1
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
2
|
Ghauri MA, Raza A, Hayat U, Atif N, Iqbal HMN, Bilal M. Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochim Biophys Acta Gen Subj 2022; 1866:130113. [PMID: 35202768 DOI: 10.1016/j.bbagen.2022.130113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) has become the leading cause of death in women worldwide. Irrespective of advancement in cancer treatments, e.g., surgery, radiation, chemotherapy, hormonal therapy, immunotherapy, and targeted therapy, recurrence leading to metastasis poses the greatest threat in BCa management. BCa receptors estrogen (ER), progesterone (PR), and human epidermal growth factor receptor-2 (HER2) hold significant reputations as prognostic and predictive biomarkers in therapeutic decision-making. Under normal physiological conditions, these receptors modulate critical biological functions, e.g., cell migration, proliferation, and apoptosis events, etc. However, aberrant expression causes deviations, triggering signaling course to adapt permanent switching "ON" mode. The later events induce rapid and unrestrained proliferation leading to cancer. As conventional ways of cancer management ultimately lead to resistance; therefore, recently targeted therapies have been extensively studied to conquer resistance. Targeting various small molecules in downstream signaling has become an area of interest in scientific society. The severity of cancer converts many folds soon after it takes on a migratory approach that eventually commences metastasis. Cancer migration comprises protrusion of cytoplasm at the leading edge of the migration forward-facing, establishing adhesions with the basic cell-matrix, disassembly of the adhesions at the back end of the cell, and actin-myosin fiber contractions to pull the bulk of the cytoplasm forward. On the other hand, metastatic progression comprises a cascade of events, including invasion, migration, and establishment of tumor microenvironment. The progression of BCa from early stage to metastatic development causes remarkable heterogeneity. Interference at any explicit level could hamper the process, and it has thus become an area of interest for scientists. Metastasis is the ultimate cause of spreading tumor cells to invade distant organs. Recently small molecule inhibitors of protein tyrosine kinases, which can cross the blood-brain barrier, have become a center point of research for investigators in developing novel treatment strategies against BCa management.
Collapse
Affiliation(s)
- Mohsin Ahmad Ghauri
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naveel Atif
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
3
|
Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, Ackermann S, Capuano J, Bernheim J, Cheung C, Doane A, Brady N, Singh R, Rickman DS, Prabhu V, Allen JE, Puca L, Coskun AF, Rubin MA, Beltran H, Mosquera JM, Elemento O, Singh A. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100096. [PMID: 34676924 PMCID: PMC8820841 DOI: 10.1002/adma.202100096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/09/2021] [Indexed: 05/30/2023]
Abstract
Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.
Collapse
Affiliation(s)
- Matthew J Mosquera
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sungwoong Kim
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhou Fang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Shuangyi Cai
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Heng Pan
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muhammad Asad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Maria Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Florencia M Rowdo
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Sarah Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jared Capuano
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jacob Bernheim
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ashley Doane
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Nicholas Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | - Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ahmet F Coskun
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ankur Singh
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
5
|
Quaglia F, Krishn SR, Wang Y, Goodrich DW, McCue P, Kossenkov AV, Mandigo AC, Knudsen KE, Weinreb PH, Corey E, Kelly WK, Languino LR. Differential expression of αVβ3 and αVβ6 integrins in prostate cancer progression. PLoS One 2021; 16:e0244985. [PMID: 33481853 PMCID: PMC7822502 DOI: 10.1371/journal.pone.0244985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPrCa) arises de novo or after accumulation of genomic alterations in pre-existing adenocarcinoma tumors in response to androgen deprivation therapies. We have provided evidence that small extracellular vesicles released by PrCa cells and containing the αVβ3 integrin promote neuroendocrine differentiation of PrCa in vivo and in vitro. Here, we examined αVβ3 integrin expression in three murine models carrying a deletion of PTEN (SKO), PTEN and RB1 (DKO), or PTEN, RB1 and TRP53 (TKO) genes in the prostatic epithelium; of these three models, the DKO and TKO tumors develop NEPrCa with a gene signature comparable to those of human NEPrCa. Immunostaining analysis of SKO, DKO and TKO tumors shows that αVβ3 integrin expression is increased in DKO and TKO primary tumors and metastatic lesions, but absent in SKO primary tumors. On the other hand, SKO tumors show higher levels of a different αV integrin, αVβ6, as compared to DKO and TKO tumors. These results are confirmed by RNA-sequencing analysis. Moreover, TRAMP mice, which carry NEPrCa and adenocarcinoma of the prostate, also have increased levels of αVβ3 in their NEPrCa primary tumors. In contrast, the αVβ6 integrin is only detectable in the adenocarcinoma areas. Finally, analysis of 42 LuCaP patient-derived xenografts and primary adenocarcinoma samples shows a positive correlation between αVβ3, but not αVβ6, and the neuronal marker synaptophysin; it also demonstrates that αVβ3 is absent in prostatic adenocarcinomas. In summary, we demonstrate that αVβ3 integrin is upregulated in NEPrCa primary and metastatic lesions; in contrast, the αVβ6 integrin is confined to adenocarcinoma of the prostate. Our findings suggest that the αVβ3 integrin, but not αVβ6, may promote a shift in lineage plasticity towards a NE phenotype and might serve as an informative biomarker for the early detection of NE differentiation in prostate cancer.
Collapse
Affiliation(s)
- Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States of America
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States of America
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America
| | - David W. Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, United States of America
| | - Amy C. Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - William K. Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Lucia R. Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States of America
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
Matos LL, Menderico Junior GM, Theodoro TR, Pasini FS, Ishikawa MDM, Ribeiro AAB, de Mello ES, Pinhal MADS, Moyses RA, Kulcsar MAV, Dedivitis RA, Cernea CR, Kowalski LP. Cancer-associated fibroblast regulation by microRNAs promotes invasion of oral squamous cell carcinoma. Oral Oncol 2020; 110:104909. [PMID: 32702628 DOI: 10.1016/j.oraloncology.2020.104909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to evaluate the role of microRNA-mediated remodeling of the extracellular matrix in the process of tumor invasion of oral squamous cell carcinoma and to evaluate its relationship with the prognosis of these patients. This was a retrospective study on material from the paraffin blocks of patients operated on for oral squamous cell carcinoma, in addition to a group of healthy oral mucosa samples of paired patients. miR-1-3p, miR-133-3p, and miR-21-5p were differentially expressed between the superficial and deep tumor groups. miR-21-5p was the one with the greatest accuracy in the differentiation between superficial and deep tumors. By immunohistochemistry, the group of deep tumors showed greater immunoreactivity to matrix metalloproteinases 2 and 9 and laminin α in tumor-associated fibroblasts, with consequent degradation of the basal membrane, measured by greater loss of continuity of type IV collagen. This process was also associated with lower and higher expression of miR-1-3p and miR-21-5p, respectively. There was also a trend toward better overall and disease-free survival rates in patients with higher miR-133a-3p. The present study showed the interaction between microRNAs and extracellular matrix remodeling in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Leandro Luongo Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo (ICESP), Laboratório de Investigação Médica 28 (LIM28), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | | | - Fatima Solange Pasini
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, Brazil.
| | | | | | - Evandro Sobroza de Mello
- Pathology Department, Instituto do Câncer do Estado de São Paulo (ICESP), Laboratório de Investigação Médica 14 (LIM14), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Raquel Ajub Moyses
- Head and Neck Surgery Department, Laboratório de Investigação Médica 28 (LIM28), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Marco Aurelio Vamondes Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo (ICESP), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Claudio Roberto Cernea
- Head and Neck Surgery Department, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, University of Sao Paulo Medical School, Sao Paulo, Brazil; Study Developed at Head and Neck Surgery Discipline, Surgery Department, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil.
| |
Collapse
|
7
|
Nollet EA, Cardo-Vila M, Ganguly SS, Tran JD, Schulz VV, Cress A, Corey E, Miranti CK. Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene 2020; 39:5390-5404. [PMID: 32565538 PMCID: PMC7395876 DOI: 10.1038/s41388-020-1370-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/09/2022]
Abstract
The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrin α6β1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6β1-dependent nuclear translocation of HIF1α. Integrin α6β1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6β1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.
