1
|
Hashikawa-Hobara N, Chan NYK, Levi R. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart. J Pharmacol Exp Ther 2012; 340:185-91. [PMID: 22011436 PMCID: PMC3251025 DOI: 10.1124/jpet.111.187765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/18/2011] [Indexed: 01/09/2023] Open
Abstract
In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and norepinephrine effects and alleviation of arrhythmias.
Collapse
|
2
|
Puglisi JL, Yuan W, Timofeyev V, Myers RE, Chiamvimonvat N, Samarel AM, Bers DM. Phorbol ester and endothelin-1 alter functional expression of Na+/Ca2+ exchange, K+, and Ca2+ currents in cultured neonatal rat myocytes. Am J Physiol Heart Circ Physiol 2010; 300:H617-26. [PMID: 21131481 DOI: 10.1152/ajpheart.00388.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endothelin-1 (ET-1) and activation of protein kinase C (PKC) have been implicated in alterations of myocyte function in cardiac hypertrophy and heart failure. Changes in cellular Ca2+ handling and electrophysiological properties also occur in these states and may contribute to mechanical dysfunction and arrhythmias. While ET-1 or PKC stimulation induces cellular hypertrophy in cultured neonatal rat ventricular myocytes (NRVMs), a system widely used in studies of hypertrophic signaling, there is little data about electrophysiological changes. Here we studied the effects of ET-1 (100 nM) or the PKC activator phorbol 12-myristate 13-acetate (PMA, 1 μM) on ionic currents in NRVMs. The acute effects of PMA or ET-1 (≤30 min) were small or insignificant. However, PMA or ET-1 exposure for 48-72 h increased cell capacitance by 100 or 25%, respectively, indicating cellular hypertrophy. ET-1 also slightly increased Ca2+ current density (T and L type). Na+/Ca2+ exchange current was increased by chronic pretreatment with either PMA or ET-1. In contrast, transient outward and delayed rectifier K+ currents were strongly downregulated by PMA or ET-1 pretreatment. Inward rectifier K+ current tended toward a decrease at larger negative potential, but time-independent outward K+ current was unaltered by either treatment. The enhanced inward and reduced outward currents also result in action potential prolongation after PMA or ET-1 pretreatment. We conclude that chronic PMA or ET-1 exposure in cultured NRVMs causes altered functional expression of cardiac ion currents, which mimic electrophysiological changes seen in whole animal and human hypertrophy and heart failure.
Collapse
Affiliation(s)
- José L Puglisi
- Cardiovascular Institute and Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Comparing the Effects of Carvedilol Enantiomers on Regression of Established Cardiac Hypertrophy Induced by Pressure Overload. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.1.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Wei H, Vander Heide RS. Ischemic preconditioning and heat shock activate Akt via a focal adhesion kinase-mediated pathway in Langendorff-perfused adult rat hearts. Am J Physiol Heart Circ Physiol 2009; 298:H152-7. [PMID: 19880666 DOI: 10.1152/ajpheart.00613.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heat stress (HS)-induced cardioprotection is associated with the activation of focal adhesion kinase (FAK) and protein kinase B (Akt) in neonatal rat ventricular myocytes (NRVMs), suggesting that stress-induced activation of survival pathways may be important in protecting intact hearts from irreversible injury. The purposes of this study were 1) to examine the subcellular signaling pathways activated by HS and ischemic preconditioning (IP) in intact hearts, 2) to determine whether HS and IP activate an integrated survival pathway similar to that activated by HS in cultured NRVMs, and 3) to determine whether HS and IP reduce lethal cell injury in perfused intact hearts. Adult rat hearts perfused in the Langendorff mode were subjected to 25 min of global ischemia and 30 min of reperfusion (I/R) either 24 h after whole animal HS or following a standard IP protocol. Myocardial signaling was analyzed using Western blot analysis, whereas cell death was assayed by measuring lactate dehydrogenase release into the perfusate and confirmed by light microscopy. Similar to NRVMs, HS performed in the whole animal 24 h before I/R increased phosphorylation of FAK at tyrosine-397 and protein kinase B (Akt) and resulted in protection from cell death. Using IP as a myocardial stress also resulted in an increased phosphorylation/activation of both FAK and Akt and resulted in reduced cell death in adult perfused rat hearts subjected to I/R. In conclusion, 1) myocardial stress caused by whole animal HS activates cytoskeletal-based survival signaling pathways in whole heart tissue and reduces lethal I/R injury and 2) IP activates the same stress-induced survival pathway and the activation correlates with the well-known cardioprotective effect of IP on lethal I/R injury.
Collapse
Affiliation(s)
- Hongguang Wei
- Department of Pathology, Wayne State University Medical School, Detroit, Michigan, USA
| | | |
Collapse
|
5
|
Wei H, Vander Heide RS. Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H561-8. [PMID: 18539755 DOI: 10.1152/ajpheart.00401.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat stress (HS)-induced cardioprotection is associated with increased paxillin localization to the membrane fraction of neonatal rat ventricular myocytes (NRVM). The purpose of this study was 1) to examine the subcellular signaling pathways activated by HS; 2) to determine whether myocardial stress organizes and activates an integrated survival pathway; and 3) to investigate potential downstream cytoprotective proteins activated by HS. After HS, NRVM were subjected to chemical inhibitors (CI) designed to simulate ischemia by inhibiting both glycolysis and mitochondrial respiration. Protein kinase B (AKT) expression (wild type) was increased selectively with an adenoviral vector. Cell signaling was analyzed with Western blot analysis, while oncosis/apoptosis was assayed by measuring Trypan blue exclusion and/or terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. HS increased phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 but did not adversely affect the viability of NRVM before CI. HS increased association between FAK and phosphatidylinositol 3-kinase as well as causing a significant increase in AKT activity. Increased expression of wild-type AKT protected myocytes from both oncotic and apoptotic cell death. Increased expression of a FAK inhibitor, FRNK, reduced AKT phosphorylation in response to HS both at time 0 and after 10 min of CI compared with myocytes expressing empty virus. We conclude that myocardial stress activates cytoskeleton-based signaling pathways that are associated with protection from lethal cell injury.
Collapse
Affiliation(s)
- Hongguang Wei
- Dept. of Pathology, Wayne State Univ. Medical School, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
6
|
Rodriguez-Hernandez A, Rubio-Gayosso I, Ramirez I, Ita-Islas I, Meaney E, Gaxiola S, Meaney A, Asbun J, Figueroa-Valverde L, Ceballos G. Intraluminal-restricted 17 beta-estradiol exerts the same myocardial protection against ischemia/reperfusion injury in vivo as free 17 beta-estradiol. Steroids 2008; 73:528-38. [PMID: 18314151 DOI: 10.1016/j.steroids.2008.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/21/2007] [Accepted: 01/04/2008] [Indexed: 11/18/2022]
Abstract
Several in vitro studies show that in animals and isolated cells, 17 beta-estradiol induces cardiovascular protective effects and it has also been observed that it reduces coronary heart disease risk. However, the use of estrogens to improve or protect cardiovascular function in humans has been controversial, this might be explained by the wide variety of effects, because estrogen receptors (ER) are expressed ubiquitously. Therefore, a cell-specific targeting therapeutic approach might be necessary. 17 beta-Estradiol was coupled to a large modified dextran through an aminocaproic spacer. For this study we used intact and gonadectomized male Wistar rats, 15 days after surgical procedure. Intravascular administration of 17 beta-estradiol-macromolecular conjugate, prior to coronary reperfusion diminishes the area of damage induced by coronary ischemia reperfusion (I/R) injury on an in vivo model. This effect was observed at 17 beta-estradiol sub-physiological concentrations [0.01 nmol/L], it is mediated by luminal endothelial ER alpha activation. 17 beta-Estradiol-macromolecular conjugate decreases phosphorylation level of PKC alpha and Akt, as part of the process to induce myocardial protection against coronary I/R. We proved that the hormone-macromolecular conjugate labeled with [3H]estradiol remained confined in the intravascular space the conjugate was not internalized into organs like heart, lung or liver. It is noteworthy that the 17 beta-estradiol-macromolecular conjugate has a slow renal elimination, which might increase its pharmacological advantage. We concluded that the stimulus of endothelial estrogen receptors is enough to decrease the myocardial damage induced by coronary reperfusion.
