1
|
Lin HC, Golic MM, Hill HJ, Lemons KF, Vuong TT, Smith M, Golic F, Golic KG. Drosophila ring chromosomes interact with sisters and homologs to produce anaphase bridges in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607186. [PMID: 39149325 PMCID: PMC11326264 DOI: 10.1101/2024.08.08.607186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ring chromosomes are known in many eukaryotic organisms, including humans. They are typically associated with a variety of maladies, including abnormal development and lethality. Underlying these phenotypes are anaphase chromatin bridges that can lead to chromosome loss, nondisjunction and breakage. By cytological examination of ring chromosomes in Drosophila melanogaster we identified five causes for anaphase bridges produced by ring chromosomes. Catenation of sister chromatids is the most common cause and these bridges frequently resolve during anaphase, presumably by the action of topoisomerase II. Sister chromatid exchange and chromosome breakage followed by sister chromatid union also produce anaphase bridges. Mitotic recombination with the homolog was rare, but was another route to generation of anaphase bridges. Most surprising, was the discovery of homolog capture, where the ring chromosome was connected to its linear homolog in anaphase. We hypothesize that this is a remnant of mitotic pairing and that the linear chromosome is connected to the ring by multiple wraps produced through the action of topoisomerase II during establishment of homolog pairing. In support, we showed that in a ring/ring homozygote the two rings are frequently catenated in mitotic metaphase, a configuration that requires breaking and rejoining of at least one chromosome.
Collapse
Affiliation(s)
- Ho-Chen Lin
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Mary M Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hunter J Hill
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katherine F Lemons
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Truc T Vuong
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Madison Smith
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Forrest Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Bangun K, Kreshanti P, Tania V, Ariani Aswin Y, Menna C, Aurino L. Bilateral Cleft Lip and Palate in Ring Chromosome 7 Syndrome: A Case Report and Review of Clinical Characteristics. Cleft Palate Craniofac J 2024; 61:527-533. [PMID: 36624583 DOI: 10.1177/10556656221149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This report presents a case of ring chromosome 7 syndrome with bilateral cleft lip and palate. A four-year-old boy presented with bilateral cleft lip and palate, microcephaly, clenched toes, cafe-au-lait spots, a history of epilepsy, and severe intellectual disability. Genetic karyotyping revealed 46 XY r(7) (p22q36). His cheiloplasty and delayed palatoplasty were successful. A review of 22 previous r(7) patients revealed that 22.7% had cleft lip and/or palate. This case demonstrates the importance of a multidisciplinary evaluation for cleft patients, particularly those with syndromic features and global developmental delay.
Collapse
Affiliation(s)
- Kristaninta Bangun
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Prasetyanugraheni Kreshanti
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Vika Tania
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Yulia Ariani Aswin
- Human Genetic Research Cluster - Indonesia Medical Education and Research Institute, Jakarta, Indonesia
| | - Clara Menna
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Leorca Aurino
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
3
|
Kushwaha S, Stinnett V, Zou YS, Murry JB. Live-born autosomal ring chromosomes at the Johns Hopkins Hospital Cytogenomics Laboratory: Case series-Spanning 52 years of experience in a single center. Am J Med Genet A 2024; 194:253-267. [PMID: 37807876 DOI: 10.1002/ajmg.a.63429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Ring chromosomes (RCs) are a structural aberration that can be tolerated better in acrocentric or gonosomal chromosomes. Complete RCs arise from telomere-telomere fusions. Alternatively, genomic imbalances corresponding to the ends of the chromosomal arms can be seen with RC formation. RCs are unstable in mitosis, result in mosaicism, and are associated with a "ring syndrome," which presents with growth and development phenotypes and differs from those features more frequently observed with pure terminal copy number changes. Due to variability in mosaicism, size, and genomic content, clear genotype-phenotype correlations may not always be possible. Given the rarity of RCs, this historical data is invaluable. We performed a retrospective review of individuals bearing RCs to investigate the incidence in our laboratory. This work details the methods and features seen in association with twenty-three autosomal RCs. In decreasing order, the most frequently seen autosomal RCs were 18, 22, 4, 13, 17, and 9. The additional cases detail clinical and cytogenomic events similar to those reported in RCs. As methodologies advance, insights may be gleaned from following up on these cases to improve genotype-phenotype correlations and understand the cryptic differences or other predisposing factors that lead to ring formation and development.
Collapse
Affiliation(s)
- Shivani Kushwaha
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Stinnett
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ying S Zou
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jaclyn B Murry
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Boyd RJ, Murry JB, Morsberger LA, Klausner M, Chen S, Gocke CD, McCallion AS, Zou YS. Ring Chromosomes in Hematological Malignancies Are Associated with TP53 Gene Mutations and Characteristic Copy Number Variants. Cancers (Basel) 2023; 15:5439. [PMID: 38001699 PMCID: PMC10670249 DOI: 10.3390/cancers15225439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Ring chromosomes (RC) are present in <10% of patients with hematological malignancies and are associated with poor prognosis. Until now, only small cohorts of patients with hematological neoplasms and concomitant RCs have been cytogenetically characterized. Here, we performed a conventional chromosome analysis on metaphase spreads from >13,000 patients diagnosed with hematological malignancies at the Johns Hopkins University Hospital and identified 98 patients with RCs-90 with myeloid malignancies and 8 with lymphoid malignancies. We also performed a targeted Next-Generation Sequencing (NGS) assay, using a panel of 642 cancer genes, to identify whether these patients harbor relevant pathogenic variants. Cytogenetic analyses revealed that RCs and marker chromosomes of unknown origin are concurrently present in most patients by karyotyping, and 93% of patients with NGS data have complex karyotypes. A total of 72% of these individuals have pathogenic mutations in TP53, most of whom also possess cytogenetic abnormalities resulting in the loss of 17p, including the loss of TP53. All patients with a detected RC and without complex karyotypes also lack TP53 mutations but have pathogenic mutations in TET2. Further, 70% of RCs that map to a known chromosome are detected in individuals without TP53 mutations. Our data suggest that RCs in hematological malignancies may arise through different mechanisms, but ultimately promote widespread chromosomal instability.
Collapse
Affiliation(s)
- Rachel J. Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.J.B.); (A.S.M.)
| | - Jaclyn B. Murry
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cytogenetics Laboratory, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Laura A. Morsberger
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cytogenetics Laboratory, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Melanie Klausner
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cytogenetics Laboratory, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Suping Chen
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher D. Gocke
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.J.B.); (A.S.M.)
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Johns Hopkins Genomics, Baltimore, MD 21205, USA; (J.B.M.); (L.A.M.); (M.K.); (S.C.); (C.D.G.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cytogenetics Laboratory, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Li P, Dupont B, Hu Q, Crimi M, Shen Y, Lebedev I, Liehr T. The past, present, and future for constitutional ring chromosomes: A report of the international consortium for human ring chromosomes. HGG ADVANCES 2022; 3:100139. [PMID: 36187226 PMCID: PMC9519620 DOI: 10.1016/j.xhgg.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Human ring chromosomes (RCs) are rare diseases with an estimated newborn incidence of 1/50,000 and an annual occurrence of 2,800 patients globally. Over the past 60 years, banding cytogenetics, fluorescence in situ hybridization (FISH), chromosome microarray analysis (CMA), and whole-genome sequencing (WGS) has been used to detect an RC and further characterize its genomic alterations. Ring syndrome featuring sever growth retardation and variable intellectual disability has been considered as general clinical presentations for all RCs due to the cellular losses from the dynamic mosaicism of RC instability through mitosis. Cytogenomic heterogeneity ranging from simple complete RCs to complex rearranged RCs and variable RC intolerance with different relative frequencies have been observed. Clinical heterogeneity, including chromosome-specific deletion and duplication syndromes, gene-related organ and tissue defects, cancer predisposition to different types of tumors, and reproductive failure, has been reported in the literature. However, the patients with RCs reported in the literature accounted for less than 1% of its occurrence. Current diagnostic practice lacks laboratory standards for analyzing cellular behavior and genomic imbalances of RCs to evaluate the compound effects on patients. Under-representation of clinical cases and lack of comprehensive diagnostic analysis make it a challenge for evidence-based interpretation of clinico-cytogenomic correlations and recommendation of follow-up clinical management. Given recent advancements in genomic technologies and organized efforts by international collaborations and patient advocacy organizations, the prospective of standardized cytogenomic diagnosis and evidence-based clinical management for all patients with RCs could be achieved at an unprecedented global scale.
