1
|
Xu J, Zhang Y, Cai Q, Chen L, Sun Y, Liu Q, Gao Y, Chen H. Green Late-Stage Functionalization of Tryptamines. Chemistry 2024; 30:e202401436. [PMID: 38869004 DOI: 10.1002/chem.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
An efficient and rapid protocol for the oxidative halogenation of tryptamines with 10 % aqueous NaClO has been developed. This reaction is featured by its operational simplicity, metal-free conditions, no purification, and high yield. Notably, the resulting key intermediates are suitable for further functionalization with various nucleophiles, including amines, N-aromatic heterocycles, indoles and phenols. The overall transformation exhibits broad functional-group tolerance and is applicable to the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Jiayi Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yahui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiling Cai
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yang Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qinying Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
2
|
Liu Z, Mu C, Zhu W. Metagenomics-based inference of microbial metabolism towards neuroactive amino acids and the response to antibiotics in piglet colon. Amino Acids 2023; 55:1333-1347. [PMID: 37581868 DOI: 10.1007/s00726-023-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
Gut-derived neuroactive metabolites from amino acids perform a broad range of physiological roles in the body. However, the interaction between microbiota and epithelium in the metabolism of amino acids with neuroactive properties remains unclear in the colon of piglets. To investigate the microbial and epithelial metabolism, metagenomics and mucosal metabolomics were performed using colonic samples from 12 ileum-canulated piglets subjected to a 25-day infusion with saline or antibiotics. We categorized 23 metabolites derived from the metabolism of tryptophan, glutamate, and tyrosine, known as precursors of neuroactive metabolites. Microbial enzymes involved in the kynurenine synthesis via arylformamidase, 4-aminobutyric acid (GABA) synthesis via putrescine aminotransferase, and tyramine synthesis via tyrosine decarboxylase were identified in Clostridiales bacterium, uncultured Blautia sp., and Methanobrevibacter wolinii, respectively. Antibiotics significantly affected the microbiota involved in tryptophan-kynurenine and glutamate-GABA metabolism. An increase in the relative abundance of putrescine aminotransferase and Blautia sp. correlated positively with an increase in luminal GABA concentration. Overall, our findings provide new insights into the microbial ability to metabolize key amino acids that are precursors of neuroactive metabolites.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Montegiove N, Leonardi L, Cesaretti A, Pellegrino RM, Pellegrino A, Emiliani C, Calzoni E. Biogenic Amine Content Analysis of Three Chicken-Based Dry Pet Food Formulations. Animals (Basel) 2023; 13:1945. [PMID: 37370455 DOI: 10.3390/ani13121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pet food market is constantly expanding, and more and more attention is paid to the feeding of pets. Dry foods stand out and are often preferred due to their long shelf life, ease of administration, and low cost. In this context, dry foods are formulated from fresh meats, meat meals, or a mix of the two. These raw materials are often meat not fit for human consumption; they might be subject to contamination and proliferation of microorganisms which, by degrading the organic component, can lead to the formation of undesirable by-products such as biogenic amines. These nitrogenous compounds obtained by decarboxylation of amino acids can therefore be found in high-protein foods, and their ingestion in large quantities can cause intoxication and be harmful. This study aims at analyzing the possible presence of biogenic amines in three different formulations of chicken-based kibbles for pets: one obtained from fresh meat, one from meat meal, and one from a mix of the two. This study is also focused on the presence of free amino acids as they represent the key substrate for decarboxylating enzymes. Mass spectrometry (Q-TOF LC/MS) was used to analyze the presence of biogenic amines and free amino acids. The results show that fresh-meat-based products have a lower content of biogenic amines, and at the same time a higher quantity of free amino acids; on the contrary, meat-meal- and mix-based products have a greater quantity of biogenic amines and a lower concentration of free amino acids, suggesting that there has been a higher microbial proliferation as proved by the total aerobic mesophilic bacteria counts. It is therefore clear that fresh-meat-based kibbles are to be preferred when they are used for preparing dry pet food due to the lowest concentration of biogenic amines.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