Collapse
Affiliation(s)
- Arturo Rodriguez-Hernandez
- Seccion de Graduados, Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340 Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Deschamps AM, Zavadzkas J, Murphy RL, Koval CN, McLean JE, Jeffords L, Saunders SM, Sheats NJ, Stroud RE, Spinale FG. Interruption of endothelin signaling modifies membrane type 1 matrix metalloproteinase activity during ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2007; 294:H875-83. [PMID: 18065523 DOI: 10.1152/ajpheart.00918.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix metalloproteinases (MMPs), in particular, membrane type 1 MMP (MT1-MMP), are increased in the context of myocardial ischemia and reperfusion (I/R) and likely contribute to myocardial dysfunction. One potential upstream induction mechanism for MT1-MMP is endothelin (ET) release and subsequent protein kinase C (PKC) activation. Modulation of ET and PKC signaling with respect to MT1-MMP activity with I/R has yet to be explored. Accordingly, this study examined in vivo MT1-MMP activation during I/R following modification of ET signaling and PKC activation. With the use of a novel fluorogenic microdialysis system, myocardial interstitial MT1-MMP activity was measured in pigs (30 kg; n = 9) during I/R (90 min I/120 min R). Local ET(A) receptor antagonism (BQ-123, 1 microM) and PKC inhibition (chelerythrine, 1 microM) were performed in parallel microdialysis probes. MT1-MMP activity was increased during I/R by 122 +/- 10% (P < 0.05) and was unchanged from baseline with ET antagonism and/or PKC inhibition. Selective PKC isoform induction occurred such that PKC-betaII increased by 198 +/- 31% (P < 0.05). MT1-MMP phosphothreonine, a putative PKC phosphorylation site, was increased by 121 +/- 8% (P < 0.05) in the I/R region. These studies demonstrate for the first time that increased interstitial MT1-MMP activity during I/R is a result of the ET/PKC pathway and may be due to enhanced phosphorylation of MT1-MMP. These findings identify multiple potential targets for modulating a local proteolytic pathway operative during I/R.
Collapse
Affiliation(s)
- Anne M Deschamps
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
House SL, Melhorn SJ, Newman G, Doetschman T, Schultz JEJ. The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. Am J Physiol Heart Circ Physiol 2007; 293:H354-65. [PMID: 17337596 DOI: 10.1152/ajpheart.00804.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elucidation of protective mechanisms against ischemia-reperfusion injury is vital to the advancement of therapeutics for ischemic heart disease. Our laboratory has previously shown that cardiac-specific overexpression of fibroblast growth factor-2 (FGF2) results in increased recovery of contractile function and decreased infarct size following ischemia-reperfusion injury and has established a role for the mitogen-activated protein kinase (MAPK) signaling cascade in the cardioprotective effect of FGF2. We now show an additional role for the protein kinase C (PKC) signaling cascade in the mediation of FGF2-induced cardioprotection. Overexpression of FGF2 (FGF2 Tg) in the heart resulted in decreased translocation of PKC-delta but had no effect on PKC-alpha, -epsilon, or -zeta. In addition, multiple alterations in PKC isoform translocation occur during ischemia-reperfusion injury in FGF2 Tg hearts as assessed by Western blot analysis and confocal immunofluorescent microscopy. Treatment of FGF2 Tg and nontransgenic (NTg) hearts with the PKC inhibitor bisindolylmaleimide (1 micromol/l) revealed the necessity of PKC signaling for FGF2-induced reduction of contractile dysfunction and myocardial infarct size following ischemia-reperfusion injury. Western blot analysis of FGF2 Tg and NTg hearts subjected to ischemia-reperfusion injury in the presence of a PKC pathway inhibitor (bisindolylmaleimide, 1 micromol/l), an mitogen/extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) pathway inhibitor (U-0126, 2.5 micromol/l), or a p38 pathway inhibitor (SB-203580, 2 micromol/l) revealed a complicated signaling network between the PKC and MAPK signaling cascades that may participate in FGF2-induced cardioprotection. Together, these data suggest that FGF2-induced cardioprotection is mediated via a PKC-dependent pathway and that the PKC and MAPK signaling cascades are integrally connected downstream of FGF2.
Collapse
Affiliation(s)
- Stacey L House
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0575, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
9
|
Simonis G, Schoen SP, Braun MU, Lichte S, Marquetant R, Strasser RH. Dual mechanism of autoregulation of protein kinase C in myocardial ischemia. Mol Cell Biochem 2006; 295:121-8. [PMID: 16924416 DOI: 10.1007/s11010-006-9281-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/10/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, a dual activation mechanism of protein kinase C (PKC) in ischemia has been reported, consisting of early translocation and late expressional regulation. Moreover, autophosphorylation of the enzyme has been shown in vitro during its activation. This study aimed to show modes of late activation of PKC in myocardial ischemia in intact hearts. METHODS AND RESULTS Isolated perfused hearts of male Wistar rats were used. A: To examine if the early translocation of PKC influences the late transcriptional activation, hearts were treated with the PKC-inhibitor Bisindolylmaleimid (BIS, 0.25 microM) before the onset of ischemia and then subjected to ischemia (30 min). PKC-isoform mRNA was quantified by RT-PCR. In these experiments, ischemia leads to a selective increase of mRNA specific for the isoforms PKC-delta and PKC-epsilon (163% and 168% of control, p<0.05). This ischemia-induced upregulation could be completely blocked by BIS given before the onset of ischemia. B: To test the capacity of PKC to undergo phosphorylation during ischemia, hearts were perfused with [32P]-phosphorus and then subjected to ischemia. Ischemia (30 min) induced a significant 3-fold increase of PKC phosphorylation. Stimulation of heart with the PKC-activator tetradecanoylphorbol-13-acetate (TPA) lead to a comparable phosphorylation, suggesting that ischemia leads to autophosphorylation of PKC. CONCLUSION Ischemia activates two distinct forms of autoregulation of PKC. The expressional upregulation of PKC-delta and PKC-epsilon is dependent on early activation of the enzyme. At the same time, processes of enzyme phosphorylation occur. Both the mechanisms may contribute to enzyme activation processes beyond the classical enzyme translocation.