Collapse
Affiliation(s)
| | - Marina Cardo-Vila
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Sourik S Ganguly
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jack D Tran
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Anne Cress
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Cindy K Miranti
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
8
|
Quaglia F, Krishn SR, Daaboul GG, Sarker S, Pippa R, Domingo-Domenech J, Kumar G, Fortina P, McCue P, Kelly WK, Beltran H, Liu Q, Languino LR. Small extracellular vesicles modulated by αVβ3 integrin induce neuroendocrine differentiation in recipient cancer cells. J Extracell Vesicles 2020; 9:1761072. [PMID: 32922691 PMCID: PMC7448905 DOI: 10.1080/20013078.2020.1761072] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability of small extracellular vesicles (sEVs) to reprogram cancer cells is well established. However, the specific sEV components able to mediate aberrant effects in cancer cells have not been characterized. Integrins are major players in mediating sEV functions. We have previously reported that the αVβ3 integrin is detected in sEVs of prostate cancer (PrCa) cells and transferred into recipient cells. Here, we investigate whether sEVs from αVβ3-expressing cells affect tumour growth differently than sEVs from control cells that do not express αVβ3. We compared the ability of sEVs to stimulate tumour growth, using sEVs isolated from PrCa C4-2B cells by iodixanol density gradient and characterized with immunoblotting, nanoparticle tracking analysis, immunocapturing and single vesicle analysis. We incubated PrCa cells with sEVs and injected them subcutaneously into nude mice to measure in vivo tumour growth or analysed in vitro their anchorage-independent growth. Our results demonstrate that a single treatment with sEVs shed from C4-2B cells that express αVβ3, but not from control cells, stimulates tumour growth and induces differentiation of PrCa cells towards a neuroendocrine phenotype, as quantified by increased levels of neuroendocrine markers. In conclusion, the expression of αVβ3 integrin generates sEVs capable of reprogramming cells towards an aggressive phenotype.
Collapse
Affiliation(s)
- Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - George G Daaboul
- Department of Research and Development, NanoView Biosciences, Boston, MA, USA
| | - Srawasti Sarker
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raffaella Pippa
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hyuga T, Alcantara M, Kajioka D, Haraguchi R, Suzuki K, Miyagawa S, Kojima Y, Hayashi Y, Yamada G. Hedgehog Signaling for Urogenital Organogenesis and Prostate Cancer: An Implication for the Epithelial-Mesenchyme Interaction (EMI). Int J Mol Sci 2019; 21:E58. [PMID: 31861793 PMCID: PMC6982176 DOI: 10.3390/ijms21010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hedgehog (Hh) signaling is an essential growth factor signaling pathway especially in the regulation of epithelial-mesenchymal interactions (EMI) during the development of the urogenital organs such as the bladder and the external genitalia (EXG). The Hh ligands are often expressed in the epithelia, affecting the surrounding mesenchyme, and thus constituting a form of paracrine signaling. The development of the urogenital organ, therefore, provides an intriguing opportunity to study EMI and its relationship with other pathways, such as hormonal signaling. Cellular interactions of prostate cancer (PCa) with its neighboring tissue is also noteworthy. The local microenvironment, including the bone metastatic site, can release cellular signals which can affect the malignant tumors, and vice versa. Thus, it is necessary to compare possible similarities and divergences in Hh signaling functions and its interaction with other local growth factors, such as BMP (bone morphogenetic protein) between organogenesis and tumorigenesis. Additionally, this review will discuss two pertinent research aspects of Hh signaling: (1) the potential signaling crosstalk between Hh and androgen signaling; and (2) the effect of signaling between the epithelia and the mesenchyme on the status of the basement membrane with extracellular matrix structures located on the epithelial-mesenchymal interface.
Collapse
Affiliation(s)
- Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Mellissa Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan;
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan;
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan;
| | - Yutaro Hayashi
- Department of Pediatric Urology, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan; (T.H.); (M.A.); (D.K.); (K.S.)
| |
Collapse
|
10
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
11
|
Kim YR, Byun MR, Choi JW. Integrin α6 as an invasiveness marker for hepatitis B viral X-driven hepatocellular carcinoma. Cancer Biomark 2018; 23:135-144. [PMID: 30010110 DOI: 10.3233/cbm-181498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) accounts for more than 60% of hepatocellular carcinoma (HCC) cases. However, there is limited information about the features of HBV-driven HCC that differentiate it from other types of HCC. OBJECTIVE The aim of this study is to find a gene specific to HBV-driven HCC and understand its role during tumorigenesis. METHODS The differences in gene expression patterns were analyzed among patients with hepatitis virus-unrelated liver cirrhosis, and hepatitis C virus- and HBV-driven HCC. Genes expressed only in HBV patients were compared to genes of transgenic mice expressing hepatitis B viral X gene. RESULTS Integrin α6 was commonly overexpressed in both HBV-driven HCC patients and transgenic mice expressing viral X. This gene's activation induced overexpression of integrin α6, as well as formation of integrins α6β1 and α6β4, without changing the expression of non-integrin laminin receptors. Suppression of integrin α6 caused significant inhibition of tumor migration in vitro. CONCLUSIONS This study found a significant association between HBV and integrin α6, which may be responsible for early migration and invasion of HCC. Thus, integrin α6 is a predictive marker for tumor recurrence and invasiveness of HBV-driven HCC.
Collapse
Affiliation(s)
- Yi Rang Kim
- Department of Hemato-Oncology, Yuseong Sun Hospital, Daejeon, Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Shih TC, Liu R, Wu CT, Li X, Xiao W, Deng X, Kiss S, Wang T, Chen XJ, Carney R, Kung HJ, Duan Y, Ghosh PM, Lam KS. Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clin Cancer Res 2018; 24:4319-4331. [PMID: 29666302 PMCID: PMC6125207 DOI: 10.1158/1078-0432.ccr-18-0157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Purpose: The majority of patients with prostate cancer who are treated with androgen-deprivation therapy (ADT) will eventually develop fatal metastatic castration-resistant prostate cancer (mCRPC). Currently, there are no effective durable therapies for patients with mCRPC. High expression of galectin-1 (Gal-1) is associated with prostate cancer progression and poor clinical outcome. The role of Gal-1 in tumor progression is largely unknown. Here, we characterized Gal-1 functions and evaluated the therapeutic effects of a newly developed Gal-1 inhibitor, LLS30, in mCRPC.Experimental Design: Cell viability, colony formation, migration, and invasion assays were performed to examine the effects of inhibition of Gal-1 in CRPC cells. We used two human CRPC xenograft models to assess growth-inhibitory effects of LLS30. Genome-wide gene expression analysis was conducted to elucidate the effects of LLS30 on metastatic PC3 cells.Results: Gal-1 was highly expressed in CRPC cells, but not in androgen-sensitive cells. Gal-1 knockdown significantly inhibited CRPC cells' growth, anchorage-independent growth, migration, and invasion through the suppression of androgen receptor (AR) and Akt signaling. LLS30 targets Gal-1 as an allosteric inhibitor and decreases Gal-1-binding affinity to its binding partners. LLS30 showed in vivo efficacy in both AR-positive and AR-negative xenograft models. LLS30 not only can potentiate the antitumor effect of docetaxel to cause complete regression of tumors, but can also effectively inhibit the invasion and metastasis of prostate cancer cells in vivoConclusions: Our study provides evidence that Gal-1 is an important target for mCRPC therapy, and LLS30 is a promising small-molecule compound that can potentially overcome mCRPC. Clin Cancer Res; 24(17); 4319-31. ©2018 AACR.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
| | - Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Xiaojun Deng
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Sophie Kiss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Ting Wang
- Genome Center, University of California, Davis, Davis, California
| | - Xiao-Jia Chen
- Institute of Biomedicine & Cell Biology Department, Jinan University, Guangzhou, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
- Guangdong Provincial Engineering Research Center of Biotechnological Medicine, Guangdong, Guangzhou, China
| | - Randy Carney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Hsing-Jien Kung
- The Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yong Duan
- Genome Center, University of California, Davis, Davis, California
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
- Department of Urology, School of Medicine, University of California, Davis, Sacramento, California
- Veterans Affairs Northern California Health Care System-Mather, Mather, California
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
- UC Davis NCI-designated Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| |
Collapse
|
13
|
Prostate cancer sheds the αvβ3 integrin in vivo through exosomes. Matrix Biol 2018; 77:41-57. [PMID: 30098419 DOI: 10.1016/j.matbio.2018.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
The αvβ3 integrin has been shown to promote aggressive phenotypes in many types of cancers, including prostate cancer. We show that GFP-labeled αvβ3 derived from cancer cells circulates in the blood and is detected in distant lesions in NOD scid gamma (NSG) mice. We, therefore, hypothesized that αvβ3 travels through exosomes and tested its levels in pools of vesicles, which we designate extracellular vesicles highly enriched in exosomes (ExVs), and in exosomes isolated from the plasma of prostate cancer patients. Here, we show that the αvβ3 integrin is found in patient blood exosomes purified by sucrose or iodixanol density gradients. In addition, we provide evidence that the αvβ3 integrin is transferred through ExVs isolated from prostate cancer patient plasma to β3-negative recipient cells. We also demonstrate the intracellular localization of β3-GFP transferred via cancer cell-derived ExVs. We show that the ExVs present in plasma from prostate cancer patients contain higher levels of αvβ3 and CD9 as compared to plasma ExVs from age-matched subjects who are not affected by cancer. Furthermore, using PSMA antibody-bead mediated immunocapture, we show that the αvβ3 integrin is expressed in a subset of exosomes characterized by PSMA, CD9, CD63, and an epithelial-specific marker, Trop-2. Finally, we present evidence that the levels of αvβ3, CD63, and CD9 remain unaltered in ExVs isolated from the blood of prostate cancer patients treated with enzalutamide. Our results suggest that detecting exosomal αvβ3 integrin in prostate cancer patients could be a clinically useful and non-invasive biomarker to follow prostate cancer progression. Moreover, the ability of αvβ3 integrin to be transferred from ExVs to recipient cells provides a strong rationale for further investigating the role of αvβ3 integrin in the pathogenesis of prostate cancer and as a potential therapeutic target.
