recordings. PLoS One 2022; 17:e0271832. [PMID: 35951507 PMCID: PMC9371254 DOI: 10.1371/journal.pone.0271832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
This protocol is a practical guide for preparing acute coronal slices from the midbrain of young adult mice for electrophysiology experiments. It describes two different sets of solutions with their respective incubation strategies and two alternative procedures for brain extraction: decapitation under terminal isoflurane anaesthesia and intracardial perfusion with artificial cerebrospinal fluid under terminal isoflurane anaesthesia. Slices can be prepared from wild-type mice as well as from mice that have been genetically modified or transfected with viral constructs to label subsets of cells. The preparation can be used to investigate the electrophysiological properties of midbrain neurons in combination with pharmacology, opto- and chemogenetic manipulations, and calcium imaging; which can be followed by morphological reconstruction, immunohistochemistry, or single-cell transcriptomics. The protocol also provides a detailed list of materials and reagents including the design for a low-cost and easy to assemble 3D printed slice recovery chamber, general advice for troubleshooting common issues leading to suboptimal slice quality, and some suggestions to ensure good maintenance of a patch-clamp rig.
Collapse
Affiliation(s)
- Oriol Pavón Arocas
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| |
Collapse
|
16
|
Wyllie DJA, Bowie D. Ionotropic glutamate receptors: structure, function and dysfunction. J Physiol 2022; 600:175-179. [PMID: 35028955 DOI: 10.1113/jp282389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Patch Clamp: The First Four Decades of a Technique That Revolutionized Electrophysiology and Beyond. Rev Physiol Biochem Pharmacol 2022; 186:1-28. [PMID: 35471741 DOI: 10.1007/112_2022_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forty years ago, the introduction of a new electrophysiological technique, the patch clamp, revolutionized the fields of Cellular Physiology and Biophysics, providing for the first time the possibility of describing the behavior of a single protein, an ion-permeable channel of the cell plasma membrane, in its physiological environment. The new approach was actually much more potent and versatile than initially envisaged, and it has evolved into several different modalities that have radically changed our knowledge of how cells (not only the classical "electrically excitable "ones, such as nerves and muscles) use electrical signaling to modulate and organize their activity. This review aims at telling the history of the background from which the new technique evolved and at analyzing some of its more recent developments.
Collapse
|
18
|
Abstract
Motoneurons are the 'final common path' between the central nervous system (that intends, selects, commands, and organises movement) and muscles (that produce the behaviour). Motoneurons are not passive relays, but rather integrate synaptic activity to appropriately tune output (spike trains) and therefore the production of muscle force. In this chapter, we focus on studies of mammalian motoneurons, describing their heterogeneity whilst providing a brief historical account of motoneuron recording techniques. Next, we describe adult motoneurons in terms of their passive, transition, and active (repetitive firing) properties. We then discuss modulation of these properties by somatic (C-boutons) and dendritic (persistent inward currents) mechanisms. Finally, we briefly describe select studies of human motor unit physiology and relate them to findings from animal preparations discussed earlier in the chapter. This interphyletic approach to the study of motoneuron physiology is crucial to progress understanding of how these diverse neurons translate intention into behaviour.
Collapse
|
19
|
Abstract
Glutamatergic neurotransmission is a widespread form of synaptic excitation in the mammalian brain. The development of genetically encoded fluorescent glutamate sensors allows monitoring synaptic signaling in living brain tissue in real time. Here, we describe single- and two-photon imaging of synaptically evoked glutamatergic population signals in acute hippocampal slices expressing the fluorescent glutamate sensor SF-iGluSnFR.A184S in CA1 or CA3 pyramidal neurons. The protocol can be readily used to study defective synaptic glutamate signaling in mouse models of neuropsychiatric disorders, such as Alzheimer disease. For complete details on the use and execution of this protocol, please refer to Zott et al. (2019).
