1
|
Mechanism by which immune complexes are deposited in hosts tissue. Inflammopharmacology 2022; 30:349-351. [PMID: 35041118 DOI: 10.1007/s10787-021-00910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 11/05/2022]
Abstract
We offer an explanation how immune complexes are deposited in tissues of auto-immune disorders in humans. These disorders are characterized by the accumulation in tissues of large numbers of neutrophils, which can shed out long extracellular traps (NETs) rich in a nucleosome and in highly opsonic poly cations, histone, LL37, defensins and elastase possessing properties similar to antibodies. These can bind by strong electrostatic forces to negatively charged domains in immune globulins, thus facilitating their deposition and internalization by tissue cells. However, the main cause for tissue damage in auto-immune patients is inflicted by the plethora of toxic pro-inflammatory agents released by activated neutrophils. To ameliorate tissue damage and the cytokine storms, it is recommended to administer to patients highly anionic heparins accompanied by steroids, methotrexate, colchicine, copaxone, and also by additional agents which retarded neutrophil functions.
Collapse
|
2
|
Feldman M, Ginsburg I. A Novel Hypothetical Approach to Explain the Mechanisms of Pathogenicity of Rheumatic Arthritis. Mediterr J Rheumatol 2021; 32:112-117. [PMID: 34447906 PMCID: PMC8369279 DOI: 10.31138/mjr.32.2.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The autoimmune disorder rheumatoid arthritis (RA) is a relapsing and chronic inflammatory disease that affects the synovial cells, cartilage, bone, and muscle. It is characterised by the accumulation of huge numbers of polymorphonuclear neutrophils (PMNs) and macrophages in the synovia. Auto-antibodies are deposited in the joint via the activity of highly cationic histones released from neutrophil extracellular traps (NETs) in a phenomenon termed NETosis. The cationic histones function as opsonic agents that bind to negatively charged domains in autoantibodies and complement compounds via strong electrostatic forces, facilitating their deposition and endocytosis by synovial cells. However, eventually the main cause of tissue damage is the plethora of toxic pro-inflammatory substances released by activated neutrophils recruited by cytokines. Tissue damage in RA can also be accompanied by infections which, upon bacteriolysis, release cell-wall components that are toxic to tissues. Some amelioration of the damaged cells and tissues in RA may be achieved by the use of highly anionic heparins, which can neutralize cationic histone activity, provided that these polyanions are co-administrated with anti-inflammatory drugs such as steroids, colchicine, or methotrexate, low molecular weight antioxidants, proteinase inhibitors, and phospholipase A2 inhibitors.
Collapse
Affiliation(s)
- Mark Feldman
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| | - Isaac Ginsburg
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| |
Collapse
|
3
|
Ginsburg I, Fibach E. Polycations and polyanions in SARS-CoV-2 infection. Med Hypotheses 2021; 146:110470. [PMID: 33412501 PMCID: PMC7837050 DOI: 10.1016/j.mehy.2020.110470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023]
Abstract
We hypothesize that polycations, such as nuclear histones, released by neutrophils COVID-19 aggravate COVID-19 by multiple mechanisms: (A) Neutralization of the electrostatic repulsion between the virus particles and the cell membrane, thereby enhancing receptor-mediated entry. (B) Binding to the virus particles, thereby inducing opsonin-mediated endocytosis. (C) Adding to the cytotoxicity, in conjunction with oxidants, cytokines and other pro-inflammatory substances secreted by cells of the innate immunity system. These effects may be alleviated by the administration of negatively charged polyanions such as heparins and heparinoids.
Collapse
Affiliation(s)
- I Ginsburg
- The Hebrew University - Hadassah School of Medicine, The Faculty of Dental Medicine, The Ein-Kerm Campus, Jerusalem, Israel
| | - E Fibach
- The Hebrew University - Hadassah School of Medicine, Department of Hematology, The Ein-Kerm Campus, Jerusalem, Israel.
| |
Collapse
|
4
|
Feldman M, Ginsburg I. A novel aspect may explain the mechanisms of pathogenicity of rheumatic fever, a multifactorial, autoimmune, infectious and inflammatory disorder which "licks the joints and bites the heart": A working hypothesis. Med Hypotheses 2020; 144:110222. [PMID: 33254529 DOI: 10.1016/j.mehy.2020.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
A novel hypothesis is presented to explain the pathogenesis of the multifactorial autoimmune disorder rheumatic fever (RF). It involves a synergistic interaction among streptococcal toxins, their cell wall components, M protein, immune complexes, complement components, cationic histones. These agents can act with cationic histones released by neutrophils during NETosis and bacteriolysis and can function as opsonic agents possessing properties similar to antibodies. Cationic histones can interact by strong electrostatic forces with negatively- charged domains on immune complexes and complement components. This allows their deposition and endocytosis in the myocardium, the heart valves, and in the joints. However, the main cause of cell and tissue damage observed in RF is due to a synergism among the plethora of pro-inflammatory substances released by activated neutrophils and macrophages. Cell damage may be mitigated to some extent by anionic heparins, heparinoids, and by anti-inflammatory drugs such as corticosteroids which counteract neutrophils and macrophage chemotaxis induced by cytokines.
Collapse
Affiliation(s)
- Mark Feldman
- Institute for Dental Sciences the Hebrew University Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel.
| | - Isaac Ginsburg
- Institute for Dental Sciences the Hebrew University Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| |
Collapse
|
5
|
Ginsburg I, Korem M, Koren E, Varani J. Pro-inflammatory agents released by pathogens, dying host cells, and neutrophils act synergistically to destroy host tissues: a working hypothesis. J Inflamm Res 2019; 12:35-47. [PMID: 30774411 PMCID: PMC6350637 DOI: 10.2147/jir.s190007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We postulate that the extensive cell and tissue damage inflicted by many infectious, inflammatory and post-inflammatory episodes is an enled result of a synergism among the invading microbial agents, host neutrophils and dead and dying cells in the nidus. Microbial toxins and other metabolites along with the plethora of pro-inflammatory agents released from activated neutrophils massively recruited to the infectious sites and high levels of cationic histones, other cationic peptides, proteinases and Th1 cytokines released from activated polymorphonuclear neutrophils (PMNs) and from necrotized tissues may act in concert (synergism) to bring about cell killing and tissue destruction. Multiple, diverse interactions among the many potential pro-inflammatory moieties have been described in these complex lesions. Such infections are often seen in the skin and aerodigestive tract where the tissue is exposed to the environment, but can occur in any tissue. Commonly, the tissue-destructive infections are caused by group A streptococci, pneumococci, Staphylococcus aureus, meningococci, Escherichia coli and Shigella, although many other microbial species are seen on occasion. All these microbial agents are characterized by their ability to recruit large numbers of PMNs. Given the complex nature of the disease process, it is proposed that, to treat these multifactorial disorders, a "cocktail" of anti-inflammatory agents combined with non-bacteriolytic antibiotics and measures to counteract the critical toxic role of cationic moieties might prove more effective than a strategy based on attacking the bacteria alone.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel,
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,
| | - Erez Koren
- Research and Development Department, Clexio Biosciences Ltd, Petah Tikva, Israel
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Abstract
The role of bacteriolysis in the pathophysiology of microbial infections dates back to 1893 when Buchner and Pfeiffer reported for the first time the lysis of bacteria by immune serum and related this phenomenon to the immune response. Later on, basic anti-microbial peptides and certain beta-lactam antibiotics have been shown not only to kill microorganisms but also to induce bacteriolysis and the release of cell-wall components. In 2009, a novel paradigm was offered suggesting that the main cause of death in sepsis is due to the exclusive release from activated human phagocytic neutrophils (PMNs) traps adhering upon endothelial cells of highly toxic nuclear histone. Since activated PMNs also release a plethora of pro-inflammatory agonists, it stands to reason that these may act in synergy with histone to damage cells. Since certain beta lactam antibiotics may induce bacteriolysis, it is questioned whether these may aggravate sepsis patient's condition. Enigmatically, since the term bacteriolysis and its possible involvement in sepsis is hardly ever mentioned in the extensive clinical articles and reviews dealing with critical care, we hereby aim to refresh the concept of bacteriolysis and its possible role in the pathogenesis of post infectious sequelae.