Collapse
Affiliation(s)
- Gregor Simonis
- Department of Medicine and Cardiology, Dresden University of Technology, Fetscherstr. 76, 01307, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Sucharov CC, Mariner PD, Nunley KR, Long C, Leinwand L, Bristow MR. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am J Physiol Heart Circ Physiol 2006; 291:H1299-308. [PMID: 16501029 DOI: 10.1152/ajpheart.00017.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
Collapse
Affiliation(s)
- Carmen C Sucharov
- University of Colorado Cardiovascular Institute, Campus Box B130, UCHSC, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Williams SD, Ford DA. Calcium-independent phospholipase A(2) mediates CREB phosphorylation and c-fos expression during ischemia. Am J Physiol Heart Circ Physiol 2001; 281:H168-76. [PMID: 11406482 DOI: 10.1152/ajpheart.2001.281.1.h168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In isolated, perfused adult rat hearts, global ischemia increased the phosphorylation of cAMP response element-binding protein (CREB) relative to control levels, and this phosphorylation was reversed with reperfusion. CREB phosphorylation elicited by 5 min of global ischemia was sensitive to treatments with the calcium-independent phospholipase A(2) (iPLA(2)) inhibitor bromoenol lactone (BEL) and occurred in the absence of increases in myocardial cAMP content. In contrast, CREB phosphorylation elicited by 15 min of global ischemia was likely mediated by elevated cAMP levels. The expression of c-fos, in response to brief myocardial ischemia, was also sensitive to BEL treatment. The induction of iPLA(2)-mediated CREB phosphorylation was further substantiated by the observations that lysoplasmenylcholine increased both the phosphorylation of CREB and the induction of c-fos expression in the absence and presence of BEL. CREB phosphorylation in both ischemic hearts and lysoplasmenylcholine-perfused hearts was inhibited by pretreatment of hearts with the specific cAMP-dependent protein kinase (PKA) inhibitor H-89. Taken together, these data demonstrate that iPLA(2) mediates CREB phosphorylation through a PKA-dependent pathway during brief periods of myocardial ischemia, possibly through the formation of lysophospholipids.
Collapse
Affiliation(s)
- S D Williams
- Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
13
|
Nair SS, Leitch J, Garg ML. N-3 polyunsaturated fatty acid supplementation alters inositol phosphate metabolism and protein kinase C activity in adult porcine cardiac myocytes. J Nutr Biochem 2001; 12:7-13. [PMID: 11179856 DOI: 10.1016/s0955-2863(00)00139-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several mechanisms have been proposed to explain the anti-arrhythmic effects of n-3 polyunsaturated fatty acids. One mechanism is the effect of modifying cell membrane phospholipid and their subsequent effect on intracellular cell signaling via the second messengers, Ins(1,4,5)P(3) and diacylglycerol. Isolated cardiac myocytes from adult pig hearts were used to investigate the effect of n-3 polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, on the inositol phosphate metabolism and protein kinase C activity. Adult porcine cardiac myocytes were grown in media supplemented with 400 µM arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. After 24 hr, fatty acid analyses of total lipids by TLC in supplemented cells showed that eicosapentaenoic acid and docosahexaenoic acid were selectively incorporated into the phosphatidylinositol fraction. In the diacylglycerol fraction, there was a small incorporation of both eicosapentaenoic acid and docosahexaenoic acid but it was not significantly different from that of controls. To study the effect of membrane phospholipid modification on the phospholipase C mediated inositol lipid cycle, cardiac myocytes were labeled with 4µCi/ml myo-[2-(3)H]Ins for 48 hr. After stimulation with epinephrine and phenylephrine (alpha-receptor agonist) the water soluble [(3)H]Ins products were separated by chromatography on Dowex AG 1-X8 and measured by scintillation counting. After stimulation, the levels of [(3)H]Ins(1,4,5)P(3) and [(3)H]Ins(1,3,4,5)P(4) in eicosapentaenoic acid and docosahexaenoic acid supplemented myocytes were significantly reduced (P < 0.05) compared to arachidonic acid supplemented myocytes. Similarly, eicosapentaenoic acid and docosahexaenoic acid supplemented cells had reduced levels of protein kinase C activity after stimulation compared to arachidonic acid supplemented cells. From these experiments, it is evident that n-3 PUFA supplementation modulates intracellular cell signaling suggesting a possible anti-arrhythmic mechanism.
Collapse
Affiliation(s)
- S S.D. Nair
- Discipline of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University of Newcastle, NSW 2308, Callaghan, Australia
| | | | | |
Collapse
|
14
|
Blennerhassett MG, Lourenssen S. Neural regulation of intestinal smooth muscle growth in vitro. Am J Physiol Gastrointest Liver Physiol 2000; 279:G511-9. [PMID: 10960349 DOI: 10.1152/ajpgi.2000.279.3.g511] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The loss of intrinsic neurons is an early event in inflammation of the rat intestine that precedes the growth of intestinal smooth muscle cells (ISMC). To study this relationship, we cocultured ISMC and myenteric plexus neurons from the rat small intestine and examined the effect of scorpion venom, a selective neurotoxin, on ISMC growth. By 5 days after neuronal ablation, ISMC number increased to 141+/-13% (n = 6) and the uptake of [(3)H]thymidine in response to mitogenic stimulation was nearly doubled. Atropine caused a dose-dependent increase in [(3)H]thymidine uptake in cocultures, suggesting the involvement of neural stimulation of cholinergic receptors in regulation of ISMC growth. In contrast, coculture of ISMC with sympathetic neurons increased [(3)H]thymidine uptake by 45-80%, which was sensitive to propranolol (30 microM) and was lost when the neurons were separated from ISMC by a permeable filter. Western blotting showed that coculture with myenteric neurons increased alpha-smooth muscle-specific actin nearly threefold to a level close to ISMC in vivo. Therefore, factors derived from enteric neurons maintain the phenotype of ISMC through suppression of the growth response, whereas catecholamines released by neurons extrinsic to the intestine may stimulate their growth. Thus inflammation-induced damage to intestinal innervation may initiate or modulate ISMC hyperplasia.
Collapse
Affiliation(s)
- M G Blennerhassett
- Gastrointestinal Diseases Research Unit, Queens University, Hotel Dieu Hospital, Kingston, Ontario K7L 5G2, Canada
| | | |
Collapse
|
15
|
Schäfer M, Frischkopf K, Taimor G, Piper HM, Schlüter KD. Hypertrophic effect of selective beta(1)-adrenoceptor stimulation on ventricular cardiomyocytes from adult rat. Am J Physiol Cell Physiol 2000; 279:C495-503. [PMID: 10913016 DOI: 10.1152/ajpcell.2000.279.2.c495] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether selective beta(1)-adrenoceptor stimulation causes hypertrophic growth on isolated ventricular cardiomyocytes from adult rat. As parameters for the induction of hypertrophic growth, the increases of [(14)C]phenylalanine incorporation, protein and RNA mass, and cell size were determined. Isoproterenol (Iso, 10 microM) alone had no growth effect. In the presence of the beta(2)-adrenoceptor antagonist ICI-118551 (ICI, 10 microM), Iso caused an increase in [(14)C]phenylalanine incorporation, protein and RNA mass, cell volume, and cross-sectional area. We showed for phenylalanine incorporation that the growth effect of Iso+ICI could be antagonized by beta(1)-adrenoceptor blockade with atenolol (10 microM) or metoprolol (10 microM), indicating that it was caused by selective beta(1)-adrenoceptor stimulation. The growth response to Iso+ICI was accompanied by an increase in ornithine decarboxylase (ODC) activity and expression. Inhibition of ODC by the ODC antagonist difluoromethylornithine (1 mM) attenuated this hypertrophic response, indicating that ODC induction is causally involved. The growth response to Iso+ICI was found to be cAMP independent but was sensitive to genistein (100 microM) or rapamycin (0.1 microM). The reaction was enhanced in the presence of pertussis toxin (10 microM). We conclude that selective beta(1)-adrenoceptor stimulation causes hypertrophic growth of ventricular cardiomyocytes by a mechanism that is independent of cAMP but dependent on a tyrosine kinase and ODC.