Collapse
Affiliation(s)
- Peining Li
- Clinical Cytogenetics Laboratory, Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Corresponding author
| | - Barbara Dupont
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
- Corresponding author
| | - Qiping Hu
- Department of Cell Biology and Genetics, Institute of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Marco Crimi
- Ring 14 International, Via Santa Maria Alla Porta 2, 20123 Milano, Italy
- Kaleidos SCS, Scientific Office, Via Moretti Andrea 20, 24121 Bergamo, Italy
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Igor Lebedev
- Laboratory of Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634050, Russia
- Corresponding author
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747 Jena, Germany
- Corresponding author
| |
Collapse
|
6
|
Kaya M, Suer I, Kalayci T, Karaman B, Ozturk S, Palanduz S. Cytogenetic and molecular characterization of a patient having infertility and mild intellectual disability with a very rare unstable ring chromosome 13. Scott Med J 2022; 67:173-177. [PMID: 35862016 DOI: 10.1177/00369330221114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Ring chromosomes arise from breakage and fusion at distal regions of short and long arms of the chromosomes. The effect of the ring chromosome on the phenotype may vary widely depending on the amount of the deletion in the chromosomal areas and genes implicated in these regions. CASE PRESENTATION We present a 35-year-old male patient with infertility and mild intellectual disability (MID) who has de novo ring 13 (r(13)) chromosomes. To determine chromosomal abnormality, we performed karyotype analysis, Y chromosome microdeletion analysis, FISH, and aCGH techniques. CONCLUSION The patient's karyotype analysis result was mos46,XY,r(13)(p13q34)[75]/45,XY,-13[14]/46,XY,dic (13;13)[8]/47,XY,r(13), + r(13)[2]/46,XY,tetrac r(13;13;13;13)[1]. FISH analysis supported the findings of the cytogenetic analysis. Y microdeletion analysis showed that the AZF region was intact. On aCGH analysis, we detected a 1.5 megabase deletion at the end of chromosome 13, including the CHAMP1 gene. The loss of the CHAMP1 gene, in particular, may explain our patient's MID, and the other deleted genes at 13q34 may explain our patient's infertility.
Collapse
Affiliation(s)
- Murat Kaya
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ilknur Suer
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Tugba Kalayci
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sukru Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Paz-y-Miño C, Medranda C, Loaiza A, Ponce M, Leone PE. Rare pathology derived from a ring chromosome 15. Clinical, genomic and protein interactome of genes associated with the phenotype. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The case of a 4-year-two-month-old female patient is presented, who consulted for a special phenotype: psychomotor retardation, short stature, microcephaly, large and low-set ears, small forehead, prominent brow ridges, labial commissure open, ocular hypertelorism, short neck, mammary hypertelorism and pectus excavatum. The objective of this study is to analyze a patient with unusual phenotypic traits, through physical examination, comparative analysis with other cases, and genetic studies. The cytogenetic study revealed a mosaic karyotype, mos 46,XX,r(15)(q26.3)/46,XX with the presence of the ring in 83%. The genetic mapping array study identified the loss of 3.5 Mb in 15q26.3. Among the genes lost in the terminal region of 15q, an interaction between their protein products was evidenced according to the STRING analysis. This is the second case of a ring chromosome 15 reported in Ecuador. And it would be the 101st in the world since 1966. The special phenotype of these individuals is related to the amount of genetic material lost. The genes involved in the formation of the ring, as well as the proteins that determine these genes and the relationships in different cellular pathways, are analyzed in silico in order to understand the pathophysiology of this disorder. Its diagnosis is mostly postnatal, so the clinical approach differs individually according to the symptoms and signs that appear.
Collapse
Affiliation(s)
- César Paz-y-Miño
- Academia Ecuatoriana de Medicina. Academia Ecuatoriana de Medicina, calles Sodiro y Valparaíso. Pabellón 4. 170136 Quito, Ecuador https://orcid.org/0000-0002-6693-7344 2 Sociedad Ecuatoriana de Genética Humana. 3 Facultad de Ciencias de la Salud Eugenio Espejo. Universidad UTE. Quito, Ecuador
| | - Camila Medranda
- Genomics Lab. Amazonas N39-82 y Pereira. Edificio Casa Vivanco, piso 6
| | - Alejandra Loaiza
- Genomics Lab. Amazonas N39-82 y Pereira. Edificio Casa Vivanco, piso 6
| | - Mishell Ponce
- Genomics Lab. Amazonas N39-82 y Pereira. Edificio Casa Vivanco, piso 6
| | | |
Collapse
|
8
|
Schuy J, Eisfeldt J, Pettersson M, Shahrokhshahi N, Moslem M, Nilsson D, Dahl N, Shahsavani M, Falk A, Lindstrand A. Partial Monosomy 21 Mirrors Gene Expression of Trisomy 21 in a Patient-Derived Neuroepithelial Stem Cell Model. Front Genet 2022; 12:803683. [PMID: 35186010 PMCID: PMC8854775 DOI: 10.3389/fgene.2021.803683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) from patients are an attractive disease model to study tissues with poor accessibility such as the brain. Using this approach, we and others have shown that trisomy 21 results in genome-wide transcriptional dysregulations. The effects of loss of genes on chromosome 21 is much less characterized. Here, we use patient-derived neural cells from an individual with neurodevelopmental delay and a ring chromosome 21 with two deletions spanning 3.8 Mb at the terminal end of 21q22.3, containing 60 protein-coding genes. To investigate the molecular perturbations of the partial monosomy on neural cells, we established patient-derived iPSCs from fibroblasts retaining the ring chromosome 21, and we then induced iPSCs into neuroepithelial stem cells. RNA-Seq analysis of NESCs with the ring chromosome revealed downregulation of 18 genes within the deleted region together with global transcriptomic dysregulations when compared to euploid NESCs. Since the deletions on chromosome 21 represent a genetic “contrary” to trisomy of the corresponding region, we further compared the dysregulated transcriptomic profile in with that of two NESC lines with trisomy 21. The analysis revealed opposed expression changes for 23 genes on chromosome 21 as well as 149 non-chromosome 21 genes. Taken together, our results bring insights into the effects on the global and chromosome 21 specific gene expression from a partial monosomy of chromosome 21qter during early neuronal differentiation.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Mansoureh Shahsavani
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Anna Lindstrand,
| |
Collapse
|
9
|
Phillips EA, Caluseriu O, Schlade-Bartusiak K, Chernos J, McLeod DR, Thomas MA. Clinical and molecular characterization of an almost complete ring chromosome 4 in two sisters, with recurrence due to gonadal mosaicism. Clin Dysmorphol 2021; 30:173-176. [PMID: 34417371 DOI: 10.1097/mcd.0000000000000382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autosomal ring chromosomes are rare cytogenetic findings that arise from breakage and fusion of the chromosome ends. Rings are mitotically unstable, usually sporadic and associated with a 'ring syndrome', characterized by a variable phenotype: growth retardation, no significant dysmorphisms and normal to moderately disabled intelligence. We describe the clinical features and molecular characterization of two sisters with ring chromosome 4. Karyotype analysis was performed on both sisters and parents. Chromosome microarray was performed on both sisters to delineate the breakpoint imbalance. Both sisters had a large ring 4 chromosome in the majority of cells analyzed on karyotype. Microarray results were identical in the sisters, showing a 55.8 kb duplication on the terminal 4p arm and a 1.5 Mb deletion on the terminal 4q arm. No genes of interest were identified in these regions. Parental karyotypes on lymphocytes and fibroblasts were normal, with no finding of mosaicism for the ring 4 chromosome. Polymorphic marker analysis revealed the maternal origin of the ring. To our knowledge, this is the first reported instance of a ring 4 chromosome recurring in siblings after extensive parental testing, which suggests this was due to maternal gonadal mosaicism.
Collapse
Affiliation(s)
- Eliza A Phillips
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary
| | - Oana Caluseriu
- Department of Medical Genetics
- Department of Pediatrics, University of Alberta, Edmonton
| | | | - Judy Chernos
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary
| | - D Ross McLeod
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Elghezal H, Alfayez K, Ben Abdallah I, Alfares A, Almazyad A, Al Jasser A, Almobadel N, Alsuhaibani O, Alhashem A. Hypospadias in ring X syndrome. Eur J Med Genet 2021; 64:104225. [PMID: 33872775 DOI: 10.1016/j.ejmg.2021.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
Ring X is a chromosomal anomaly mainly seen in females with turner syndrome and usually present in mosaic form with 45,X cells (45,X/46,X,r(X)) because of their mitotic instability. In males it is an extremely rare finding because large nullisomy for X chromosome material is likely not compatible with survival. Only two cases of male with ring chromosome X were previously reported. We report here a four-year-old male with ring chromosome X characterized using Karyotype, FISH and array CGH and presenting short stature, microcephaly and hypospadias. Molecular investigations showed 923 Kb terminal deletion on the pseudoautosomal region 1 (PAR1) including SHOX gene followed by a duplication of 2.4 Mb. The absence of functional nullisomy because of a second copy of deleted genes was present in chromosome Y PAR1 region may explain the compatibility with survival in our case of male with ring X. Short stature common with the two previously reported cases is likely related to SHOX gene deletion but also to the effect of "ring syndrome". However, hypospadias was not reported in the previous cases and can be due to the associated duplication outside PAR1 region including in particular PRKX gene coding for a protein involved in urogenital system morphogenesis.