Collapse
|
20
|
Hagiwara H, Sakimura K, Abe M, Itoi K, Kamiya Y, Akema T, Funabashi T. Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice. Brain Res 2021; 1773:147688. [PMID: 34644526 DOI: 10.1016/j.brainres.2021.147688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023]
Abstract
We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5-15 min after formalin injection) but not during the later phase (phase 2, 15-60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0-5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 950-8510, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan.
| |
Collapse
|
21
|
Shivashankar G, Lim JC, Acosta ML. Glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase inhibition in the presence of pro-inflammatory cytokines contribute to the metabolic imbalance of diabetic retinopathy. Exp Eye Res 2021; 213:108845. [PMID: 34800480 DOI: 10.1016/j.exer.2021.108845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage. The two most commonly affected metabolic pathways in diabetic conditions are glycolysis and the glutamate pathway. We investigated the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutamine synthetase (GS) in an in-vitro model of DR incorporating high glucose and pro-inflammatory cytokines. We found that GAPDH and GS enzyme activity were not significantly affected in hyperglycemic conditions or after exposure to cytokines alone, but were significantly decreased in the DR model. This confirmed that pro-inflammatory cytokines IL-1β and TNFα enhance the hyperglycemic metabolic deficit. We further investigated metabolite and amino acid levels after specific pharmacological inhibition of GAPDH or GS in the absence/presence of pro-inflammatory cytokines. The results indicate that GAPDH inhibition increased glucose and addition of cytokines increased lactate and ATP levels and reduced glutamate levels. GS inhibition did not alter retinal metabolite levels but the addition of cytokines increased ATP levels and caused glutamate accumulation in Müller cells. We conclude that it is the action of pro-inflammatory cytokines concomitantly with the inhibition of the glycolytic or GS mediated glutamate recycling that contribute to metabolic dysregulation in DR. Therefore, in the absence of good glycemic control, therapeutic interventions aimed at regulating inflammation may prevent the onset of early metabolic imbalance in DR.
Collapse
Affiliation(s)
- Gaganashree Shivashankar
- School of Optometry and Vision Science and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Julie C Lim
- Department of Physiology, School of Medical and Health Sciences and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science and the New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Vandael D, Okamoto Y, Borges-Merjane C, Vargas-Barroso V, Suter BA, Jonas P. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nat Protoc 2021; 16:2947-2967. [PMID: 33990799 DOI: 10.1038/s41596-021-00526-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre-postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.
Collapse
Affiliation(s)
- David Vandael
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Yuji Okamoto
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Benjamin A Suter
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.
| |
Collapse
|
23
|
Mousa MH, Elbasiouny SM. Estimating the effects of slicing on the electrophysiological properties of spinal motoneurons under normal and disease conditions. J Neurophysiol 2021; 125:1450-1467. [PMID: 33689515 PMCID: PMC8282222 DOI: 10.1152/jn.00543.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Although slice recordings from spinal motoneurons (MNs) are being widely used, the effects of slicing on the measured MN electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal wild-type (WT) and superoxide dismutase-1 (SOD) cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation to estimate the error induced in measured MN electrical properties from spinal slices. Our results show that most MN electrical properties are not adversely affected by slicing, except for cell time constant, cell capacitance, and Ca2+ persistent inward current (PIC), which all exhibited large errors, regardless of the slice condition. Among the examined factors, soma position within the slice appears to be the strongest factor in influencing the magnitude of error in measured MN electrical properties. Transverse slices appear to have the least impact on measured MN electrical properties. Surprisingly, and despite their anatomical enlargement, we found that G85R-SOD MNs experience similar error in their measured electrical properties to those of WT MNs, but their errors are more sensitive to the soma position within the slice than WT MNs. Unless in thick and symmetrical slices, slicing appears to reduce motoneuron type differences. Accordingly, slice studies should attempt to record from MNs at the slice center to avoid large and inconsistent errors in measured cell properties and have valid cell measurements' comparisons. Our results, therefore, offer information that would enhance the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.NEW & NOTEWORTHY Although slice recordings from motoneurons are being widely used, the effects of slicing on the measured motoneuron electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal WT and SOD cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation. Our results offer information that enhances the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.
Collapse
Affiliation(s)
- Mohamed H Mousa
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
24
|
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI). Sci Rep 2021; 11:5295. [PMID: 33674659 PMCID: PMC7935943 DOI: 10.1038/s41598-021-84651-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of “neuronal activity”. We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8–20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs.