Collapse
Affiliation(s)
- Isaac Ginsburg
- a Institute for Dental sciences, The Hebrew University Hadassah Faculty of Dental Medicine, Ein Kerem Campus , Jerusalem , Israel
| | - Erez Koren
- b Teva Pharmaceutical Industries Ltd. , Kfar Saba , Israel
| |
Collapse
|
7
|
Ginsburg I, van Heerden PV, Koren E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective. J Inflamm Res 2017; 10:7-15. [PMID: 28203100 PMCID: PMC5293372 DOI: 10.2147/jir.s126150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| | | | - Erez Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
8
|
Abstract
The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity.
Collapse
|
9
|
Lam ATL, Li J, Chen AKL, Birch WR, Reuveny S, Oh SKW. Improved Human Pluripotent Stem Cell Attachment and Spreading on Xeno-Free Laminin-521-Coated Microcarriers Results in Efficient Growth in Agitated Cultures. Biores Open Access 2015; 4:242-57. [PMID: 26309800 PMCID: PMC4540119 DOI: 10.1089/biores.2015.0010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously, we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions. In this article, we further improved the MC system into a defined xeno-free MC one in which the MCs are coated with recombinant human laminin-521 (LN521) alone without additional positive charge. The high binding affinity of the LN521 to cell integrins enables efficient initial HES-3 cell attachment (87%) and spreading (85%), which leads to generation of cells/MC aggregates (400 μm in size) and high cell yields (2.4–3.5×106 cells/mL) within 7 days in agitated plate and scalable spinner cultures. The universality of the system was demonstrated by propagation of an induced pluripotent cells line in this defined MC system. Long-term pluripotent (>90% expression Tra-1-60) cell expansion and maintenance of normal karyotype was demonstrated after 10 cell passages. Moreover, tri-lineage differentiation as well as directed differentiation into cardiomyocytes was achieved. The new LN521-based MC system offers a defined, xeno-free, GMP-compatible, and scalable bioprocessing platform for the production of hPSC with the quantity and quality compliant for clinical applications. Use of LN521 on MCs enabled a 34% savings in matrix and media costs over monolayer cultures to produce 108 cells.
Collapse
Affiliation(s)
- Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Jian Li
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Allen Kuan-Liang Chen
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - William R Birch
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Steve Kah-Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| |
Collapse
|
10
|
Ginsburg I, Koren E. Are cationic antimicrobial peptides also ‘double-edged swords’? Expert Rev Anti Infect Ther 2014; 6:453-62. [DOI: 10.1586/14787210.6.4.453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Sol A, Ginesin O, Chaushu S, Karra L, Coppenhagen-Glazer S, Ginsburg I, Bachrach G. LL-37 opsonizes and inhibits biofilm formation of Aggregatibacter actinomycetemcomitans at subbactericidal concentrations. Infect Immun 2013; 81:3577-85. [PMID: 23836819 PMCID: PMC3811755 DOI: 10.1128/iai.01288-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/02/2013] [Indexed: 12/26/2022] Open
Abstract
Host defense peptides are immediate responders of the innate immunity that express antimicrobial, immunoregulatory, and wound-healing activities. Neutrophils are a major source for oral host defense peptides, and phagocytosis by neutrophils is a major mechanism for bacterial clearance in the gingival tissue. Dysfunction of or reduction in the numbers of neutrophils or deficiency in the LL-37 host defense peptide was each previously linked with proliferation of oral Aggregatibacter actinomycetemcomitans which resulted in an aggressive periodontal disease. Surprisingly, A. actinomycetemcomitans shows resistance to high concentrations of LL-37. In this study, we demonstrated that submicrocidal concentrations of LL-37 inhibit biofilm formation by A. actinomycetemcomitans and act as opsonins and agglutinins that greatly enhance its clearance by neutrophils and macrophages. Improved uptake of A. actinomycetemcomitans by neutrophils was mediated by their opsonization with LL-37. Enhanced phagocytosis and killing of A. actinomycetemcomitans by murine macrophage-like RAW 264.7 cells were dependent on their preagglutination by LL-37. Although A. actinomycetemcomitans is resistant to the bactericidal effect of LL-37, our results offer a rationale for the epidemiological association between LL-37 deficiency and the expansion of oral A. actinomycetemcomitans and indicate a possible therapeutic use of cationic peptides for host defense.
Collapse
Affiliation(s)
| | | | - Stella Chaushu
- Department of Orthodontics, The Hebrew University—Hadassah School of Dental Medicine
| | - Laila Karra
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
12
|
Abstract
The prospect of developing transport systems using histones for site-specific delivery of therapeutic agents that have poor penetration characteristics through cellular membranes and tissue barriers has been investigated. Histones immobilized on microspheres can also be used to modify surfaces intended for cell cultivation, facilitating adhesion, proliferation and network formation by interactions of cells through contacts with several microspheres. They can be applied to three-dimensional pore matrices that are designed for producing tissue-like structures in vitro.
Collapse
|
13
|
Varani J, Piel F, Josephs S, Beals TF, Hillegas WJ. Attachment and growth of anchorage-dependent cells on a novel, charged-surface microcarrier under serum-free conditions. Cytotechnology 2011; 28:101-9. [PMID: 19003412 DOI: 10.1023/a:1008029715765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study describes a novel microcarrier substrate consisting of a swellable, copolymer of styrene and divinylbenzene, derivatized with trimethylamine. The co-polymer trimethylamine microcarriers support the growth of a number of different cell lines - Madin Darby Bovine Kidney, Madin-Darby Canine Kidney, Vero and Cos-7 - under serum-free conditions, and human diploid fibroblasts in serum-containing medium. Cells attach to the co- polymer trimethylamine microcarriers as rapidly as they attach to other charged-surface microcarriers (faster than they attach to collagen-coated polystyrene microcarriers) and spread rapidly after attachment. All of the cells examined grow to high density on the co- polymer trimethylamine microcarriers. Furthermore, cells are readily released from the surface after exposure to a solution of trypsin/EDTA. In this respect, the co-polymer trimethylamine microcarriers are different from other charged-surface microcarriers. Madin-Darby Bovine Kidney cells grown on this substrate support production of vaccine strain infectious bovine rhinotracheitis virus as readily as on other charged-surface or collagen-coated microcarriers. Thus, the co-polymer trimethylamine microcarriers combine the positive characteristics of the currently available charged-surface and adhesion-peptide coated microcarriers in a single product. The viral vaccine production industry is undergoing considerable change as manufacturers move toward complete, animal product-free culture systems. This novel substrate should find application in the industry, especially in processes which depend on viable cell recovery.