Collapse
Affiliation(s)
- M Schäfer
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|
16
|
Varma DR, Deng XF. Cardiovascular α1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α1-Adrenoceptors (α1AR) are G protein-coupled receptors and include α1A, α1B, and α1D subtypes corresponding to cloned α1a, α1b, and α1d, respectively. α1AR mediate several cardiovascular actions of sympathomimetic amines such as vasoconstriction and cardiac inotropy, hypertrophy, metabolism, and remodeling. α1AR subtypes are products of separate genes and differ in structure, G protein-coupling, tissue distribution, signaling, regulation, and functions. Both α1AAR and α1BAR mediate positive inotropic responses. On the other hand, cardiac hypertrophy is primarily mediated by α1AAR. The only demonstrated major function of α1DAR is vasoconstriction. α1AR are coupled to phospholipase C, phospholipase D, and phospholipase A2; they increase intracellular Ca2+ and myofibrillar sensitivity to Ca2+ and cause translocation of specific phosphokinase C isoforms to the particulate fraction. Cardiac hypertrophic responses to α1AR agonists might involve activation of phosphokinase C and mitogen-activated protein kinase via Gq. α1AR subtypes might interact with each other and with other receptors and signaling mechanisms.Key words: cardiac hypertrophy, inotropic responses, central α1-adrenoreceptors, arrythmias.
Collapse
|
17
|
Matejovicova M, Shivalkar B, Vanhaecke J, Szilard M, Flameng W. Protein kinase C expression and subcellular distribution in chronic myocardial ischemia. Comparison of two different canine models. Mol Cell Biochem 1999; 201:73-82. [PMID: 10630625 DOI: 10.1023/a:1007052232363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied protein kinase C (PKC) isozyme expression and activity distribution in two models of chronically ischemic canine myocardium: (1) single vessel obstruction (SVO), produced by tight stenosis of LAD followed by preconditioning and acute ischemia (40 min); (2) three vessel obstruction (3VO), produced by LAD-stenosis and gradual occlusion of right coronary artery and left circumflex. In both models after 8 weeks of chronic ischemia the dogs were either sacrificed or had PTCA of the LAD with a follow up of another 4 weeks. Control dogs were sham operated. PKC activity was measured in subcellular fractions of tissue samples from anterior and posterior regions in the presence of histone and gamma-[32P]-ATP. PKC isozymes were detected by Western blotting. All regions perfused by the obstructed coronaries were dysfunctional at 8 weeks when compared to baseline, with improvement of anterior wall function after PTCA of LAD. PKC activity was elevated in the membrane fraction of SVO, but unchanged in the 3VO model. PKCs alpha, epsilon, and zeta prevailed in cytosol fraction of the controls (cytosol/membrane ratios were +/- 3.34, 1.38 and 4.56 for alpha, epsilon and zeta, respectively), consistent with PKC activity distribution, while delta was not detected. There was no significant difference between the groups concerning the relative membrane amount of the isozymes. PKCs alpha and epsilon were decreased in the cytosol fraction of both models at 8 weeks (for anterior region, by 56 and 57% in SVO and by 49 and 46% in 3VO, respectively) without there being any differences between anterior and posterior regions, and were low also in the PTCA group. PKC zeta distribution however varied between the two models. The amount of PKC zeta isozyme was downregulated by 45% after 8 weeks of chronic ischemia and returned towards the control values after PTCA in the anterior region of SVO, while it did not change in anterior wall after 8 weeks in 3VO but was significantly decreased (by 47%) in posterior region after PTCA. In conclusion, our results suggest modified PKC signalling in chronically ischemic canine myocardium.
Collapse
Affiliation(s)
- M Matejovicova
- Department of Cardiac Surgery, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Strasser RH, Simonis G, Schön SP, Braun MU, Ihl-Vahl R, Weinbrenner C, Marquetant R, Kübler W. Two distinct mechanisms mediate a differential regulation of protein kinase C isozymes in acute and prolonged myocardial ischemia. Circ Res 1999; 85:77-87. [PMID: 10400913 DOI: 10.1161/01.res.85.1.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An activation of protein kinase C (PKC) in acute myocardial ischemia has been shown previously using its translocation to the plasma membrane as an indirect parameter. However, whether PKC remains activated or whether other mechanisms such as altered gene expression may mediate an isozyme-specific regulation in prolonged ischemia have not been investigated. In isolated perfused rat hearts, PKC activity and the expression of PKC cardiac isozymes were determined on the protein level using enzyme activities and Western blot analyses and on the mRNA level using reverse transcriptase-polymerase chain reaction after various periods of global ischemia (1 to 60 minutes). As early as 1 minute after the onset of ischemia, PKC activity is translocated from the cytosol to the particulate fraction without change in total cardiac enzyme activity. This translocation involves all major cardiac isozymes of PKC (ie, PKCalpha, PKCdelta, PKCepsilon, and PKCzeta). This rapid, nonselective activation of PKCs is only transient. In contrast, prolonged ischemia (>/=15 minutes) leads to an increased cardiac PKC activity (119+/-7 versus 190+/-8 pmol/min per mg protein) residing in the cytosol. This is associated with an augmented, subtype-selective isozyme expression of PKCdelta and PKCvarepsilon (163% and 199%, respectively). The specific mRNAs for PKCdelta (948+/-83 versus 1501+/-138 ag/ng total RNA, 30 minutes of ischemia) and PKCepsilon (1597+/-166 versus 2611+/-252 ag/ng total RNA) are selectively increased. PKCalpha and PKCzeta remain unaltered. In conclusion, two distinct activation and regulation processes of PKC are characterized in acute myocardial ischemia. The early, but transient, translocation involves all constitutively expressed cardiac isozymes of PKC, whereas in prolonged ischemia an increased total PKC activity is associated with an isozyme-selective induction of PKCepsilon and PKCdelta. Whether these fundamentally different activation processes interact remains to be elucidated.
Collapse
Affiliation(s)
- R H Strasser
- Department of Cardiology, Angiology, and Pulmology, University of Heidelberg, Medical Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This review will focus on the free radical signaling mechanism of preconditioning. The results from our laboratory as well as studies from other laboratories suggest that reactive oxygen species function as second messenger during myocardial adaptation to ischemia. This review provides evidence for the first time that tyrosine kinase and MAP kinases are the targets for reactive oxygen species generated in the preconditioned myocardium. The finding that p38 MAP kinase might be upstream of NF kappa B further supports our previous reports that MAPKAP kinase 2 could be the most likely link between the preconditioning and adaptation mediated by gene expression. p38 activation appears to be an important step in the translocation and activation of the nuclear transcription factor NF kappa B, which in turn may be involved in the induction of the expression of a variety of stress-inducible genes.
