1
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
2
|
Zhou X, Li A, Lin PH, Zhou J, Ma J. TRIC-A regulates intracellular Ca 2+ homeostasis in cardiomyocytes. Pflugers Arch 2021; 473:547-556. [PMID: 33474637 PMCID: PMC7940156 DOI: 10.1007/s00424-021-02513-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
Abstract
Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously expresses in all tissues, and TRIC-B-/- mice is lethal at the neonatal stage. TRIC-A mainly expresses in excitable cells. TRIC-A-/- mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+ homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, 76019, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Columbus, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Williams DW, Stephenson DG, Posterino GS. The effects of Suramin on Ca 2+ activated force and sarcoplasmic reticulum Ca 2+ release in skinned fast-twitch skeletal muscle fibers of the rat. Physiol Rep 2018; 5:5/14/e13333. [PMID: 28743820 PMCID: PMC5532480 DOI: 10.14814/phy2.13333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
Suramin has long been used in the treatment of various human diseases. Intravenous infusions of Suramin are commonly administered to patients over extended periods of time but there are a number of significant contraindications with peripheral muscle weakness being one of the most frequently reported. Previous work has shown that even after a single infusion (300 mg kg−1) Suramin remains in skeletal muscle in effective concentrations (11.6 μg mL−1; 84 days) for prolonged periods. These observations provide a strong rationale for investigation of the specific effects of Suramin on skeletal muscle function. Single mechanically skinned fibers were directly exposed to Suramin (10, 100 or 500 μmol L−1) for defined durations (2–10 min) in controlled physiological solutions that mimic the intracellular ionic environment of a fiber. Suramin treatment (10–500 μmol L−1) directly affected the contractile apparatus in a dose‐dependent manner causing a decrease in Ca2+‐sensitivity (pCa50 = −log (Ca2+) concentration, where 50% of maximum Ca2+‐ activated force is produced) by 0.14 to 0.42 pCa units and reduction in maximum Ca2+‐activated force by 14 to 62%. Suramin treatment (100 μmol L−1 for 10 min and 500 μmol L−1 for 2 min) also caused development of a Ca2+‐independent force corresponding to 2.89 ± 4.33 and 16.77 ± 7.50% of pretreatment maximum Ca2+‐activated force, respectively. Suramin treatment (100 μmol L−1, 2 min) also increased the rate of sarcoplasmic reticulum (SR) Ca2+ release without significant changes in SR Ca2+ uptake. We report new functional effects for Suramin related to alterations in both the contractile apparatus and SR Ca2+‐handling of skeletal muscle that may contribute to the peripheral muscle weakness noted in human pharmacological treatments.
Collapse
Affiliation(s)
- Dane W Williams
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | | | - Giuseppe S Posterino
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Zhou X, Lin P, Yamazaki D, Park KH, Komazaki S, Chen SRW, Takeshima H, Ma J. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis. Circ Res 2014; 114:706-16. [PMID: 24526676 DOI: 10.1161/circresaha.114.301816] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus (X.Z., P.L., K.H.P., J.M.); Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan (D.Y., H.T.); Department of Anatomy, Saitama Medical University, Saitama, Japan (S.K.); and Departments of Physiology and Pharmacology, and Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (W.C.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Berwick ZC, Dick GM, O'Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 2013; 108:370. [PMID: 23856709 DOI: 10.1007/s00395-013-0370-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Previous investigations indicate that diminished functional expression of voltage-dependent K(+) (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.2 channel activity. Initial studies revealed that inhibition of KV channels with 4-aminopyridine (4AP, 0.3 mM) increased intracellular [Ca(2+)], contracted isolated coronary arterioles and decreased coronary reactive hyperemia. These effects were reversed by blockade of CaV1.2 channels. Further studies in chronically instrumented Ossabaw swine showed that inhibition of CaV1.2 channels with nifedipine (10 μg/kg, iv) had no effect on coronary blood flow at rest or during exercise in lean swine. However, inhibition of CaV1.2 channels significantly increased coronary blood flow, conductance, and the balance between coronary flow and metabolism in obese swine (P < 0.05). These changes were associated with a ~50 % increase in inward CaV1.2 current and elevations in expression of the pore-forming subunit (α1c) of CaV1.2 channels in coronary smooth muscle cells from obese swine. Taken together, these findings indicate that electromechanical coupling between KV and CaV1.2 channels is involved in the regulation of coronary vasomotor tone and that increases in CaV1.2 channel activity contribute to coronary microvascular dysfunction in the setting of obesity.
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Smeazzetto S, Saponaro A, Young HS, Moncelli MR, Thiel G. Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity. PLoS One 2013; 8:e52744. [PMID: 23308118 PMCID: PMC3537670 DOI: 10.1371/journal.pone.0052744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/20/2012] [Indexed: 11/22/2022] Open
Abstract
Phospholamban (PLN) is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca2+-ATPase (SERCA) in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 Å for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C) or destabilize (I47A) the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca2+ accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca2+ uptake. A reduced total conductance of the K+ transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca2+ uptake in the same way as an inhibition of K+ channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Biology and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Gerhard Thiel
- Plant Membrane Biophysics, TU-Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
8
|
Silverio ALF, Saier MH. Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J Membr Biol 2011; 241:77-101. [PMID: 21519847 DOI: 10.1007/s00232-011-9364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/26/2011] [Indexed: 12/29/2022]
Abstract
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.
Collapse
Affiliation(s)
- Abe L F Silverio
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
9
|
Edwards JN, Friedrich O, Cully TR, von Wegner F, Murphy RM, Launikonis BS. Upregulation of store-operated Ca2+ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 2010; 299:C42-50. [PMID: 20427714 DOI: 10.1152/ajpcell.00524.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism in virtually all cells. In adult skeletal muscle, this mechanism is highly specialized for the rapid delivery of Ca(2+) from the transverse tubule into the junctional cleft during periods of depleting Ca(2+) release. In dystrophic muscle fibers, SOCE may be a source of Ca(2+) overload, leading to cell necrosis. However, this possibility is yet to be examined in an adult fiber during Ca(2+) release. To examine this, Ca(2+) in the tubular system and cytoplasm were simultaneously imaged during direct release of Ca(2+) from sarcoplasmic reticulum (SR) in skeletal muscle fibers from healthy (wild-type, WT) and dystrophic mdx mouse. The mdx fibers were found to have normal activation and deactivation properties of SOCE. However, a depression of the cytoplasmic Ca(2+) transient in mdx compared with WT fibers was observed, as was a shift in the SOCE activation and deactivation thresholds to higher SR Ca(2+) concentrations ([Ca(2+)](SR)). The shift in SOCE activation and deactivation thresholds was accompanied by an approximately threefold increase in STIM1 and Orai1 proteins in dystrophic muscle. While the mdx fibers can introduce more Ca(2+) into the fiber for an equivalent depletion of [Ca(2+)](SR) via SOCE, it remains unclear whether this is deleterious.