4
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
5
|
Wu J, Zhang H, Wang Y, Yin G, Li Q, Zhuo L, Chen H, Wang Z. From tryptamine to the discovery of efficient multi-target directed ligands against cholinesterase-associated neurodegenerative disorders. Front Pharmacol 2022; 13:1036030. [PMID: 36518670 PMCID: PMC9742383 DOI: 10.3389/fphar.2022.1036030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
A novel class of benzyl-free and benzyl-substituted carbamylated tryptamine derivatives (CDTs) was designed and synthesized to serve as effective building blocks for the development of novel multi-target directed ligands (MTDLs) for the treatment of neurological disorders linked to cholinesterase (ChE) activity. The majority of them endowed butyrylcholinesterase (BuChE) with more substantial inhibition potency than acetylcholinesterase (AChE), according to the full study of ChE inhibition. Particularly, hybrids with dibenzyl groups (2b-2f, 2j, 2o, and 2q) showed weak or no neuronal toxicity and hepatotoxicity and single-digit nanomolar inhibitory effects against BuChE. Through molecular docking and kinetic analyses, the potential mechanism of action on BuChE was first investigated. In vitro H2O2-induced HT-22 cells assay demonstrated the favorable neuroprotective potency of 2g, 2h, 2j, 2m, 2o, and 2p. Besides, 2g, 2h, 2j, 2m, 2o, and 2p endowed good antioxidant activities and COX-2 inhibitory effects. This study suggested that this series of hybrids can be applied to treat various ChE-associated neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as promising building blocks for further structure modification to develop efficient MTDLs.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Honghua Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongjin Chen
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
7
|
Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine Attenuates Experimental Multiple Sclerosis Through Activation of Aryl Hydrocarbon Receptor. Front Pharmacol 2021; 11:619265. [PMID: 33569008 PMCID: PMC7868334 DOI: 10.3389/fphar.2020.619265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tryptamine is a naturally occurring monoamine alkaloid which has been shown to act as an aryl hydrocarbon receptor (AHR) agonist. It is produced in large quantities from the catabolism of the essential amino acid tryptophan by commensal microorganisms within the gastrointestinal (GI) tract of homeothermic organisms. Previous studies have established microbiota derived AHR ligands as potent regulators of neuroinflammation, further defining the role the gut-brain axis plays in the complex etiology in multiple sclerosis (MS) progression. In the current study, we tested the ability of tryptamine to ameliorate symptoms of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We found that tryptamine administration attenuated clinical signs of paralysis in EAE mice, decreased the number of infiltrating CD4+ T cells in the CNS, Th17 cells, and RORγ T cells while increasing FoxP3+Tregs. To test if tryptamine acts through AHR, myelin oligodendrocyte glycoprotein (MOG)-sensitized T cells from wild-type or Lck-Cre AHRflox/flox mice that lacked AHR expression in T cells, and cultured with tryptamine, were transferred into wild-type mice to induce passive EAE. It was noted that in these experiments, while cells from wild-type mice treated with tryptamine caused marked decrease in paralysis and attenuated neuroinflammation in passive EAE, similar cells from Lck-Cre AHRflox/flox mice treated with tryptamine, induced significant paralysis symptoms and heightened neuroinflammation. Tryptamine treatment also caused alterations in the gut microbiota and promoted butyrate production. Together, the current study demonstrates for the first time that tryptamine administration attenuates EAE by activating AHR and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mike Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