Collapse
Affiliation(s)
- D K Das
- University of Connecticut School of Medicine, Farmington, USA
| | | | | |
Collapse
|
20
|
Nojiri M, Tanonaka K, Yabe K, Kawana K, Iwai T, Yamane M, Yoshida H, Hayashi J, Takeo S. Involvement of adenosine receptor, potassium channel and protein kinase C in hypoxic preconditioning of isolated cardiomyocytes of adult rat. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:15-23. [PMID: 10446752 DOI: 10.1254/jjp.80.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A possible mechanism for hypoxic preconditioning of adult rat cardiomyocytes was pharmacologically investigated. Isolated cardiomyocytes in all experimental groups were incubated for 120 min under hypoxic conditions followed by 15-min reoxygenation (sustained H/R). Sustained H/R decreased rod-shaped cells. Exposure of the cardiomyocytes to 20-min of hypoxia/30-min reoxygenation (hypoxic preconditioning) attenuated the sustained H/R-induced decrease in rod-shaped cells. The effects of hypoxic preconditioning were abolished by treatment with the protein kinase C (PKC) inhibitor polymyxin B, but abolished by neither the adenosine A1/A2-antagonist sulfophenyl theophylline (SPT) nor the ATP-sensitive potassium channel (K(ATP) channel) blocker glibenclamide. In another series of experiments, cardiomyocytes were incubated without hypoxic preconditioning in the presence of either the PKC activator PMA, adenosine or K(ATP)-channel opener nicorandil and then subjected to sustained H/R. Treatment of the cells with PMA, adenosine or nicorandil mimicked the effects of hypoxic preconditioning. The effects of treatment with adenosine and nicorandil were abolished by polymyxin B treatment. Combined treatment with both SPT and glibenclamide abolished the effects of hypoxic preconditioning, whereas it failed to abolish PMA-induced cytoprotection. These results suggest that the activation of PKC in hypoxic preconditioned cardiomyocytes coupled independently with stimulation of adenosine receptor or opening of K(ATP) channel, either of which is fully enough to exert the cytoprotective effects.
Collapse
Affiliation(s)
- M Nojiri
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Montessuit C, Thorburn A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 1999; 274:9006-12. [PMID: 10085148 DOI: 10.1074/jbc.274.13.9006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myocardial hypertrophy is associated with increased basal glucose metabolism. Basal glucose transport into cardiac myocytes is mediated by the GLUT1 isoform of glucose transporters, whereas the GLUT4 isoform is responsible for regulatable glucose transport. Treatment of neonatal cardiac myocytes with the hypertrophic agonist 12-O-tetradecanoylphorbol-13-acetate or phenylephrine increased expression of Glut1 mRNA relative to Glut4 mRNA. To study the transcriptional regulation of GLUT1 expression, myocytes were transfected with luciferase reporter constructs under the control of the Glut1 promoter. Stimulation of the cells with 12-O-tetradecanoylphorbol-13-acetate or phenylephrine induced transcription from the Glut1 promoter, which was inhibited by cotransfection with the mitogen-activated protein kinase phosphatases CL100 and MKP-3. Cotransfection of the myocytes with constitutively active versions of Ras and MEK1 or an estrogen-inducible version of Raf1 also stimulated transcription from the Glut1 promoter. Hypertrophic induction of the Glut1 promoter was also partially sensitive to inhibition of the phosphatidylinositol 3-kinase pathway and was strongly inhibited by cotransfection with dominant-negative Ras. Thus, Ras activation and pathways downstream of Ras mediate induction of the Glut1 promoter during myocardial hypertrophy.
Collapse
Affiliation(s)
- C Montessuit
- Department of Oncological Sciences, Program in Human Molecular Biology and Genetics, Departments of Oncological Sciences, Human Genetics, and Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
22
|
Albert CJ, Ford DA. Protein kinase C translocation and PKC-dependent protein phosphorylation during myocardial ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H642-50. [PMID: 9950866 DOI: 10.1152/ajpheart.1999.276.2.h642] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study demonstrates that the alpha, epsilon, and iota isozymes of protein kinase C (PKC) are translocated to particulate fractions from the cytosol during brief intervals of global ischemia as well as reperfusion of ischemic rat myocardium. In contrast, phorbol ester treatment of perfused hearts resulted in the translocation of the alpha, delta, and epsilon isozymes of PKC to particulate fractions. Additionally, the alpha, delta, and epsilon isozymes of PKC are translocated to particulate fractions in phorbol ester-stimulated, isolated adult rat cardiac myocytes. Concomitant with the translocation of PKC isozymes to particulate fractions during myocardial ischemia, increased protein phosphorylation was observed, which was blocked by pretreatment of hearts with the selective PKC inhibitor bisindolylmaleimide I (50 nM). In particular, ischemia resulted in the phosphorylation of 26-, 20-, and 17-kDa particulate-associated proteins. Taken together, the present findings are the first to demonstrate that specific PKC isozymes are translocated to particulate fractions in the ischemic and the reperfused ischemic rat heart, resulting in the phosphorylation of specific particulate-associated proteins.
Collapse
Affiliation(s)
- C J Albert
- Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
23
|
Albert CJ, Ford DA. Identification of specific nuclear protein kinase C isozymes and accelerated protein kinase C-dependent nuclear protein phosphorylation during myocardial ischemia. FEBS Lett 1998; 438:32-6. [PMID: 9821954 DOI: 10.1016/s0014-5793(98)01264-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein kinase C (PKC) has been suggested to mediate, at least in part, multiple processes in the pathophysiological sequelae of myocardial ischemia. The present study demonstrates that the epsilon, eta and iota isozymes of PKC are translocated to nuclei in response to brief intervals of global ischemia as well as reperfusion of ischemic rat myocardium. Concomitant with the translocation of PKC isozymes to nuclei during ischemia, increased PKC-mediated nuclear protein phosphorylation was observed. Taken together, the present results demonstrate that nuclear signaling mechanisms are activated during myocardial ischemia that include PKC translocation and PKC-mediated nuclear protein phosphorylation.
Collapse
Affiliation(s)
- C J Albert
- Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, MO 63104, USA
| | | |
Collapse
|
24
|
Miyamae M, Rodriguez MM, Camacho SA, Diamond I, Mochly-Rosen D, Figueredo VM. Activation of epsilon protein kinase C correlates with a cardioprotective effect of regular ethanol consumption. Proc Natl Acad Sci U S A 1998; 95:8262-7. [PMID: 9653175 PMCID: PMC20964 DOI: 10.1073/pnas.95.14.8262] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1997] [Accepted: 04/30/1998] [Indexed: 02/08/2023] Open
Abstract
In addition to decreasing the incidence of myocardial infarction, recent epidemiological data suggest that regular alcohol consumption improves survival after myocardial infarction. We recently found that chronic ethanol exposure induces long-term protection against cardiac ischemia-reperfusion injury, which improves myocardial recovery after infarction. Furthermore, this cardioprotection by ethanol is mediated through myocyte adenosine A1 receptors. We now determine the role of protein kinase C (PKC) in ethanol's protective effect against ischemia-reperfusion injury. Using perfused hearts of ethanol-fed guinea pigs, we find that improved contractile recovery and creatine kinase release after ischemia-reperfusion are abolished by PKC inhibition with chelerythrine. Western blot analysis and immunofluorescence localization demonstrate that regular ethanol consumption causes sustained translocation (activation) of epsilonPKC, but not delta or alphaPKC. This same isozyme is directly implicated in ischemic preconditioning's protection against ischemia-reperfusion injury. Our findings suggest (i) that regular ethanol consumption induces long-term cardioprotection through sustained translocation of epsilonPKC and (ii) that PKC activity is necessary at the time of ischemia to mediate ethanol's protective effect against ischemia-reperfusion injury. Studying this selective effect of ethanol on epsilonPKC activation may lead to new therapies to protect against ischemia-reperfusion injury in the heart and other organ systems.