Collapse
Affiliation(s)
- Hatem Elghezal
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Khowla Alfayez
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Inesse Ben Abdallah
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Division of Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayesh Almazyad
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Abdullah Al Jasser
- Division of Endocrinology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nasser Almobadel
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar Alsuhaibani
- Central Military Laboratory and Blood Bank Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Division of Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Nikitina TV, Kashevarova AA, Gridina MM, Lopatkina ME, Khabarova AA, Yakovleva YS, Menzorov AG, Minina YA, Pristyazhnyuk IE, Vasilyev SA, Fedotov DA, Serov OL, Lebedev IN. Complex biology of constitutional ring chromosomes structure and (in)stability revealed by somatic cell reprogramming. Sci Rep 2021; 11:4325. [PMID: 33619287 PMCID: PMC7900208 DOI: 10.1038/s41598-021-83399-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Human ring chromosomes are often unstable during mitosis, and daughter cells can be partially or completely aneuploid. We studied the mitotic stability of four ring chromosomes, 8, 13, 18, and 22, in long-term cultures of skin fibroblasts and induced pluripotent stem cells (iPSCs) by GTG karyotyping and aCGH. Ring chromosome loss and secondary aberrations were observed in all fibroblast cultures except for r(18). We found monosomy, fragmentation, and translocation of indexed chromosomes. In iPSCs, aCGH revealed striking differences in mitotic stability both between iPSC lines with different rings and, in some cases, between cell lines with the same ring chromosome. We registered the spontaneous rescue of karyotype 46,XY,r(8) to 46,XY in all six iPSC lines through ring chromosome loss and intact homologue duplication with isoUPD(8)pat occurrence, as proven by SNP genotype distribution analysis. In iPSCs with other ring chromosomes, karyotype correction was not observed. Our results suggest that spontaneous correction of the karyotype with ring chromosomes in iPSCs is not universal and that pluripotency is compatible with a wide range of derivative karyotypes. We conclude that marked variability in the frequency of secondary rearrangements exists in both fibroblast and iPSC cultures, expanding the clinical significance of the constitutional ring chromosome.
Collapse
Affiliation(s)
- T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.
| | - A A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - M M Gridina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - M E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - A A Khabarova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Yu S Yakovleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - A G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yu A Minina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - I E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - D A Fedotov
- Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - O L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| |
Collapse
|
12
|
Peron A, Catusi I, Recalcati MP, Calzari L, Larizza L, Vignoli A, Canevini MP. Ring Chromosome 20 Syndrome: Genetics, Clinical Characteristics, and Overlapping Phenotypes. Front Neurol 2020; 11:613035. [PMID: 33363513 PMCID: PMC7753021 DOI: 10.3389/fneur.2020.613035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Ring chromosome 20 [r(20)] syndrome is a rare condition characterized by a non-supernumerary ring chromosome 20 replacing a normal chromosome 20. It is commonly seen in a mosaic state and is diagnosed by means of karyotyping. r(20) syndrome is characterized by a recognizable epileptic phenotype with typical EEG pattern, intellectual disability manifesting after seizure onset in otherwise normally developing children, and behavioral changes. Despite the distinctive phenotype, many patients still lack a diagnosis-especially in the genomic era-and the pathomechanisms of ring formation are poorly understood. In this review we address the genetic and clinical aspects of r(20) syndrome, and discuss differential diagnoses and overlapping phenotypes, providing the reader with useful tools for clinical and laboratory practice. We also discuss the current issues in understanding the mechanisms through which ring 20 chromosome causes the typical manifestations, and present unpublished data about methylation studies. Ultimately, we explore future perspectives of r(20) research. Our intended audience is clinical and laboratory geneticists, child and adult neurologists, and genetic counselors.
Collapse
Affiliation(s)
- Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Catusi
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Lidia Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Chai H, Ji W, Wen J, DiAdamo A, Grommisch B, Hu Q, Szekely AM, Li P. Ring chromosome formation by intra-strand repairing of subtelomeric double stand breaks and clinico-cytogenomic correlations for ring chromosome 9. Am J Med Genet A 2020; 182:3023-3028. [PMID: 32978894 DOI: 10.1002/ajmg.a.61890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 11/09/2022]
Abstract
Constitutional ring chromosome 9, r(9), is a rare chromosomal disorder. Cytogenomic analyses by karyotyping, array comparative genomic hybridization (aCGH) and whole genome sequencing (WGS) were performed in a patient of r(9). Karyotyping detected a mosaic pattern of r(9) and monosomy 9 in 83% and 17% of cells, respectively. aCGH detected subtelomeric deletions of 407 kb at 9p24.3 and 884 kb at 9q34.3 and an interstitial duplication of 5.879 Mb at 9q33.2q34.11. WGS revealed double strand breaks (DSBs) at ends of 9p24.3 and 9q34.3, inverted repeats at ends of subtelomeric and 9q33.2q34.11 regions, and microhomology sequences at the junctions of this r(9). This is the first report of r(9) analyzed by WGS to delineate the mechanism of ring chromosome formation from repairing of subtelomeric DSBs. The loss of telomeres by subtelomeric DSBs triggered inverted repeats induced intra-strand foldback and then microhomology mediated synthesis and ligation, which resulted in the formation of this r(9) with distal deletions and an interstitial duplication. Review of literature found seven patients of r(9) with clinical and cytogenomic findings. These patients and the present patient were registered into the Human Ring Chromosome Registry and a map correlating critical regions and candidate genes with relevant phenotypes was constructed. Variable phenotypes of r(9) patients could be explained by critical regions and genes of DOCK8, DMRT, SMARCA2, CD274, IL33, PTPRD, CER1, FREM1 for 9p deletions, and the EHMT1 gene for 9q34 deletion syndrome. This interactive registry of r(9) could provide information for cytogenomic diagnosis, genetics counseling and clinical management.
Collapse
Affiliation(s)
- Hongyan Chai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiadi Wen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Autumn DiAdamo
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brittany Grommisch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qiping Hu
- Departments of Cell Biology and Genetics, Guangxi Medical University, Nanning, China
| | - Anna M Szekely
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Towards New Approaches to Evaluate Dynamic Mosaicism in Ring Chromosome 13 Syndrome. Case Rep Genet 2020; 2019:7250838. [PMID: 31976095 PMCID: PMC6949681 DOI: 10.1155/2019/7250838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Individuals with ring chromosome 13 may show characteristics observed in a deletion syndrome and could present a set of dismorphies along with intellectual disability, according to chromosomal segments involved in the genetic imbalance. Nevertheless, ring anomalies likewise is called "dynamic mosaicism", phenomena triggered by the inner instability concerning the ring structure, thus leading to the establishment of different cell clones with secondary aberrations. Phenotypic features, such as growth failure and other anomalies in patients with this condition have been associated with an inherent ring chromosome mitotic instability, while recent studies offer evidence on a role played by the differential loss of genes implicated in development. Here, we observed similar mosaicism rates and specific gene loss profile among three individuals with ring chromosome 13 using GTW-banding karyotype analyses along with FISH and CGH-array approaches. Karyotypes results were: patient 1-r(13)(p13q32.3), patient 2-r(13)(p11q33.3), and patient 3-r(13)(p12q31.1). Array-CGH has revealed qualitative genetic differences among patients in this study and it was elusive in precise chromosomal loss statement, ranging from 13 Mb, 6.8 Mb, and 30 Mb in size. MIR17HG and ZIC2 loss was observed in a patient with digital anomalies, severe growth failure, microcephaly and corpus callosum agenesis while hemizygotic EFNB2 gene loss was identified in two patients, one of them with microphtalmia. According to these findings, it can be concluded that specific hemizygotic loss of genes related to development, more than dynamic mosaicism, may be causative of congenital anomalies shown in patients with ring 13 chromosome.
Collapse
|
15
|
Corrêa T, Venâncio AC, Galera MF, Riegel M. Candidate Genes Associated with Delayed Neuropsychomotor Development and Seizures in a Patient with Ring Chromosome 20. Case Rep Genet 2020; 2020:5957415. [PMID: 32082653 PMCID: PMC6995492 DOI: 10.1155/2020/5957415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
Abstract
Ring chromosome 20 (r20) is characterized by intellectual impairment, behavioral disorders, and refractory epilepsy. We report a patient presenting nonmosaic ring chromosome 20 followed by duplication and deletion in 20q13.33 with seizures, delayed neuropsychomotor development and language, mild hypotonia, low weight gain, and cognitive deficit. Chromosomal microarray analysis (CMA) enabled us to restrict a chromosomal segment and thus integrate clinical and molecular data with systems biology. With this approach, we were able to identify candidate genes that may help to explain the consequences of deletions in 20q13.33. In our analysis, we observed five hubs (ARFGAP1, HELZ2, COL9A3, PTK6, and EEF1A2), seven bottlenecks (CHRNA4, ARFRP1, GID8, COL9A3, PTK6, ZBTB46, and SRMS), and two H-B nodes (PTK6 and COL9A3). The candidate genes may play an important role in the developmental delay and seizures observed in r20 patients. Gene ontology included microtubule-based movement, nucleosome assembly, DNA repair, and cholinergic synaptic transmission. Defects in these bioprocesses are associated with the development of neurological diseases, intellectual disability, neuropathies, and seizures. Therefore, in this study, we can explore molecular cytogenetic data, identify proteins through network analysis of protein-protein interactions, and identify new candidate genes associated with the main clinical findings in patients with 20q13.33 deletions.