Collapse
|
25
|
Tossell K, Dodhia RA, Galet B, Tkachuk O, Ungless MA. Tonic GABAergic inhibition, via GABA A receptors containing αβƐ subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur J Neurosci 2021; 53:1722-1737. [PMID: 33522050 PMCID: PMC8651010 DOI: 10.1111/ejn.15133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The activity of midbrain dopamine neurons is strongly regulated by fast synaptic inhibitory γ‐Aminobutyric acid (GABA)ergic inputs. There is growing evidence in other brain regions that low concentrations of ambient GABA can persistently activate certain subtypes of GABAA receptor to generate a tonic current. However, evidence for a tonic GABAergic current in midbrain dopamine neurons is limited. To address this, we conducted whole‐cell recordings from ventral tegmental area (VTA) dopamine neurons in brain slices from mice. We found that application of GABAA receptor antagonists decreased the holding current, indicating the presence of a tonic GABAergic input. Global increases in GABA release, induced by either a nitric oxide donor or inhibition of GABA uptake, further increased this tonic current. Importantly, prolonged inhibition of the firing activity of local GABAergic neurons abolished the tonic current. A combination of pharmacology and immunohistochemistry experiments suggested that, unlike common examples of tonic inhibition, this current may be mediated by a relatively unusual combination of α4βƐ subunits. Lastly, we found that the tonic current reduced excitability in dopamine neurons suggesting a subtractive effect on firing activity.
Collapse
Affiliation(s)
- Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Rakesh A Dodhia
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin Galet
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Olga Tkachuk
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. Methods Mol Biol 2021; 2188:243-257. [PMID: 33119855 DOI: 10.1007/978-1-0716-0818-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.
Collapse
|
27
|
Abstract
Electrophysiology is an essential tool aiding the study of the functions and dysfunctions of electrically excitable cells and their networks. The patch clamp method is a refined electrophysiological technique that can directly measure the membrane potential and/or the amount of current passing across the cell membrane. The patch clamp technique is also incredibly versatile and can be used in a variety of different configurations to study a range of properties, from spontaneous cell firing activity in native tissue to the activation and/or deactivation kinetics of individual channels expressed in recombinant cell lines. In this chapter we give an overview of patch clamping and how the different configurations can be set up and applied to electrophysiological research.
Collapse
|
28
|
How is flexible electronics advancing neuroscience research? Biomaterials 2020; 268:120559. [PMID: 33310538 DOI: 10.1016/j.biomaterials.2020.120559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Innovative neurotechnology must be leveraged to experimentally answer the multitude of pressing questions in modern neuroscience. Driven by the desire to address the existing neuroscience problems with newly engineered tools, we discuss in this review the benefits of flexible electronics for neuroscience studies. We first introduce the concept and define the properties of flexible and stretchable electronics. We then categorize the four dimensions where flexible electronics meets the demands of modern neuroscience: chronic stability, interfacing multiple structures, multi-modal compatibility, and neuron-type-specific recording. Specifically, with the bending stiffness now approaching that of neural tissue, implanted flexible electronic devices produce little shear motion, minimizing chronic immune responses and enabling recording and stimulation for months, and even years. The unique mechanical properties of flexible electronics also allow for intimate conformation to the brain, the spinal cord, peripheral nerves, and the retina. Moreover, flexible electronics enables optogenetic stimulation, microfluidic drug delivery, and neural activity imaging during electrical stimulation and recording. Finally, flexible electronics can enable neuron-type identification through analysis of high-fidelity recorded action potentials facilitated by its seamless integration with the neural circuitry. We argue that flexible electronics will play an increasingly important role in neuroscience studies and neurological therapies via the fabrication of neuromorphic devices on flexible substrates and the development of enhanced methods of neuronal interpenetration.
Collapse
|
29
|
K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed Behaviour. Neuroscience 2020; 449:46-62. [PMID: 32949670 DOI: 10.1016/j.neuroscience.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
Pathological forms of the microtubule-associated protein tau are involved in a large group of neurodegenerative diseases named tauopathies, including frontotemporal lobar degeneration (FTLD-tau). K369I mutant tau transgenic mice (K3 mice) recapitulate neural and behavioural symptoms of FTLD, including tau aggregates in the cortex, alterations to nigrostriatum, memory deficits and parkinsonism. The aim of this study was to further characterise the K3 mouse model by examining functional alterations to the striatum. Whole-cell patch-clamp electrophysiology was used to investigate the properties of striatal neurons in K3 mice and wildtype controls. Additionally, striatal-based instrumental learning tasks were conducted to assess goal-directed versus habitual behaviours (i.e., by examining sensitivity to outcome devaluation and progressive ratios). The K3 model demonstrated significant alterations in the discharge properties of striatal neurons relative to wildtype mice, which manifested as a shift in neuronal output towards a burst firing state. K3 mice acquired goal-directed responding faster than control mice and were goal-directed at test unlike wildtype mice, which is likely to indicate reduced capacity to develop habitual behaviour. The observed pattern of behaviour in K3 mice is suggestive of deficits in dorsal lateral striatal function and this was supported by our electrophysiological findings. Thus, both the electrophysiological and behavioural alterations indicate that K3 mice have early deficits in striatal function. This finding adds to the growing literature which indicate that the striatum is impacted in tau-related neuropathies such as FTLD, and further suggests that the K3 model is a unique mouse model for investigating FTLD especially with striatal involvement.