Collapse
Affiliation(s)
- M Miyamae
- Department of Medicine (Cardiology), San Francisco General Hospital, San Francisco, CA, 94110, USA
| | | | | | | | | | | |
Collapse
|
25
|
Das DK, Maulik N, Engelman RM, Rousou JA, Deaton D, Flack JE. Signal transduction pathway leading to Hsp27 and Hsp70 gene expression during myocardial adaptation to stress. Ann N Y Acad Sci 1998; 851:129-38. [PMID: 9668615 DOI: 10.1111/j.1749-6632.1998.tb08986.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- D K Das
- Department of Surgery, University of Connecticut School of Medicine, Farmington 06030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Simonis G, Marquetant R, Röthele J, Strasser RH. The cardiac adrenergic system in ischaemia: differential role of acidosis and energy depletion. Cardiovasc Res 1998; 38:646-54. [PMID: 9747432 DOI: 10.1016/s0008-6363(98)00057-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Acute myocardial ischaemia has been shown to modulate the beta-adrenergic system and to activate protein kinase C. The aim of this study was to investigate if two important components of ischaemia, i.e. energy depletion or acidosis, may contribute to these changes. METHODS Isolated rat hearts were perfused either with anoxia (in the absence of oxygen) or with cyanide in the absence of glucose as models of energy depletion with a loss of high energy phosphates. Alternatively, isolated hearts were perfused with acidic modified Krebs-Henseleit solution to induce acidosis. RESULTS Energy depletion induced by cyanide perfusion leads to an increase of beta-adrenergic receptors (81 +/- 7 vs. 50 +/- 3 fmol/mg protein, p < or = 0.05) comparable to the changes observed in ischaemia, yet without any change of total adenylyl cyclase activity or protein kinase C activity. Similar, yet less pronounced changes were induced by anoxic perfusion. Acidic perfusion, in contrast, promotes a translocation of protein kinase C to the plasma membranes, suggesting its rapid activation. Additionally, an increased total forskolin-stimulated activity of adenylyl cyclase (515 +/- 16 vs. 428 +/- 17 pmol/min/mg, p < or = 0.05) was observed. Both were comparable to the sensitization observed in early ischaemia. In acidosis, the density of beta-adrenergic receptors remained unaltered. CONCLUSIONS These data suggest that the regulation of cardiac beta-adrenergic receptors is susceptible to energy depletion, but not to acidosis, whereas the intracellular enzymes both adenylyl cyclase and protein kinase C may be regulated by intracellular acidosis. This is the first differentiation of distinct components of ischaemia modulating the beta-adrenergic signal transduction pathway. Both components may be operative in concert in acute myocardial ischaemia and may contribute to the regulation of these components of signal transduction observed in acute ischaemia.
Collapse
Affiliation(s)
- G Simonis
- University of Heidelberg, Medical Center, Dept. Cardiology, Germany
| | | | | | | |
Collapse
|
27
|
Ischemic Preconditioning: Role of Multiple Kinases in Signal Amplification and Modulation. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Suzuki K, Miura T, Miki T, Tsuchida A, Shimamoto K. Infarct-size limitation by preconditioning is enhanced by dipyridamole administered before but not after preconditioning: evidence for the role of interstitial adenosine level during preconditioning as a primary determinant of cardioprotection. J Cardiovasc Pharmacol 1998; 31:1-9. [PMID: 9456270 DOI: 10.1097/00005344-199801000-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the importance of adenosine (Ado)-receptor activation in preconditioning (PC) has been established, it is unclear whether cardioprotection afforded by PC is determined by the Ado level during PC ischemia or by that during sustained ischemia. Accordingly, we tested whether the PC effect is modified by augmenting the increase in the interstitial Ado level during PC or by that during sustained ischemia. In the first series of experiments, the effect of 0.25 mg/kg dipyridamole (DIP) on the interstitial Ado level was assessed by in vivo microdialysis in the rabbit heart. Dialysate Ado during 2-min ischemia was 70% higher in the heart pretreated with 0.25 mg/kg of DIP than in the untreated controls, indicating that DIP was capable of enhancing an ischemia-induced increase of interstitial Ado. In the second series of experiments, myocardial infarction was induced in the rabbit by 30-min coronary artery occlusion and 3-h reperfusion. Infarct size was determined by tetrazolium staining and expressed as percentage of area at risk (%IS/AR). Rabbits were subjected to one of nine treatments before the 30-min ischemia: no treatment, DIP (0.25 mg/kg, i.v.), PC with 2-min ischemia, DIP before 2-min PC, DIP after 2-min PC, PC with 3-min ischemia, DIP before 3-min PC, DIP after 3-min PC, or 8-sulfophenyltheophylline (SPT) after 3-min PC. DIP alone did not modify %IS/AR (38.8 +/- 5.8% vs. 41.2 +/- 4.7%), but administration of DIP before 2-min PC significantly enhanced the infarct size-limiting effect (14.6 +/- 2.1% with DIP vs. 32.1 +/- 4.7% without DIP). Although the 3-min PC per se could achieve significant infarct limitation, the effect of DIP on 3-min PC was not significant (14.7 +/- 1.9% with DIP vs. 20.5 +/- 1.8% without DIP). On the other hand, the effect of DIP administered after PC was very slight (only 7% reduction of %IS/AR) and statistically insignificant, regardless of the duration of PC ischemia. However, infarct limitation by 3-min PC was inhibited by SPT given after the PC (%IS/AR = 34.5 +/- 3.2), as reported previously. These results suggest that the interstitial Ado level during PC ischemia, not the level during sustained ischemia, is a primary determinant of the extent of cardioprotection by PC and that the threshold for Ado-receptor activation required during sustained ischemia is much lower than that for triggering PC.
Collapse
Affiliation(s)
- K Suzuki
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
29
|
Intracellular Signalling Mechanisms in Myocardial Adaptation to Ischaemia. DELAYED PRECONDITIONING AND ADAPTIVE CARDIOPROTECTION 1998. [DOI: 10.1007/978-94-011-5312-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Mitcheson JS, Hancox JC, Levi AJ. Cultured adult rabbit myocytes: effect of adding supplements to the medium, and response to isoprenaline. J Cardiovasc Electrophysiol 1997; 8:1020-30. [PMID: 9300300 DOI: 10.1111/j.1540-8167.1997.tb00626.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The aims of this study were to investigate: (1) the effect of supplementing the culture medium on preservation of L-type calcium channel current (1Ca,L) in adult rabbit ventricular myocytes cultured for 4 days; and (2) preservation of the ICa,L response in cultured myocytes to the beta-adrenergic agonist isoprenaline. METHODS AND RESULTS Adult rabbit myocytes were cultured on laminin-pretreated glass coverslips. The basic, serum-free culture medium was supplemented with 2 mM L-carnitine, 5 mM creatine, and 5 mM taurine. Myocytes were whole cell patch-clamped, and the L-type Ca channel current was recorded selectively as Ba flux (IBa,L) via the channels. IBa,L density (i.e., IBa,L amplitude normalized to membrane capacitance) in myocytes maintained in supplemented medium did not change significantly during culture (P > 0.1). By comparison, IBa,L density in myocytes cultured in nonsupplemented medium declined by 36% after 24 hours in culture (day 1) and then recovered by the fourth day (day 4). There was no significant difference in the response to isoprenaline of acutely isolated myocytes and 4-day cultured myocytes. Isoprenaline 100 nM increased peak IBa,L by 149% +/- 32% (mean +/- SEM) in acutely isolated myocytes (n = 4 cells), and by 224% +/- 60% (n = 6 cells) and 159% +/- 24% (n = 8 cells) in day 1 and 4 cultured myocytes, respectively. CONCLUSIONS Supplemented medium improved IBa,L density in cultured myocytes. beta-Adrenergic receptors and intracellular messenger pathways appear to remain intact in adult rabbit myocytes cultured for up to 4 days.