Collapse
Affiliation(s)
- J Varani
- Department of Pathology, The University of Michigan, 1301 Catherine Road, P.O. Box 0602, Ann Arbor, MI, 48109, U.S.A.,
| | | | | | | | | |
Collapse
|
14
|
Ginsburg I, Kohen R, Koren E. Microbial and host cells acquire enhanced oxidant-scavenging abilities by binding polyphenols. Arch Biochem Biophys 2010; 506:12-23. [PMID: 21081104 DOI: 10.1016/j.abb.2010.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/14/2022]
Abstract
The dilemma whether supplementations of dietary antioxidants might prevent the adverse consequences of oxidative stress, the inadequacy of the analytical methods employed to quantify oxidant scavenging ability (OSA) levels in whole blood and the distribution and fate of polyphenols and their metabolites in various body compartments following oral consumption are discussed. While none-metabolized polyphenols might exert their antioxidant effects mainly in the oral cavity, metabolized polyphenols might be beneficial in the gastrointestinal tract to counteract the toxicity of oxidants and also of the sequelae of inflammatory processes. Although only micromolar amounts of polyphenols and their metabolites eventually reach the blood circulation, these may nevertheless still be highly effective as scavengers of reactive oxygen and nitrogen species because of their ability to synergize with plasma low molecular-weight antioxidants and with albumin. Polyphenols can avidly bind to surfaces of microorganisms and of blood cells to markedly enhance their OSA, therefore the routine quantifications of antioxidant levels conducted in clinical settings should always use catalase-rich whole blood but not as customary, plasma alone. In addition to their antioxidant and metal chelating properties, polyphenols may also act as signaling agents capable of affecting metabolic, inflammatory, autoimmune, carcinogenic and aging processes.
Collapse
Affiliation(s)
- Isaac Ginsburg
- The Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University, Hadassah Medical Center, P.O. Box 12065, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
15
|
Silva MT. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 2010; 87:93-106. [PMID: 20052802 DOI: 10.1189/jlb.0809549] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial effector activity of phagocytes is crucial in the host innate defense against infection, and the classic view is that the phagocytes operating against intracellular and extracellular microbial pathogens are,respectively, macrophages and neutrophils. As a result of the common origin of the two phagocytes, they share several functionalities, including avid phagocytosis,similar kinetic behavior under inflammatory/infectious conditions, and antimicrobial and immunomodulatory activities. However, consequent to specialization during their differentiation, macrophages and neutrophils acquire distinctive, complementary features that originate different levels of antimicrobial capacities and cytotoxicity and different tissue localization and lifespan.This review highlights data suggesting the perspective that the combination of overlapping and complementary characteristics of the two professional phagocytes promotes their cooperative participation as effectors and modulators in innate immunity against infection and as orchestrators of adaptive immunity. In the concerted activities operating in antimicrobial innate immunity, macrophages and neutrophils are not able to replace each other. The common and complementary developmental,kinetic, and functional properties of neutrophils and macrophages make them the effector arms of a myeloid phagocyte system that groups neutrophils with members of the old mononuclear phagocyte system. The use by mammals of a system with two dedicated phagocytic cells working cooperatively represents an advantageous innate immune attack strategy that allows the efficient and safe use of powerful but dangerous microbicidal molecules.This crucial strategy is a target of key virulence mechanisms of successful pathogens.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
16
|
Kuo JHS, Jan MS, Lin YL, Lin C. Interactions between octaarginine and U-937 human macrophages: Global gene expression profiling, superoxide anion content, and cytokine production. J Control Release 2009; 139:197-204. [DOI: 10.1016/j.jconrel.2009.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
|
17
|
Bacteria Coated by Polyphenols Acquire Potent Oxidant-Scavenging Capacities. Exp Biol Med (Maywood) 2009; 234:940-51. [DOI: 10.3181/0901-rm-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several microbial species, including probiotic lactic acid bacteria, have the ability to irreversibly bind a large variety of polyphenols (flavonoids) and anthocyanidins found in many colored fruits and vegetables and to enhance their total oxidant-scavenging capacities (TOSC). The binding of flavonoids to microbial surfaces was further increased by the cationic polyelectrolytes ligands poly-L-histidine, chlorhexidine and Copaxone®. This phenomenon was confirmed visually, by the FRAP, DPPH, cyclic voltammetry, Folin-Ciocalteu as well as by luminol-dependent chemiluminescence techniques employed to assay TOSC. The possibility is considered that clinically, microbial cells in the oral cavity and in the gastro intestinal tract, complexed with antioxidant polyphenols from nutrients and with cationic ligands, might increase the protection of mammalian cells against damage induced by excessive generation of reactive oxygen species during infections and inflammation.
Collapse
|
18
|
Ginsburg I. Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics?; it is enigmatic why this concept is consistently disregarded. Med Hypotheses 2004; 62:367-74. [PMID: 14975505 DOI: 10.1016/j.mehy.2003.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/10/2003] [Indexed: 11/19/2022]
Abstract
Although there is a general consensus that highly cationic peptides kill bacteria primarily by injuring their membranes, an additional hypothesis is proposed suggesting that a large variety of cationic peptides might also render bacteria non viable by activating their autolytic wall enzymes - muramidases (a "Trojan Horse" phenomenon), resulting in bacteriolysis. This group of cationic peptides includes: lysozyme, lactoferrin, neutrophil-derived permeability increasing peptides, defensins, elastase, cathepsin G, and secretory phopholipase A2. In this respect, cationic peptides mimic the bactericidal/bacteriolytic effects exerted by of beta-lactam antibiotics. Bacteriolysis results in a massive release of the pro-inflammatory cell-wall components, endotoxin (LPS), lipoteichoic acid (LTA) and peptidoglycan (PPG), which if not effectively controlled, can trigger the coagulation and complement cascades, the release from phagocytes of inflammatory cytokines, reactive oxygen and nitrogen species, and proteinases. Synergism (a "cross-talk") among such agonists released following bacteriolysis, is probably the main cause for septic shock and multiple organ failure. It is proposed that a use of bacteriolysis-inducing antibiotics should be avoided in bacteremic patients and particularly in those patients already suspected of developing shock symptoms as these might further enhance bacteriolysis and the release of LPS, LTA and PPG. Furthermore, in additonal to the supportive regimen exercised in intensive care settings, a use of non bacteriolysis-inducing antibiotics when combined with highly sulfated compounds (e.g. heparin, and other clinically certified polysufates) should be considered instead, as these might prevent the activation of the microbial own autolytic systems induced either by highly cationic peptides released by activated phagocytes or by the highly bacteriolytic beta-lactams. Polysulfates might also depress the deleterious effects of the complement cascade and the use of combinations among anti-oxidants ( N-acetyl cysteine), proteinase inhibitors and phospholipids might prove effective to depress the synergistic cytotoxic effects induced by inflammatory agonists. Also, a use of gamma globulin enriched either in anti-LPS or in anti-LTA activities might serve to prevent the binding of these toxins to receptors upon macrophage which upon activation generate inflammatory cytokines. Thus, a use of "cocktails" of anti-inflammatory agents might replace the unsuccessful use of single antagonists proven in scores of clinical trials of sepsis to by ineffective in prolonging the lives of patients. It is enigmatic why the concept, and the publications which support a role for cationic peptides also as potent inducers of bacteriolysis, an arch evil and a deleterious phenomenon which undoubtedly plays a pivotal role in the pathophysiology of post-infectious sequelae, has been consistently disregarded.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute for Dental Research, Faculty of Dental Medicine, Hebrew University - Hadassah, 91120 Jerusalem, Israel.