Collapse
Affiliation(s)
- Joshua N Edwards
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Gillespie D, Fill M. Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. Biophys J 2008; 95:3706-14. [PMID: 18621826 PMCID: PMC2553138 DOI: 10.1529/biophysj.108.131987] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/01/2008] [Indexed: 01/09/2023] Open
Abstract
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs) mediate large Ca(2+) release events from Ca(2+) storage organelles lasting >5 ms. To have such long-lasting Ca(2+) efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca(2+) Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca(2+)-driving force. This RyR autocountercurrent is possible because of the poor Ca(2+) selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within approximately 150 mus. Consistent with experiments, the model shows how RyR unit Ca(2+) current is defined by luminal [Ca(2+)], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP(3)R channel.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
11
|
Goodman CA, Blazev R, Kemp J, Stephenson GMM. E–C coupling and contractile characteristics of mechanically skinned single fibres from young rats during rapid growth and maturation. Pflugers Arch 2008; 456:1217-28. [DOI: 10.1007/s00424-008-0474-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 02/08/2008] [Indexed: 11/29/2022]
|
12
|
Weisleder N, Takeshima H, Ma J. Immuno-proteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 2008; 43:1-8. [PMID: 18061662 PMCID: PMC3059838 DOI: 10.1016/j.ceca.2007.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 12/20/2022]
Abstract
A comprehensive understanding of excitation-contraction (E-C) coupling in skeletal and cardiac muscle requires that all the major components of the Ca(2+) release machinery be resolved. We utilized a unique immuno-proteomic approach to generate a monoclonal antibody library that targets proteins localized to the skeletal muscle triad junction, which provides a structural context to allow efficient E-C coupling. Screening of this library has identified several mitsugumins (MG); proteins that can be localized to the triad junction in mammalian skeletal muscle. Many of these proteins, including MG29 and junctophilin, are important components in maintaining the structural integrity of the triad junction. Other triad proteins, such as calumin, play a more direct role in regulation of muscle Ca(2+) homeostasis. We have recently identified a family of trimeric intracellular cation-selective (TRIC) channels that allow for K(+) movement into the endoplasmic or sarcoplasmic reticulum to counter a portion of the transient negative charge produced by Ca(2+) release into the cytosol. Further study of TRIC channel function and other novel mitsugumins will increase our understanding of E-C coupling and Ca(2+) homoeostasis in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, NJ 08854, USA
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Jianjie Ma
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, NJ 08854, USA
| |
Collapse
|
13
|
Schertzer JD, van der Poel C, Shavlakadze T, Grounds MD, Lynch GS. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 2007; 294:C161-8. [PMID: 17989207 DOI: 10.1152/ajpcell.00399.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by the absence of functional dystrophin. Abnormal excitation-contraction (E-C) coupling has been reported in dystrophic muscle fibers from mdx mice, and alterations in E-C coupling components may occur as a direct result of dystrophin deficiency. We hypothesized that muscle-specific overexpression of insulin-growth factor-1 (IGF-I) would reduce E-C coupling failure in mdx muscle. Mechanically skinned extensor digitorum longus muscle fibers from mdx mice displayed a faster decline in depolarization-induced force responses (DIFR); however, there were no differences in sarcoplasmic reticulum (SR)-mediated Ca(2+) resequestration or in the properties of the contractile apparatus when compared with nondystrophic controls. The rate of DIFR decline was restored to control levels in fibers from transgenic mdx mice that overexpressed IGF-I in skeletal muscle (mdx/IGF-I mice). Dystrophic muscles have a lower transcript level of a specific dihydropyridine receptor (DHPR) isoform, and IGF-I-mediated changes in E-C coupling were associated with increased transcript levels of specific DHPR isoforms involved in Ca(2+) regulation. Importantly, IGF-I overexpression also increased the sensitivity of the contractile apparatus to Ca(2+). The results demonstrate that IGF-I can ameliorate fundamental aspects of E-C coupling failure in dystrophic muscle fibers and that these effects are important for the improvements in cellular function induced by this growth factor.
Collapse
Affiliation(s)
- Jonathan D Schertzer
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
15
|
Macdonald WA, Stephenson DG. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. J Physiol 2006; 573:187-98. [PMID: 16556653 PMCID: PMC1779704 DOI: 10.1113/jphysiol.2006.105775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.
Collapse
Affiliation(s)
- W A Macdonald
- Department of Zoology, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | | |
Collapse
|
16
|
Hirota S, Trimble N, Pertens E, Janssen LJ. Intracellular Cl- fluxes play a novel role in Ca2+ handling in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1146-53. [PMID: 16428269 DOI: 10.1152/ajplung.00393.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular Ca(2+) is actively sequestered into the sarcoplasmic reticulum (SR), whereas the release of Ca(2+) from the SR can be triggered by activation of the inositol 1,4,5-trisphosphate and ryanodine receptors. Uptake and release of Ca(2+) across the SR membrane are electrogenic processes; accumulation of positive or negative charge across the SR membrane could electrostatically hinder the movement of Ca(2+) into or out of the SR, respectively. We hypothesized that the movement of intracellular Cl(-) (Cl(i)(-)) across the SR membrane neutralizes the accumulation of charge that accompanies uptake and release of Ca(2+). Thus inhibition of SR Cl(-) fluxes will reduce Ca(2+) sequestration and agonist-induced release. The Cl(-) channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10(-4) M), previously shown to inhibit SR Cl(-) channels, significantly reduced the magnitude of successive acetylcholine-induced contractions of airway smooth muscle (ASM), suggesting a "run down" of sequestered Ca(2+) within the SR. Niflumic acid (10(-4) M), a structurally different Cl(-) channel blocker, had no such effect. Furthermore, NPPB significantly reduced caffeine-induced contraction and increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). Depletion of Cl(i)(-), accomplished by bathing ASM strips in Cl(-)-free buffer, significantly reduced the magnitude of successive acetylcholine-induced contractions. In addition, Cl(-) depletion significantly reduced caffeine-induced increases in [Ca(2+)](i). Together these data suggest a novel role for Cl(i)(-) fluxes in Ca(2+) handling in smooth muscle. Because the release of sequestered Ca(2+) is the predominate source of Ca(2+) for contraction of ASM, targeting Cl(i)(-) fluxes may prove useful in the control of ASM hyperresponsiveness associated with asthma.
Collapse
Affiliation(s)
- Simon Hirota
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, Ontario, Canada L8N 4A6
| | | | | | | |
Collapse
|
17
|
Goodman C, Blazev R, Stephenson G. GLYCOGEN CONTENT AND CONTRACTILE RESPONSIVENESS TO T-SYSTEM DEPOLARIZATION IN SKINNED MUSCLE FIBRES OF THE RAT. Clin Exp Pharmacol Physiol 2005; 32:749-56. [PMID: 16173932 DOI: 10.1111/j.1440-1681.2005.04260.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Glycogen content (determined microfluorometrically), response capacity to transverse tubular (T) system depolarization and the relationship between these two parameters were examined in single, mechanically skinned fibres from rat extensor digitorum longus (EDL) muscle in the presence of high and constant concentrations of ATP and creatine phosphate. 2. The mean total glycogen content (tGlyc) in freshly dissected fibres was 58.1 +/- 4.2 mmol glucosyl units/L fibre (n = 53). 3. A large proportion of tGlyc was retained in the skinned fibres (SFGlyc) after 2 and 30 min exposure to an aqueous relaxing solution (73.1 +/- 2.8 and 64 +/- 12.3%, respectively). 4. When fibres were incubated for 30 min in a high (30 micromol/L)-Ca2+ solution, the proportion of SFGlyc was markedly lower (approximately 28%), which suggests that rat skinned fibres contain a Ca2+-sensitive glycogenolytic system. 5. In rat skinned fibres, T-system depolarization-induced Ca2+ release was not accompanied by a detectable loss of fibre glycogen and there was no correlation between response capacity and initial SFGlyc, indicating that other factors, unrelated to glycogen depletion, ultimately limited the capacity of rat skinned fibres to respond to T-system depolarization. 6. It is concluded that rat mechanically skinned fibre preparations are well suited for studies of glycogenolysis at a cellular level and that, with further refinement of the depolarization protocol, they may be suitable for studies of the non-metabolic role of glycogen in mammalian skeletal muscle contractility.