Collapse
|
14
|
Sharma A, Mendonca J, Ying J, Kim H, Verdone JE, Zarif JC, Carducci M, Hammers H, Pienta KJ, Kachhap S. The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion. Mol Oncol 2017; 11:655-669. [PMID: 28371345 PMCID: PMC5467496 DOI: 10.1002/1878-0261.12059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Experimental and clinical evidence suggests that N-myc downregulated gene 1 (NDRG1) functions as a suppressor of prostate cancer metastasis. Elucidating pathways that drive survival and invasiveness of NDRG1-deficient prostate cancer cells can help in designing therapeutics to target metastatic prostate cancer cells. However, the molecular mechanisms that lead NDRG1-deficient prostate cancer cells to increased invasiveness remain largely unknown. In this study, we demonstrate that NDRG1-deficient prostate tumors have decreased integrin expression and reduced cell adhesion and motility. Our data indicate that loss of NDRG1 differentially affects Rho GTPases. Specifically, there is a downregulation of active RhoA and Rac1 GTPases with a concomitant upregulation of active Cdc42 in NDRG1-deficient cells. Live cell imaging using a fluorescent sensor that binds to polymerized actin revealed that NDRG1-deficient cells have restricted actin dynamics, thereby affecting cell migration. These cellular and molecular characteristics are in sharp contrast to what is expected after loss of a metastasis suppressor. We further demonstrate that NDRG1-deficient cells have increased resistance to anoikis and increased invasiveness which is independent of its elevated Cdc42 activity. Furthermore, NDRG1 regulates expression and glycosylation of EMMPRIN, a master regulator of matrix metalloproteases. NDRG1 deficiency leads to an increase in EMMPRIN expression with a concomitant increase in matrix metalloproteases and thus invadopodial activity. Using a three-dimensional invasion assay and an in vivo metastasis assay for human prostate xenografts, we demonstrate that NDRG1-deficient prostate cancer cells exhibit a collective invasion phenotype and are highly invasive. Thus, our findings provide novel insights suggesting that loss of NDRG1 leads to a decrease in actin-mediated cellular motility but an increase in cellular invasion, resulting in increased tumor dissemination which positively impacts metastatic outcome.
Collapse
Affiliation(s)
- Anup Sharma
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Janet Mendonca
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James Ying
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hea‐Soo Kim
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James E. Verdone
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Jelani C. Zarif
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Michael Carducci
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hans Hammers
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Kenneth J. Pienta
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Sushant Kachhap
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| |
Collapse
|
15
|
Das L, Anderson TA, Gard JM, Sroka IC, Strautman SR, Nagle RB, Morrissey C, Knudsen BS, Cress AE. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells. J Cell Biochem 2017; 118:1038-1049. [PMID: 27509031 PMCID: PMC5553695 DOI: 10.1002/jcb.25673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual ) of 3.25 min-1 , threefold faster than α3 integrin (1.0 min-1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min-1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min-1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lipsa Das
- Department of Cancer Biology, University of Arizona, Tucson, AZ 85724
| | - Todd A. Anderson
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Jaime M.C. Gard
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Isis C. Sroka
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Raymond B. Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | | | | | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
16
|
Frank SB, Berger PL, Ljungman M, Miranti CK. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci 2017; 130:1952-1964. [PMID: 28446540 DOI: 10.1242/jcs.197152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA.,Genetics Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Penny L Berger
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mats Ljungman
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cindy K Miranti
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA .,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
17
|
Zarif JC, Yang W, Hernandez JR, Zhang H, Pienta KJ. The Identification of Macrophage-enriched Glycoproteins Using Glycoproteomics. Mol Cell Proteomics 2017; 16:1029-1037. [PMID: 28348171 DOI: 10.1074/mcp.m116.064444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/24/2017] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-related deaths of men in the United States. Whereas the localized disease is highly treatable by surgical resection and radiation, cancer that has metastasized remains incurable. Immune cells that primarily scavenge debris and promote prostate cancer angiogenesis and wound repair are M2 macrophages. They are phenotypically similar to M2 tumor-associated macrophages (M2-TAMs) and have been reported to associate with solid tumors and aide in proliferation, metastasis, and resistance to therapy. As an invasive species within the tumor microenvironment, this makes M2-TAMs an ideal therapeutic target in prostate cancer. To identify novel surface glycoproteins expressed on M2 macrophages, we developed a novel method of creating homogeneous populations of human macrophages from human CD14+ monocytes in vitro These homogeneous M1 macrophages secrete pro-inflammatory cytokines, and our M2 macrophages secrete anti-inflammatory cytokines as well as vascular endothelial growth factor (VEGF). To identify enriched surface glycoproteins, we then performed solid-phase extraction of N-linked glycopeptides followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on our homogeneous macrophage populations. We discovered five novel peptides that are enriched exclusively on human M2 macrophages relative to human M1 macrophages and human CD14+ monocytes. Finally, we determined whether these surface glycoproteins, found enriched on M2 macrophages, were also expressed in human metastatic castrate-resistant prostate cancer (mCRPC) tissues. Using mCRPC tissues from rapid autopsies, we were able to determine M2 macrophage infiltration by using immunohistochemistry and flow cytometry. These findings highlight the presence of macrophage infiltration in human mCRPC but also surface glycoproteins that could be used for prognosis of localized disease and for targeting strategies.
Collapse
Affiliation(s)
- Jelani C Zarif
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;
| | - Weiming Yang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - James R Hernandez
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Hui Zhang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - Kenneth J Pienta
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,the ¶Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, and.,‖Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
18
|
Berger PL, Winn ME, Miranti CK. Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation. Prostate 2017; 77:49-59. [PMID: 27527891 PMCID: PMC6739073 DOI: 10.1002/pros.23249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND How prostate epithelial cells differentiate and how dysregulation of this process contributes to prostate tumorigenesis remain unclear. We recently identified a Myc target and chromatin reader protein, ING4, as a necessary component of human prostate luminal epithelial cell differentiation, which is often lost in primary prostate tumors. Furthermore, loss of ING4 in the context of oncogenic mutations is required for prostate tumorigenesis. Identifying the gene targets of ING4 can provide insight into how its loss disrupts differentiation and leads to prostate cancer. METHODS Using a combination of RNA-Seq, a best candidate approach, and chromatin immunoprecipitation (ChIP), we identified Miz1 as a new ING4 target. ING4 or Miz1 overexpression, shRNA knock-down, and a Myc-binding mutant were used in a human in vitro differentiation assay to assess the role of Miz1 in luminal cell differentiation. RESULTS ING4 directly binds the Miz1 promoter and is required to induce Miz1 mRNA and protein expression during luminal cell differentiation. Miz1 mRNA was not induced in shING4 expressing cells or tumorigenic cells in which ING4 is not expressed. Miz1 dependency on ING4 was unique to differentiating luminal cells; Miz1 mRNA expression was not induced in basal cells. Although Miz1 is a direct target of ING4, and its overexpression can drive luminal cell differentiation, Miz1 was not required for differentiation. CONCLUSIONS Miz1 is a newly identified ING4-induced target gene which can drive prostate luminal epithelial cell differentiation although it is not absolutely required. Prostate 77:49-59, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Penny L. Berger
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Cindy K. Miranti
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
- Correspondence to: Cindy K. Miranti, Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503.