Collapse
|
30
|
Tsumagari R, Maruo K, Kakizawa S, Ueda S, Yamanoue M, Saito H, Suzuki N, Shirai Y. Precise Regulation of the Basal PKCγ Activity by DGKγ Is Crucial for Motor Coordination. Int J Mol Sci 2020; 21:ijms21217866. [PMID: 33114041 PMCID: PMC7660329 DOI: 10.3390/ijms21217866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.
Collapse
Affiliation(s)
- Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
- Correspondence: ; Tel.: +81-078-803-5887
| |
Collapse
|
31
|
Kakizawa S, Kishimoto Y, Yamamoto S, Onga K, Yasuda K, Miyamoto Y, Watanabe M, Sakai R, Mori N. Functional maintenance of calcium store by ShcB adaptor protein in cerebellar Purkinje cells. Sci Rep 2020; 10:14475. [PMID: 32879382 PMCID: PMC7468156 DOI: 10.1038/s41598-020-71414-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/14/2020] [Indexed: 11/15/2022] Open
Abstract
Intracellular Ca2+ levels are changed by influx from extracellular medium and release from intracellular stores. In the central nervous systems, Ca2+ release is involved in various physiological events, such as neuronal excitability and transmitter release. Although stable Ca2+ release in response to stimulus is critical for proper functions of the nervous systems, regulatory mechanisms relating to Ca2+ release are not fully understood in central neurons. Here, we demonstrate that ShcB, an adaptor protein expressed in central neurons, has an essential role in functional maintenance of Ca2+ store in cerebellar Purkinje cells (PCs). ShcB-knockout (KO) mice showed defects in cerebellar-dependent motor function and long-term depression (LTD) at cerebellar synapse. The reduced LTD was accompanied with an impairment of intracellular Ca2+ release. Although the expression of Ca2+ release channels and morphology of Ca2+ store looked intact, content of intracellular Ca2+ store and activity of sarco/endoplasmic reticular Ca2+-ATPase (SERCA) were largely decreased in the ShcB-deficient cerebellum. Furthermore, when ShcB was ectopically expressed in the ShcB-KO PCs, the Ca2+ release and its SERCA-dependent component were restored. These data indicate that ShcB plays a key role in the functional maintenance of ER Ca2+ store in central neurons through regulation of SERCA activity.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan. .,Department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yasushi Kishimoto
- Department of Biophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan
| | - Shinichiro Yamamoto
- Department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, 164-8530, Japan
| | - Kazuko Onga
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kunihiko Yasuda
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Occupational Therapy, Faculty of Fukuoka Medical Technology, Teikyo University, Omuta, 836-8505, Japan
| | - Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Ryuichi Sakai
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nozomu Mori
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan. .,Faculty of Medicine, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan.
| |
Collapse
|
32
|
Takahashi T. Presynaptic Black Box Opened by Pioneers at Biophysics Department in University College London. Neuroscience 2020; 439:10-21. [DOI: 10.1016/j.neuroscience.2019.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/15/2022]
|
33
|
DGKγ Knock-Out Mice Show Impairments in Cerebellar Motor Coordination, LTD, and the Dendritic Development of Purkinje Cells through the Activation of PKCγ. eNeuro 2020; 7:ENEURO.0319-19.2020. [PMID: 32033984 PMCID: PMC7057140 DOI: 10.1523/eneuro.0319-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.