| |
Collapse
|
19
|
Ginsburg I. The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS 2002; 110:753-70. [PMID: 12588416 DOI: 10.1034/j.1600-0463.2002.1101101.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The literature dealing with the biochemical basis of bacteriolysis and its role in inflammation, infection and in post-infectious sequelae is reviewed and discussed. Bacteriolysis is an event that may occur when normal microbial multiplication is altered due to an uncontrolled activation of a series of autolytic cell-wall breaking enzymes (muramidases). While a low-level bacteriolysis sometimes occurs physiologically, due to "mistakes" in cell separation, a pronounced cell wall breakdown may occur following bacteriolysis induced either by beta-lactam antibiotics or by a large variety of bacteriolysis-inducing cationic peptides. These include spermine, spermidine, bactericidal peptides defensins, bacterial permeability increasing peptides from neutrophils, cationic proteins from eosinophils, lysozyme, myeloperoxidase, lactoferrin, the highly cationic proteinases elastase and cathepsins, PLA2, and certain synthetic polyamino acids. The cationic agents probably function by deregulating lipoteichoic acid (LTA) in Gram-positive bacteria and phospholipids in Gram-negative bacteria, the presumed regulators of the autolytic enzyme systems (muramidases). When bacteriolysis occurs in vivo, cell-wall- and -membrane-associated lipopolysaccharide (LPS (endotoxin)), lipoteichoic acid (LTA) and peptidoglycan (PPG), are released. These highly phlogistic agents can act on macrophages, either individually or in synergy, to induce the generation and release of reactive oxygen and nitrogen species, cytotoxic cytokines, hydrolases, proteinases, and also to activate the coagulation and complement cascades. All these agents and processes are involved in the pathophysiology of septic shock and multiple organ failure resulting from severe microbial infections. Bacteriolysis induced in in vitro models, either by polycations or by beta-lactams, could be effectively inhibited by sulfated polysaccharides, by D-amino acids as well as by certain anti-bacteriolytic antibiotics. However, within phagocytic cells in inflammatory sites, bacteriolysis tends to be strongly inhibited presumably due to the inactivation by oxidants and proteinases of the bacterial muramidases. This might results in a long persistence of non-biodegradable cell-wall components causing granulomatous inflammation. However, persistence of microbial cell walls in vivo may also boost innate immunity against infections and against tumor-cell proliferation. Therapeutic strategies to cope with the deleterious effects of bacteriolysis in vivo include combinations of autolysin inhibitors with combinations of certain anti-inflammatory agents. These might inhibit the synergistic tissue- and- organ-damaging "cross talks" which lead to septic shock and to additional post-infectious sequelae.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Department of Oral Biology, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem, Israel.
| |
Collapse
|
20
|
Ginsburg I. Cationic polyelectrolytes from leukocytes might kill bacteria by activating their autolytic systems: enigmatically, the relevance of this phenomenon to post-infectious sequelae is disregarded. Intensive Care Med 2002; 28:1188. [PMID: 12400517 DOI: 10.1007/s00134-002-1385-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Abstract
Lipoteichoic acid (LTA) is a surface-associated adhesion amphiphile from Gram-positive bacteria and regulator of autolytic wall enzymes (muramidases). It is released from the bacterial cells mainly after bacteriolysis induced by lysozyme, cationic peptides from leucocytes, or beta-lactam antibiotics. It binds to target cells either non-specifically, to membrane phospholipids, or specifically, to CD14 and to Toll-like receptors. LTA bound to targets can interact with circulating antibodies and activate the complement cascade to induce a passive immune kill phenomenon. It also triggers the release from neutrophils and macrophages of reactive oxygen and nitrogen species, acid hydrolases, highly cationic proteinases, bactericidal cationic peptides, growth factors, and cytotoxic cytokines, which may act in synergy to amplify cell damage. Thus, LTA shares with endotoxin (lipopolysaccharide) many of its pathogenetic properties. In animal studies, LTA has induced arthritis, nephritis, uveitis, encephalomyelitis, meningeal inflammation, and periodontal lesions, and also triggered cascades resulting in septic shock and multiorgan failure. Binding of LTA to targets can be inhibited by antibodies, phospholipids, and specific antibodies to CD14 and Toll, and in vitro its release can be inhibited by non-bacteriolytic antibiotics and by polysulphates such as heparin, which probably interfere with the activation of autolysis. From all this evidence, LTA can be considered a virulence factor that has an important role in infections and in postinfectious sequelae caused by Gram-positive bacteria. The future development of effective antibacteriolitic drugs and multidrug strategies to attenuate LTA-induced secretion of proinflammatory agonists is of great importance to combat septic shock and multiorgan failure caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Ein-Kerem Campus, Jerusalem, Israel.
| |
Collapse
|
22
|
Ginsburg I. Cationic peptides from leukocytes might kill bacteria by activating their autolytic enzymes causing bacteriolysis: why are publications proposing this concept never acknowledged? Blood 2001; 97:2530-1. [PMID: 11307778 DOI: 10.1182/blood.v97.8.2530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Ginsburg I. Hypothesis: is a failure to prevent bacteriolysis and the synergy among microbial and host-derived pro-inflammatory agonists the main contributory factors to the pathogenesis of post-infectious sequelae? Inflammation 2001; 25:1-6. [PMID: 11293661 DOI: 10.1023/a:1007024809661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
24
|
Ginsburg I. Multi-drug strategies are necessary to inhibit the synergistic mechanism causing tissue damage and organ failure in post infectious sequelae. Inflammopharmacology 1999; 7:207-17. [PMID: 17638092 DOI: 10.1007/s10787-999-0004-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/1999] [Revised: 08/17/1999] [Accepted: 08/18/1999] [Indexed: 11/24/2022]
Abstract
The paper discusses the principal evidence that supports the concept that cell and tissue injury in infectious and post-infectious and inflammatory sequelae might involve a deleterious synergistic interaction among microbial- and host-derived pro-inflammatory agonists. Experimental models had proposed that a rapid cell and tissue injury might be induced by combinations among subtoxic amounts of three major groups of agonists generated both by microorganisms and by the host's own defense systems. These include: (1) oxidants: Superoxide, H(2)O(2), OH', oxidants generated by xanthine-xanthine-oxidase, ROO; HOC1, NO, OONO'-, (2) the membrane-injuring and perforating agents, microbial hemolysins, phospholipases A(2) and C, lysophosphatides, bactericidal cationic proteins, fatty acids, bile salts and the attack complex of complement a, certain xenobics and (3) the highly cationic proteinases, elastase and cathepsin G, as well as collagenase, plasmin, trypsin and a variety of microbial proteinases. Cell killing by combinations among the various agonists also results in the release of membrane-associated arachidonate and metabolites. Cell damage might be further enhanced by certain cytokines either acting directly on targets or through their capacity to prime phagocytes to generate excessive amounts of oxidants. The microbial cell wall components, lipoteichoic acid (LTA), lipopolysaccharides (LPS) and peptidoglycan (PPG), released following bacteriolysis, induced either by cationic proteins from neutrophils and eosinophils or by beta lactam antibiotics, are potent activators of macrophages which can release oxidants, cytolytic cytokines and NO. The microbial cell wall components can also activate the cascades of coagulation, complement and fibrinolysis. All these cascades might further synergize with microbial toxins and metabolites and with phagocyte-derived agonsits to amplify tissue damage and to induce septic shock, multiple organ failure, 'flesh-eating' syndromes, etc. The long persistence of non-biodegradable bacterial cell wall components within activated macrophages in granulomatous inflammation might be the result of the inactivation by oxidants and proteinases of bacterial autolytic wall enzymes (muramidases). The unsuccessful attempts in recent clinical trials to prevent septic shock by the administration of single antagonists is disconcerting. It does suggest however that, since tissue damage in post-infectious syndromes is most probably the end result of synergistic interactions among a multiplicity of agents, only agents which might depress bacteriolysis in vivo and 'cocktails' of appropriate antagonists, but not single antagonists, if administered at the early phases of infection especially to patients at high risk, might help to control the development of post-infectious syndromes. However, the use of adequate predictive markers for sepsis and other post-infectious complications is highly desirable. Although it is conceivable that anti-inflammatory strategies might also be counter-productive as they might act as 'double-edge swords', intensive investigations to devise combination therapies are warranted. The present review also lists the major anti-inflammatory agents and strategies and combinations among them which have been proposed in the last few years for clinical treatments of sepsis and other post-infectious complications.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel.