Collapse
Affiliation(s)
- Thiago Corrêa
- Genetics Department, Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Amanda Cristina Venâncio
- Post-Graduate Program in Health Sciences, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Marcial Francis Galera
- Department of Pediatrics, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Mariluce Riegel
- Genetics Department, Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Corona-Rivera JR, Corona-Rivera A, Zepeda-Romero LC, Rios-Flores IM, Rivera-Vargas J, Orozco-Vela M, Santana-Bejarano UF, Torres-Anguiano E, Pinto-Cardoso M, David D, Bobadilla-Morales L. Ring chromosome 6 in a child with anterior segment dysgenesis and review of its overlap with other FOXC1 deletion phenotypes. Congenit Anom (Kyoto) 2019; 59:174-178. [PMID: 30225942 DOI: 10.1111/cga.12309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
Here, we report a patient with ring chromosome 6 [r(6)], associated with anterior segment dysgenesis (ASD) and other anomalies. The phenotype was due to a 1880 kb microdeletion at 6p25.3 identified by whole-genome array analysis, and was mainly attributable to a FOXC1 haploinsufficiency. Currently 37 patients with r(6) have been reported. We found that facial dysmorphism, ASD, heart anomalies, brain anomalies, and hearing loss are constant features only in severe cases of r(6), mainly related to hemizygosity of FOXC1. Thus, overlaps with other FOXC1 related phenotypes, such as the 6p25 deletion syndrome, Axenfeld-Rieger syndrome type 3, and ASD type 3. Contrarily, those patients whose r(6) does not disrupt FOXC1, have mild or moderate phenotypes and do not exhibit ASD.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Luz Consuelo Zepeda-Romero
- Service of Ophthalmology, Division of Pediatrics, 'Fray Antonio Alcalde' Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Izabel Maryalexandra Rios-Flores
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Jehú Rivera-Vargas
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Mireya Orozco-Vela
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Uriel Francisco Santana-Bejarano
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Elizabeth Torres-Anguiano
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Manuela Pinto-Cardoso
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Dezső David
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
17
|
Marsudi BA, Kartapradja H, Paramayuda C, Batubara JRL, Harahap AR, Marzuki NS. Loss of DMRT1 gene in a Mos 45,XY,-9[8]/46,XY,r(9)[29]/47,XY,+idic r(9)× 2[1]/46,XY,idic r(9)[1]/46,XY[1] female presenting with short stature. Mol Cytogenet 2018; 11:28. [PMID: 29760778 PMCID: PMC5941566 DOI: 10.1186/s13039-018-0379-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/23/2018] [Indexed: 02/04/2023] Open
Abstract
Background A 46,XY sex reversal syndrome is characterized by discordant genetic and phenotypic sex, leading to normal external female genitalia, undeveloped gonads and presence of Müllerian structures in an otherwise 46,XY individual. Chromosome 9pter aberrations, such as ring chromosome have been reported to cause 46,XY disorders of sex development (DSD), due to involvement of DMRT1 gene located at the 9p24.3 region. Case presentation This study presents a unique case of a 12-year-old female with mos 46,XY, (r)9[31]/45,XY,-9[9] karyotype, presenting with intellectual disability and short stature, mimicking Turner syndrome. Re-karyotyping was performed using standard GTL-banding technique. Further cytogenetic study using standard metaphase fluorescent in situ hybridization (FISH) technique was applied to cultured lymphocytes from peripheral blood, hybridized using green control probe specific to 9q21 loci, and red DMRT1 probe specific to 9p24.3 loci. Cytogenetics and FISH analysis revealed mos 45,XY,-9[8]/46,XY,r(9)[29]/47,XY,+idic r(9)× 2[1]/46,XY,idic r(9)[1]/46,XY[1] and haploinsufficiency of DMRT1 gene in most cells. CGH array revealed a deletion around 1.25 Mb at 9p24.3 loci [arr 9p24.3(204,193-1,457,665)× 1] and three duplications around 13 Mb [9p24.3p22.3(1,477,660-14,506,754)× 3] near the breakage point that formed the ring chromosome 9. Conclusions The clinical presentation of the subject that mimics Turner syndrome highlights the importance of cytogenetic analysis to detect the possibility of ring chromosome 9. Sex reversal due to haploinsufficiency of DMRT1 gene in ring chromosome 9 structures is exceedingly rare with only a handful of cases ever reported. This finding further highlights the importance of DMRT1 gene in sex determination and differentiation in males. More research is required to pinpoint the exact mechanism that underlies sex reversal caused by DMRT1 haploinsufficiency.
Collapse
Affiliation(s)
- Bagas A Marsudi
- 1Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Jose R L Batubara
- 2Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Alida R Harahap
- 1Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nanis S Marzuki
- 1Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
18
|
Liu S, Wang Z, Wei S, Liang J, Chen N, OuYang H, Zeng W, Chen L, Xie X, Jiang J. Gray Matter Heterotopia, Mental Retardation, Developmental Delay, Microcephaly, and Facial Dysmorphisms in a Boy with Ring Chromosome 6: A 10-Year Follow-Up and Literature Review. Cytogenet Genome Res 2018; 154:201-208. [DOI: 10.1159/000488692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Ring chromosome 6, r(6), is an extremely rare cytogenetic abnormality with clinical heterogeneity which arises typically de novo. The phenotypes of r(6) can be highly variable, ranging from almost normal to severe malformations and neurological defects. Up to now, only 33 cases have been reported in the literature. In this 10-year follow-up study, we report a case presenting distinctive facial features, severe developmental delay, and gray matter heterotopia with r(6) and terminal deletions of 6p25.3 (115426-384174, 268 kb) and 6q26-27 (168697778-170732033, 2.03 Mb) encompassing 2 and 15 candidate genes, respectively, which were detected using G-banding karyotyping, FISH, and chromosomal microarray analysis. We also analyzed the available information on the clinical features of the reported r(6) cases in order to provide more valuable information on genotype-phenotype correlations. To the best of our knowledge, this is the first report of gray matter heterotopia manifested in a patient with r(6) in China, and the deletions of 6p and 6q in our case are the smallest with the precise size of euchromatic material loss currently known.
Collapse
|
19
|
Pristyazhnyuk IE, Menzorov AG. Ring chromosomes: from formation to clinical potential. PROTOPLASMA 2018; 255:439-449. [PMID: 28894962 DOI: 10.1007/s00709-017-1165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Ring chromosomes (RCs) are circular DNA molecules, which occur rarely in eukaryotic nuclear genomes. Lilian Vaughan Morgan first described them in the fruit fly. Human embryos very seldom have RCs, about 1:50,000. Carriers of RCs may have varying degrees of symptoms, from healthy phenotype to serious pathologies in physical and intellectual development. Many authors describe common symptoms of RC presence: short stature and some developmental delay that could be described as a "ring chromosome syndrome." As a rule, RCs arise de novo through the end-joining of two DNA double-strand breaks, telomere-subtelomere junction, or inv dup del rearrangement in both meiosis and mitosis. There are family cases of RC inheritance. The presence of RCs causes numerous secondary chromosome rearrangements in vivo and in vitro. RCs can change their size, become lost, or increase their copy number and cause additional deletions, duplication, and translocations, affecting both RCs and other chromosomes. In this review, we examine RC inheritance, instability, mechanisms of formation, and potential clinical applications of artificially created RCs for large-scale chromosome rearrangement treatment.
Collapse
Affiliation(s)
- Inna E Pristyazhnyuk
- Sector of Genomic Mechanisms of Ontogenesis, Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090.
| | - Aleksei G Menzorov
- Sector of Cell Collections, Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090
- Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia, 630090
- Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia, 634050
| |
Collapse
|
20
|
Hu Q, Chai H, Shu W, Li P. Human ring chromosome registry for cases in the Chinese population: re-emphasizing Cytogenomic and clinical heterogeneity and reviewing diagnostic and treatment strategies. Mol Cytogenet 2018; 11:19. [PMID: 29492108 PMCID: PMC5828142 DOI: 10.1186/s13039-018-0367-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Constitutional ring chromosomes are rare orphan chromosomal disorders. Ring chromosome syndrome featuring growth retardation and mild to intermediate intellectual disability is likely caused by the dynamic behavior of ring chromosome through cell cycles. Chromosomal and regional specific phenotypes likely result from segmental losses and gains during the ring formation. Although recent applications of genomic copy number and sequencing analyses revealed various ring chromosome structures from an increasing number of case studies, there was no organized effort for compilating and curating cytogenomic and clinical finding for ring chromosomes. METHODS A web-based interactive 'Human Ring Chromosome Registry' using Microsoft Access based relational database was developed to present genetic and phenotypic findings of ring chromosome cases. Chinese ring chromosome cases reported in the literature was reviewed and compiled as a testing data set to validate this registry. RESULTS A total of 113 cases of ring chromosomes were retrieved in all chromosomes except for chromosomes 16, 17 and 19. The most frequently seen ring chromosomes by a decreasing order of relative frequencies were ring 13 (14%), X (12%), 22 (10%), 15 (9%), 14 (7%), and 18 (7%). Genomic imbalances were detected in 18 out of 19 cases analyzed by microarray or sequencing. Variable clinical manifestations of developmental delay, dysmorphic facial features, intellectual disability, microcephaly, and hypotonia were noted in most autosomal rings. Chromosomal specific syndromic phenotypes included Wolf-Hirschhorn syndrome in a ring chromosome 4, cri-du-chat syndrome in a ring chromosome 5, epilepsy in ring chromosomes 14 and 20, Turner syndrome in ring chromosome X, and infertility in ring chromosomes 13, 21, 22 and Y. Effective growth hormone supplemental treatment for growth retardation in a ring chromosome 18 was noted. CONCLUSIONS Based on findings from these Chinese ring chromosome cases, guidelines for cytogenomic diagnosis and criteria for case registration were proposed. Further research to define underlying mechanisms of ring chromosome formation and dynamic mosaicism, to delineate the genotype-phenotype correlations, and to develop chromosome therapy for ring chromosomes were discussed.