Collapse
|
34
|
Takahashi S, Hanaoka K, Okubo Y, Echizen H, Ikeno T, Komatsu T, Ueno T, Hirose K, Iino M, Nagano T, Urano Y. Rational Design of a Near-infrared Fluorescence Probe for Ca 2+ Based on Phosphorus-substituted Rhodamines Utilizing Photoinduced Electron Transfer. Chem Asian J 2020; 15:524-530. [PMID: 31909880 DOI: 10.1002/asia.201901689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence imaging in the near-infrared (NIR) region (650-900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)-mediated fluorescence quenching of silicon- and phosphorus-substituted rhodamines (SiRs and PRs) in order to guide the development of improved far-red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+ , CaPR-1, and its membrane-permeable acetoxymethyl derivative, CaPR-1 AM, which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far-red to NIR fluorescence probe based on the SiR scaffold, CaSiR-1 AM, which is mainly localized in lysosomes as well as cytosol in living cells. CaPR-1 showed longer-wavelength absorption and emission (up to 712 nm) than CaSiR-1. The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.
Collapse
Affiliation(s)
- Shodai Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Honami Echizen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, 30-1 Oyaguchi kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
35
|
Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron 2020; 105:992-1006.e6. [PMID: 31928842 PMCID: PMC7083231 DOI: 10.1016/j.neuron.2019.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
How structural and functional properties of synapses relate to each other is a fundamental question in neuroscience. Electrophysiology has elucidated mechanisms of synaptic transmission, and electron microscopy (EM) has provided insight into morphological properties of synapses. Here we describe an enhanced method for functional EM (“flash and freeze”), combining optogenetic stimulation with high-pressure freezing. We demonstrate that the improved method can be applied to intact networks in acute brain slices and organotypic slice cultures from mice. As a proof of concept, we probed vesicle pool changes during synaptic transmission at the hippocampal mossy fiber-CA3 pyramidal neuron synapse. Our findings show overlap of the docked vesicle pool and the functionally defined readily releasable pool and provide evidence of fast endocytosis at this synapse. Functional EM with acute slices and slice cultures has the potential to reveal the structural and functional mechanisms of transmission in intact, genetically perturbed, and disease-affected synapses. Functional EM may be applied to acute brain slices and organotypic slice cultures Docked vesicle pool and RRP are overlapping Smaller-diameter vesicles have higher release probability than larger vesicles Endocytic pits after moderate stimulation suggest fast endocytosis
Collapse
|
36
|
Okubo Y, Iino M, Hirose K. Store-operated Ca 2+ entry-dependent Ca 2+ refilling in the endoplasmic reticulum in astrocytes. Biochem Biophys Res Commun 2019; 522:1003-1008. [PMID: 31812243 DOI: 10.1016/j.bbrc.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Astrocytes regulate various brain functions, for which Ca2+ release from the endoplasmic reticulum (ER) often play crucial roles. Because astrocytic ER Ca2+ release is robust and frequent, the ER Ca2+ refilling mechanism should be critical for ongoing Ca2+ signaling in astrocytes. In this study, we focused on the putative functional significance of store-operated Ca2+ entry (SOCE) in ER Ca2+ refilling. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in astrocytes in acute cortical slices to directly monitor the decrease and recovery of ER Ca2+ concentration upon spontaneous or norepinephrine-induced Ca2+ release. Inhibition of SOCE significantly slowed the recovery of ER Ca2+ concentration after Ca2+ release in astrocytes. This delayed recovery resulted in a prolonged decrease in the ER Ca2+ content in astrocytes with periodic spontaneous Ca2+ release, followed by the attenuation of cytosolic Ca2+ responses upon Ca2+ release. Therefore, our results provide direct evidence for the physiological significance of SOCE in ER Ca2+ refilling after ER Ca2+ release.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| |
Collapse
|
37
|
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan IL, Flanigan ME, Rose SA, Chang C, Leader A, Le Bourhis H, Sweet ES, Tung N, Wroblewska A, Lavin Y, See P, Baccarini A, Ginhoux F, Chitu V, Stanley ER, Russo SJ, Yue Z, Brown BD, Joyner AL, De Witte LD, Morishita H, Schaefer A, Merad M. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 2019; 216:2265-2281. [PMID: 31350310 PMCID: PMC6781012 DOI: 10.1084/jem.20182037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.