8
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
9
|
Wang X, Policarpio L, Prajapati D, Li Z, Zhang H. Developing E. coli-E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab Eng Commun 2020; 10:e00110. [PMID: 31853442 PMCID: PMC6911970 DOI: 10.1016/j.mec.2019.e00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
Tryptamine is an alkaloid compound with demonstrated bioactivities and is also a precursor molecule to many important hormones and neurotransmitters. The high efficiency biosynthesis of tryptamine from inexpensive and renewable carbon substrates is of great research and application significance. In the present study, a tryptamine biosynthesis pathway was established in a metabolically engineered E. coli-E. coli co-culture. The upstream and downstream strains of the co-culture were dedicated to tryptophan provision and conversion to tryptamine, respectively. The constructed co-culture was cultivated using either glucose or glycerol as carbon source for de novo production of tryptamine. The manipulation of the co-culture strains' inoculation ratio was adapted to balance the biosynthetic strengths of the pathway modules for bioproduction optimization. Moreover, a biosensor-assisted cell selection strategy was adapted to improve the pathway intermediate tryptophan provision by the upstream strain, which further enhanced the tryptamine biosynthesis. The resulting biosensor-assisted modular co-culture produced 194 mg/L tryptamine with a yield of 0.02 g/g glucose using shake flask cultivation. The findings of this work demonstrate that the biosensor-assisted modular co-culture engineering offers a new perspective for conducting microbial biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Haoran Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
10
|
Fernández-López L, Molina-Carballo A, Cubero-Millán I, Checa-Ros A, Machado-Casas I, Blanca-Jover E, Jerez-Calero A, Madrid-Fernández Y, Uberos J, Muñoz-Hoyos A. Indole Tryptophan Metabolism and Cytokine S100B in Children with Attention-Deficit/Hyperactivity Disorder: Daily Fluctuations, Responses to Methylphenidate, and Interrelationship with Depressive Symptomatology. J Child Adolesc Psychopharmacol 2020; 30:177-188. [PMID: 32048862 DOI: 10.1089/cap.2019.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Indole tryptophan metabolites (ITMs), mainly produced at the gastrointestinal level, participate in bidirectional gut-brain communication and have been implicated in neuropsychiatric pathologies, including attention-deficit/hyperactivity disorder (ADHD). Method: A total of 179 children, 5-14 years of age, including a healthy control group (CG, n = 49), and 107 patients with ADHD participated in the study. The ADHD group was further subdivided into predominantly attention deficit (PAD) and predominantly hyperactive impulsive (PHI) subgroups. Blood samples were drawn at 20:00 and 09:00 hours, and urine was collected between blood draws, at baseline and after 4.63 ± 2.3 months of methylphenidate treatment in the ADHD group. Levels and daily fluctuations of ITM were measured by tandem mass spectrometer, and S100B (as a glial inflammatory marker) by enzyme-linked immunosorbent assay. Factorial analysis of variance (Stata 12.0) was performed with groups/subgroups, time (baseline/after treatment), hour of day (morning/evening), and presence of depressive symptoms (DS; no/yes) as factors. Results: Tryptamine and indoleacetic acid (IAA) showed no differences between the CG and ADHD groups. Tryptamine exhibited higher evening values (p < 0.0001) in both groups. No changes were associated with methylphenidate or DS. At baseline, in comparison with the rest of study sample, PHI with DS+ group showed among them much greater morning than evening IAA (p < 0.0001), with treatment causing a 50% decrease (p = 0.002). Concerning indolepropionic acid (IPA) MPH was associated with a morning IPA decrease and restored the daily profile observed in the CG. S100B protein showed greater morning than evening concentrations (p = 0.001) in both groups. Conclusion: Variations in ITM may reflect changes associated with the presence of DS, including improvement, among ADHD patients.