Collapse
Affiliation(s)
- Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021 China
- Laboratory of Clinical Cytogenetics and Genomics, Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| | - Hongyan Chai
- Laboratory of Clinical Cytogenetics and Genomics, Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| | - Wei Shu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Peining Li
- Laboratory of Clinical Cytogenetics and Genomics, Department of Genetics, Yale School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
21
|
Fecundity in an infertile man with r(15) – a challenge to the current paradigm. Reprod Biomed Online 2018; 36:210-218. [DOI: 10.1016/j.rbmo.2017.10.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
|
22
|
Habib AGK, Sugiura K, Ueno M. Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. PLoS One 2018; 13:e0190523. [PMID: 29298360 PMCID: PMC5752009 DOI: 10.1371/journal.pone.0190523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ring chromosomes are circular chromosomal abnormalities that have been reported in association with some genetic disorders and cancers. In Schizosaccharomyces pombe, lack of function of protection of telomere 1 (Pot1) or telomerase catalytic subunit (Trt1) results in survivors with circular chromosomes. Hitherto, it is poorly understood how cells with circular chromosomes survive and how circular chromosomes are maintained. Fission yeast Cut17/Bir1, Ark1, Pic1, and Nbl1 is a conserved chromosome passenger complex (CPC) functioning mainly throughout mitosis. Here, using a temperature-sensitive mutant of CPC subunits, we determined that CPC is synthetically lethal in combination with either Pot1 or Trt1. The pot1Δ pic1-T269 double mutant, which has circular chromosomes, showed a high percentage of chromosome mis-segregation and DNA damage foci at 33°C. We furthermore found that neither Shugoshin Sgo2 nor heterochromatin protein Swi6, which contribute to the centromeric localization of CPC, were required for the survival in the absence of Pot1. Both the pot1Δ sgo2Δ and pot1Δ swi6Δ double mutants displayed a high percentage of DNA damage foci, but a low percentage of chromosome mis-segregation, suggesting the link between the high percentage of chromosome mis-segregation and the lethality of the CPC pot1Δ double mutant. Our results suggest that CPC is required for the survival of cells with circular chromosomes and sheds light on the possible roles of CPC in the maintenance of circular chromosomes.
Collapse
Affiliation(s)
- Ahmed G. K. Habib
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
23
|
Szabó A, Czakó M, Hadzsiev K, Duga B, Bánfai Z, Komlósi K, Melegh B. Small supernumerary marker chromosome 15 and a ring chromosome 15 associated with a 15q26.3 deletion excluding the
IGF1R
gene. Am J Med Genet A 2017; 176:443-449. [DOI: 10.1002/ajmg.a.38566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/04/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
- András Szabó
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Márta Czakó
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Kinga Hadzsiev
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Balázs Duga
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Zsolt Bánfai
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Katalin Komlósi
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| | - Béla Melegh
- Department of Medical Genetics University of PécsPécsHungary
- Szentágothai Research CentrePécsHungary
| |
Collapse
|
24
|
Chau A, Ramesh KH, Jagannath AD, Arora S. Rheumatoid arthritis in an adult patient with mosaic distal 18q-, 18p- and ring chromosome 18. F1000Res 2017; 6:1940. [PMID: 29560252 PMCID: PMC5854985 DOI: 10.12688/f1000research.11539.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 01/08/2023] Open
Abstract
Ring chromosome 18 has a highly variable phenotype, depending on the extent of distal arm deletions. It is most commonly presented as a combination of 18p- and distal 18q- syndrome. IgA deficiency and autoimmune diseases have been previously described in these patients. Seven cases of juvenile rheumatoid arthritis (JRA) have been reported. Here we report the first case of late onset rheumatoid arthritis (RA) in a 32 year old Dominican woman with hypothyroidism, vitiligo, IgA deficiency, interstitial lung disease (ILD), cystic bronchiectasis, and features consistent with ringed 18, 18p- and distal 18q syndrome. The multiple autoimmune findings in our patient lends further support to the idea of loci on chromosome 18 playing a role in autoimmune disease expression. Late onset RA and ILD in a patient with chromosome 18 abnormalities are novel findings and are additional conditions to be aware of in this population.
Collapse
Affiliation(s)
- Alanna Chau
- Albert Einstein College of Medicine, Bronx, New York City, NY, USA
| | - K H Ramesh
- Department of Pathology, Montefiore Medical Center, Bronx, New York City, NY, USA
| | - Anand D Jagannath
- Department of Medicine, Montefiore Medical Center, Bronx, New York City, NY, USA
| | - Shitij Arora
- Department of Medicine, Montefiore Medical Center, Bronx, New York City, NY, USA
| |
Collapse
|
25
|
Tewari S, Lubna N, Shah R, Al-Rikabi ABH, Shah K, Sheth J, Sheth F. Molecular characterization and evaluation of complex rearrangements in a case of ring chromosome 15. Mol Cytogenet 2017; 10:38. [PMID: 29090019 PMCID: PMC5657133 DOI: 10.1186/s13039-017-0339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Background Ring chromosome 15 is a rare genetic entity. Only a few cases have been reported with characterization using molecular techniques. The clinical presentation is quite variable, as a result of differences in the breakpoints, haploinsufficiency of genes involved in deleted segment/s, level of mosaicism and ring instability resulting in a variability of rearrangement of genetic material. Case presentation The proband, a 2 months old boy, presented with small head size and facial dysmorphism. On examination microcephaly, triangular face, small anterior frontanelle, micrognathia, hypotonia, unilateral simian crease, hypertelorism, umbilical hernia, micropenis with mild phimosis were noted. Karyotype revealed 46,XY,r(15)(p11.2q26). Array-comparative genomic hybridization (aCGH) and targeted gene sequencing for microcephaly was carried out for genotype phenotype correlation. Array-CGH detected a 2.8 Mb terminal deletion at 15q26.3 along with a 496 kb interstitial micro-duplication, encompassing the IGF1R gene, in the affected genomic region, which was otherwise missed on conventional karyotype. Conclusion The present study highlights the importance of aCGH in not only delineating specific phenotypes through accurate genotypic correlation but also in detection and evaluation of ring chromosome with unexpected complex rearrangements. Electronic supplementary material The online version of this article (10.1186/s13039-017-0339-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stuti Tewari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009 India
| | - Naznin Lubna
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009 India
| | - Raju Shah
- Ankur Institute of Child Health, Ashram Road, Ahmedabad, 380009 India
| | | | - Krati Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009 India
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009 India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009 India
| |
Collapse
|
26
|
Rinaldi B, Vaisfeld A, Amarri S, Baldo C, Gobbi G, Magini P, Melli E, Neri G, Novara F, Pippucci T, Rizzi R, Soresina A, Zampini L, Zuffardi O, Crimi M. Guideline recommendations for diagnosis and clinical management of Ring14 syndrome-first report of an ad hoc task force. Orphanet J Rare Dis 2017; 12:69. [PMID: 28399932 PMCID: PMC5387247 DOI: 10.1186/s13023-017-0606-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023] Open
Abstract
Background Ring chromosome 14 syndrome is a rare chromosomal disorder characterized by early onset refractory epilepsy, intellectual disability, autism spectrum disorder and a number of diverse health issues. Results The aim of this work is to provide recommendations for the diagnosis and management of persons affected by ring chromosome 14 syndrome based on evidence from literature and experience of health professionals from different medical backgrounds who have followed for several years subjects affected by ring chromosome 14 syndrome. The literature search was performed in 2016. Original papers, meta-analyses, reviews, books and guidelines were reviewed and final recommendations were reached by consensus. Conclusion Conventional cytogenetics is the primary tool to identify a ring chromosome. Children with a terminal deletion of chromosome 14q ascertained by molecular karyotyping (CGH/SNP array) should be tested secondarily by conventional cytogenetics for the presence of a ring chromosome. Early diagnosis should be pursued in order to provide medical and social assistance by a multidisciplinary team. Clinical investigations, including neurophysiology for epilepsy, should be performed at the diagnosis and within the follow-up. Following the diagnosis, patients and relatives/caregivers should receive regular care for health and social issues. Epilepsy should be treated from the onset with anticonvulsive therapy. Likewise, feeding difficulties should be treated according to need. Nutritional assessment is recommended for all patients and nutritional support for malnourishment can include gastrostomy feeding in selected cases. Presence of autistic traits should be carefully evaluated. Many patients with ring chromosome 14 syndrome are nonverbal and thus maintaining their ability to communicate is always essential; every effort should be made to preserve their autonomy.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Vaisfeld
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Sergio Amarri
- Pediatrics Unit, Department of Women's and Children's Health, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Chiara Baldo
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy
| | - Giuseppe Gobbi
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Erto Melli
- Ospedale S. Anna, Ambulatorio Oculistica, AUSL di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Department of Woman, Child and Urologic Diseases, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Department of Pediatrics, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Laura Zampini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Crimi
- Ring14 International, Scientific office, Via Flavio Gioia, 5-42124, Reggio Emilia, Italy.