Collapse
Affiliation(s)
- Craig Goodman
- Muscle Cell Biochemistry Laboratory, School of Biomedical Sciences, Victoria University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Abstract
Troglitazone and other thiazolidinediones (TZDs) are thought to relax arterial smooth muscle by directly inhibiting calcium channels in smooth muscle cell membranes. However, until recently such inhibition was only examined acutely, ie, within only seconds or minutes after administration of these agents to arterial smooth muscle preparations. Recently, a novel experiment was reported in which troglitazone caused a 2-phase relaxation of perfused resistance arteries, namely, an acute relaxation (within the first 20 minutes of treatment), which was blocked by a nonselective calcium channel blocker and a delayed relaxation (after 2 hours), which was not. We sought to determine if any of the 4 major potassium (K) channels in vascular smooth muscle play a role in the delayed relaxation. We incubated vascular contractile rings prepared from ventral tail arteries of rats with physiological buffer containing either 0 or 4 micromol/L troglitazone for 3 hours (4 micromol/L is typical of plasma levels from diabetic patients). Different K channel inhibitors (1 mmol/L 4-aminopyridine [4AP]; 1 mmol/L tetraethylammonium [TEA]; 5 micromol/L glyburide; 20 micromol/L barium) were coadministered with each level of troglitazone in additional preparations. Then these arterial rings were contracted with either norepinephrine (NE), arginine vasopressin (AVP), or high-K buffer. All contractions were significantly relaxed by troglitazone (P <.05). Only 4AP significantly attenuated troglitazone's relaxation of NE and AVP contractions (P <.05), though not high-K-induced contractions. TEA, glyburide, and barium had no such influence. Thus, for both adrenergic (NE) and nonadrenergic (AVP) contractions, the delayed arterial vasorelaxation by troglitazone may be mediated at least in part by activation of 4AP-sensitive K channels. Furthermore, the specific subtype of the channels involved is most likely those bound in the outer cell membrane where their effectiveness in terms of mediating relaxation would depend on an intact transmembrane K ion gradient.
Collapse
Affiliation(s)
- Jacob D Peuler
- Department of Pharmacology, Midwestern University, Downers Grove, IL, USA
| | | | | |
Collapse
|
19
|
Wagner R, Fink RHA, Stephenson DG. Effects of chlorpromazine on excitation-contraction coupling events in fast-twitch skeletal muscle fibres of the rat. Br J Pharmacol 2004; 141:624-33. [PMID: 14732758 PMCID: PMC1574238 DOI: 10.1038/sj.bjp.0705655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Single mechanically skinned fibres from the rat extensor digitorum longus muscle, which allow access to intracellular compartments, were used to examine the effects of 0.5-100 microM chlorpromazine hydrochloride (CPZ) on the major steps of the excitation-contraction (E-C) coupling to elucidate the involvement of skeletal muscle in the neuroleptic malignant syndrome (NMS). 2. At 1 microM, CPZ caused a 20-30% increase in the force response induced by t-system depolarisation and a marked increase in the rate of caffeine-induced SR Ca(2+) release. At [CPZ]> or =2.5 microM, there was an initial increase followed by a marked decrease of the t-system depolarisation-induced force responses, while the potentiating effect on the caffeine-induced SR Ca(2+) release remained. These effects were reversible. 3. CPZ had no effect on the maximum Ca(2+)-activated force, but caused reversible, concentration-dependent increases in the Ca(2+) sensitivity of the contractile apparatus at [CPZ] > or =10 microM, with a 50% predicted shift of 0.11 pCa (-log [Ca(2+)]) units at 82.3 microM CPZ. 4. CPZ did not alter the rate of SR-Ca(2+) loading at 1 and 10 microM, but reversibly reduced it by approximately 40% at 100 microM by reducing the SR Ca(2+) pump. Nevertheless, the SR Ca(2+) content was greater when fibres became unresponsive to t-system-induced depolarisation in the presence than in the absence of 100 microM CPZ. 5. The results show that CPZ has concentration-dependent stimulatory and inhibitory effects on various steps of the E-C coupling, which can explain the involvement of skeletal muscle in NMS and reconcile previous divergent data on CPZ effects on muscle.
Collapse
Affiliation(s)
- R Wagner
- Institute of Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120 Heidelberg, Germany
| | - R H A Fink
- Institute of Physiology and Pathophysiology, University of Heidelberg, INF 326, 69120 Heidelberg, Germany
| | - D G Stephenson
- Department of Zoology, La Trobe University, Plenty Road, Bundoora, Victoria 3083, Australia
- Author for correspondence:
| |
Collapse
|
20
|
Most P, Remppis A, Weber C, Bernotat J, Ehlermann P, Pleger ST, Kirsch W, Weber M, Uttenweiler D, Smith GL, Katus HA, Fink RHA. The C terminus (amino acids 75-94) and the linker region (amino acids 42-54) of the Ca2+-binding protein S100A1 differentially enhance sarcoplasmic Ca2+ release in murine skinned skeletal muscle fibers. J Biol Chem 2003; 278:26356-64. [PMID: 12721284 DOI: 10.1074/jbc.m303338200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100A1, a Ca2+-binding protein of the EF-hand type, is most highly expressed in striated muscle and has previously been shown to interact with the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) isoform. However, it was unclear whether S100A1/RyR1 interaction could modulate SR Ca2+ handling and contractile properties in skeletal muscle fibers. Since S100A1 protein is differentially expressed in fast- and slow-twitch skeletal muscle, we used saponin-skinned murine Musculus extensor digitorum longus (EDL) and Musculus soleus (Soleus) fibers to assess the impact of S100A1 protein on SR Ca2+ release and isometric twitch force in functionally intact permeabilized muscle fibers. S100A1 equally enhanced caffeine-induced SR Ca2+ release and Ca2+-induced isometric force transients in both muscle preparations in a dose-dependent manner. Introducing a synthetic S100A1 peptide model (devoid of EF-hand Ca2+-binding sites) allowed identification of the S100A1 C terminus (amino acids 75-94) and hinge region (amino acids 42-54) to differentially enhance SR Ca2+ release with a nearly 3-fold higher activity of the C terminus. These effects were exclusively based on enhanced SR Ca2+ release as S100A1 influenced neither SR Ca2+ uptake nor myofilament Ca2+ sensitivity/cooperativity in our experimental setting. In conclusion, our study shows for the first time that S100A1 augments contractile performance both of fast- and slow-twitch skeletal muscle fibers based on enhanced SR Ca2+ efflux at least mediated by the C terminus of S100A1 protein. Thus, our data suggest that S100A1 may serve as an endogenous enhancer of SR Ca2+ release and might therefore be of physiological relevance in the process of excitation-contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Patrick Most
- Abteilung Innere Medizin III (Kardiologie), Universität Heidelberg, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dulhunty AF, Lavert DR. A Ca2+-activated anion channel in the sarcoplasmic reticulum of skeletal muscle. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Kirsch WG, Uttenweiler D, Fink RH. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 2001; 537:379-89. [PMID: 11731572 PMCID: PMC2278952 DOI: 10.1111/j.1469-7793.2001.00379.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Using laser scanning confocal microscopy, we show for the first time elementary Ca2+ release events (ECRE) from the sarcoplasmic reticulum in chemically and mechanically skinned fibres from adult mammalian muscle and compare them with ECRE from amphibian skinned fibres. 2. Hundreds of spontaneously occurring events could be measured from individual single skinned mammalian fibres. In addition to spark-like events, we found ember-like events, i.e. long-lasting events of steady amplitude. These two different fundamental release types in mammalian muscle could occur in combination at the same location. 3. The two peaks of the frequency of occurrence for ECRE of mammalian skeletal muscle coincided with the expected locations of the transverse tubular system within the sarcomere, suggesting that ECRE mainly originate at triadic junctions. 4. ECRE in adult mammalian muscle could also be identified at the onset of the global Ca2+ release evoked by membrane depolarisation in mechanically skinned fibres. In addition, the frequency of ECRE was significantly increased by application of 0.5 mM caffeine and reduced by application of 2 mM tetracaine. 5. We conclude that the excitation-contraction coupling process in adult mammalian muscle involves the activation of both spark- and ember-like elementary Ca2+ release events.