Collapse
Affiliation(s)
- Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fiona A Desland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pinar Ayata
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Badimon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elisa Nabel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kazuhiko Yamamuro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marjolein Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - I-Li Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hortense Le Bourhis
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric S Sweet
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksandra Wroblewska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Alessia Baccarini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhenyu Yue
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra L Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hirofumi Morishita
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY .,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Suk HJ, Boyden ES, van Welie I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 2019; 326:108357. [PMID: 31336060 DOI: 10.1016/j.jneumeth.2019.108357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Electrophysiology is the study of neural activity in the form of local field potentials, current flow through ion channels, calcium spikes, back propagating action potentials and somatic action potentials, all measurable on a millisecond timescale. Despite great progress in imaging technologies and sensor proteins, none of the currently available tools allow imaging of neural activity on a millisecond timescale and beyond the first few hundreds of microns inside the brain. The patch clamp technique has been an invaluable tool since its inception several decades ago and has generated a wealth of knowledge about the nature of voltage- and ligand-gated ion channels, sub-threshold and supra-threshold activity, and characteristics of action potentials related to higher order functions. Many techniques that evolve to be standardized tools in the biological sciences go through a period of transformation in which they become, at least to some degree, automated, in order to improve reproducibility, throughput and standardization. The patch clamp technique is currently undergoing this transition, and in this review, we will discuss various aspects of this transition, covering advances in automated patch clamp technology both in vitro and in vivo.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Health Sciences and Technology, MIT, Cambridge, MA 02139, USA; Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
39
|
Jouhanneau JS, Poulet JFA. Multiple Two-Photon Targeted Whole-Cell Patch-Clamp Recordings From Monosynaptically Connected Neurons in vivo. Front Synaptic Neurosci 2019; 11:15. [PMID: 31156420 PMCID: PMC6532332 DOI: 10.3389/fnsyn.2019.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
Although we know a great deal about monosynaptic connectivity, transmission and integration in the mammalian nervous system from in vitro studies, very little is known in vivo. This is partly because it is technically difficult to evoke action potentials and simultaneously record small amplitude subthreshold responses in closely (<150 μm) located pairs of neurons. To address this, we have developed in vivo two-photon targeted multiple (2–4) whole-cell patch clamp recordings of nearby neurons in superficial cortical layers 1–3. Here, we describe a step-by-step guide to this approach in the anesthetized mouse primary somatosensory cortex, including: the design of the setup, surgery, preparation of pipettes, targeting and acquisition of multiple whole-cell recordings, as well as in vivo and post hoc histology. The procedure takes ~4 h from start of surgery to end of recording and allows examinations both into the electrophysiological features of unitary excitatory and inhibitory monosynaptic inputs during different brain states as well as the synaptic mechanisms of correlated neuronal activity.
Collapse
Affiliation(s)
- Jean-Sébastien Jouhanneau
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
40
|
Jiang Y, Parameswaran R, Li X, Carvalho-de-Souza JL, Gao X, Meng L, Bezanilla F, Shepherd GMG, Tian B. Nongenetic optical neuromodulation with silicon-based materials. Nat Protoc 2019; 14:1339-1376. [PMID: 30980031 PMCID: PMC6557640 DOI: 10.1038/s41596-019-0135-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023]
Abstract
Optically controlled nongenetic neuromodulation represents a promising approach for the fundamental study of neural circuits and the clinical treatment of neurological disorders. Among the existing material candidates that can transduce light energy into biologically relevant cues, silicon (Si) is particularly advantageous due to its highly tunable electrical and optical properties, ease of fabrication into multiple forms, ability to absorb a broad spectrum of light, and biocompatibility. This protocol describes a rational design principle for Si-based structures, general procedures for material synthesis and device fabrication, a universal method for evaluating material photoresponses, detailed illustrations of all instrumentation used, and demonstrations of optically controlled nongenetic modulation of cellular calcium dynamics, neuronal excitability, neurotransmitter release from mouse brain slices, and brain activity in the mouse brain in vivo using the aforementioned Si materials. The entire procedure takes ~4-8 d in the hands of an experienced graduate student, depending on the specific biological targets. We anticipate that our approach can also be adapted in the future to study other systems, such as cardiovascular tissues and microbial communities.
Collapse
Affiliation(s)
- Yuanwen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
| | - Ramya Parameswaran
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
| | - Xiaojian Li
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Xiang Gao
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Insitute for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H. TRPM7 channels mediate spontaneous Ca 2+ fluctuations in growth plate chondrocytes that promote bone development. Sci Signal 2019; 12:12/576/eaaw4847. [PMID: 30967513 DOI: 10.1126/scisignal.aaw4847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.