| |
Collapse
|
25
|
Ginsburg I, Ward PA, Varani J. Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:325-38. [PMID: 10497863 DOI: 10.1111/j.1574-695x.1999.tb01357.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this review-hypothesis is to discuss the literature which had proposed the concept that the mechanisms by which infectious and inflammatory processes induce cell and tissue injury, in vivo, might paradoxically involve a deleterious synergistic 'cross-talk', among microbial- and host-derived pro-inflammatory agonists. This argument is based on studies of the mechanisms of tissue damage caused by catalase-negative group A hemolytic streptococci and also on a large body of evidence describing synergistic interactions among a multiplicity of agonists leading to cell and tissue damage in inflammatory and infectious processes. A very rapid cell damage (necrosis), accompanied by the release of large amounts of arachidonic acid and metabolites, could be induced when subtoxic amounts of oxidants (superoxide, oxidants generated by xanthine-xanthine oxidase, HOCl, NO), synergized with subtoxic amounts of a large series of membrane-perforating agents (streptococcal and other bacterial-derived hemolysins, phospholipases A2 and C, lysophosphatides, cationic proteins, fatty acids, xenobiotics, the attack complex of complement and certain cytokines). Subtoxic amounts of proteinases (elastase, cathepsin G, plasmin, trypsin) very dramatically further enhanced cell damage induced by combinations between oxidants and the membrane perforators. Thus, irrespective of the source of agonists, whether derived from microorganisms or from the hosts, a triad comprised of an oxidant, a membrane perforator, and a proteinase constitutes a potent cytolytic cocktail the activity of which may be further enhanced by certain cytokines. The role played by non-biodegradable microbial cell wall components (lipopolysaccharide, lipoteichoic acid, peptidoglycan) released following polycation- and antibiotic-induced bacteriolysis in the activation of macrophages to release oxidants, cytolytic cytokines and NO is also discussed in relation to the pathophysiology of granulomatous inflammation and sepsis. The recent failures to prevent septic shock by the administration of only single antagonists is disconcerting. It suggests, however, that since tissue damage in post-infectious syndromes is caused by synergistic interactions among a multiplicity of agents, only cocktails of appropriate antagonists, if administered at the early phase of infection and to patients at high risk, might prevent the development of post-infectious syndromes.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine Founded by the Alpha Omega Fraternity, Jerusalem, Israel.
| | | | | |
Collapse
|
26
|
Ginsburg I, Sadovnic M. Gamma globulin, Evan's blue, aprotinin A PLA2 inhibitor, tetracycline and antioxidants protect epithelial cells against damage induced by synergism among streptococcal hemolysins, oxidants and proteinases: relation to the prevention of post-streptococcal sequelae and septic shock. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:247-56. [PMID: 9848686 DOI: 10.1111/j.1574-695x.1998.tb01213.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An in vitro model was employed to study the potential role of streptococcal extra-cellular products, rich in streptolysin O, in cellular injury as related to streptococcal infections and post-streptococcal sequelae. Extra-cellular products (EXPA) rich in streptolysin O were isolated from type 4, group A hemolytic streptococci grown in a chemostat, in a synthetic medium. EXPA induced moderate cytopathogenic changes in monkey kidney epithelial cells and in rat heart cells pre-labeled with 3H-arachidonate. However very strong toxic effects were induced when EXP was combined with oxidants (glucose oxides generated H2O2, AAPH-induced peroxyl radical (ROO.), NO generated by sodium nitroprusside) and proteinases (plasmin, trypsin). Cell killing was distinctly synergistic in nature. Cell damage induced by the multi-component cocktails was strongly inhibited either by micromolar amounts of gamma globulin, and Evan's blue which neutralized SLO activity, by tetracycline, trasylol (aprotinin), epsilon amino caproic acid and by soybean trypsin inhibitor, all proteinase inhibitors as well as by a non-penetrating PLA2 inhibitor A. The results suggest that fasciitis, myositis and sepsis resulting from infections with hemolytic streptococci might be caused by a coordinated 'cross-talk' among microbial, leukocyte and additional host-derived pro-inflammatory agents. Since attempts to prolong lives of septic patients by the exclusive administration of single antagonists invariably failed, it is proposed that the administration of 'cocktails' of putative inhibitors against major pro-inflammatory agonizes generated in inflammation and infection might protect against the deleterious effects caused by the biochemical and pharmacological cascades which are known to be activated in sepsis.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah, School of Dental Medicine, Jerusalem, Israel.
| | | |
Collapse
|
27
|
Borza DB, Morgan WT. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals. J Biol Chem 1998; 273:5493-9. [PMID: 9488672 DOI: 10.1074/jbc.273.10.5493] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The middle domain of plasma histidine-proline-rich glycoprotein (HPRG) contains unusual tandem pentapeptide repeats (consensus G(H/P)(H/P)PH) and binds heparin and transition metals. Unlike other proteins that interact with heparin via lysine or arginine residues, HPRG relies exclusively on histidine residues for this interaction. To assess the consequences of this unusual requirement, we have studied the interaction between human plasma HPRG and immobilized glycosaminoglycans (GAGs) using resonant mirror biosensor techniques. HPRG binding to immobilized heparin was strikingly pH-sensitive, producing a titration curve with a midpoint at pH 6.8. There was little binding of HPRG to heparin at physiological pH in the absence of metals, but the interaction was promoted by nanomolar concentrations of free zinc and copper, and its pH dependence was shifted toward alkaline pH by zinc. The affinity of HPRG for various GAGs measured in a competition assay decreased in the following order: heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate A. Binding of HPRG to immobilized dermatan sulfate had a midpoint at pH 6.5, was less influenced by zinc, and exhibited cooperativity. Importantly, plasminogen interacted specifically with GAG-bound HPRG. We propose that HPRG is a physiological pH sensor, interacting with negatively charged GAGs on cell surfaces only when it acquires a net positive charge by protonation and/or metal binding. This provides a mechanism to regulate the function of HPRG (the local pH) and rationalizes the role of its unique, conserved histidine-proline-rich domain. Thus, under conditions of local acidosis (e.g. ischemia or hypoxia), HPRG can co-immobilize plasminogen at the cell surface as well as compete for heparin with other proteins such as antithrombin.