Collapse
Affiliation(s)
- J S Mitcheson
- Department of Physiology, University of Bristol, School of Medical Sciences, United Kingdom.
| | | | | |
Collapse
|
31
|
Bagchi D, Bagchi M, Tang L, Stohs SJ. Comparative in vitro and in vivo protein kinase C activation by selected pesticides and transition metal salts. Toxicol Lett 1997; 91:31-7. [PMID: 9096284 DOI: 10.1016/s0378-4274(97)03868-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Various pesticides and transition metals induce oxidative deterioration of biological macromolecules. Protein kinase C (PKC) may mediate these effects. However, no information is available regarding whether these xenobiotics can modulate PKC which is a critical event signaling the increase in endothelial permeability and cell proliferation. Female Sprague-Dawley rats were treated p.o. with two 0.25 LD50 doses of selected pesticides and transition metal salts at 0 and 21 h, and killed at 24 h. PKC activities were measured in liver and brain tissues. Cultured PC-12 cells were incubated for 24 h with 50, 100 or 200 nM concentrations of these pesticides, while 0.20, 0.40 or 0.60 microM concentrations of cadmium chloride (Cd(II)) and sodium dichromate (Cr(VI)) salts were employed. PKC activations were observed in the hepatic and brain cytosol fractions by all xenobiotics. Approximately 1.4- to 2.0-fold and 1.6- to 3.5-fold increases in PKC activity in the hepatic and brain cytosol fractions were observed, respectively. In the hepatic tissues, the greatest increases in activities were observed with TCDD, chlorpyrifos, endrin and Cd(II), while chlorpyrifos and fenthion exerted the greatest increases in the brain tissues. In cultured PC-12 cells, the greatest activation of PKC was observed primarily with 100-nM concentrations of the pesticides. The maximum effects were induced by chlorpyrifos, fenthion, Cd(II) and Cr(VI) salt. The results clearly indicate that pesticides as well as Cd(II) and Cr(VI) salts can modulate a vital component of the cell signaling pathway, namely PKC activity. PKC may be a target of free radicals and oxidative stress, leading to altered cell proliferation and differentiation.
Collapse
Affiliation(s)
- D Bagchi
- Department of Pharmaceutical and Administrative Sciences, Creighton University, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
32
|
Yoshida K, Hirata T, Akita Y, Mizukami Y, Yamaguchi K, Sorimachi Y, Ishihara T, Kawashiama S. Translocation of protein kinase C-alpha, delta and epsilon isoforms in ischemic rat heart. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:36-44. [PMID: 8876625 DOI: 10.1016/0925-4439(96)00035-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To explore the spatial and temporal localization of PKC isoforms during ischemia, we quantified PKC isoforms in the subcellular fractions in perfused rat heart by immunoblotting using specific antibodies against PKC isoforms. PKCs-alpha and epsilon translocated from the 100000 x g supernatant (S, cytosolic) fraction to the 1000 x g pellet (PI, nucleus-myofibril) and the 1000-100000 x g pellet (P2, membrane) fractions during 5-40 min of ischemia. PKC-delta redistributed from the P2 to the S fraction. A 50-kDa fragment of PKC-alpha appeared during ischemia possibly through calpain action. Immunohistochemical observations showed the different localizations of PKC-alpha, delta, and epsilon in the myocytes. The PKC assay displayed high basal levels of Ca(2+)-independent PKC, the activation of Ca(2+)-dependent PKC in the P1 and P2 fractions, and the activation of Ca(2+)-independent PKC in the P1 fraction after 20 min of ischemia. These observations show that ischemia induces different patterns of translocation of the three PKC isoforms, suggesting differences in their roles.
Collapse
Affiliation(s)
- K Yoshida
- Department of Legal Medicine, Yamaguchi University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
One or several brief episodes of myocardial ischemia (ischemic preconditioning; IP) rapidly induces tolerance to a later ischemic challenge. This endogenous cardioprotective effect is characterized by a slower onset of cell death. A key feature and probable proximate mechanism of IP is reduced ischemic energy demand which is evident by slower use of ATP and slower accumulation of ischemic catabolites. Several mechanisms for IP and the associated metabolic slowing have been studied: The mitochondrial ATPase is a major cause of ATP hydrolysis in ischemic myocardium but slower ATP depletion in preconditioned myocardium is not due to persistent inhibition of this ATPase. Brief episodes of ischemia in dogs induce stunning as well as IP. Stunning, however, is neither necessary nor sufficient to establish the protective effects of IP. Release of norepinephrine from adrenergic cardiac nerves causes beta adrenergic receptor-mediated stimulation of adenylate cyclase, which stimulates energy-dependent processes. However, IP in dogs that were depleted of catecholamines by pretreatment with reserpine was less effective than IP in control hearts. Thus, an antiadrenergic mechanism does not fully account for the preconditioned state. Another proposed mechanism involves earlier or more complete opening of ATP-sensitive potassium (KATP+) channels. Which of these (or other) pathways mediate the energy sparing effects of ischemic preconditioning remains unknown.
Collapse
Affiliation(s)
- K A Reimer
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
34
|
Das DK, Maulik N, Yoshida T, Engelman RM, Zu YL. Preconditioning potentiates molecular signaling for myocardial adaptation to ischemia. Ann N Y Acad Sci 1996; 793:191-209. [PMID: 8906166 DOI: 10.1111/j.1749-6632.1996.tb33515.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D K Das
- Department of Surgery, University of Connecticut School of Medicine, Farmington 06030-1110, USA
| | | | | | | | | |
Collapse
|
35
|
Henry P, Demolombe S, Pucéat M, Escande D. Adenosine A1 stimulation activates delta-protein kinase C in rat ventricular myocytes. Circ Res 1996; 78:161-5. [PMID: 8603500 DOI: 10.1161/01.res.78.1.161] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By making use of immunoblotting and immunocytochemical analysis, we explored whether stimulation of adenosine A1 receptors would promote the activation of delta-protein kinase C (delta-PKC) immunolabeled with a polyclonal antibody. Immunoblot analysis of Triton X-100-soluble cell membrane and cytosolic fractions revealed the presence of a specific 75-kD band reactive to the delta-PKC polyclonal antibody. In freshly isolated rat cardiac myocytes, 28% of the total immunoreactive delta-PKC was associated with the membrane fraction, whereas 72% was associated with the soluble fraction. Under stimulation with the tumor-promoting phorbol 12-myristate 13-acetate (PMA, 50 nmol/L) used as a positive control, delta-PKC translocated to the cell membrane, with the membrane fraction representing 88% and the cytosolic fraction representing 12% of the total immunoreactive delta-PKC. Transverse optical sections performed with confocal laser microscopy showed that immunostaining with anti-delta-PKC antibody was distributed in the cytosol membrane under PMA stimulation. In the membrane fraction of cells pretreated with adenosine (100 mumol/L) or with the adenosine A1 agonist (--)-N6-(2-phenylisopropyl)-adenosine (R-PIA, 1 mumol/L), the 75-kD band corresponding to delta-PKC increased by 57% and 66%, respectively, when compared with nonstimulated cells processed under the same experimental conditions. In cells exposed to either of the purine agonists, specific fluorescence staining decorated the cell membrane, a pattern that was not observed in control cells. Activation of membrane delta-PKC produced either by adenosine itself or by its analogue R-PIA was fully antagonized by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 mumol/L). From these data, we conclude that adenosine A1 stimulation activates delta-PKC in freshly isolated rat ventricular myocytes.