| |
Collapse
|
19
|
Wang M, Nagle RB, Knudsen BS, Rogers GC, Cress AE. A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J Cell Sci 2017; 130:104-110. [PMID: 27609833 PMCID: PMC5394777 DOI: 10.1242/jcs.188177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
Basal cells in a simple secretory epithelium adhere to the extracellular matrix (ECM), providing contextual cues for ordered repopulation of the luminal cell layer. Early high-grade prostatic intraepithelial neoplasia (HG-PIN) tissue has enlarged nuclei and nucleoli, luminal layer expansion and genomic instability. Additional HG-PIN markers include loss of α6β4 integrin or its ligand laminin-332, and budding of tumor clusters into laminin-511-rich stroma. We modeled the invasive budding phenotype by reducing expression of α6β4 integrin in spheroids formed from two normal human stable isogenic prostate epithelial cell lines (RWPE-1 and PrEC 11220). These normal cells continuously spun in culture, forming multicellular spheroids containing an outer laminin-332 layer, basal cells (expressing α6β4 integrin, high-molecular-weight cytokeratin and p63, also known as TP63) and luminal cells that secrete PSA (also known as KLK3). Basal cells were optimally positioned relative to the laminin-332 layer as determined by spindle orientation. β4-integrin-defective spheroids contained a discontinuous laminin-332 layer corresponding to regions of abnormal budding. This 3D model can be readily used to study mechanisms that disrupt laminin-332 continuity, for example, defects in the essential adhesion receptor (β4 integrin), laminin-332 or abnormal luminal expansion during HG-PIN progression.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Raymond B Nagle
- Department of Pathology, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
21
|
Harryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, Knudsen BS, Cress AE. The Cohesive Metastasis Phenotype in Human Prostate Cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:221-231. [PMID: 27678419 PMCID: PMC5534328 DOI: 10.1016/j.bbcan.2016.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/27/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
A critical barrier for the successful prevention and treatment of recurrent prostate cancer is detection and eradication of metastatic and therapy-resistant disease. Despite the fall in diagnoses and mortality, the reported incidence of metastatic disease has increased 72% since 2004. Prostate cancer arises in cohesive groups as intraepithelial neoplasia, migrates through muscle and leaves the gland via perineural invasion for hematogenous dissemination. Current technological advances have shown cohesive-clusters of tumor (also known as microemboli) within the circulation. Circulating tumor cell (CTC) profiles are indicative of disseminated prostate cancer, and disseminated tumor cells (DTC) are found in cohesive-clusters, a phenotypic characteristic of both radiation- and drug-resistant tumors. Recent reports in cell biology and informatics, coupled with mass spectrometry, indicate that the integrin adhesome network provides an explanation for the biophysical ability of cohesive-clusters of tumor cells to invade thorough muscle and nerve microenvironments while maintaining adhesion-dependent therapeutic resistance. Targeting cohesive-clusters takes advantage of the known ability of extracellular matrix (ECM) adhesion to promote tumor cell survival and represents an approach that has the potential to avoid the progression to drug- and radiotherapy-resistance. In the following review we will examine the evidence for development and dissemination of cohesive-clusters in metastatic prostate cancer.
Collapse
Affiliation(s)
- William L Harryman
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - James P Hinton
- Cancer Biology Graduate Program, The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Cynthia P Rubenstein
- Cancer Biology Graduate Program, The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Parminder Singh
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Raymond B Nagle
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Sarah J Parker
- Cedars Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Beatrice S Knudsen
- Cedars Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Anne E Cress
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
22
|
Myers JS, von Lersner AK, Sang QXA. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues. J Cancer 2016; 7:1452-64. [PMID: 27471561 PMCID: PMC4964129 DOI: 10.7150/jca.15860] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5 pathways were enriched in African American prostate tumors: the Small Cell Lung Cancer, Platelet-Amyloid Precursor Protein, Agrin, Neuroactive Ligand-Receptor Interaction, and Intrinsic pathways. The protein components of these pathways were either basement membrane proteins or coagulation proteins.
Collapse
Affiliation(s)
- Jennifer S Myers
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Ariana K von Lersner
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Qing-Xiang Amy Sang
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.; 2. Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
23
|
Dmello C, Sawant S, Alam H, Gangadaran P, Tiwari R, Dongre H, Rana N, Barve S, Costea DE, Chaukar D, Kane S, Pant H, Vaidya M. Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. Int J Biochem Cell Biol 2016; 70:161-72. [PMID: 26646105 DOI: 10.1016/j.biocel.2015.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 02/02/2023]
Abstract
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.
Collapse
Affiliation(s)
- Crismita Dmello
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Sharada Sawant
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Hunain Alam
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Prakash Gangadaran
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Richa Tiwari
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Harsh Dongre
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Neha Rana
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Sai Barve
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Institute of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Davendra Chaukar
- Surgical Oncology, Head and Neck Unit, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Shubhada Kane
- Department of Pathology, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Harish Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milind Vaidya
- Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India.
| |
Collapse
|
24
|
Lee YC, Lin SC, Yu G, Cheng CJ, Liu B, Liu HC, Hawke DH, Parikh NU, Varkaris A, Corn P, Logothetis C, Satcher RL, Yu-Lee LY, Gallick GE, Lin SH. Identification of Bone-Derived Factors Conferring De Novo Therapeutic Resistance in Metastatic Prostate Cancer. Cancer Res 2015; 75:4949-59. [PMID: 26530902 DOI: 10.1158/0008-5472.can-15-1215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Resistance to currently available targeted therapies significantly hampers the survival of patients with prostate cancer with bone metastasis. Here we demonstrate an important resistance mechanism initiated from tumor-induced bone. Studies using an osteogenic patient-derived xenograft, MDA-PCa-118b, revealed that tumor cells resistant to cabozantinib, a Met and VEGFR-2 inhibitor, reside in a "resistance niche" adjacent to prostate cancer-induced bone. We performed secretome analysis of the conditioned medium from tumor-induced bone to identify proteins (termed "osteocrines") found within this resistance niche. In accordance with previous reports demonstrating that activation of integrin signaling pathways confers therapeutic resistance, 27 of the 90 osteocrines identified were integrin ligands. We found that following cabozantinib treatment, only tumor cells positioned adjacent to the newly formed woven bone remained viable and expressed high levels of pFAK-Y397 and pTalin-S425, mediators of integrin signaling. Accordingly, treatment of C4-2B4 cells with integrin ligands resulted in increased pFAK-Y397 expression and cell survival, whereas targeting integrins with FAK inhibitors PF-562271 or defactinib inhibited FAK phosphorylation and reduced the survival of PC3-mm2 cells. Moreover, treatment of MDA-PCa-118b tumors with PF-562271 led to decreased tumor growth, irrespective of initial tumor size. Finally, we show that upon treatment cessation, the combination of PF-562271 and cabozantinib delayed tumor recurrence in contrast to cabozantinib treatment alone. Our studies suggest that identifying paracrine de novo resistance mechanisms may significantly contribute to the generation of a broader set of potent therapeutic tools that act combinatorially to inhibit metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bin Liu
- Department of Genetics, Center for Cancer Genetics and Genomics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsuan-Chen Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andreas Varkaris
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Clinical significance of the integrin α6β4 in human malignancies. J Transl Med 2015; 95:976-86. [PMID: 26121317 PMCID: PMC4554527 DOI: 10.1038/labinvest.2015.82] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK, and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor-promoting transcription factors such as the NFATs and NF-κB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression.