Collapse
Affiliation(s)
- W G Kirsch
- Institute of Physiology and Pathophysiology, Medical Biophysics, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Macdonald WA, Stephenson DG. Effects of ADP on sarcoplasmic reticulum function in mechanically skinned skeletal muscle fibres of the rat. J Physiol 2001; 532:499-508. [PMID: 11306667 PMCID: PMC2278539 DOI: 10.1111/j.1469-7793.2001.0499f.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2000] [Accepted: 12/21/2000] [Indexed: 11/26/2022] Open
Abstract
1. The sarcoplasmic reticulum (SR) Ca(2+) content (expressed in terms of endogenous SR Ca(2+) content under physiologically resting conditions and measured from caffeine-induced force responses) and the effective rates of the SR Ca(2+) pump and SR Ca(2+) leak (measured from the temporal changes in SR Ca(2+) content) were determined in mechanically skinned skeletal muscle fibres of the rat at different [ADP] (< 0.10 microM to 1.04 mM). 2. The estimated SR Ca(2+) pump rate at 200 nM Ca(2+) did not change when [ADP] increased from below 0.10 microM to 10 microM but decreased by about 30 % when [ADP] increased from 10 microM to 1.04 mM. 3. The rate constant of SR Ca(2+) leak increased markedly with rising [ADP] when [Ca(2+)] in solution was 200 nM (apparent dissociation constant Kd(ADP) = 64 +/- 27 microM). Decreasing the [Ca(2+)] in solution from 200 nM to < 10 nM significantly increased the leak rate constant at all [ADP]. The SR Ca(2+) leak rate constant could be significantly reduced by blocking the SR Ca(2+) pump with 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ). 4. The decrease in the SR Ca(2+) pump rate and the increase in the rate constant of SR Ca(2+) leak when the [ADP] increased from < 0.10 microM to 1.04 mM caused a 4.4-fold decrease in SR Ca(2+) loading ability at 200 nM Ca(2+). 5. The results can be fully explained by a mechanism whereby the presence of ADP causes a marked increase in the ADP-sensitive fraction of the phosphorylated pump protein, which can act as a Ca(2+)-Ca(2+) exchanger and demonstrates that ADP is an important modulator of SR function in skeletal muscle.
Collapse
Affiliation(s)
- W A Macdonald
- Department of Pharmacy, La Trobe University, Victoria 3086, Australia
| | | |
Collapse
|
24
|
Kargacin GJ, Ali Z, Zhang SJ, Pollock NS, Kargacin ME. Iodide and bromide inhibit Ca(2+) uptake by cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 2001; 280:H1624-34. [PMID: 11247773 DOI: 10.1152/ajpheart.2001.280.4.h1624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that the Ca(2+) permeability of the sarcoplasmic reticulum (SR) can be affected by its anionic environment. Additionally, anions could directly modulate the SR Ca(2+) pump or the movement of compensatory charge across the SR membrane during Ca(2+) uptake or release. To examine the effect of anion substitution on cardiac SR Ca(2+) uptake, fluorometric Ca(2+) measurements and spectrophotometric ATPase assays were used. Ca(2+) uptake into SR vesicles was inhibited in a concentration-dependent manner when Br(-) or I(-) replaced extravesicular Cl(-) (when Br(-) completely replaced Cl(-), uptake velocity was approximately 70% of control; when I(-) completely replaced Cl(-), uptake velocity was approximately 39% of control). Replacement of Cl(-) with SO(2)(-4) had no effect on SR uptake. Although both I(-) and Br(-) inhibited net Ca(2+) uptake, neither anion directly inhibited the SR Ca(2+) pump nor did they increase the permeability of the SR membrane to Ca(2+). Our results support the hypothesis that an anionic current that occurs during SR Ca(2+) uptake is reduced by the substitution of Br(-) or I(-) for Cl(-).
Collapse
Affiliation(s)
- G J Kargacin
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
25
|
Lukyanenko V, Györke I, Subramanian S, Smirnov A, Wiesner TF, Györke S. Inhibition of Ca(2+) sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophys J 2000; 79:1273-84. [PMID: 10968991 PMCID: PMC1301023 DOI: 10.1016/s0006-3495(00)76381-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have compared the effects of the sarcoplasmic reticulum (SR) Ca(2+) release inhibitor, ruthenium red (RR), on single ryanodine receptor (RyR) channels in lipid bilayers, and on Ca(2+) sparks in permeabilized rat ventricular myocytes. Ruthenium red at 5 microM inhibited the open probability (P(o)) of RyRs approximately 20-50-fold, without significantly affecting the conductance or mean open time of the channel. At the same concentration, RR inhibited the frequency of Ca(2+) sparks in permeabilized myocytes by approximately 10-fold, and reduced the amplitude of large amplitude events (with most probable localization on the line scan) by approximately 3-fold. According to our theoretical simulations, performed with a numerical model of Ca(2+) spark formation, this reduction in Ca(2+) spark amplitude corresponds to an approximately 4-fold decrease in Ca(2+) release flux underlying Ca(2+) sparks. Ruthenium red (5 microM) increased the SR Ca(2+) content by approximately 2-fold (from 151 to 312 micromol/l cytosol). Considering the degree of inhibition of local Ca(2+) release events, the increase in SR Ca(2+) load by RR, and the lack of effects of RR on single RyR open time and conductance, we have estimated that Ca(2+) sparks under normal conditions are generated by openings of at least 10 single RyRs.
Collapse
Affiliation(s)
- V Lukyanenko
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | |
Collapse
|
26
|
Launikonis BS, Stephenson DG. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat. J Physiol 2000; 526 Pt 2:299-312. [PMID: 10896719 PMCID: PMC2270024 DOI: 10.1111/j.1469-7793.2000.00299.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of SR Ca2+-release channels in the rat skeletal muscle.
Collapse
Affiliation(s)
- B S Launikonis
- Department of Zoology, La Trobe University, Plenty Road, Bundoora, Victoria 3083, Australia
| | | |
Collapse
|
27
|
Singh SN, Fletcher RD. Class III drugs and congestive heart failure: focus on the congestive heart failure-survival trial of antiarrhythmic therapy. Am J Cardiol 1999; 84:103R-108R. [PMID: 10568668 DOI: 10.1016/s0002-9149(99)00710-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with congestive heart failure frequently have ventricular arrhythmias on ambulatory electrocardiographic recordings and sudden cardiac death is seen in almost 50% of such patients. Many antiarrhythmic agents have been approved to suppress the arrhythmia in an effort to improve survival. Some sodium-channel blockers not only failed to improve survival but have been shown to be harmful. This led to the development of potassium-channel blockers, such as d-sotalol, amiodarone, dofetilide, and azimilide. d-Sotalol was associated with excess mortality in patients with left ventricular dysfunction; amiodarone seems to be potentially beneficial; and dofetilide has a neutral effect on mortality. The Sudden Cardiac Death Heart Failure Trial (SCD HEFT) is testing the implantable cardioverter defibrillator (ICD) against amiodarone and placebo. The ICDs appear to be superior to antiarrhythmic drugs in certain high-risk patients, although not proved in unstratified patients with heart failure.
Collapse
Affiliation(s)
- S N Singh
- Veterans Affairs Medical Center, Washington, DC 20422, USA
| | | |
Collapse
|
28
|
Stegmann H, Wepf R, Schröder RR, Fink RH. Quantification of total calcium in terminal cisternae of skinned muscle fibers by imaging electron energy-loss spectroscopy. J Muscle Res Cell Motil 1999; 20:505-15. [PMID: 10555069 DOI: 10.1023/a:1005522912044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Skinned muscle fibers are ideal model preparations for the investigation of Ca2+ -regulatory mechanisms. Their internal ionic milieu can be easily controlled and distinct physiological states are well defined. We have measured the total Ca content in the terminal cisternae of such preparations using imaging electron energy-loss spectroscopy (Image-EELS) as a new approach for quantification of sub-cellular element distributions. Murine muscle fibers submitted to a standardized calcium-loading procedure were cryo-fixed with a combined solution exchanger/plunge freezing device. Energy-filtered image series were recorded from ultrathin freeze-dried cryosections of samples immobilized in either relaxed or caffeine-contracted state. From these image series, electron energy-loss spectra were extracted by digital image-processing and quantitatively processed by multiple-least-squares-fitting with reference spectra. The calculated fit coefficients were converted to Ca-concentrations by a calibration obtained from Ca-standards. Total Ca-contents in the terminal cisternae of skinned skeletal muscle fibers decreased upon caffeine-induced Ca-release from 123+/-159 (+/-11) to 73+/-102 (+/-8) mmol/kg d.w. (weighted mean +/- SD (+/-SEM)).