Collapse
Affiliation(s)
- Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan
| | - Akihiro Kitani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Ryohei Nagaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohiro Numata
- Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.
| |
Collapse
|
42
|
Turner K, O'Connell PR, Jones JFX. The projection of anorectal afferents to spinal cord and effect of sacral neuromodulation on dorsal horn neurons which receive such input in the rat. Neurogastroenterol Motil 2019; 31:e13536. [PMID: 30667128 DOI: 10.1111/nmo.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The rat has served usefully as a model for fecal incontinence and exploration of the mechanism of action of sacral neuromodulation (SNM). There remains a deficit in information regarding the location and type of spinal neurons which receive anorectal input and the effect of SNM on those neurons. METHODS Single neuronal extracellular recordings of neurons receiving anorectal input were made at the S1 level of the spinal cord using sharp glass electrodes. SNM at S1 was delivered at 2 Hz for 3 minutes and its effect on discharge was quantified. KEY RESULTS In total, 31 units (n = 14 animals) receiving anorectal synaptic input were recorded at the first sacral (S1) segmental level in either lamina III or IV of the dorsal horn. The inputs were classified according to afferent fiber conduction speed (16 Aδ, 11 Aβ, and 4 C-fiber). The baseline firing frequency (ie, the mean firing frequency before the application of SNM) was 0.48 Hz ± 0.49 (mean ± SD) and 58% of units responded to acute SNM with either an increase or decrease in mean firing frequency. CONCLUSIONS & INFERENCES In this study, the majority of spinal neurons receiving anorectal input changed their activity in response to SNM. These findings provide the basis for future studies which aim to explore the precise cellular mechanism of action of SNM on this fecal continence pathway.
Collapse
Affiliation(s)
- Keira Turner
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Ronan O'Connell
- School of Medicine, University College Dublin, Dublin, Ireland.,Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - James F X Jones
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Wang Y, Baudry M. Acute Cerebellar Slice Preparation Using a Tissue Chopper. Bio Protoc 2019; 9:e3187. [PMID: 33654989 DOI: 10.21769/bioprotoc.3187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 11/02/2022] Open
Abstract
Acute cerebellar slices are widely used among neuroscientists to study the properties of excitatory and inhibitory synaptic transmission as well as intracellular signaling pathways involved in their regulation in cerebellum. The cerebellar cortex presents a well-organized circuitry, and several neuronal pathways can be stimulated and recorded reliably in acute cerebellar slices. A widely used acute cerebellar slice preparation technique was adapted from Edwards' thin slice preparation method published in 1989 ( Edwards et al., 1989 ). Most of the acute cerebellar slice preparation techniques use a vibrating microtome for slicing freshly dissected cerebellum from various animal species. Here we introduce a simpler method, which uses a tissue chopper to quickly prepare acute sagittal cerebellar slices from rodents. Cerebellum is dissected from the whole brain and sliced with a tissue chopper into 200-400 µm thick slices. Slices are allowed to recover in oxygenated aCSF at 37 °C for 1-2 h. Slices can then be used for electrophysiology or other types of experimentation. This method can be used to prepare cerebellar slices from mouse or rat aged from postnatal day 7 to 2 years. The preparation is faster and easier than other methods and provides a more versatile diversity of applications.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
44
|
Egawa R, Yawo H. Analysis of Neuro-Neuronal Synapses Using Embryonic Chick Ciliary Ganglion via Single-Axon Tracing, Electrophysiology, and Optogenetic Techniques. ACTA ACUST UNITED AC 2019; 87:e64. [PMID: 30791212 DOI: 10.1002/cpns.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The calyx-type synapse is a giant synaptic structure in which a presynaptic terminal wraps around a postsynaptic neuron in a one-to-one manner. It has been used for decades as an experimental model system of the synapse due to its simplicity and high accessibility in physiological recording methods. In particular, the calyx of the embryonic chick ciliary ganglion (CG) has enormous potential for synapse science because more flexible genetic manipulations are available compared with other synapses. Here, we describe methods to study presynaptic morphology, physiology, and development using CGs and cutting-edge molecular tools. We outline step-by-step protocols for presynaptic gene manipulation using in ovo electroporation, preparation of isolated CGs, 3-D imaging for single-axon tracing in transparent CGs, electrophysiology of the presynaptic terminal, and an all-optical approach using optogenetic molecular reagents. These methods will facilitate studies of the synapse and neuronal circuits in the future. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ryo Egawa
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Science, Sendai, Japan
| |
Collapse
|
45
|
In vivo electrophysiological analysis of mechanisms of monoaminergic pain inhibitory systems. Pain 2018; 158 Suppl 1:S85-S91. [PMID: 28240646 DOI: 10.1097/j.pain.0000000000000844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Quiroga-Gonzalez E, Jesus Arzola Flores A, Eguibar ES, Audrey Ortega Ramirez M, Gonzalez Petlacalco O. Fabrication and testing of multielectrode matrix of disordered Si nanowires for brain tissue sensing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:6084-6087. [PMID: 30441723 DOI: 10.1109/embc.2018.8513601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the field of neuroscience there is interest on manufacturing new recording devices. The relationship between individual action potentials of neurons and field potentials in multicellular records is complex. For this reason, there is a big interest in multielectrode arrays. This work describes the unconventional fabrication process of an alternative multielectrode and its use for sensing neuronal activity. It consists of a matrix of Si nanowires randomly distributed, coated with Ag nanoparticles, and with macrometric Ag back contacts. The Si nanowires are prepared by metal-assisted chemical etching of a Si wafer, which is an economical and highly reproducible technique. Recordings using the multielectrode array of randomly distributed Si nanowires look promising and comparable with recordings obtained with other multielectrode devices.