Collapse
|
26
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
27
|
Randhawa V, Acharya V. Integrated network analysis and logistic regression modeling identify stage-specific genes in Oral Squamous Cell Carcinoma. BMC Med Genomics 2015; 8:39. [PMID: 26179909 PMCID: PMC4502639 DOI: 10.1186/s12920-015-0114-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity but, OSCC can be difficult to detect at its earliest stage due to its molecular complexity and clinical behavior. Therefore, identification of key gene signatures at an early stage will be highly helpful. METHODS The aim of this study was to identify key genes associated with progression of OSCC stages. Gene expression profiles were classified into cancer stage-related modules, i.e., groups of genes that are significantly related to a clinical stage. For prioritizing the candidate genes, analysis was further restricted to genes with high connectivity and a significant association with a stage. To assess predictive power of these genes, a classification model was also developed and tested by 5-fold cross validation and on an independent dataset. RESULTS The identified genes were enriched for significant processes and functional pathways, and various genes were found to be directly implicated in OSCC. Forward and stepwise, multivariate logistic regression analyses identified 13 key genes whose expression discriminated early- and late-stage OSCC with predictive accuracy (area under curve; AUC) of ~0.81 in a 5-fold cross-validation strategy. CONCLUSIONS The proposed network-driven integrative analytical approach can identify multiple genes significantly related to an OSCC stage; the classification model that is developed with these genes may help to distinguish cancer stages. The proposed genes and model hold promise for monitoring of OSCC stage progression, and our findings may facilitate cancer detection at an earlier stage, resulting in improved treatment outcomes.
Collapse
Affiliation(s)
- Vinay Randhawa
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Vishal Acharya
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
28
|
Deep G, Kumar R, Jain AK, Agarwal C, Agarwal R. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling. Mutat Res 2015; 768:35-46. [PMID: 25285031 DOI: 10.1016/j.mrfmmm.2014.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these results showed that silibinin targets PCA cells' interaction with fibronectin and inhibits their motility, invasiveness and survival; thus further supporting silibinin use in PCA intervention including its metastatic progression.
Collapse
|
29
|
Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, Karászi K, Paku S, Baghy K, Kovalszky I. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer 2015; 15:256. [PMID: 25885552 PMCID: PMC4409756 DOI: 10.1186/s12885-015-1272-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/26/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α-smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. METHODS In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. RESULTS While normal fibroblasts produced components of interstitial matrix and TGF-β1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α6β4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. CONCLUSIONS Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix.
Collapse
Affiliation(s)
- Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - József Dudás
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.
| | - Lászlóné Oláh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Zoltán Papp
- Maternity Private Department Kútvölgyi Clinical Block, Semmelweis University, Budapest, Hungary.
| | - Gábor Sobel
- 2nd Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.
| | - Katalin Karászi
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Kacsinta AD, Rubenstein CS, Sroka IC, Pawar S, Gard JM, Nagle RB, Cress AE. Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines. Biochem Biophys Res Commun 2014; 454:335-40. [PMID: 25450398 DOI: 10.1016/j.bbrc.2014.10.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 02/03/2023]
Abstract
Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent "inside-out" signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent "inside-out" signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype.
Collapse
Affiliation(s)
- Apollo D Kacsinta
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Cynthia S Rubenstein
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Isis C Sroka
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Sangita Pawar
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Jaime M Gard
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Raymond B Nagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pathology, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
31
|
Tsaur I, Rutz J, Makarević J, Juengel E, Gust KM, Borgmann H, Schilling D, Nelson K, Haferkamp A, Bartsch G, Blaheta RA. CCL2 promotes integrin-mediated adhesion of prostate cancer cells in vitro. World J Urol 2014; 33:1051-6. [PMID: 25179012 DOI: 10.1007/s00345-014-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Chemokines undergo alterations during neoplasia. However, knowledge about their functional significance in prostate cancer (PCa) progression is still sparse. Since chemokine (C-C motif) ligand 2 (CCL2) is significantly up-regulated in patients with PCa, aim of the current study was to assess whether CCL2 contributes to invasive behavior of prostate cancer cells in vitro. METHODS The human PCa cell line PC3 was stimulated with CCL2. Cell growth was investigated by MTT dye reduction assay. Cell adhesion was analyzed by measuring attachment to a human endothelial cell (HUVEC) monolayer and immobilized collagen. Cell migration was assessed by a chemotactic assay. Integrin expression on the cell surface was evaluated by Western blot. Blocking studies were performed with anti-integrin α3, anti-integrin α6 and anti-integrin β4 monoclonal antibodies. RESULTS PC3 cell growth 72 h after CCL2 exposure was significantly increased, compared to controls. Activation of tumor cells by CCL2 significantly enhanced tumor cell adhesion to HUVEC and immobilized collagen. CCL2, added for 4 or 24 h, elevated α6 and β4 (4 > 24 h) integrin expression. α3 was enhanced after 4 h, but reduced after 24 h. Blocking either α3, α6 or β4 led to significant suppression of tumor cell binding to immobilized collagen. CONCLUSIONS CCL2 stimulates PCa cell adhesion and induces alterations in α3-, α6- and β4-integrin expression on the cell surface. Blocking these integrins leads to a significant reduction in cell adhesion.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, Chang TTA, Hostetter G, Kim S, Miranti CK. Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res 2014; 74:3357-68. [PMID: 24762396 PMCID: PMC4066454 DOI: 10.1158/0008-5472.can-13-3076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms by which Myc overexpression or Pten loss promotes prostate cancer development are poorly understood. We identified the chromatin remodeling protein, ING4, as a crucial switch downstream of Myc and Pten that is required for human prostate epithelial differentiation. Myc-induced transient expression of ING4 is required for the differentiation of basal epithelial cells into luminal cells, while sustained ING4 expression induces apoptosis. ING4 expression is lost in >60% of human primary prostate tumors. ING4 or Pten loss prevents epithelial cell differentiation, which was necessary for tumorigenesis. Pten loss prevents differentiation by blocking ING4 expression, which is rescued by ING4 re-expression. Pten or ING4 loss generates tumor cells that co-express basal and luminal markers, indicating prostate oncogenesis occurs through disruption of an intermediate step in the prostate epithelial differentiation program. Thus, we identified a new epithelial cell differentiation switch involving Myc, Pten, and ING4, which when disrupted leads to prostate tumorigenesis. Myc overexpression and Pten loss are common genetic abnormalities in prostate cancer, whereas loss of the tumor suppressor ING4 has not been reported. This is the first demonstration that transient ING4 expression is absolutely required for epithelial differentiation, its expression is dependent on Myc and Pten, and it is lost in the majority of human prostate cancers. This is the first demonstration that loss of ING4, either directly or indirectly through loss of Pten, promotes Myc-driven oncogenesis by deregulating differentiation. The clinical implication is that Pten/ING4 negative and ING4-only negative tumors may reflect two distinct subtypes of prostate cancer.
Collapse
Affiliation(s)
- Penny L Berger
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Sander B Frank
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Veronique V Schulz
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Eric A Nollet
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Mathew J Edick
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Brittany Holly
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Ting-Tung A Chang
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Galen Hostetter
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Suwon Kim
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Cindy K Miranti
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
33
|
Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 2014; 34:1811-21. [PMID: 24793790 PMCID: PMC4221586 DOI: 10.1038/onc.2014.116] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/17/2022]
Abstract
Talins are adaptor proteins that regulate focal adhesion signaling by conjugating integrins to the cytoskeleton. Talins directly bind integrins and are essential for integrin activation. We previously showed that β1 integrins are activated in metastatic prostate cancer (PCa) cells, increasing PCa metastasis to lymph nodes and bone. However, how β1 integrins are activated in PCa cells is unknown. In this study, we identified a novel mechanism of β1 integrin activation. Using knockdown experiments, we first demonstrated talin1, but not talin2, is important in β1 integrin activation. We next showed that talin1 S425 phosphorylation, but not total talin1 expression, correlates with metastatic potential of PCa cells. Expressing a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 and C4-2B4 PCa cells, decreased activation of β1 integrins, integrin-mediated adhesion, motility, and increased the sensitivity of the cells to anoikis. In contrast, re-expression of the phosphorylation-mimicking mutant talin1S425D led to increased β1 integrin activation and generated biologic effects opposite to talin1S425A expression. In the highly metastatic PC3-MM2 cells, expression of a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 cells, abolished their ability to colonize in the bone following intracardiac injection, while re-expression of phosphorylation-mimicking mutant talin1S425D restored their ability to metastasize to bone. Immunohistochemical staining demonstrated that talin S425 phosphorylation is significantly increased in human bone metastases when compared to normal tissues, primary tumors, or lymph node metastases. We further showed that p35 expression, an activator of Cdk5, and Cdk5 activity were increased in metastatic tumor cells, and that Cdk5 kinase activity is responsible for talin1 phosphorylation and subsequent β1 integrin activation. Together, our study reveals Cdk5-mediated phosphorylation of talin1 leading to β1 integrin activation is a novel mechanism that increases metastatic potential of PCa cells.