Collapse
Affiliation(s)
- H Stegmann
- II. Physiologisches Institut, Universität Heidelberg, Germany.
| | | | | | | |
Collapse
|
29
|
Pollock NS, Kargacin ME, Kargacin GJ. Chloride channel blockers inhibit Ca2+ uptake by the smooth muscle sarcoplasmic reticulum. Biophys J 1998; 75:1759-66. [PMID: 9746517 PMCID: PMC1299847 DOI: 10.1016/s0006-3495(98)77617-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the fact that Ca2+ transport into the sarcoplasmic reticulum (SR) of muscle cells is electrogenic, a potential difference is not maintained across the SR membrane. To achieve electroneutrality, compensatory charge movement must occur during Ca2+ uptake. To examine the role of Cl- in this charge movement in smooth muscle cells, Ca2+ transport into the SR of saponin-permeabilized smooth muscle cells was measured in the presence of various Cl- channel blockers or when I-, Br-, or SO42- was substituted for Cl-. Calcium uptake was inhibited in a dose-dependent manner by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and by indanyloxyacetic acid 94 (R(+)-IAA-94), but not by niflumic acid or 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Smooth muscle SR Ca2+ uptake was also partially inhibited by the substitution of SO42- for Cl-, but not when Cl- was replaced by I- or Br-. Neither NPPB nor R(+)-IAA-94 inhibited Ca2+ uptake into cardiac muscle SR vesicles at concentrations that maximally inhibited uptake in smooth muscle cells. These results indicate that Cl- movement is important for charge compensation in smooth muscle cells and that the Cl- channel or channels involved are different in smooth and cardiac muscle cells.
Collapse
Affiliation(s)
- N S Pollock
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
30
|
Kourie JI. Chloride channels in the sarcoplasmic reticulum of muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 68:263-300. [PMID: 9652173 DOI: 10.1016/s0079-6107(97)00029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J I Kourie
- Department of Chemistry, Australian National University, Canberra City, Australia
| |
Collapse
|
31
|
Uttenweiler D, Weber C, Fink RH. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers. Biophys J 1998; 74:1640-53. [PMID: 9545029 PMCID: PMC1299511 DOI: 10.1016/s0006-3495(98)77877-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber.
Collapse
Affiliation(s)
- D Uttenweiler
- Ruprecht-Karls-Universität Heidelberg, II Institute of Physiology, Germany
| | | | | |
Collapse
|
32
|
Launikonis BS, Stephenson DG. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle. J Physiol 1997; 504 ( Pt 2):425-37. [PMID: 9365915 PMCID: PMC1159921 DOI: 10.1111/j.1469-7793.1997.425be.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Collapse
Affiliation(s)
- B S Launikonis
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
33
|
Fryer MW, Glover WE. Effects of 4-methyl-2-aminopyridine on [3H]-noradrenaline overflow and contractility of isolated rabbit arteries. GENERAL PHARMACOLOGY 1997; 29:657-63. [PMID: 9352318 DOI: 10.1016/s0306-3623(97)00255-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The effects of 4-methyl-2-aminopyridine (4M2AP) and 4-aminopyridine (4AP) on spontaneous and evoked [3H]-noradrenaline overflow were compared in rabbit ear artery strips. The effects of 4M2AP on smooth muscle contractility were also investigated in isolated perfused ear arteries. 2. Both 4M2AP and 4AP enhanced spontaneous [3H] overflow from arterial strips in a concentration-dependent manner (10-1000 microM). A bell-shaped dose-response relation was obtained for evoked [3H] overflow over the same concentration range, with maximum effects occurring at 10 microM for 4M2AP (163 +/- 31% increase) and 100 microM for 4AP (154 +/- 16% increase). 3. 4M2AP did not significantly affect evoked tension in the 1-to 100-microM range but clearly depressed it at 1,000 microM (by 65 +/- 11%). In contrast, 4AP enhanced evoked tension in the 10- to 100-microM range (by 30-50%). 4. 4M2AP (10-100 microM) enhanced vasoconstrictor responses to exogenous noradrenaline injections in isolated perfused rabbit ear arteries, whereas higher concentrations (1,000 microM) caused significant depression. 5. 4M2AP (1,000 microM) markedly potentiated vasoconstrictor responses induced by perfusion with a high extracellular K+ solution. When 4M2AP was present during the reloading of noradrenaline-sensitive Ca2+ stores, it enhanced the subsequent vasoconstrictor responses to noradrenaline obtained in a Ca(2+)-free medium. 6. The results show that 4M2AP, like 4AP, enhances [3H] overflow from sympathetic nerve terminals and has complex effects on vascular smooth muscle contractility, indicating the ability of these compounds to affect the Ca2+ permeability of both extracellular and intracellular membrane systems.
Collapse
Affiliation(s)
- M W Fryer
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
34
|
Wood PG, Gillespie JI. Inositol 1,4,5-trisphosphate and basal Ca2+ release is affected by the cytoplasmic concentration of Cl- in endothelial cells. Biochem Biophys Res Commun 1997; 238:292-6. [PMID: 9299497 DOI: 10.1006/bbrc.1997.7280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of varying Cl- concentration in the intracellular bathing medium, on IP3-induced 45Ca2+ release from internal stores, were examined in saponin-permeabilised bovine aortic endothelial (BAE) cells. Results from this study show that the release of Ca2+ from the internal stores is affected by the cytoplasmic concentration of Cl- ions. Complete replacement of Cl- with gluconate augmented IP3 (3 microM)-induced 45Ca2+ release by 33 +/- 8%. Replacement of both Cl- and K+ with gluconate and NMG, respectively, had no significant effect on 45Ca2+ release. However, resting levels of internal 45Ca2+ were found to be affected by Cl- removal. These data suggest that in BAE cells, IP3 and also basal 45Ca2+ release may be regulated by the physiological intracellular Cl- concentration.
Collapse
Affiliation(s)
- P G Wood
- Department of Physiological Sciences, Medical School, University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | | |
Collapse
|
35
|
Györke S, Lukyanenko V, Györke I. Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J Physiol 1997; 500 ( Pt 2):297-309. [PMID: 9147318 PMCID: PMC1159384 DOI: 10.1113/jphysiol.1997.sp022021] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Confocal microfluorometry was used to study the effects of tetracaine on spontaneous Ca2+ release from the sarcoplasmic reticulum (SR) in isolated rat ventricular myocytes. 2. At low concentrations (0.25-1.25 mM), tetracaine caused an initial inhibition of spontaneous release events (Ca2+ sparks) and Ca2+ waves, which was followed by a gradual increase in Ca2+ release activity. The frequency and magnitude of sparks were first decreased and then increased with respect to control levels. At high concentrations (> 1.25 mM), tetracaine abolished all forms of spontaneous release. 3. Exposure of the myocytes to tetracaine resulted in a gradual increase in the SR Ca2+ load as indexed by changes in the magnitude of caffeine-induced Ca2+ transients. 4. In cardiac SR Ca(2+)-release channels incorporated into lipid bilayers, tetracaine (> 0.25 mM) induced a steady inhibition of channel activity. Addition of millimolar Ca2+ to the luminal side of the channel caused an increase in channel open probability under control conditions as well as in the presence of various concentrations of tetracaine. 5. We conclude that the primary effect of tetracaine on SR Ca(2+)-release channels is inhibition of channel activity both in vitro and in situ. The ability of tetracaine to reduce spark magnitude suggests that these events are not due to activation of single channels or non-reducible clusters of channels and, therefore, supports the multichannel origin of sparks. We propose that the paradoxical late potentiation of release by submaximal concentrations of tetracaine is caused by a gradual increase in SR Ca2+ load and subsequent activation of the Ca(2+)-release channels by Ca2+ inside the SR.