| |
Collapse
|
27
|
Burgemeister AL, Daumiller E, Dietze-Armana I, Klett C, Freiberg C, Stark W, Lingen M, Centonze I, Rettenberger G, Mehnert K, Zirn B. Continuing role for classical cytogenetics: Case report of a boy with ring syndrome caused by complete ring chromosome 4 and review of literature. Am J Med Genet A 2017; 173:727-732. [PMID: 28127864 DOI: 10.1002/ajmg.a.38063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022]
Abstract
Constitutional ring chromosomes can be found for all human chromosomes and are very rare chromosomal abnormalities. A complete ring chromosome without loss of genetic material results from fusion of subtelomeric regions or telomere-telomere fusion. In cases of complete ring chromosome, an increased incidence of severe growth failure with no or only minor anomalies has been observed and attributed to ring syndrome. Ring syndrome is thought to be caused by "dynamic mosaicism" due to ring instability. We report a 6-year-old boy with de novo ring chromosome 4 and typical characteristics of the ring syndrome, namely, proportionate severe growth failure, microcephaly, and minor anomalies. Cytogenetic studies showed complete ring chromosome 4 with mitotic instability. Microarray gave normal results, thus excluding the loss of detectable genetic material. The literature of complete ring chromosome 4 is reviewed. Our case report supports the theory of ring syndrome. No studies about the effects and possible side effects of growth hormone therapy on patients with ring chromosomes have yet been published. We suggest that cytogenetic monitoring of the rate of secondary aberrations in patients with ring chromosome undergoing growth hormone therapy might be feasible. Since the diagnosis would have been missed by molecular karyotyping, our case report underlines the continuing role of classical cytogenetics for the evaluation of structural chromosomal abnormalities in patients with mental and/or physical anomalies. Standard karyotyping is still indispensable and should have an ongoing role as first-tier analysis together with molecular karyotyping. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Eva Daumiller
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| | - Ilona Dietze-Armana
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| | - Christine Klett
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| | - Clemens Freiberg
- Department of Pediatrics and Adolescent Medicine, Pediatric Endocrinology, University Medicine, Göttingen, Germany
| | - Wiebke Stark
- Department of Pediatrics and Adolescent Medicine, Pediatric Neurology, University Medicine, Göttingen, Germany
| | - Michael Lingen
- Department of Pediatrics and Adolescent Medicine, Pediatric Neurology, University Medicine, Göttingen, Germany
| | - Izabela Centonze
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| | | | - Karl Mehnert
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| | - Birgit Zirn
- Genetikum, Genetic Counseling and Diagnostics, Stuttgart and Neu-Ulm, Germany
| |
Collapse
|
28
|
Kim T, Plona K, Wynshaw-Boris A. A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC). Chromosoma 2016; 126:457-463. [PMID: 27882407 DOI: 10.1007/s00412-016-0621-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 01/20/2023]
Abstract
Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed "chromosome therapy".
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kathleen Plona
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
Plona K, Kim T, Halloran K, Wynshaw-Boris A. Chromosome therapy: Potential strategies for the correction of severe chromosome aberrations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:422-430. [PMID: 27813255 DOI: 10.1002/ajmg.c.31530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large chromosomal aberrations occur commonly during development, resulting in complex and multisystem diseases. In spite of this high frequency, there are currently no means for correcting these disorders due to their complexity and involvement of multiple genes. Recently, several new approaches have been devised that target whole chromosomes in vitro, which are collectively referred to as "Chromosome Therapies." These include silencing and selection for loss of the extra chromosome in trisomies, promotion of euploidy in an aneuploid culture, and forced loss and replacement of a chromosome. Here, we provide a review of Chromosome Therapy, and discuss potential directions for these methods clinically, as well as research applications and cellular models that can be made using these technologies. © 2016 Wiley Periodicals, Inc.
Collapse
|
30
|
Sivasankaran A, Kanakavalli MK, Anuradha D, Samuel CR, Kandukuri LR. Ring Chromosome 9 and Chromosome 9p Deletion Syndrome in a Patient Associated with Developmental Delay: A Case Report and Review of the Literature. Cytogenet Genome Res 2016; 148:165-73. [DOI: 10.1159/000445862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Ring chromosomes have been described for all human chromosomes and are typically associated with physical and/or mental abnormalities resulting from a deletion of the terminal ends of both chromosome arms. This report describes the presence of a ring chromosome 9 in a 2-year-old male child associated with developmental delay. The proband manifested a severe phenotype comprising facial dysmorphism, congenital heart defects, and seizures. The child also exhibited multiple cell lines with mosaic patterns of double rings, a dicentric ring and loss of the ring associated with mitotic instability and dynamic tissue-specific mosaicism. His karyotype was 46,XY,r(9)(p22q34)[89]/46,XY,dic r(9; 9)(p22q34;p22q34)[6]/45, XY,-9[4]/47,XY,r(9),+r(9)[1]. However, the karyotypes of his parents and elder brother were normal. FISH using mBAND probe and subtelomeric probes specific for p and q arms for chromosome 9 showed no deletion in any of the regions. Chromosomal microarray analysis led to the identification of a heterozygous deletion of 15.7 Mb from 9p22.3 to 9p24.3. The probable role of the deleted genes in the manifestation of the phenotype of the proband is discussed.
Collapse
|
31
|
Saliganan S, Lee J, Wei S. A patient with constitutional ring 1 chromosome characterized by SNP array CGH. Clin Case Rep 2016; 4:442-8. [PMID: 27099748 PMCID: PMC4831404 DOI: 10.1002/ccr3.522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/05/2015] [Accepted: 01/28/2016] [Indexed: 11/22/2022] Open
Abstract
We present a male patient with constitutional ring 1 chromosome and subsequent 6 Mb deletion at 1q43q44. The patient displays overlapping clinical features with reported patients with ring 1 chromosome and 1q43q44 microdeletion syndrome. To our knowledge, this is the first patient with ring 1 chromosome characterized by comparative genomic hybridization.
Collapse
Affiliation(s)
- Sheila Saliganan
- Division of Genetics Department of Pediatrics and Human Development College of Human Medicine Michigan State University East Lansing Michigan
| | - Joanna Lee
- Division of Genetics Department of Pediatrics and Human Development College of Human Medicine Michigan State University East Lansing Michigan
| | - Sainan Wei
- Department of Pathology and Laboratory Medicine College of Medicine University of Kentucky
| |
Collapse
|
32
|
Zhang K, Song F, Zhang D, Liu Y, Zhang H, Wang Y, Dong R, Zhang Y, Liu Y, Gai Z. Chromosome r(3)(p25.3q29) in a Patient with Developmental Delay and Congenital Heart Defects: A Case Report and a Brief Literature Review. Cytogenet Genome Res 2016; 148:6-13. [PMID: 27077748 DOI: 10.1159/000445273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Ring chromosome 3, r(3), is an extremely rare cytogenetic abnormality with clinical heterogeneity and only 12 cases reported in the literature. Here, we report a 1-year-old girl presenting distinctive facial features, developmental delay, and congenital heart defects with r(3) and a ∼10-Mb deletion of chromosome 3pterp25.3 (61,891-9,979,408) involving 42 known genes which was detected using G-banding karyotyping and CytoScan 750K-Array. The breakpoints in r(3) were mapped at 3p25.3 and 3q29. We also analyzed the available information on the clinical features of the reported cases with r(3) and 3p deletion syndrome in order to provide more valuable information of genotype-phenotype correlations. To our knowledge, this is the largest detected fragment described in r(3) cases and the second r(3) study using whole-genome microarray.
Collapse
Affiliation(s)
- Kaihui Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Harrison CJ, Schwab C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur J Med Genet 2016; 59:162-5. [PMID: 26836400 DOI: 10.1016/j.ejmg.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/04/2016] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer.