Collapse
|
34
|
Landowski TH, Gard J, Pond E, Pond GD, Nagle RB, Geffre CP, Cress AE. Targeting integrin α6 stimulates curative-type bone metastasis lesions in a xenograft model. Mol Cancer Ther 2014; 13:1558-66. [PMID: 24739392 DOI: 10.1158/1535-7163.mct-13-0962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Laminin-binding integrin receptors are key mediators of epithelial cell migration and tumor metastasis. Recent studies have demonstrated a role for the α6 integrin (ITGA6/CD49f) in maintaining stem cell compartments within normal bone marrow and in residency of tumors metastatic to bone. In this study, we tested a function-blocking antibody specific for ITGA6, called J8H, to determine if preexisting cancer lesions in bone could be slowed and/or animal survival improved. Human prostate tumors were established by intracardiac injection into male SCID mice and treatment with J8H antibody was initiated after 1 week. Tumor progression was monitored by micro-computed tomography (CT) imaging of skeletal lesions. Animals that received weekly injections of the anti-ITGA6 antibody showed radiographic progression in only 40% of osseous tumors (femur or tibia), compared with control animals, where 80% of the lesions (femur or tibia) showed progression at 5 weeks. Kaplan-Meier survival analysis demonstrated a significant survival advantage for J8H-treated animals. Unexpectedly, CT image analysis revealed an increased proportion of bone lesions displaying a sclerotic rim of new bone formation, encapsulating the arrested lytic lesions in animals that received the anti-ITGA6 antibody treatment. Histopathology of the sclerotic lesions demonstrated well-circumscribed tumor within bone, surrounded by fibrosis. These data suggest that systemic targeting of the ITGA6-dependent function of established tumors in bone may offer a noncytotoxic approach to arrest the osteolytic progression of metastatic prostate cancer, thereby providing a new therapeutic strategy for advanced disease.
Collapse
Affiliation(s)
- Terry H Landowski
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Jaime Gard
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Erika Pond
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Gerald D Pond
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Raymond B Nagle
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Christopher P Geffre
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Anne E Cress
- Authors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, ArizonaAuthors' Affiliations: University of Arizona Cancer Center; Departments of Medicine, Medical Imaging, Pathology, and Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
35
|
Pontes-Júnior J, Reis ST, Bernardes FS, Oliveira LCN, Barros ÉAFD, Dall'Oglio MF, Timosczuk LMS, Ribeiro-Filho LA, Srougi M, Leite KRM. Correlation between beta1 integrin expression and prognosis in clinically localized prostate cancer. Int Braz J Urol 2014; 39:335-42; discussion 343. [PMID: 23849566 DOI: 10.1590/s1677-5538.ibju.2013.03.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 11/30/2012] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Integrins are transmembrane glycoprotein receptors that regulate cell-matrix interactions, thus functioning as sensors from the environment. They also act as cell adhesion molecules that are responsible for the maintenance of the normal epithelial phenotype. Some studies have reported a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, however its role in prostate cancer (PC) is unclear. The aim of our study was to evaluate the expression of β1 integrin in localized PC and to correlate the pattern of expression with recurrence after surgical treatment. Methods For this case-control study, we retrospectively selected surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Recurrence was defined as a PSA level exceeding 0.2 ng/mL after surgery, and the median follow-up was 123 months. Integrin expression was evaluated by immunohistochemistry in a tissue microarray containing two samples from each tumor. We employed a semiquantitative analysis and considered a case as positive when the expression was strong and diffusely present. RESULTS There was a loss of 11 cases during the tissue micro array assembling. β1 expression was positive in 79 of the 100 evaluated cases (79%). The univariate and multivariate analyses showed that the negative expression of β1 integrin was associated with biochemical recurrence (p = 0.047) and time to recurrence after radical prostatectomy (p = 0.023). When β1 was negative, the odds ratio for recurrence was 2.78 times higher than that observed in the positive cases [OR = 2.78, p = 0.047, IC 95% (1.01-7.66)]. CONCLUSIONS The loss of β1 integrin immune expression was correlated with biochemical recurrence in patients treated with radical prostatectomy for localized PC.
Collapse
Affiliation(s)
- José Pontes-Júnior
- Laboratory of Medical Investigation - LIM 55, Urology Department, University of Sao Paulo Medical, School and Universidade Nove de Julho, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|
37
|
Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M, Brown WS, Zhang S, Yu-Lee LY, Yeh ET, McIntyre BW, Logothetis CJ, Gallick GE, Lin SH. Targeting constitutively activated β1 integrins inhibits prostate cancer metastasis. Mol Cancer Res 2013; 11:405-17. [PMID: 23339185 PMCID: PMC3631285 DOI: 10.1158/1541-7786.mcr-12-0551] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Disseminated prostate cancer cells must survive in circulation for metastasis to occur. Mechanisms by which these cells survive are not well understood. By immunohistochemistry of human tissues, we found that levels of β1 integrins and integrin-induced autophosphorylation of FAK (pFAK-Y397) are increased in prostate cancer cells in primary prostate cancer and lymph node metastases, suggesting that β1 integrin activation occurs in metastatic progression of prostate cancer. A conformation-sensitive antibody, 9EG7, was used to examine β1 integrin activation. We found that β1 integrins are constitutively activated in highly metastatic PC3 and PC3-mm2 cells, with less activation in low metastatic LNCaP and C4-2B4 cells. Increased β1 integrin activation as well as the anoikis resistance in prostate cancer cells correlated with metastatic potential in vivo. Knockdown of β1 integrin abrogated anoikis resistance in PC3-mm2 cells. In agreement with β1 integrin activation, PC3-mm2 cells strongly adhered to type I collagen and fibronectin, a process inhibited by the β1 integrin-neutralizing antibody mAb 33B6. mAb 33B6 also inhibited the phosphorylation of β1 integrin downstream effectors, focal adhesion kinase (FAK) and AKT, leading to a 3-fold increase in PC3-mm2 apoptosis. Systemic delivery of mAb 33B6 suppressed spontaneous metastasis of PC3-mm2 from the prostate to distant lymph nodes following intraprostatic injection and suppressed metastasis of PC3-mm2 to multiple organs following intracardiac injection. Thus, constitutively activated β1 integrins play a role in survival of PC3-mm2 cells in circulation and represent a potential target for metastasis prevention.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jung-Kang Jin
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Fen Huang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- Department of Pharmacy at National Taiwan University Hospital, Taipei, Taiwan
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Miao Huang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Wells S. Brown
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sui Zhang
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Edward T. Yeh
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bradley W. McIntyre
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| | - Sue-Hwa Lin
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| |
Collapse
|
38
|
Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clin Exp Metastasis 2012; 30:541-52. [PMID: 23224938 DOI: 10.1007/s10585-012-9558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Integrin α3β1 promotes tumor cell adhesion, migration, and invasion on laminin isoforms, and several clinical studies have indicated a correlation between increased tumoral α3β1 integrin expression and tumor progression, metastasis, and poor patient outcomes. However, several other clinical and experimental studies have suggested that α3β1 can possess anti-metastatic activity in certain settings. To help define the range of α3β1 functions in tumor cells in vivo, we used RNAi to silence the α3 integrin subunit in an aggressive, in vivo-passaged subline of PC-3 prostate carcinoma cells. Loss of α3 integrin impaired adhesion and proliferation on the α3β1 integrin ligand, laminin-332 in vitro. Despite these deficits in vitro, the α3-silenced cells were significantly more aggressive in a lung colonization model in vivo, with a substantially increased rate of tumor growth that significantly reduced survival. In contrast, silencing the related α6 integrin subunit delayed metastatic growth in vivo. The increased colonization of α3-silenced tumor cells in vivo was recapitulated in 3D collagen co-cultures with lung fibroblasts or pre-osteoblast-like cells, where α3-silenced cells showed dramatically enhanced growth. The increased response of α3-silenced tumor cells to stromal cells in co-culture could be reproduced by fibroblast conditioned medium, which contains one or more heparin-binding factors that selectively favor the growth of α3-silenced cells. Our new data suggest a scenario in which α3β1 regulates tumor-host interactions within the metastatic tumor microenvironment to limit growth, providing some of the first direct evidence that specific loss of α3 function in tumor cells can have pro-metastatic consequences in vivo.