Collapse
Affiliation(s)
- D B Borza
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
28
|
Ginsburg I, Kohen R. Cell damage in inflammatory and infectious sites might involve a coordinated "cross-talk" among oxidants, microbial haemolysins and ampiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free Radic Res 1995; 22:489-517. [PMID: 7633573 DOI: 10.3109/10715769509150323] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
29
|
Ginsburg I. Can hemolytic streptococci be considered “forefathers” of modern phagocytes? Both cell types freely migrate in tissues and destroy host cells by a “synergistic cross-talk” among their secreted agonists. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0742-8413(94)00051-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Abstract
The successful prevention of oxidative damage in E. coli B cells by cationized catalase (cCAT), and the induction of oxidative stress by cationized glucose oxidase (cGO) and cationized superoxide dismutase (cSOD) is presented in this study. Exposure of E. coli cells to hydrogen peroxide and hydroxyl radical resulted in a rapid killing of the cells. Measurements of biochemical markers: cellular potassium levels and uptake and accumulation of leucin indicated membrane damage in some of the oxidants employed. Following incubation with native CAT or SOD, the cells were washed and exposed to oxidative stress. The results of this procedure did not protect the cells against the oxidative damage. In contrast, incubation of the cells with pretreated CAT with poly-L-histidine, followed by washing of the cells and the subsequent introduction of oxidative stress inducers, resulted in a pronounced protection of the cells against the oxidative stress. Employment of pretreated SOD, and exposure, after washing the cells, to oxidative stress, resulted in an enhancement of the oxidative damage in some cases. Exposure of the cells to cGO resulted in a marked killing of the cells as compared to the untreated enzyme. The use of E. coli cells as a model system for studying the effect of cationized enzymes on cell surfaces is discussed.
Collapse
Affiliation(s)
- R Kohen
- Department of Pharmacy, School of Pharmacy, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
31
|
Ginsburg I, Mitra RS, Gibbs DF, Varani J, Kohen R. Killing of endothelial cells and release of arachidonic acid. Synergistic effects among hydrogen peroxide, membrane-damaging agents, cationic substances, and proteinases and their modulation by inhibitors. Inflammation 1993; 17:295-319. [PMID: 8330929 DOI: 10.1007/bf00918992] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
51Chromium-labeled rat pulmonary artery endothelial cells (EC) cultivated in MEM medium were killed, in a synergistic manner, by mixtures of subtoxic amounts of glucose oxidase-generated H2O2 and subtoxic amounts of the following agents: the cationic substances, nuclear histone, defensins, lysozyme, poly-L-arginine, spermine, pancreatic ribonuclease, polymyxin B, chlorhexidine, cetyltrimethyl ammonium bromide, as well as by the membrane-damaging agents phospholipases A2 (PLA2) and C (PLC), lysolecithin (LL), and by streptolysin S (SLS) of group A streptococci. Cytotoxicity induced by such mixtures was further enhanced by subtoxic amounts either of trypsin or of elastase. Glucose-oxidase cationized by complexing to poly-L-histidine proved an excellent deliverer of membrane-directed H2O2 capable of enhancing EC killing by other agonists. EC treated with rabbit anti-streptococcal IgG were also killed, in a synergistic manner, by H2O2, suggesting the presence in the IgG preparation of cross-reactive antibodies. Killing of EC by the various mixtures of agonists was strongly inhibited by scavengers of hydrogen peroxide (catalase, dimethylthiourea, MnCl2), by soybean trypsin inhibitor, by polyanions, as well as by putative inhibitors of phospholipases. Strong inhibition of cell killing was also observed with tannic acid and by extracts of tea, but less so by serum. On the other hand, neither deferoxamine, HClO, TNF, nor GTP gamma S had any modulating effects on the synergistic cell killing. EC exposed either to 6-deoxyglucose, puromycin, or triflupromazin became highly susceptible to killing by mixtures of hydrogen peroxide with several of the membrane-damaging agents. While maximal synergistic EC killing was achieved by mixtures of H2O2 with either PLA2, PLC, LL, or with SLS, a very substantial release of [3H]arachidonic acid (AA), PGE2, and 6-keto-PGF occurred only if a proteinase was also added to the mixture of agonists. The release of AA from EC was markedly inhibited either by scavengers of H2O2, by proteinase inhibitors, by cationic agents, by HClO, by tannic acid, and by quinacrin. We suggest that cellular injury induced in inflammatory and infectious sites might be the result of synergistic effects among leukocyte-derived oxidants, lysosomal hydrolases, cytotoxic cationic polypeptides, proteinases, and microbial toxins, which might be present in exudates. These "cocktails" not only kill cells, but also solubilize AA and several of its metabolites. However, AA release by the various agonists can be also achieved following attack by leukocyte-derived agonists on dead cells. It is proposed that treatment by "cocktails" of adequate antagonists might be beneficial to protect against cellular injury in vivo.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
32
|
Ginsburg I, Misgav R, Gibbs DF, Varani J, Kohen R. Chemiluminescence in activated human neutrophils: role of buffers and scavengers. Inflammation 1993; 17:227-43. [PMID: 8392491 DOI: 10.1007/bf00918987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human neutrophils (PMNs) suspended in Hanks' balanced salt solution (HBSS), which are stimulated either by polycation-opsonized streptococci or by phorbol myristate acetate (PMA), generate nonamplified (CL), luminol-dependent (LDCL), and lucigenin-dependent chemiluminescence (LUCDCL). Treatment of activated PMNs with azide yielded a very intense CL response, but only a small LDCL or LUCDCL responses, when horse radish peroxidase (HRP) was added. Both CL and LDCL depend on the generation of superoxide and on myeloperoxidase (MPO). Treatment of PMNs with azide followed either by dimethylthiourea (DMTU), deferoxamine, EDTA, or detapac generated very little CL upon addition of HRP, suggesting that CL is the result of the interaction among H2O2, a peroxidase, and trace metals. In a cell-free system practically no CL was generated when H2O2 was mixed with HRP in distilled water (DW). On the other hand significant CL was generated when either HBSS or RPMI media was employed. In both cases CL was markedly depressed either by deferoxamine or by EDTA, suggesting that these media might be contaminated by trace metals, which catalyzed a Fenton-driven reaction. Both HEPES and Tris buffers, when added to DW, failed to support significant HRP-induced CL. Nitrilotriacetate (NTA) chelates of Mn2+, Fe2+, Cu2+, and Co2+ very markedly enhanced CL induced by mixtures of H2O2 and HRP when distilled water was the supporting medium. Both HEPES and Tris buffer when added to DW strongly quenced NTA-metal-catalyzed CL. None of the NTA-metal chelates could boost CL generation by activated PMNs, because the salts in HBSS and RPMI interfered with the activity of the added metals. CL and LDCL of activated PMNs was enhanced by aminotriazole, but strongly inhibited by diphenylene iodonium (an inhibitor of NADPH oxidase) by azide, sodium cyanide (CN), cimetidine, histidine, benzoate, DMTU and moderately by superoxide dismutase (SOD) and by deferoxamine LUCDCL was markedly inhibited only by SOD but was boosted by CN. Taken together, it is suggested that CL generated by stimulated PMNs might be the result of the interactions among, NADPH oxidase, (inhibitable by diphenylene iodonium), MPO (inhibitable by sodium azide), H2O2 probably of intracellular origin (inhibitable by DMTU but not by catalase), and trace metals that contaminate salt solutions. The nature of the salt solutions employed to measure CL in activated PMNs is critical.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
33
|
Varani J, Sitrin RG, Hillegas W. Expression of plasminogen activator and plasminogen activator inhibitor mRNA in human fibroblasts grown on different substrates. Cytotechnology 1993; 9:157-62. [PMID: 1369169 DOI: 10.1007/bf02521743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575-582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.