Collapse
Affiliation(s)
- Luisa Fernández-López
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Molina-Carballo
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Isabel Cubero-Millán
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Ana Checa-Ros
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Irene Machado-Casas
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Enrique Blanca-Jover
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Jerez-Calero
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | | | - José Uberos
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Muñoz-Hoyos
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| |
Collapse
|
11
|
Paley EL. Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA Aminoacylation-Protein Synthesis in Human Health and Disease. Int J Tryptophan Res 2019; 12:1178646919834550. [PMID: 30944520 PMCID: PMC6440052 DOI: 10.1177/1178646919834550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
Human gut bacterial Na(+)-transporting NADH:ubiquinone reductase (NQR) sequence is associated with Alzheimer disease (AD). Here, Alzheimer disease-associated sequence (ADAS) is further characterized in cultured spore-forming Clostridium sp. Tryptophan and NQR substrate ubiquinone have common precursor chorismate in microbial shikimate pathway. Tryptophan-derived tryptamine presents in human diet and gut microbiome. Tryptamine inhibits tryptophanyl-tRNA synthetase (TrpRS) with consequent neurodegeneration in cell and animal models. Tryptophanyl-tRNA synthetase inhibition causes protein biosynthesis impairment similar to that revealed in AD. Tryptamine-induced TrpRS gene-dose reduction is associated with TrpRS protein deficiency and cell death. In animals, tryptamine treatment results in toxicity, weight gain, and prediabetes-related hypoglycemia. Sequence analysis of gut microbiome database reveals 89% to 100% ADAS nucleotide identity in American Indian (Cheyenne and Arapaho [C&A]) Oklahomans, of which ~93% being overweight or obese and 50% self-reporting type 2 diabetes (T2D). Alzheimer disease-associated sequence occurs in 10.8% of C&A vs 1.3% of healthy American population. This observation is of considerable interest because T2D links to AD and obesity. Alzheimer disease-associated sequence prevails in gut microbiome of colorectal cancer, which linked to AD. Metabolomics revealed that tryptamine, chorismate precursor quinate, and chorismate product 4-hydroxybenzoate (ubiquinone precursor) are significantly higher, while tryptophan-containing dipeptides are lower due to tRNA aminoacylation deficiency in C&A compared with non-native Oklahoman who showed no ADAS. Thus, gut microbial tryptamine overproduction correlates with ADAS occurrence. Antibiotic and diet additives induce ADAS and tryptamine. Mitogenic/cytotoxic tryptamine cause microbial and human cell death, gut dysbiosis, and consequent disruption of host-microbe homeostasis. Present analysis of 1246 participants from 17 human gut metagenomics studies revealed ADAS in cell death diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert BioMed, Inc., Miami Dade, FL, USA.,Stop Alzheimers Corp, Miami Dade, FL, USA.,Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
12
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
13
|
Dai Y, Yeo SCM, Barnes PJ, Donnelly LE, Loo LC, Lin HS. Pre-clinical Pharmacokinetic and Metabolomic Analyses of Isorhapontigenin, a Dietary Resveratrol Derivative. Front Pharmacol 2018; 9:753. [PMID: 30050440 PMCID: PMC6050476 DOI: 10.3389/fphar.2018.00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), a dietary resveratrol (trans-3,5,4'-trihydroxystilbene) derivative, possesses various health-promoting activities. To further evaluate its medicinal potentials, the pharmacokinetic and metabolomic profiles of ISO were examined in Sprague-Dawley rats. Methods: The plasma pharmacokinetics and metabolomics were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. Results: Upon intravenous injection (90 μmol/kg), ISO exhibited a fairly rapid clearance (CL) and short mean residence time (MRT). After a single oral administration (100 μmol/kg), ISO was rapidly absorbed and showed a long residence in the systemic circulation. Dose escalation to 200 μmol/kg resulted in higher dose-normalized maximal plasma concentrations (Cmax/Dose), dose-normalized plasma exposures (AUC/Dose), and oral bioavailability (F). One-week repeated daily dosing of ISO did not alter its major oral pharmacokinetic parameters. Pharmacokinetic comparisons clearly indicated that ISO displayed pharmacokinetic profiles superior to resveratrol as its Cmax/Dose, AUC/Dose, and F were approximately two to three folds greater than resveratrol. Metabolomic investigation revealed that 1-week ISO administration significantly reduced plasma concentrations of arachidonic acid, cholesterol, fructose, allantoin, and cadaverine but increased tryptamine levels, indicating its impact on metabolic pathways related to health-promoting effects. Conclusion: ISO displayed favorable pharmacokinetic profiles and may be a promising nutraceutical in view of its health-promoting properties.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Samuel C M Yeo
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lai C Loo
- Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Paley EL, Perry G. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration. Nutrients 2018; 10:nu10040410. [PMID: 29587458 PMCID: PMC5946195 DOI: 10.3390/nu10040410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., 11933 SW 271st TER Homestead, Miami Dade, FL 33032-3305, USA.