Collapse
Affiliation(s)
- S Györke
- Department of Physiology, Texas Tech University Health Science Center, Lubbock 79430, USA.
| | | | | |
Collapse
|
36
|
Gottlieb SS, Singh S, Munger M, Eichhorn EJ, Ilgenfritz J, Hanyok J. Hemodynamic effects of the class III antiarrhythmic drug, d-sotalol, in patients with congestive heart failure. Am J Cardiol 1996; 78:1411-5. [PMID: 8970416 DOI: 10.1016/s0002-9149(96)00640-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In contrast to Vaughan Williams class I drugs, class III drugs, such as d-sotalol, may not be negative inotropic. These drugs block potassium ion channels and prolong repolarization, theoretically leading to improved contractility. We investigated the hemodynamic actions of acute intravenous administration of 1.5 mg/kg of d-sotalol in 28 patients with congestive heart failure randomized to receive placebo (n = 10) or active drug (n = 18) in a double-blind study. A Swan-Ganz catheter was placed in all patients > or = 16 hours before drug administration. All hemodynamic variables were assessed at baseline and 30 minutes and 1, 2, 4, 8, and 12 hours after administration of the drug. Electrocardiograms were obtained before and 1, 2, 4, and 12 hours after drug administration. The QT interval increased from 370 +/- 9 to 426 +/- 14 ms at 1 hour, whereas the QTc increased from 433 +/- 5 to 470 +/- 12 ms (both p < 0.001). The increase was still statistically significant at 12 hours. There was no change in the placebo group. Although heart rate decreased in the d-sotalol group (84 +/- 2 to 76 +/- 2 at 1 hour, p < 0.001), there were no changes in blood pressure or right atrial pressure. Cardiac index decreased slightly (2.0 +/- 0.2 to 1.9 +/- 0.1 mm Hg), consistent with the lower heart rate. Pulmonary capillary wedge pressure decreased from 18.9 +/- 2.4 to 17.9 +/- 1.9 mm Hg at 1 hour despite reduced cardiac index. We conclude that in contrast to class I, II, and IV antiarrhythmic drugs, d-sotalol exerts no clinically important acute hemodynamic actions at doses that produce electrophysiologic effects.
Collapse
Affiliation(s)
- S S Gottlieb
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
1. This review explores the complexity of skeletal muscle function mainly from the perspective of work performed by the author over the past two decades.
Collapse
Affiliation(s)
- D G Stephenson
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
38
|
Makabe M, Werner O, Fink RH. The contribution of the sarcoplasmic reticulum Ca2+-transport ATPase to caffeine-induced Ca2+ transients of murine skinned skeletal muscle fibres. Pflugers Arch 1996; 432:717-26. [PMID: 8764974 DOI: 10.1007/s004240050190] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was carried out to investigate the contribution of the Ca2+-transport ATPase of the sarcoplasmic reticulum (SR) to caffeine-induced Ca2+ release in skinned skeletal muscle fibres. Chemically skinned fibres of balb-C-mouse EDL (extensor digitorum longus) were exposed for 1 min to a free Ca2+ concentration of 0.36 microM to load the SR with Ca2+. Release of Ca2+ from the SR was induced by 30 mM caffeine and recorded as an isometric force transient. For every preparation a pCa/force relationship was constructed, where pCa = -log10 [Ca2+]. In a new experimental approach, we used the pCa/force relationship to transform each force transient directly into a Ca2+ transient. The calculated Ca2+ transients were fitted by a double exponential function: Y0 + A1 . (-t/t1) + A2 . exp(t/t2), with A1 < 0 < A2, t1 < t2 and Y0, A1, A2 in micromolar. Ca2+ transients in the presence of the SR Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) were compared to those obtained in the absence of the drug. We found that inhibition of the SR Ca2+-ATPase during caffeine-induced Ca2+ release causes an increase in the peak Ca2+ concentration in comparison to the control transients. Increasing CPA concentrations prolonged the time-to-peak in a dose-dependent manner, following a Hill curve with a half-maximal value of 6.5 +/- 3 microM CPA and a Hill slope of 1.1 +/- 0.2, saturating at 100 microM. The effects of CPA could be simulated by an extended three-compartment model representing the SR, the myofilament space and the external bathing solution. In terms of this model, the SR Ca2+-ATPase influences the Ca2+ gradient across the SR membrane in particular during the early stages of the Ca2+ transient, whereas the subsequent relaxation is governed by diffusional loss of Ca2+ into the bathing solution.
Collapse
Affiliation(s)
- M Makabe
- II. Institute of Physiology, University of Heidelberg, INF 326, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
39
|
Toma C, Greenwood IA, Helliwell RM, Large WA. Activation of potassium currents by inhibitors of calcium-activated chloride conductance in rabbit portal vein smooth muscle cells. Br J Pharmacol 1996; 118:513-20. [PMID: 8762072 PMCID: PMC1909709 DOI: 10.1111/j.1476-5381.1996.tb15432.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The conventional whole-cell recording technique was used to study the effects of the chloride channel inhibitors ethacrynic acid, anthracene-9-carboxylic acid (A-9-C) and indanyloxyacetic acid (IAA) on membrane currents in rabbit portal vein smooth muscle cells at a holding potential of 0 mV. 2. Using a pipette solution that contained 1 x 10(-4) M 1,2-bis (2-aminophenoxy)-ethane-N,N,N,N,-tetraacetic acid (BAPTA) and a normal bathing solution the addition of ethacrynic acid (2 x 10(-4) M to 1 x 10(-3) M) inhibited spontaneous transient outward currents (STOCs) and evoked a concentration-dependent current at a holding potential of 0 mV. A similar current was activated by IAA (5 x 10(-4) M to 1 x 10(-3) M) but not by A-9-C (1-5 x 10(-3) M) at a holding potential of 0 mV. 3. The amplitude of the current evoked by ethacrynic acid and IAA was linearly related to potential between -30 and 0 mV and displayed outward rectification at positive potentials. The current induced by A-9-C was evident only at potentials positive to +20 mV. 4. Glibenclamide (1 x 10(-5) M) abolished the current evoked by ethacrynic acid and IAA at potentials negative to +10 mV and partially inhibited the current positive to +10 mV. The glibenclamide-insensitive current at positive potentials was completely inhibited by 1 x 10(-3) M TEA. The A-9-C-evoked current was insensitive to glibenclamide and abolished by 1 x 10(-3) M TEA. 5. The glibenclamide-sensitive current activated by ethacrynic acid was not sustained and declined to control levels in the continued presence of ethacrynic acid. However, the outwardly rectifying current recorded at +50 mV was well maintained over the same period. 6. Outwardly rectifying currents evoked by ethacrynic acid and A-9-C were observed with a pipette solution containing 1 x 10(-2) M BAPTA in cells bathed in Ca-free extracellular solution containing 5 x 10(-4) M BAPTA and 1 x 10(-5) M cyclopiazonic acid. 7. It is concluded that all three chloride-channel blockers activated an outwardly rectifying, TEA-sensitive current. Moreover, ethacrynic acid and IAA evoked an additional glibenclamide-sensitive current which was present at all potentials between -30 and +50 mV.
Collapse
Affiliation(s)
- C Toma
- Department of Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, Cranmer Terrace, London
| | | | | | | |
Collapse
|
40
|
Kourie JI, Laver DR, Ahern GP, Dulhunty AF. A calcium-activated chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1675-86. [PMID: 8764150 DOI: 10.1152/ajpcell.1996.270.6.c1675] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Ca(2+)-activated Cl- channel is described in sarcoplasmic reticulum (SR) enriched vesicles of skeletal muscle incorporated into lipid bilayers. Small chloride (SCl) channels (n = 20) were rapidly and reversibly activated when cis- (cytoplasmic) [Ca2+] was increased above 10(-7) M, with trans-(luminal) [Ca2+] at either 10(-3) or 10(-7) M. The open probability of single channels increased from zero when cis-[Ca2+] was 10(-7) M to 0.61 +/- 0.12 when [Ca2+] was 10(-4) M. High- and low-conductance levels in single-channel activity were activated at different cis-[Ca2+]. Channel openings to the maximum conductance, 65-75 pS (250/50 mM Cl-, cis/ trans), were active when cis-[Ca2+] was increased above 5 x 10(-6) M. In contrast to the maximum conductance, channel openings to submaximal levels between 5 and 40 pS were activated at a lower cis-[Ca2+] and dominated channel activity between 5 x 10(-7) and 5 x 10(-6) M. Activation of SCl channels was Ca2+ specific and not reproduced by cytoplasmic Mg2+ concentrations of 10(-3) M. We suggest that the SCl channel arises in the SR membrane. The Ca2+ dependence of this channel implies that it is active at [Ca2+] achieved during muscle contraction.