Collapse
Affiliation(s)
- P Henry
- Laboratoire de Physiopathologie et de Pharmacologie, Cellulaires et Moléculaires, Hôpital G & R Laënnec, Nantes, France
| | | | | | | |
Collapse
|
36
|
Damron DS, Darvish A, Murphy L, Sweet W, Moravec CS, Bond M. Arachidonic acid-dependent phosphorylation of troponin I and myosin light chain 2 in cardiac myocytes. Circ Res 1995; 76:1011-9. [PMID: 7758155 DOI: 10.1161/01.res.76.6.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent evidence has suggested that arachidonic acid (AA) may be an important signaling molecule in cardiac excitation-contraction coupling. We previously showed that AA and endothelin-1 (ET) inhibit distinct K+ channels via protein kinase C-dependent pathways in rat ventricular myocytes. In addition, we demonstrated that Ca2+ transients in populations of fura 2-loaded myocytes were potentiated by AA and ET via activation of protein kinase C. In this study, we have used suspensions of [32P]orthophosphate (32Pi)-labeled rat ventricular myocytes to study the effects of AA and ET at the level of the myofilaments. After a 10-minute incubation of the labeled cells with phorbol 12-myristate 13-acetate (PMA), AA, or ET in the presence or absence of the protein kinase C inhibitor calphostin C, the myofibrillar proteins were separated by PAGE. Measurement of unloaded cell shortening using video edge detection in single electrically stimulated myocytes was also used to assess the effects of AA and ET on myocyte contractility. Incubation with either PMA, AA, or ET resulted in similar increases in 32Pi incorporation into troponin I (TnI) and myosin light chain 2 (MLC2), which was inhibited by preincubation with the protein kinase C antagonist calphostin C. In addition, the ability of these agonists to stimulate phosphorylation of TnI or MLC2 did not require extracellular Ca2+ or intact intracellular Ca2+ stores. The effects of AA and ET together on phosphorylation of TnI or MLC2 were not additive.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D S Damron
- Center for Anesthesiology Research, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
37
|
Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 1995; 76:758-66. [PMID: 7728992 DOI: 10.1161/01.res.76.5.758] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Collateral blood vessels supplement normal coronary blood flow and coronary blood flow compromised by coronary artery disease, thereby protecting the myocardium from ischemia. Collateral vessel formation is the result of angiogenesis. Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), is a secreted mitogen specific for endothelial cells and an extremely potent angiogenic factor. In the present study, VPF/VEGF mRNA and protein were demonstrated to be markedly stimulated in primary rat cardiac myocytes in vitro in response to reduction of the oxygen tension to 1% or inhibition of the electron transport chain. Four isoforms of VPF/VEGF were coordinately regulated by hypoxia, including a novel isoform not previously described. Phorbol ester and the depolarizing agent veratridine, stimulators of protein kinase C and calcium influx, respectively, were found to markedly increase VPF/VEGF mRNA expression in cardiac myocytes. Forskolin, a potent stimulator of adenylate cyclase, produced a small but significant increase in VPF/VEGF mRNA expression in the cardiac myocytes. However, only H7, an inhibitor of protein kinase C, inhibited the hypoxic induction of VPF/VEGF mRNA; inhibitors of calcium influx and the calcium-calmodulin-dependent protein kinase II as well as inhibition of protein kinase A did not block the hypoxic induction of VPF/VEGF mRNA. This suggests that more than one signal transduction pathway is involved in regulating VPF/VEGF expression. The sensor that regulates the expression of hypoxia-responsive genes has been proposed to be a heme protein. Consistent with this model, transition metals initiate a genetic program similar to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A P Levy
- Cardiology Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995; 76:73-81. [PMID: 8001280 DOI: 10.1161/01.res.76.1.73] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Catecholamines have been implicated in the phenomenon of ischemic preconditioning. We have previously demonstrated that ischemic preconditioning against postischemic mechanical dysfunction in the isolated rat heart is mediated by the alpha 1-adrenergic receptor. The purpose of this study was to delineate the signal transduction of preconditioning distal to the alpha 1-adrenergic receptor. Our results suggest that (1) transient ischemia and alpha 1-adrenergic receptor-induced preconditioning is inhibited by protein kinase C (PKC) antagonists, (2) functional protection against global ischemia/reperfusion injury can be induced by infusion of diacylglycerol, the second messenger of the alpha 1-adrenergic pathway, and (3) transient ischemia and alpha 1-adrenergic preconditioning are both characterized by similar translocation of PKC-delta to the sarcolemma of myocardium. These findings suggest that PKC is an effector of preconditioning in the isolated rat heart.
Collapse
Affiliation(s)
- M B Mitchell
- Department of Surgery, University of Colorado Health Sciences Center, Denver
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- S F Steinberg
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
40
|
Thakkar JK, Janero DR, Yarwood C, Sharif HM. Modulation of mammalian cardiac AMP deaminase by protein kinase C-mediated phosphorylation. Biochem J 1993; 291 ( Pt 2):523-7. [PMID: 8387271 PMCID: PMC1132556 DOI: 10.1042/bj2910523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using AMP deaminase (AMP aminohydrolase; EC 3.5.4.6) purified from rabbit left-ventricular heart tissue, we report direct investigation of the potential for cardiac AMP deaminase activity to be regulated by kinase-mediated phosphorylation. Rabbit heart AMP deaminase served as a substrate for Ca2+/phospholipid-dependent protein kinase (protein kinase C; PKC) exclusively; no other mammalian protein kinase phosphorylated the enzyme. PKC-dependent AMP deaminase phosphorylation was rapid, linear with respect to time and the concentrations of PKC and AMP deaminase in the reaction, and inhibitable by staurosporine. Upon phosphorylation, the apparent Km of cardiac AMP deaminase decreased from 5.6 mM to 1.2 mM, without effect on the Vmax. Whether phosphorylated or not, rabbit heart AMP deaminase was inhibited by 1.0 mM GTP, which decreased the Vmax. by approximately 50% in each case. PKC-dependent phosphorylation of cardiac AMP deaminase did not alter the enzyme's allosterism toward millimolar ATP or ADP: both nucleotides at 1.0 mM concentration decreased the apparent Km to approximately 0.5 mM. Treatment of cardiac phospho-AMP deaminase with either the protein phosphatase calcineurin or alkaline phosphatase generated a dephosphorylated form which displayed molecular and kinetic properties identical with those of the originally isolated enzyme. These data raise the possibility that a phosphorylation-dephosphorylation mechanism may regulate flux through AMP deaminase in the heart under pathological conditions, such as myocardial ischaemia, characterized by PKC activation and adenylate depletion.
Collapse
Affiliation(s)
- J K Thakkar
- Research Department, Pharmaceuticals Division, CIBA-GEIGY Corporation, Summit, NJ 07901
| | | | | | | |
Collapse
|