Collapse
|
39
|
Isaac J, Tarapore P, Zhang X, Lam YW, Ho SM. Site-specific S-nitrosylation of integrin α6 increases the extent of prostate cancer cell migration by enhancing integrin β1 association and weakening adherence to laminin-1. Biochemistry 2012; 51:9689-97. [PMID: 23106339 DOI: 10.1021/bi3012324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increased mortality in prostate cancer is usually the result of metastatic progression of the disease from the organ-confined location. Among the major events in this progression cascade are enhanced cell migration and loss of adhesion. Moreover, elevated levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) found within the tumor microenvironment are hallmarks of progression of this cancer. To understand the role of nitrosative stress in prostate cancer progression, we investigated the effects of NO and iNOS on prostate cancer cell migration and adhesion. Our results indicate that ectopic expression of iNOS in prostate cancer cells increased the extent of cell migration, which could be blocked by selective ITGα6 blocking antibody or iNOS inhibitors. Furthermore, iNOS was found to cause S-nitrosylation of ITGα6 at Cys86 in prostate cancer cells. By comparing the activities of wild-type ITGα6 and a Cys86 mutant, we showed that treatment of prostate cancer cells with NO increased the level of ITGα6 heterodimerization with ITGβ1 but not with ITGβ4. Finally, S-nitrosylation of ITGα6 weakened its binding to laminin-β1 and weakened the adhesion of prostate cancer cells to laminin-1. In conclusion, S-nitrosylation of ITGα6 increased the extent of prostate cancer cell migration, which could be a potential mechanism of NO- and iNOS-induced enhancement of prostate cancer metastasis.
Collapse
Affiliation(s)
- Jared Isaac
- Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
40
|
RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis. Cancers (Basel) 2012; 4:1106-45. [PMID: 24213501 PMCID: PMC3712721 DOI: 10.3390/cancers4041106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment.
Collapse
|
41
|
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 2012; 6:71-7. [PMID: 22568952 DOI: 10.4161/cam.20077] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Historically, a hallmark of tumorigenesis was the ability to grow in an anchorage-independent manner. Hence, tumors were thought to proliferate and survive independently of integrin attachment to the substratum. However, recent data suggest that integrins regulate not only tumor cell proliferation, survival and migration, but may also influence their response to anti-cancer agents. Interestingly, these influences are largely masked by growth of tumor cells in the standard, yet artificial, environment of 2D cell culture, but are readily apparent under 3D in vitro culture conditions and in tumor growth in vivo. We, and others, have recently demonstrated that the β1 integrin subunit controls the growth and invasion of prostate tumor cells in 3D culture conditions. Recently, the importance of integrins has also been demonstrated using tissue specific conditional knockout strategies in transgenic mouse tumor models, where they control primary tumor growth and dictate the site of metastatic spread. Furthermore, integrin-extracellular matrix interactions may modulate the response of tumors to standard chemotherapy agents or radiation. Taken together, these results highlight the important role of integrins in regulating tumor growth and metastasis; however, point out that the evaluation of their contribution to these processes requires appropriate contextual modeling.
Collapse
Affiliation(s)
- Grant A Howe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | |
Collapse
|
42
|
Spencer VA. Actin-towards a deeper understanding of the relationship between tissue context, cellular function and tumorigenesis. Cancers (Basel) 2011; 3:4269-80. [PMID: 24213138 PMCID: PMC3763423 DOI: 10.3390/cancers3044269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/26/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
It is well-established that the actin cytoskeleton plays an important role in tumor development yet the contribution made by nuclear actin is ill-defined. In a recent study, nuclear actin was identified as a key mediator through which laminin type III (LN1) acts to control epithelial cell growth. In the breast, epithelial tumors are surrounded by an environment which lacks LN1. These findings point to actin as a potential mediator of tumor development. Here our current understanding of the roles of cytoplasmic and nuclear actin in normal and tumor cell growth is reviewed, relating these functions to cell phenotype in a tissue context.
Collapse
Affiliation(s)
- Virginia A Spencer
- Cell Culture Essentials, Life Technologies, 7335 Executive Way, Frederick, MD 21703, USA.
| |
Collapse
|
43
|
Schooley AM, Andrews NM, Zhao H, Addison CL. β1 integrin is required for anchorage-independent growth and invasion of tumor cells in a context dependent manner. Cancer Lett 2011; 316:157-67. [PMID: 22099877 DOI: 10.1016/j.canlet.2011.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/12/2011] [Accepted: 10/23/2011] [Indexed: 10/15/2022]
Abstract
Recent studies suggest that extracellular matrix (ECM) components within the tumor microenvironment can influence malignant progression, thus we investigated the influence of the ECM binding receptor β1 integrin, on the hallmark properties of tumorigenesis. Small interfering (si) or short hairpin (sh) RNA approaches were used to deplete β1 integrin in cancer cell lines. β1 integrin-depleted cells were then assessed for their growth and invasive capabilities using 2-dimensional (2D) or 3D culture conditions. Depletion of β1 integrin expression did not impact cell growth in 2D assay systems; however, β1 integrin and its ligand fibronectin were required for growth in 3D. β1 integrin-depleted cells also had reduced invasive capabilities, in part due to increased tissue inhibitor of metalloprotease (TIMP)-2 expression in conjunction with down-regulation of matrix metalloprotease (MMP)-9 levels in β1 integrin-depleted cells. Our results suggest that despite no apparent effect on 2D cell growth, fibronectin-β1 integrin signaling is a critical mediator of the 3D growth and invasive properties of tumor cells. These observations highlight the importance of investigating the role of adhesion molecules in the appropriate context and furthermore identify β1 integrin as a possible therapeutic target to inhibit the aggressive growth and invasion of tumor cells.
Collapse
Affiliation(s)
- Allana M Schooley
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
44
|
Pontes-Junior J, Reis ST, Dall'Oglio M, Neves de Oliveira LC, Cury J, Carvalho PA, Ribeiro-Filho LA, Moreira Leite KR, Srougi M. Evaluation of the expression of integrins and cell adhesion molecules through tissue microarray in lymph node metastases of prostate cancer. J Carcinog 2011; 8:3. [PMID: 19240373 PMCID: PMC2678866 DOI: 10.4103/1477-3163.48453] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Integrins and adhesion molecules are responsible for the maintenance of the epithelial phenotype. Cell culture studies have reported the correlation between adhesion molecule expression and prostate carcinoma, but their role in the metastatic process is not yet known. Our aim is to study the expression profiles of these molecules and evaluate their association with the metastatic behavior of prostate adenocarcinoma. Materials and Methods: A Tissue Microarray containing two samples from 19 primary tumors and one from their corresponding lymph node metastases was constructed and subjected to immunohistochemical analysis of the expression of integrins, E-cadherin and β and γ-catenins. Within each case, paired analyses were also performed to evaluate gains or losses in metastasis compared to its primary tumor. Results: The expression of αv, αvβ3, α2β1 and γ-catenin were abnormal in almost every case. Marked loss of E-cadherin and β4 integrin was found in primary and metastatic lesions. β-catenin was normal in all primary cases and in 94% of metastases. α6 was normal in all primary tumors and metastases. α3 and α3β1 were normal in 32% of primary cases and in 53% and 6% of metastases, respectively. In paired analyses, loss of E-cadherin, β4, αv, α3β1 and αvβ3 was found in 65%, 71%, 59%, 53% and 47% of patients, respectively. Catenins and α2β1 showed maintenance of expression in most of the cases. Conclusions: In this preliminary study we have shown that the loss of cell adhesion molecules can be considered a characteristic of the metastatic phenotype in prostate cancer. Larger series should be evaluated in order to confirm our findings.
Collapse
Affiliation(s)
- Jose Pontes-Junior
- Laboratory of Medical Investigation - LIM 55, Urology Department, Medical School University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Metastasis Update: Human Prostate Carcinoma Invasion via Tubulogenesis. Prostate Cancer 2011; 2011:249290. [PMID: 21949592 PMCID: PMC3177701 DOI: 10.1155/2011/249290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/25/2011] [Indexed: 01/08/2023] Open
Abstract
This paper proposes that human prostate carcinoma primarily invades as a cohesive cell collective through a mechanism similar to embryonic tubulogenesis, instead of the popular epithelial-mesenchymal transformation (EMT) model. Evidence supporting a tubulogenesis model is presented, along with suggestions for additional research. Additionally, observations documenting cell adhesion molecule changes in tissue and stromal components are reviewed, allowing for comparisons between the current branching morphogenesis models and the tubulogenesis model. Finally, the implications of this model on prevailing views of therapeutic and diagnostic strategies for aggressive prostatic disease are considered.