Collapse
|
47
|
Kurtz A. Celebrating 150-year anniversary! Pflugers Arch 2018; 470:1719-1720. [PMID: 30324320 DOI: 10.1007/s00424-018-2220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Armin Kurtz
- University Regensburg, Institute of Physiology, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
48
|
Okubo Y, Kanemaru K, Suzuki J, Kobayashi K, Hirose K, Iino M. Inositol 1,4,5-trisphosphate receptor type 2-independent Ca2+
release from the endoplasmic reticulum in astrocytes. Glia 2018; 67:113-124. [DOI: 10.1002/glia.23531] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Kazunori Kanemaru
- Department of Pharmacology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
- Department of Cellular and Molecular Pharmacology; Nihon University School of Medicine; Tokyo Japan
| | - Junji Suzuki
- Department of Physiology; University of California San Francisco; San Francisco California
| | - Kenta Kobayashi
- Section of Viral Vector Development; National Institute for Physiological Sciences; Okazaki Japan
- The Graduate University for Advanced Studies (SOKENDAI); Hayama Japan
| | - Kenzo Hirose
- Department of Neurobiology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Masamitsu Iino
- Department of Cellular and Molecular Pharmacology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
49
|
Hall J, Frenguelli BG. The combination of ribose and adenine promotes adenosine release and attenuates the intensity and frequency of epileptiform activity in hippocampal slices: Evidence for the rapid depletion of cellular ATP during electrographic seizures. J Neurochem 2018; 147:178-189. [PMID: 29964329 PMCID: PMC6220757 DOI: 10.1111/jnc.14543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
In addition to being the universal cellular energy source, ATP is the primary reservoir for the neuromodulator adenosine. Consequently, adenosine is produced during ATP-depleting conditions, such as epileptic seizures, during which adenosine acts as an anticonvulsant to terminate seizure activity and raise the threshold for subsequent seizures. These actions protect neurones from excessive ionic fluxes and hence preserve the remaining cellular content of ATP. We have investigated the consequences of manipulation of intracellular ATP levels on adenosine release and epileptiform activity in hippocampal slices by pre-incubating slices (3 h) with creatine (1 mM) and the combination of ribose (1 mM) and adenine (50 μM; RibAde). Creatine buffers and protects the concentration of cellular ATP, whereas RibAde restores the reduced cellular ATP in brain slices to near physiological levels. Using electrophysiological recordings and microelectrode biosensors for adenosine, we find that, while having no effect on basal synaptic transmission or paired-pulse facilitation, pre-incubation with creatine reduced adenosine release during Mg2+- free/4-aminopyridine-induced electrographic seizure activity, whereas RibAde increased adenosine release. This increased release of adenosine was associated with an attenuation of both the intensity and frequency of seizure activity. Given the depletion of ATP after injury to the brain, the propensity for seizures after trauma and the risk of epileptogenesis, therapeutic strategies elevating the cellular reservoir of adenosine may have value in the traumatized brain. Ribose and adenine are both in use in man and thus their combination merits consideration as a potential therapeutic for the acutely injured central nervous system.
Collapse
Affiliation(s)
- Jessicka Hall
- School of Life SciencesThe University of WarwickCoventryUK
| | | |
Collapse
|
50
|
Kano M, Watanabe T, Uesaka N, Watanabe M. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. THE CEREBELLUM 2018; 17:722-734. [DOI: 10.1007/s12311-018-0964-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|