Collapse
Affiliation(s)
- Christine J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
De Novo ring chromosome 11 and non-reciprocal translocation of 11p15.3-pter to 21qter in a patient with congenital heart disease. Mol Cytogenet 2015; 8:88. [PMID: 26557157 PMCID: PMC4638084 DOI: 10.1186/s13039-015-0191-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ring chromosome 11[r (11)] is a rare chromosomal abnormality that forms when both arms of chromosome 11 break, and then reunite with each other. Once a ring chromosome forms, the distal ends of both arms of the chromosome are usually lost. CASE PRESENTATION We reported a 12 years old girl patient with congenital heart disease and distinctive facial features. Cytogenetic and molecular analyses using standard G-banding, fluorescence in situ hybridization and Single nucleotide polymorphism array were performed to identify genetic causes in the patient. The patient carried r(11)(p15.3q24.1) and 11p15.3-pter non-reciprocal translocation to 21qter, accompanied with 8.9 Mb deletion of 11q24.2q25. A literature review was performed to establish genotype-phenotype correlations of the r (11) and 11q terminal deletion syndrome. CONCLUSIONS To the best of our knowledge, this is the first case of non-reciprocal translocation with a terminal deletion in r (11). These findings provide important information for genetic counseling for this family, and may improve our understanding of the genotype-phenotype correlation of ring chromosome 11 disorders.
Collapse
|
35
|
Nishigaki S, Hamazaki T, Saito M, Yamamoto T, Seto T, Shintaku H. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6. Mol Cytogenet 2015. [PMID: 26213576 PMCID: PMC4514952 DOI: 10.1186/s13039-015-0162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.
Collapse
Affiliation(s)
- Satsuki Nishigaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Mika Saito
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Toshiyuki Yamamoto
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666 Japan
| | - Toshiyuki Seto
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| |
Collapse
|
36
|
Sarri C, Douzgou S, Kontos H, Anagnostopoulou K, Tümer Z, Grigoriadou M, Petersen MB, Kokotas H, Merou K, Pandelia E, Giouroukou E, Papanikolaou K, Côté GB, Gyftodimou Y. 35-Year Follow-Up of a Case of Ring Chromosome 2: Array-CGH Analysis and Literature Review of the Ring Syndrome. Cytogenet Genome Res 2015; 145:6-13. [PMID: 25997743 DOI: 10.1159/000382046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Côté et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and mild to moderate mental retardation. We reconsidered the ring chromosome 2 case previously published by Côté et al. [1981], and we characterized it by array CGH, polymorphic markers as well as subtelomere MLPA and FISH analysis. A terminal deletion (q37.3qter) of maternal origin of the long arm of the ring chromosome 2 was detected and confirmed by all the above-mentioned methods. Ring chromosome 2 cases are exceedingly rare. Only 18 cases, including the present one, have been published so far, and our patient is the longest reported survivor, with a 35-year follow-up, and the third case characterized by array-CGH analysis.
Collapse
Affiliation(s)
- Catherine Sarri
- Department of Genetics, Institute of Child Health, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Ring chromosomes arise following breakage and rejoining in both chromosome arms. They are heterogeneous with variable size and genetic content and can originate from any chromosome. Phenotypes associated with ring chromosomes are highly variable as apart from any deletion caused by ring formation, imbalances from ring instability can also occur. Of interest is ring chromosome 20 which has a significant association with epilepsy with seizure onset in early childhood. Severe growth deficiency without major malformations is a common finding in the ring chromosome carrier. This phenotype associated with ring behaviour and mitotic instability and independent of the chromosome involved has been termed the "ring syndrome". Precise genotype-phenotype correlations for ring chromosomes may not be possible as influencing factors vary depending on the extent of deletion in ring formation, ring instability and the level of mosaicism. Although ring chromosomes usually arise as de novo events, familial transmission of rings from carrier to offspring has been described and prenatal diagnosis for any pregnancies should always be considered.
Collapse
Affiliation(s)
- Moh-Ying Yip
- SEALS Genetics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, Sydney, NSW 2031, Australia
| |
Collapse
|
38
|
Severino M, Accogli A, Gimelli G, Rossi A, Kotzeva S, Di Rocco M, Ronchetto P, Cuoco C, Tassano E. Clinico-radiological and molecular characterization of a child with ring chromosome 2 presenting growth failure, microcephaly, kidney and brain malformations. Mol Cytogenet 2015; 8:17. [PMID: 25774222 PMCID: PMC4359793 DOI: 10.1186/s13039-015-0121-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
Background Ring chromosome 2 is a rare constitutional abnormality that generally occurs de novo. About 14 cases have been described to date, but the vast majority of papers report exclusively conventional cytogenetic investigations and only two have been characterized by array-CGH. Results Here we describe the clinical, neuroradiological, and molecular features of a 5-year-old boy harbouring a ring chromosome 2 presenting with severe growth failure, facial and bone dysmorphisms, microcephaly, and renal malformation. Brain MR with diffusion tensor imaging revealed simplified cortical gyration, pontine hypoplasia, and abnormally thick posterior corpus callosum, suggesting an underlying axonal guidance defect. Cytogenetic investigations showed a karyotype with a ring chromosome 2 and FISH analysis with subtelomeric probes revealed the absence of signals on both arms. These results were confirmed by array-CGH showing terminal deletions on 2p25.3 (~439 kb) and 2q37.3 (~3.4 Mb). Conclusions Our report describes a new patient with a ring chromosome 2 completely characterised by array-CGH providing additional information useful not only to study genotype-phenotype correlation but also to validate the role of already reported candidate genes and to suggest novel ones which could improve our understanding of the clinical features associated with ring chromosome 2. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0121-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Accogli
- Pediatric Pulmonology and Allergy Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Maja Di Rocco
- Pediatria II, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Cristina Cuoco
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Tassano
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
39
|
Azoospermia and ring chromosome 9--a case report. J Assist Reprod Genet 2014; 32:293-6. [PMID: 25449292 DOI: 10.1007/s10815-014-0388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
|
40
|
Kaylor J, Alfaro M, Ishwar A, Sailey C, Sawyer J, Zarate YA. Molecular and Cytogenetic Evaluation of a Patient with Ring Chromosome 13 and Discordant Results. Cytogenet Genome Res 2014; 144:104-8. [DOI: 10.1159/000368649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/19/2022] Open
|
41
|
Prenatal diagnosis of a fetus with ring chromosomal 15 by two- and three-dimensional ultrasonography. Case Rep Obstet Gynecol 2014; 2014:495702. [PMID: 25389503 PMCID: PMC4217343 DOI: 10.1155/2014/495702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/04/2014] [Accepted: 10/05/2014] [Indexed: 12/02/2022] Open
Abstract
We report on a prenatal diagnosis of ring chromosome 15 in a fetus with left congenital diaphragmatic hernia (CDH) and severe intrauterine growth restriction (IUGR). A 31-year-old woman, gravida 2 para 1, was referred because of increased nuchal translucency at gestational age of 13 weeks. Comprehensive fetal ultrasound examination was performed at 19 weeks revealing an early onset IUGR, left CDH with liver herniation, and hypoplastic nasal bone. Three-dimensional ultrasound (rendering mode) showed low set ears and depressed nasal bridge. Amniocentesis was performed with a result of a 46,XX,r(15) fetus after a cytogenetic study. A 1,430 g infant (less than third percentile) was born at 36 weeks. The infant presented with respiratory failure and died at 2 h of life. Postnatal karyotype from the umbilical cord confirmed the diagnosis of 15-ring chromosome. We described the main prenatal 2D- and 3D-ultrasound findings associated with ring chromosome 15. The interest in reporting the present case is that CDH can be associated with the diagnosis of 15-ring chromosome because the critical location of the normal diaphragm development is at chromosome 15q26.1-q26.2.
Collapse
|
42
|
Ophthalmic treatment and vision care of a patient with rare ring chromosome 15: a case report. Case Rep Pediatr 2014; 2014:285132. [PMID: 24991444 PMCID: PMC4065758 DOI: 10.1155/2014/285132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/28/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Aim. Ring chromosome 15 is a very rare genetic abnormality with a wide spectrum of clinical findings. Up to date, about 50 cases have been documented, whereas no reports on ophthalmological treatment of such patients have been published. The aim of this study is not only to describe a new patient, but also, for the first time, to present the results of nonoperative management of divergent strabismus. Material and Methods. We present an amblyopic patient with 46,XX, r(15) karyotype: treated conservatively for exotropia of 60 prism diopters. The management consisted of refractive and prismatic correction, eye occlusion, and orthoptic exercises between the age of 15 months and 8 years. Results. The deviation angle of exotropia was decreased to 10 prism diopters, the visual acuity improved to 1.0 in both eyes (Snellen chart) and the fixation pattern was normal. The prisms enabled permanent symmetrical stimulation of the retina, which lead to a development of normal single binocular vision (Maddox test, filter test, and synoptophore tests). Conclusions. Parental karyotype was normal; the analysis of a three-generation pedigree has shown no genetic abnormalities or pregnancy losses so the child's karyotype anomaly was classified as de novo that is a single occurrence of this type of chromosomal disorder in this family. Strabismus in ring chromosome 15 patients is a difficult condition to manage, although success may be achieved.