Collapse
|
46
|
Jin JK, Dayyani F, Gallick GE. Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer 2011; 128:2545-61. [PMID: 21365645 PMCID: PMC3082284 DOI: 10.1002/ijc.26024] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease in which metastasis to the bone is the main cause of death. Initial stages of metastasis are generally similar to those for most solid tumors; however, the mechanisms that underlie the homing of prostate tumor cells to the bone are not completely understood. Prostate cancer bone metastasis is also a microenvironment-driven disease, involving bidirectional interactions between the tumor and the bone microenvironment. In this review, we discuss the current understanding of the biologic processes and regulatory factors involved in the metastasis of prostate cancer cells, and their specific properties that promote growth in bone. Although many of these processes still need to be fully elucidated, a better understanding of the complex tumor/microenvironment interplay is slowly leading to more effective therapies for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Jung-Kang Jin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Farshid Dayyani
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| |
Collapse
|
47
|
Abstract
INTRODUCTION Integrins, which are heterodimeric membrane glycoproteins, consist of a family of cell-surface receptors mediating cell-matrix and cell-cell adhesion. Analysis of tumor-associated integrins has revealed an important relationship between integrins and tumor development, bringing new insights into integrin-based cancer therapies. Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and integrins appeal to be a novel group of potential therapeutic targets for HCC. AREAS COVERED This review summarizes the current knowledge of integrins involved in HCC and the potential of integrin-targeted drugs in HCC therapy. A brief introduction on the structure, biological function and regulatory mechanism of integrins is given. The distinct expression patterns and biological functions of HCC-associated integrins are described. Finally, the current situation of integrin-based therapies in HCC and other tumor types are extensively discussed in the light of their implications in preclinical and clinical trials. EXPERT OPINION To date, increasing numbers of integrin-targeted drugs are undergoing development and they exhibit diverse effects in cancer clinical trials. Tumor heterogeneity should be emphasized in developing effective integrin-targeted drugs specific for HCC. A better understanding of how integrins cooperatively function in HCC will assist in designing more successful integrin-targeted therapeutic drugs and corresponding approaches.
Collapse
Affiliation(s)
- Yanhua Wu
- Fudan University, Institute of Genetics, State Key Laboratory of Genetic Engineering, 220 Handan Road, Shanghai, 200433, P. R. China
| | | | | | | |
Collapse
|
48
|
Lamb LE, Zarif JC, Miranti CK. The androgen receptor induces integrin α6β1 to promote prostate tumor cell survival via NF-κB and Bcl-xL Independently of PI3K signaling. Cancer Res 2011; 71:2739-49. [PMID: 21310825 DOI: 10.1158/0008-5472.can-10-2745] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies indicate that androgen receptor (AR) signaling is critical for prostate cancer cell survival, even in castration-resistant disease wherein AR continues to function independently of exogenous androgens. Integrin-mediated adhesion to the extracellular matrix is also important for prostate cell survival. AR-positive prostate cancer cells express primarily integrin α6β1 and adhere to a laminin-rich matrix. In this study, we show that active nuclear-localized AR protects prostate cancer cells from death induced by phosphoinositide 3-kinase (PI3K) inhibition when cells adhere to laminin. Resistance to PI3K inhibition is mediated directly by an AR-dependent increase in integrin α6β1 mRNA transcription and protein expression. Subsequent signaling by integrin α6β1 in AR-expressing cells increased NF-κB activation and Bcl-xL expression. Blocking AR, integrin α6, NF-κB, or Bcl-xL concurrent with inhibition of PI3K was sufficient and necessary to trigger death of laminin-adherent AR-expressing cells. Taken together, these results define a novel integrin-dependent survival pathway in prostate cancer cells that is regulated by AR, independent of and parallel to the PI3K pathway. Our findings suggest that combined targeting of both the AR/α6β1 and PI3K pathways may effectively trigger prostate cancer cell death, enhancing the potential therapeutic value of PI3K inhibitors being evaluated in this setting.
Collapse
Affiliation(s)
- Laura E Lamb
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
49
|
Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells. Cell Biol Int 2010; 34:815-26. [PMID: 20446922 DOI: 10.1042/cbi20090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mevalonate synthesis pathway produces intermediates for isoprenylation of small GTPases, which are involved in the regulation of actin cytoskeleton and cell motility. Here, we investigated the role of the prenylation transferases in the regulation of the cytoskeletal organization and motility of PC-3 prostate cancer cells. This was done by using FTI-277, GGTI-298 or NE-10790, the specific inhibitors of FTase (farnesyltransferase), GGTase (geranylgeranyltransferase)-I and -II, respectively. Treatment of PC-3 cells with GGTI-298 and FTI-277 inhibited migration and invasion in a time- and dose-dependent manner. This was associated with disruption of F-actin organization and decreased recovery of GFP-actin. Immunoblot analysis of various cytoskeleton-associated proteins showed that the most striking change in GGTI-298- and FTI-277-treated cells was a markedly decreased level of total and phosphorylated cofilin, whereas the level of cofilin mRNA was not decreased. The treatment of PC-3 cells with GGTI-298 also affected the dynamics of GFP-paxillin and decreased the levels of total and phosphorylated paxillin. The levels of phosphorylated FAK (focal adhesion kinase) and PAK (p-21-associated kinase)-2 were also lowered by GGTI-298, but levels of paxillin or FAK mRNAs were not affected. In addition, GGTI-298 had a minor effect on the activity of MMP-9. RNAi knockdown of GGTase-Ibeta inhibited invasion, disrupted F-actin organization and decreased the level of cofilin in PC-3 cells. NE-10790 did not have any effect on PC-3 prostate cancer cell motility or on the organization of the cytoskeleton. In conclusion, our results demonstrate the involvement of GGTase-I- and FTase-catalysed prenylation reactions in the regulation of cytoskeletal integrity and motility of prostate cancer cells and suggest them as interesting drug targets for development of inhibitors of prostate cancer metastasis.
Collapse
|
50
|
Drake JM, Barnes JM, Madsen JM, Domann FE, Stipp CS, Henry MD. ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. J Biol Chem 2010; 285:33940-8. [PMID: 20729552 PMCID: PMC2962494 DOI: 10.1074/jbc.m110.136044] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis involves the invasion of cancer cells across both the extracellular matrix and cellular barriers, and an evolving theme is that epithelial-to-mesenchymal transition (EMT) may mediate invasive cellular behavior. Previously, we isolated and analyzed a subpopulation of PC-3 prostate cancer cells, TEM4-18, and found that these cells both invaded an endothelial barrier more efficiently and exhibited enhanced metastatic colonization in vivo. Transendothelial migration of these cells depended on expression of ZEB1, a known regulator of EMT. Surprisingly, these cells were much less invasive than parental PC-3 cells in assays that involve matrix barriers. Here, we report that TEM4-18 cells express significantly reduced levels of two subunits of laminin-332 (β3 and γ2) and that exogenous laminin-332, or co-culture with laminin-332-expressing cells, rescues the in vitro invasion phenotype in these cells. Stable knockdown of ZEB1 in prostate cancer cells up-regulated LAMC2 and ITGB4 mRNA and protein and resulted in a concomitant increase in Transwell migration. Using chromatin immunoprecipitation (ChIP), we show that ZEB1 directly interacts with the promoters of LAMC2 and ITGB4. These results provide a novel molecular basis for reduced laminin-332 observed in clinical prostate cancer specimens and demonstrate a context-dependent role for EMT in invasive cellular behavior.
Collapse
Affiliation(s)
| | | | - Joshua M. Madsen
- Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine
| | - Frederick E. Domann
- Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Christopher S. Stipp
- the Department of Biology, and
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
| | - Michael D. Henry
- From the Departments of Molecular Physiology and Biophysics
- Pathology, and
- the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242
- To whom correspondence should be addressed: The University of Iowa, 6-510 Bowen Science Bldg., Iowa City, IA 52242. Tel.: 319-335-7886; Fax: 319-335-7330; E-mail:
| |
Collapse
|