Collapse
Affiliation(s)
- J Varani
- Department of Pathology, University of Michigan Medical School, Ann Arbor
| | | | | |
Collapse
|
34
|
Varani J, Inman DR, Fligiel SE, Hillegas WJ. Use of recombinant and synthetic peptides as attachment factors for cells on microcarriers. Cytotechnology 1993; 13:89-98. [PMID: 7764582 DOI: 10.1007/bf00749935] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polystyrene culture dishes and polystyrene microcarriers were coated with Pronectin-F and poly-L-lysine (polylysine), either alone or in combination. Pronectin-F is a recombinant peptide containing repeats of the RGD cell-attachment sequence from fibronectin. Polylysine is a polymer of L-lysine. Pronectin-F supported attachment of Madin-Darby Canine Kidney (MDCK) cells at concentrations as low as 0.025 micrograms/cm2 of surface area. The cells rapidly spread after attachment. Polylysine at concentrations of 0.05-0.5 micrograms/cm2 also supported cell attachment but cells did not rapidly spread after attachment to this substrate. Higher concentrations of polylysine could not be used because of toxicity. When the two peptides were used in conjunction, MDCK cells attached and spread at lower peptide concentrations than they did when either substrate was used alone. These findings suggest that recombinant Pronectin-F alone or in conjunction with a cationic polymer could be a useful replacement for materials such as gelatin or collagen which are currently used as microcarrier surfaces.
Collapse
Affiliation(s)
- J Varani
- Department of Pathology, University of Michigan, Ann Arbor
| | | | | | | |
Collapse
|
35
|
Human neutrophils stimulated by cetyltrimethyl ammonium bromide generate luminol-amplified and non-amplified chemiluminescence but no superoxide production: A paradox. Inflammopharmacology 1992. [DOI: 10.1007/bf02755884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Kohen R, Kakunda A, Rubinstein A. The role of cationized catalase and cationized glucose oxidase in mucosal oxidative damage induced in the rat jejunum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36616-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Ginsburg I, Misgav R, Pinson A, Varani J, Ward PA, Kohen R. Synergism among oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins, and cytokines. Inflammation 1992; 16:519-38. [PMID: 1428126 DOI: 10.1007/bf00918977] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A striking similarity exists between the pathogenetic properties of group A streptococci and those of activated mammalian professional phagocytes (neutrophils, macrophages). Both types of cells are endowed by the ability to adhere to target cells; to elaborate oxidants, hydrolases, and membrane-active agents (hemolysins, phospholipases); and to freely invade tissues and destroy cells. From the evolutionary point of view, streptococci might justifiably be considered the forefathers of "modern" leukocytes. Our earlier findings that synergy between a streptococcal hemolysin (streptolysin S, SLS) and a streptococcal thiol-dependent proteinase and between cytotoxic antibodies+complement and streptokinase-activated plasmin readily killed tumor cells, led us to hypothesize that by analogy to the pathogenetic mechanisms of streptococci, the mechanisms of tissue destruction initiated by activated leukocytes in inflammatory sites, as well as in tissues undergoing episodes of ischemia and reperfusion, might also be the result of the synergistic effects among leukocyte-derived oxidants, phospholipases, proteinases, cytokines, and cationic proteins. The current report extends our previous synergy studies with endothelial cells to two additional cell types--monkey kidney epithelial cells and rat beating heart cells. Monolayers of 51Cr-labeled cells that had been treated by combinations of sublytic amounts of hydrogen peroxide (generated either by glucose oxidase, xanthine-xanthine oxidase, or by paraquat) and with sublytic amounts of a variety of membrane-active agents (streptolysin S, phospholipases A2 and C, lysophosphatides, histone, chlorhexidine) were killed in a synergistic manner (double synergy). Crystalline trypsin markedly enhanced cell killing by combinations of oxidant and the membrane-active agents (triple synergy). Injury to the cells was characterized by the appearance of large membrane blebs that detached from the cells and floated freely in the media, looking like lipid droplets. Cytotoxicity induced by the various combinations of agonists was depressed, to a large extent, by scavengers of hydrogen peroxide (catalase, dimethyl thiourea, and by Mn2+) but not by SOD or by deferoxamine. When cationic agents were employed together with hydrogen peroxide, polyanions (heparin, polyanethole sulfonate) were also found to inhibit cell killing. It is proposed that in order to effectively combat the deleterious toxic effects of leukocyte-derived agonists on cells and tissues, antagonistic "cocktails" comprised of cationized catalase, cationized SOD, dimethylthiourea, Mn(2+)+glycine, proteinase inhibitors, putative inhibitors of phospholipases, and polyanions might be concocted. The current literature on synergistic phenomena pertaining to mechanisms of cell and tissue injury in inflammation is selectively reviewed.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Ginsburg I, Gibbs DF, Varani J. Interaction of mammalian cells with polymorphonuclear leukocytes: relative sensitivity to monolayer disruption and killing. Inflammation 1989; 13:529-42. [PMID: 2807519 DOI: 10.1007/bf00916759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Monolayers of murine fibrosarcoma cells that had been treated either with histone-opsonized streptococci, histone-opsonized Candida globerata, or lipoteichoic acid-anti-lipoteichoic acid complexes underwent disruption when incubated with human polymorphonuclear leukocytes (PMNs). Although the architecture of the monolayers was destroyed, the target cells were not killed. The destruction of the monolayers was totally inhibited by proteinase inhibitors, suggesting that the detachment of the cells from the monolayers and aggregation in suspension were induced by proteinases releases from the activated PMNs. Monolayers of normal endothelial cells and fibroblasts were much resistant to the monolayer-disrupting effects of the PMNs than were the fibrosarcoma cells. Although the fibrosarcoma cells were resistant to killing by PMNs, killing was promoted by the addition of sodium azide (a catalase inhibitor). This suggests that the failure of the PMNs to kill the target cells was due to catalase inhibition of the hydrogen peroxide produced by the activated PMNs. Target cell killing that occurred in the presence of sodium azide was reduced by the addition of a "cocktail" containing methionine, histidine, and deferoxamine mesylate, suggesting that hydroxyl radicals but not myeloperoxidase-catalyzed products were responsible for cell killing. The relative ease with which the murine fibrosarcoma cells can be released from their substratum by the action of PMNs, coupled with their insensitivity to PMN-mediated killing, may explain why the presence of large numbers of PMNs at the site of tumors produced in experimental animals by the fibrosarcoma cells is associated with an unfavorable outcome.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | |
Collapse
|
39
|
Gibbs D, Varani J, Ginsburg I. Formation and use of poly-L-histidine-catalase complexes: protection of cells from hydrogen peroxide-mediated injury. Inflammation 1989; 13:465-74. [PMID: 2759688 DOI: 10.1007/bf00914929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Insoluble complexes of poly-L-histidine (polyhistidine) and catalase were prepared by mixing the two reactants together in solution at pH 5.5 and subsequently elevating the pH to approximately 7.0, at which point they precipitated. Complexes formed at optimal ratios of polyhistidine to catalase contained essentially all of the catalase present in the original solution. The catalase present in such complexes contained greater than 50% of the H2O2-inhibiting activity of the native catalase used to prepare the complexes. The insoluble complexes rapidly bound to viable endothelial cells and were resistant to removal by extensive washing. The presence of polyhistidine-catalase complexes on the cell surface protected the cells against injury mediated by H2O2 or activated polymorphonuclear leukocytes. These data show that polyhistidine-catalase complexes can be prepared that have a high affinity for cells and that retain catalase activity. These complexes may be useful in treating inflammatory conditions in which it is necessary to maintain a high local concentration of inhibitor.