Collapse
Affiliation(s)
- J I Kourie
- John Curtin School of Medical Research, Australian National University, Canberra City, Australia
| | | | | | | |
Collapse
|
41
|
Kourie JI, Laver DR, Junankar PR, Gage PW, Dulhunty AF. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J 1996; 70:202-21. [PMID: 8770199 PMCID: PMC1224921 DOI: 10.1016/s0006-3495(96)79564-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.
Collapse
Affiliation(s)
- J I Kourie
- John Curtin School of Medical Research, Australian National University, Canberra City, Australia.
| | | | | | | | | |
Collapse
|
42
|
O'Rourke F, Soons K, Flaumenhauft R, Watras J, Baio-Larue C, Matthews E, Feinstein MB. Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem J 1994; 300 ( Pt 3):673-83. [PMID: 8010949 PMCID: PMC1138220 DOI: 10.1042/bj3000673] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ins(1,4,5)P3-induced Ca2+ release from platelet membrane vesicles was blocked by apamin, a selective inhibitor of low-conductance Ca(2+)-activated K+ channels, and by tetrapentylammonium ion, and was weakly inhibited by tetraethylammonium ion. Other K(+)-channel blockers, i.e. charybdotoxin, 4-aminopyridine and glybenclamide were ineffective. A monoclonal antibody (mAb 213-21) obtained by immunizing mice with the InsP3-sensitive membrane fraction from platelets also blocked Ca2+ release by InsP3 from membrane vesicles obtained from platelets, cerebellum, aortic smooth muscle, HEL cells and sea-urchin eggs. ATP-dependent Ca2+ uptake and binding of [3H]InsP3 to platelet membranes was unaffected by either K(+)-channel blockers or mAb 213-21. Blockade of Ca2+ release by apamin, tetrapentylammonium and mAb 213-21 was not affected by the Na+/H+ carrier monensin or the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), but could be completely reversed by the K+/H+ ionophore nigericin and partially reversed by the K+ carrier valinomycin. The antibody-binding protein (ABP) solubilized from platelets, cerebellum, and smooth muscle chromatographed identically on gel filtration, anion-exchange and heparin-TSK h.p.l.c. ABP was purified to apparent homogeneity from platelets and aortic smooth muscle as a 63 kDa protein by immunoaffinity chromatography on mAb 213-21-agarose. These results suggest that optimal Ca2+ release by InsP3 from platelet membrane vesicles may require the tandem function of a K+ channel. A counterflow of K+ ions could prevent the build-up of a membrane potential (inside negative) that would tend to oppose Ca2+ release. The 63 kDa protein may function to regulate K+ permeability that is coupled to the Ca2+ efflux via the InsP3 receptor.
Collapse
Affiliation(s)
- F O'Rourke
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06032
| | | | | | | | | | | | | |
Collapse
|
43
|
Hong SJ, Chang CC. O2 occlusion and cyanide induced immediate relaxation and contraction of murine skeletal muscle. Neurosci Lett 1993; 158:25-8. [PMID: 8233069 DOI: 10.1016/0304-3940(93)90603-i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The acute changes of muscle tone and membrane current upon occlusion of oxygenation (O2 occlusion) were studied in vitro in mouse diaphragms. O2 occlusion immediately produced a contraction and a relaxation, respectively, in ryanodine- and high K(+)-contracted muscles while a biphasic change (an initial decrease then a late increase) of muscle tone was produced in muscles contracted with caffeine. The O2 occlusion effects were reversed after reoxygenation. CN- produced similar acute changes of muscle tone and abolished O2 occlusion effects. The O2 occlusion-induced relaxation in high K+ medium was converted into a contraction by 3,4-diaminopyridine and by low Cl- Tyrode's. O2 occlusion induced a small outward current and membrane hyperpolarization at a rate slower than the changes of muscle tone. Glybenclamide inhibited all of the changes induced by O2 occlusion. It is possible that the K+ and Cl- permeabilities of sarcoplasmic reticulum are highly sensitive to hypoxic challenge and related to the immediate changes of muscle tone after O2 occlusion.
Collapse
Affiliation(s)
- S J Hong
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, ROC
| | | |
Collapse
|
44
|
Greenwood IA, Weston AH. Effects of rubidium on responses to potassium channel openers in rat isolated aorta. Br J Pharmacol 1993; 109:925-32. [PMID: 8401946 PMCID: PMC2175758 DOI: 10.1111/j.1476-5381.1993.tb13709.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. In a physiological salt solution (PSS) in which potassium (K) was replaced by rubidium (Rb), segments of rat aorta precontracted with 20 mM RbCl were fully relaxed by K-channel openers with an order of potency levcromakalim > cromakalim > aprikalim > RP 49356. These relaxations were inhibited by glibenclamide. 2. Segments of rat aorta bathed in normal PSS and precontracted with 20 mM KCl were also relaxed by these K-channel openers with an order of potency levcromakalim > cromakalim > aprikalim > RP 49356. These relaxations were glibenclamide-sensitive. However, the absolute potencies of the K-channel openers were approximately four times greater in normal PSS than in RbPSS. 3. In RbPSS, minoxidil sulphate relaxed segments of aorta precontracted with 20 mM RbCl by approximately 20% whereas in normal PSS it fully relaxed those contracted with 20 mM KCl. 4. In RbPSS, levcromakalim-induced relaxation of aortic segments precontracted with 20 mM RbCl was initially well-maintained but then faded by approximately 60% of the initial relaxation to a new, stable level. Subsequent exposure to RP 49356 or to higher concentrations of levcromakalim was without further relaxant effect. Similar changes were observed when RP 49356 was the initial relaxant and tissues were exposed to either RP 49356 or levcromakalim. In normal PSS, levcromakalim- or RP 49356-induced relaxation of contractions produced by 20 mM KCl was well-maintained. 5. In RbPSS, minoxidil sulphate-induced relaxation of aortic segments precontracted with 20 mM RbCl was well-maintained. Subsequent exposure to either levcromakalim or to RP 49356 produced further tissue relaxation. 6. In RbPSS, levcromakalim produced no detectable increase in either 86Rb- or 42K-efflux from rat aortic strips. In normal PSS, a significant increase in the exchange of both isotopes was detected.7. Levcromakalim hyperpolarized segments of rat aorta bathed both in normal PSS and after depolarization by the addition of 20 mM KCI. Exposure to RbPSS depolarized the tissue and under these conditions, levcromakalim had no effect on membrane potential.8. In Rb- and normal PSS, levcromakalim produced a similar degree of inhibition of the refilling of then or adrenaline-sensitive Ca store.9. It is concluded that millimolar concentrations of Rb inhibit the plasmalemmal ATP-sensitive K-channels (KATP) which are the target of the K-channel openers. The relaxant actions of the K-channel openers in both normal and Rb-PSS and the inhibition of these effects by glibenclamide may reflect a functional interaction between these agents at ATP-binding sites associated with both KATP and with intracellular structures including Ca stores.