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - George Perry
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
15
|
Huang S, Wang LM, Sivendiran T, Bohrer BM. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit Rev Food Sci Nutr 2017; 58:2673-2678. [PMID: 29200310 DOI: 10.1080/10408398.2017.1396202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quality of the dietary protein in foods rather than amount of dietary protein may be of greater importance from a human health and wellness standpoint. Various systems are in place to determine the value of dietary protein. Protein digestibility-corrected amino acid score (PDCAAS) and digestible indispensable amino acid score (DIAAS) are the two major protein standards used to determine the completeness of proteins by their unique concentration and digestibility of indispensable amino acids. The purpose of this review was to provide a comprehensive comparison of the amino acid concentration of high protein foods and provide the current status of the use and practicality of the PDCAAS and DIAAS system. This review builds upon previous research analyzing the total nutrient density of protein-rich foods and expands scientific research investigating the quality of proteins. In summary, the average sum of indispensable amino acids for meat and fish products is much more consistent than that of non-meat and plant-based food products. However, some non-meat products have relatively similar amounts of indispensable amino acids on a similar serving size basis. The overwhelming aspect of determining protein quality is that greater research is needed to determine protein digestibility of food products.
Collapse
Affiliation(s)
- Shiqi Huang
- a Department of Food Science , University of Guelph , Guelph , Ontario , Canada
| | - Lydia M Wang
- a Department of Food Science , University of Guelph , Guelph , Ontario , Canada
| | - Thakshi Sivendiran
- a Department of Food Science , University of Guelph , Guelph , Ontario , Canada
| | - Benjamin M Bohrer
- a Department of Food Science , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
16
|
Gasparini CF, Smith RA, Griffiths LR. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J Headache Pain 2017; 18:20. [PMID: 28194570 PMCID: PMC5307402 DOI: 10.1186/s10194-016-0711-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.
Collapse
Affiliation(s)
- Claudia Francesca Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD, 4222, Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn Robyn Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
17
|
Development of a validated strategy for the determination of tryptamine in human cerebrospinal fluid in the presence of competitors using molecularly imprinted polymers. J Sep Sci 2017; 40:1824-1833. [DOI: 10.1002/jssc.201601349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
|
18
|
Pavlov N, Gilles P, Didierjean C, Wenger E, Naydenova E, Martinez J, Calmès M. Asymmetric Synthesis of β2-Tryptophan Analogues via Friedel–Crafts Alkylation of Indoles with a Chiral Nitroacrylate. J Org Chem 2011; 76:6116-24. [DOI: 10.1021/jo200733t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikola Pavlov
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1
et Université Montpellier 2, Bâtiment Chimie (17), Université Montpellier 2, place E. Bataillon,
34095 Montpellier cedex 5, France
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8
Kliment Ohridski blvd., Sofia 1756, Bulgaria
| | - Pierre Gilles
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1
et Université Montpellier 2, Bâtiment Chimie (17), Université Montpellier 2, place E. Bataillon,
34095 Montpellier cedex 5, France
| | - Claude Didierjean
- Laboratoire de Crystallographie,
Résonance Magnétique et Modélisation, Nancy Université, UMR7036 CNRS-UHP, Boulevard
des Aiguillettes, BPP239, 54506 Vandoeuvre-Lès-Nancy Cedex,
France
| | - Emmanuel Wenger
- Laboratoire de Crystallographie,
Résonance Magnétique et Modélisation, Nancy Université, UMR7036 CNRS-UHP, Boulevard
des Aiguillettes, BPP239, 54506 Vandoeuvre-Lès-Nancy Cedex,
France
| | - Emilia Naydenova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8
Kliment Ohridski blvd., Sofia 1756, Bulgaria
| | - Jean Martinez
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1
et Université Montpellier 2, Bâtiment Chimie (17), Université Montpellier 2, place E. Bataillon,
34095 Montpellier cedex 5, France