Collapse
Affiliation(s)
- D Gibbs
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109
| | | | | |
Collapse
|
40
|
Ginsburg I. Cationic polyelectrolytes: potent opsonic agents which activate the respiratory burst in leukocytes. FREE RADICAL RESEARCH COMMUNICATIONS 1989; 8:11-26. [PMID: 2555283 DOI: 10.3109/10715768909087968] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteria and yeasts which are "opsonized" with cationic polyelectrolytes (poly-L-arginine, poly-L-histidine and arginine-rich histone) are avidly endocytosed by both "professional" and "non-professional" phagocytes. The cationized particles also strongly activate the respiratory burst in neutrophils and in macrophages leading to the generation of chemiluminescence, superoxide and hydrogen peroxide. On the other hand, lysine and ornithine-rich polymers are poor opsonic agents. Poly L-arginine is unique in its capacity to act synergistically with lectins, with chemotactic peptides and with cytochalasin B to generate large amounts of chemiluminescence and superoxide in human neutrophils. Unlike polyarginine, polyhistidine, in the absence of carrier particles, is one of the most potent stimulators of superoxide generations, known. Neutrophils treated with cetyltrimethylammonium bromide fail to generate superoxide, but generate strong luminol-dependent chemiluminescence which is totally inhibited by sodium azide and by thiourea. Neutrophils injured by cytolytic agents (saponin, digitonin, lysolecithin) lose their chemiluminescence and superoxide-generating capacities upon stimulation by a variety of ligands. These activities are however regained by the addition of NADPH. Lysolecithin can replace polyarginine in a "cocktail" also containing lectins and cytochalasin B, which strongly activate the respiratory burst. This suggests that polyarginine acts both as a cytolytic agent and as a ligand. Arginine and histidine-rich polyelectrolytes enhance the pathogenic effects of immune complexes in vivo (reversed Arthus phenomenon) presumably by "glueing" them to tissues. Polyhistidine complexed to catalase or to superoxide dismutase, markedly enhances their efficiency as antioxidants. On the other hand polyhistidine complexed to glucose oxidase markedly enhances injury to endothelial cells suggesting that the close association of the cationized enzyme with the plasma membrane facilitates the interaction of hydrogen peroxide with the targets. A variety of cationic agents (histone, polyarginine, polyhistidine, polymyxin B) and membrane-active agents (lysophosphatides, microbial hemolysins) act synergistically with glucose oxidase or with reagent hydrogen peroxide to kill target cells. The mechanisms by which arginine- and histidine-rich polyelectrolytes activate the respiratory burst in neutrophils might involve interaction with G-proteins, the activation of arachidonic acid metabolism and phospholipase A2, or the interaction with myeloperoxidase. Naturally-occurring cationic proteins might modulate several important functions of leukocytes and the course and outcome of the inflammatory process.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
41
|
Ginsburg I, Gibbs DF, Schuger L, Johnson KJ, Ryan US, Ward PA, Varani J. Vascular endothelial cell killing by combinations of membrane-active agents and hydrogen peroxide. Free Radic Biol Med 1989; 7:369-76. [PMID: 2558061 DOI: 10.1016/0891-5849(89)90123-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that a number of membrane-active agents are capable of binding to the surface of polymorphonuclear leukocytes (PMN) resulting in an augmentation of superoxide anion and hydrogen peroxide (H2O2) production in response to soluble stimuli. It is now demonstrated that these same membrane-active agents can bind to the surface of endothelial cells and enhance their susceptibility to killing by H2O2. Membrane-active agents which are capable of synergizing with H2O2 include cationic proteins, cationic poly-amino acids, lysophosphatides and enzymes which are capable of degrading membrane phospholipids (e.g., phospholipase C, phospholipase A2 and streptolysin S). In each case, treatment of the target cells with the membrane-active agent and H2O2 produces greater damage than the sum of the damage produced by either agent separately. Since inflammatory lesions, particularly sites of bacterial infection, may contain a rich mixture of cationic substances, phospholipases and phospholipid breakdown products, these substances may contribute to the tissue damage observed at sites of inflammation by enhancing endothelial cell sensitivity to PMN-generated H2O2 as well as by augmenting the generation of H2O2 by PMNs.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hadassah School of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Ginsburg I, Fligiel SE, Ward PA, Varani J. Lipoteichoic acid-antilipoteichoic acid complexes induce superoxide generation by human neutrophils. Inflammation 1988; 12:525-48. [PMID: 2851550 DOI: 10.1007/bf00914316] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human neutrophils (PMNs) which have been incubated with lipoteichoic acid (LTA) from group A streptococci generated large amounts of superoxide (O2- chemiluminescence and hydrogen peroxide when challenged with anti-LTA antibodies. Cytochalasin B further enhanced O2- generation. The onset of O2- generation by the LTA-anti-LTA complexes was much faster than that induced by BSA-anti-BSA complexes. LTA-treated PMNs generated much less O2- when challenged with BSA complexes, suggesting that LTA might have blocked, nonspecifically, some of the Fc receptors on PMNs. PMNs treated with LTA-anti-LTA complexes further interacted with bystander nonsensitized PMNs resulting in enhanced O2- generation, suggesting that small numbers of LTA-sensitized PMNs might recruit additional PMNs to participate in the generation of toxic oxygen species. Protelolytic enzyme treatment of PMNs further enhanced the generation of O2- by PMNs treated with LTA-anti-LTA. Superoxide generation could also be induced when PMNs and anti-LTA antibodies interacted with target cells (fibroblasts, epithelial cells) pretreated with LTA. This effect was also further enhanced by pretreatment of the target cells with proteases. PMNs incubated with LTA released lysosomal enzymes following treatment with anti-LTA antibodies. The amounts of phosphatase, beta-glucoronidase, N-acetylglucosaminidase, mannosidase, and lysozyme release by LTA-anti-LTA complexes were much smaller than those released by antibody or histone-opsonized streptococci, suggesting that opsonized particles are more efficient lysosomal enzyme releasers. However, since the amounts of O2- generated by the LTA complexes equaled those generated by the opsonized particles, it is assumed that the signals for triggering a respiratory burst and lysosomal enzyme secretion might be different. Generation of O2- by LTA complexes was strongly inhibited by lipoxygenase inhibitors but not by cyclooxigenase inhibitors. Also phenylbutazone, trifluorperazine, and DASA markedly inhibited O2- generation induced by LTA complexes. These data suggest that bacterial products in the presence of antibody might have important biological effects on phagocytic cells and that these effects may be inimical to the host.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | |
Collapse
|