Collapse
Affiliation(s)
- I A Greenwood
- Department of Physiological Sciences, University of Manchester
| | | |
Collapse
|
45
|
Garcia J, Schneider MF. Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres. J Physiol 1993; 463:709-28. [PMID: 8246202 PMCID: PMC1175367 DOI: 10.1113/jphysiol.1993.sp019618] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Calcium transients were recorded from cut segments of fast-twitch rat skeletal muscle fibres stretched to 3.7-4.0 microns per sarcomere and voltage clamped at a holding potential of -80 mV using the double Vaseline-gap technique. Calcium transients were monitored simultaneously with the two calcium indicators antipyrylazo III (AP III) and fura-2. AP III was used to record the calcium changes in response to 10-200 ms depolarizing pulses to different membrane potentials while fura-2 monitored the slow decay of the transient (during 16-20 s) and the resting calcium concentration. Experiments were performed at 14-17 degrees C. 2. For 50-100 ms depolarizing pulses calcium transients were first detected between -30 and -20 mV in a total of twenty-one fibres. The transients recorded with AP III showed a plateau for small pulses (-20 mV) and a steady increase during stronger pulses (-10 mV and more positive). Upon repolarization the transients decayed towards the baseline. The signal recorded simultaneously with fura-2 showed a continuous increase of the transient during the pulses at all membrane potentials. The amplitude of the calcium transients for the large pulses could not be followed with fura-2 due to saturation of the dye. 3. The signals obtained with both dyes were used to determine the kinetics of the calcium-fura-2 reaction inside the fibres. The mean values of the kinetic parameters were: the on rate constant (kon) = 5.1 x 10(8) M-1s-1, the off rate constant (koff) = 26 s-1, and koff/kon (KD) = 69.7 nM. 4. The fast phase of decay of the calcium transients after the pulses was studied from the records obtained with AP III. For depolarizing pulses of the same duration, the rate of decay of the transients after the pulse was slower the stronger the depolarization. For pulses to the same membrane potential, the rate of decay was slower the longer the pulse duration. Both stimulating patterns indicated saturation of the removal system in the muscle fibres due to occupancy of slowly equilibrating myoplasmic calcium binding sites by released calcium. 5. The fast phase of decay of the signals obtained with AP III was well fitted with a model of the system for removing calcium from the myofilament space. 6. The rate of calcium release (Rrel) from the sarcoplasmic reticulum was calculated once the removal system was characterized in the same fibre.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Garcia
- Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
46
|
Allard B, Moutin MJ, Ronjat M. BisG10, a K+ channel blocker, affects the calcium release channel from skeletal muscle sarcoplasmic reticulum. FEBS Lett 1992; 314:81-4. [PMID: 1333418 DOI: 10.1016/0014-5793(92)81466-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The action of bisG10, a potent K+ channel inhibitor, was tested on the Ca2+ release from isolated sarcoplasmic reticulum vesicles of rabbit skeletal muscle. Using a rapid filtration technique, we found that the drug inhibited Ca(2+)-induced Ca2+ release elicited in the presence of extravesicular K+ as counter-ion. This inhibition was not reversed by the addition of valinomycin and still occurred when Cl- was used as co-ion, indicating that not only K+ channels are involved in the inhibiting effect. We found that bisG10 decreased the binding of ryanodine to sarcoplasmic reticulum vesicles, showing that bisG10 is able to block the sarcoplasmic reticulum Ca2+ release channel.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables, URA 180 CNRS, Villeurbanne, France
| | | | | |
Collapse
|
47
|
Duty S, Weston AH. Characteristics of the contractile response of rabbit aorta produced by cromakalim in calcium-free solution. Br J Pharmacol 1992; 107:1198-204. [PMID: 1467840 PMCID: PMC1907956 DOI: 10.1111/j.1476-5381.1992.tb13428.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1 The effect of potassium channel opening compounds has been investigated in the smooth muscle of rabbit aorta under Ca-free conditions. Examination of the characteristics of the response has been performed using cromakalim as the prototype compound. 2 In order of potency, Ro 31-6930, cromakalim, minoxidil sulphate and pinacidil each produced a contraction in rabbit aortic strips bathed in Ca-free MOPS-buffered physiological salt solution (PSS). In contrast, forskolin, glyceryl trinitrate and nifedipine each failed to increase tension under identical conditions. Cromakalim also evoked contraction of bovine trachealis muscle bathed in Ca-free PSS. 3. The contractile response to cromakalim in rabbit aortic strips was of delayed onset (15-20 min) and reached a plateau after approximately 120 min (1.8 g maximum with 1 microM cromakalim). No cromakalim-induced tension changes were observed in either 1 mM or 2.5 mM Ca-containing PSS. 4. Raising the [KCl] of the Ca-free PSS to 65.9 mM fully inhibited the cromakalim-induced contraction in rabbit aortic strips. In addition, pretreatment of aortic strips with the sulphonylurea glibenclamide antagonized the subsequent mechanical response to cromakalim. 5. In Ca-free PSS, cromakalim (1 microM) stimulated 42K-efflux with a time-course corresponding to the contractile event. Glibenclamide (1 microM) inhibited this cromakalim-induced 42K-efflux. 6. In sharp microelectrode studies in bovine trachealis, cromakalim (10 microM) produced a sustained membrane hyperpolarization in normal PSS. In contrast, the cromakalim-induced hyperpolarization in Ca-free PSS was not sustained. The fading of the hyperpolarization was temporally correlated with the increase in tension under these experimental conditions. 7. It is concluded that the K-channel opener-induced smooth muscle contractile response revealed in Ca-free PSS is the consequence of K-channel opening. The nature of the detailed mechanism which underlies this contractile phenomenon remains to be determined.
Collapse
Affiliation(s)
- S Duty
- Department of Physiological Sciences, University of Manchester
| | | |
Collapse
|
48
|
Foster KA, Arch JR, Newson PN, Shaw D, Taylor SG. Effect of Rb+ on cromakalim-induced relaxation and ion fluxes in guinea pig trachea. Eur J Pharmacol 1992; 222:143-51. [PMID: 1468491 DOI: 10.1016/0014-2999(92)90826-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of cromakalim, verapamil and salbutamol have been examined in guinea pig trachealis smooth muscle in both Krebs physiological salt solution and Krebs solution where K+ has been replaced by Rb+. Cromakalim-induced relaxation in the presence of Rb+ was reduced in extent and became transient, whilst the relaxation response to verapamil was enhanced and that to salbutamol unaffected. The transient relaxation occurring in Rb+ was blocked by quinidine and glibenclamide. The presence of extracellular Rb+ also prevented cromakalim-stimulated efflux of both 86Rb+ and 42/43K+. There was, however, no effect on cromakalim-stimulated 86Rb+ uptake. It is proposed that cromakalim is opening two populations of potassium channel in guinea pig tracheal smooth muscle, one of which is susceptible to blockade by Rb+ and one of which is not. The latter channel appears to play the dominant role in cromakalim-stimulated uptake, and is responsible for the transient relaxation response in the presence of rubidium, whilst the former is responsible for the maintained relaxation.
Collapse
Affiliation(s)
- K A Foster
- SmithKline Beecham Pharmaceuticals, Epsom, Surrey, UK
| | | | | | | | | |
Collapse
|
49
|
Williams AJ. Ion conduction and discrimination in the sarcoplasmic reticulum ryanodine receptor/calcium-release channel. J Muscle Res Cell Motil 1992; 13:7-26. [PMID: 1313441 DOI: 10.1007/bf01738423] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A J Williams
- Department of Cardiac Medicine, University of London, UK
| |
Collapse
|
50
|
Allard B, Rougier O. Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle. J Muscle Res Cell Motil 1992; 13:117-25. [PMID: 1556167 DOI: 10.1007/bf01738435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tetanic and twitch tension were recorded on isolated frog twitch fibres under experimental conditions modifying the influx of sodium ions. In current clamp conditions replacing Li+ for Na+ did not modify the electrical activity but drastically decreased the plateau of tetanic tension. In voltage clamp conditions replacing Li+ for Na+ did not modify the inward currents but induced a marked decrease of the plateau of the tetanic tension for depolarizations between the activation threshold and the reversal potential of sodium current. Under veratridine treatment, during tetanic depolarization, a slow inward sodium (or lithium) current developed. This induced a parallel increase of the tetanic tension which was much more pronounced in sodium than in lithium containing solution. The twitch tension obtained during short depolarization was increased by greater than 100% during veratridine treatment with a sizeable decrease (40%) of the delay between the end of depolarization and the beginning of tension. All these results could be reproduced in calcium-free solution. Our data confirm that the entry of sodium ions (and to a lesser extent of lithium ions) is able to modulate the release of calcium from the sarcoplasmic reticulum (SR). We discuss these results in terms of a model where sodium ions entering the compartment between the tubular membrane and the SR junctional membrane carry counter charges through the SR K+ channels and help to maintain the SR Ca2+ release. This could occur in particular during a physiological tetanic contraction where the junctional compartment is probably filled with Na+ ions and depleted of K+ ions.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables (CNRS UA 180), Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|