Collapse
|
43
|
Bershteyn M, Hayashi Y, Desachy G, Hsiao EC, Sami S, Tsang KM, Weiss LA, Kriegstein AR, Yamanaka S, Wynshaw-Boris A. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 2014; 507:99-103. [PMID: 24413397 PMCID: PMC4030630 DOI: 10.1038/nature12923] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
Abstract
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of 'chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.
Collapse
Affiliation(s)
- Marina Bershteyn
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco (UCSF), CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco (UCSF), CA, USA
| | - Yohei Hayashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Guillaume Desachy
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Edward C. Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism and Institute for Human Genetics, CA, UCSF
| | - Salma Sami
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Kathryn M. Tsang
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Lauren A. Weiss
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco (UCSF), CA, USA
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Anthony Wynshaw-Boris
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco (UCSF), CA, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH, USA
| |
Collapse
|
44
|
Monosomy 21 seen in live born is unlikely to represent true monosomy 21: a case report and review of the literature. Case Rep Genet 2014; 2014:965401. [PMID: 24649383 PMCID: PMC3932290 DOI: 10.1155/2014/965401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/22/2013] [Indexed: 11/18/2022] Open
Abstract
We report a case of a neonate who was shown with routine chromosome analysis on peripheral blood lymphocytes to have full monosomy 21. Further investigation on fibroblast cells using conventional chromosome and FISH analysis revealed two additional mosaic cell lines; one is containing a ring chromosome 21 and the other a double ring chromosome 21. In addition, chromosome microarray analysis (CMA) on fibroblasts showed a mosaic duplication of chromosome region 21q11.2q22.13 with approximately 45% of cells showing three copies of the proximal long arm segment, consistent with the presence of a mosaic ring chromosome 21 with ring instability. The CMA also showed complete monosomy for an 8.8 Mb terminal segment (21q22.13q22.3). Whilst this patient had a provisional clinical diagnosis of trisomy 21, the patient also had phenotypic features consistent with monosomy 21, such as prominent epicanthic folds, broad nasal bridge, anteverted nares, simple ears, and bilateral overlapping fifth fingers, features which can also be present in individuals with Down syndrome. The patient died at 4.5 months of age. This case highlights the need for additional studies using multiple tissue types and molecular testing methodologies in patients provisionally diagnosed with monosomy 21, in particular if detected in the neonatal period.
Collapse
|
45
|
Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet 2014; 22:969-78. [PMID: 24398791 PMCID: PMC4350600 DOI: 10.1038/ejhg.2013.285] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/09/2022] Open
Abstract
Somatic chromosomal mosaicism arising from post-zygotic errors is known to cause several well-defined genetic syndromes as well as contribute to phenotypic variation in diseases. However, somatic mosaicism is often under-diagnosed due to challenges in detection. We evaluated 10 362 patients with a custom-designed, exon-targeted whole-genome oligonucleotide array and detected somatic mosaicism in a total of 57 cases (0.55%). The mosaicism was characterized and confirmed by fluorescence in situ hybridization (FISH) and/or chromosome analysis. Different categories of abnormal cell lines were detected: (1) aneuploidy, including sex chromosome abnormalities and isochromosomes (22 cases), (2) ring or marker chromosomes (12 cases), (3) single deletion/duplication copy number variations (CNVs) (11 cases), (4) multiple deletion/duplication CNVs (5 cases), (5) exonic CNVs (4 cases), and (6) unbalanced translocations (3 cases). Levels of mosaicism calculated based on the array data were in good concordance with those observed by FISH (10–93%). Of the 14 cases evaluated concurrently by chromosome analysis, mosaicism was detected solely by the array in 4 cases (29%). In summary, our exon-targeted array further expands the diagnostic capability of high-resolution array comparative genomic hybridization in detecting mosaicism for cytogenetic abnormalities as well as small CNVs in disease-causing genes.
Collapse
|
46
|
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, Hachem ME, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 2014; 7:1. [PMID: 24393457 PMCID: PMC3892072 DOI: 10.1186/1756-8935-7-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.
Collapse
Affiliation(s)
- Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Andrea Masotti
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Letizia Da Sacco
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Raffaella Cusmai
- Neurology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Simona Grotta
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Petrocchi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - May El Hachem
- Dermatology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Serena Russo
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesca Romana Lepri
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
47
|
Abstract
Twenty-nine as yet unreported ring chromosomes were characterized in detail by cytogenetic and molecular techniques. For FISH (fluorescence
in situ
hybridization) previously published high resolution approaches such as multicolor banding (MCB), subcentromere-specific multi-color-FISH (cenM-FISH) and two to three-color-FISH applying locus-specific probes were used. Overall, ring chromosome derived from chromosomes 4 (one case), 10 (one case), 13 (five cases), 14, (three cases), 18 (two cases), 21 (eight cases), 22 (three cases), X (five cases) and Y (one case) were studied. Eight cases were detected prenatally, eight due developmental delay and dysmorphic signs, and nine in connection with infertility and/or Turner syndrome. In general, this report together with data from the literature, supports the idea that ring chromosome patients fall into two groups: group one with (severe) clinical signs and symptoms due to the ring chromosome and group two with no obvious clinical problems apart from infertility.
Collapse
|
48
|
López-Uriarte A, Quintero-Rivera F, de la Fuente Cortez B, Puente VG, Campos MDRV, de Villarreal LEM. Ring 2 chromosome associated with failure to thrive, microcephaly and dysmorphic facial features. Gene 2013; 529:65-8. [PMID: 23895799 DOI: 10.1016/j.gene.2013.06.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 05/24/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
We report here a child with a ring chromosome 2 [r(2)] associated with failure to thrive, microcephaly and dysmorphic features. The chromosomal aberration was defined by chromosome microarray analysis, revealing two small deletions of 2p25.3 (139 kb) and 2q37.3 (147 kb). We show the clinical phenotype of the patient, using a conventional approach and the molecular cytogenetics of a male with a history of prenatal intrauterine growth restriction (IUGR), failure to thrive, microcephaly and dysmorphic facial features. The phenotype is very similar to that reported in other clinical cases with ring chromosome 2.
Collapse
Affiliation(s)
- Arelí López-Uriarte
- Departamento de Genética, Hospital Universitario, Facultad de Medicina, UANL, Monterrey, NL, Mexico.
| | | | | | | | | | | |
Collapse
|
49
|
Sibbesen ELC, Jespersgaard C, Alosi D, Bisgaard AM, Tümer Z. Ring chromosome 9 in a girl with developmental delay and dysmorphic features: Case report and review of the literature. Am J Med Genet A 2013; 161A:1447-52. [DOI: 10.1002/ajmg.a.35901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/20/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Else la Cour Sibbesen
- Applied Human Molecular Genetics, Kennedy Center; Copenhagen University Hospital; Rigshospitalet, Glostrup; Denmark
| | - Cathrine Jespersgaard
- Applied Human Molecular Genetics, Kennedy Center; Copenhagen University Hospital; Rigshospitalet, Glostrup; Denmark
| | - Daniela Alosi
- Applied Human Molecular Genetics, Kennedy Center; Copenhagen University Hospital; Rigshospitalet, Glostrup; Denmark
| | | | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center; Copenhagen University Hospital; Rigshospitalet, Glostrup; Denmark
| |
Collapse
|
50
|
Ciocca L, Surace C, Digilio MC, Roberti MC, Sirleto P, Lombardo A, Russo S, Brizi V, Grotta S, Cini C, Angioni A. Array-CGH characterization and genotype-phenotype analysis in a patient with a ring chromosome 6. BMC Med Genomics 2013; 6:3. [PMID: 23398904 PMCID: PMC3599180 DOI: 10.1186/1755-8794-6-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ring chromosome 6 is a rare constitutional abnormality that generally occurs de novo. The related phenotype may be highly variable ranging from an almost normal phenotype to severe malformations and mental retardation. These features are mainly present when genetic material at the end of the chromosome is lost. The severity of the phenotype seems to be related to the size of the deletion. About 25 cases have been described to date, but the vast majority reports only conventional cytogenetic investigations. CASE PRESENTATION Here we present an accurate cyto-molecular characterization of a ring chromosome 6 in a 16-months-old Caucasian girl with mild motor developmental delay, cardiac defect, and facial anomalies. The cytogenetic investigations showed a karyotype 46,XX,r(6)(p25q27) and FISH analysis revealed the absence of the signals on both arms of the chromosome 6. These results were confirmed by means of array-CGH showing terminal deletions on 6p25.3 (1.3 Mb) and 6q26.27 (6.7 Mb). Our data were compared to current literature. CONCLUSIONS Our report describes the case of a patient with a ring chromosome 6 abnormality completely characterized by array CGH which provided additional information for genotype-phenotype studies.
Collapse
Affiliation(s)
- Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|