| | - Monique Calmès
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier 1
et Université Montpellier 2, Bâtiment Chimie (17), Université Montpellier 2, place E. Bataillon,
34095 Montpellier cedex 5, France
| |
Collapse
|
19
|
Abstract
Acute and chronic alcohol (ethanol) intake and subsequent withdrawal exert major effects on tryptophan (Trp) metabolism and disposition in human subjects and experimental animals. In rats, activity of the rate-limiting enzyme of Trp degradation, liver Trp pyrrolase (TP), is enhanced by acute, but inhibited after chronic, ethanol administration, then enhanced during withdrawal. These changes lead to alterations in brain serotonin synthesis and turnover mediated by corresponding changes in circulating Trp availability to the brain. A low brain-serotonin concentration characterizes the alcohol-preferring C57BL/6J mouse strain and many alcohol-preferring rat lines. In this mouse strain, liver TP enhancement causes the serotonin decrease. In man, acute ethanol intake inhibits brain serotonin synthesis by activating liver TP. This may explain alcohol-induced depression, aggression and loss of control in susceptible individuals. Chronic alcohol intake in dependent subjects may be associated with liver TP inhibition and a consequent enhancement of brain serotonin synthesis, whereas subsequent withdrawal may induce the opposite effects. The excitotoxic Trp metabolite quinolinate may play a role in the behavioural disturbances of the alcohol-withdrawal syndrome. Some abstinent alcoholics may have a central serotonin deficiency, which they correct by liver TP inhibition through drinking. Further studies of the Trp and serotonin metabolic status in long-term abstinence in general and in relation to personality characteristics, alcoholism typology and genetic factors in particular may yield important information which should facilitate the development of more effective screening, and preventative and therapeutic strategies in this area of mental health.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff and Vale NHS Trust, Biomedical Research Laboratory, Whitchurch Hospital, Cardiff CF14 7XB, UK.
| |
Collapse
|
20
|
Li MD, Tseng WL, Cheng TL. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence. J Chromatogr A 2009; 1216:6451-8. [DOI: 10.1016/j.chroma.2009.07.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/11/2009] [Accepted: 07/17/2009] [Indexed: 11/15/2022]
|
21
|
Paley EL, Denisova G, Sokolova O, Posternak N, Wang X, Brownell AL. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models. Neuromolecular Med 2008; 9:55-82. [PMID: 17114825 DOI: 10.1385/nmm:9:1:55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 01/24/2023]
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) and other taupathies include neurofibrillary tangles and plaques. Despite the fact that only 2-10% of AD cases are associated with genetic mutations, no nontransgenic or metabolic models have been generated to date. The findings of tryptophanyl-tRNA synthetase (TrpRS) in plaques of the AD brain were reported recently by the authors. Here it is shown that expression of cytoplasmic-TrpRS is inversely correlated with neurofibrillary degeneration, whereas a nonionic detergent-insoluble presumably aggregated TrpRS is simultaneously accumulated in human cells treated by tryptamine, a metabolic tryptophan analog that acts as a competitive inhibitor of TrpRS. TrpRSN- terminal peptide self-assembles in double-helical fibrils in vitro. Herein, tryptamine causes neuropathy characterized by motor and behavioral deficits, hippocampal neuronal loss, neurofibrillary tangles, amyloidosis, and glucose decrease in mice. Tryptamine induced the formation of helical fibrillary tangles in both hippocampal neurons and glia. Taken together with the authors' previous findings of tryptamine-induced nephrotoxicity and filamentous tangle formation in kidney cells, the authors' data indicates a general role of tryptamine in cell degeneration and loss. It is concluded that tryptamine as a component of a normal diet can induce neurodegeneration at the concentrations, which might be consumed along with food. Tryptophan-dependent tRNAtrp aminoacylation catalyzed by TrpRS can be inhibited by its substrate tryptophan at physiological concentrations was demonstrated. These findings indicate that the dietary supplementation with tryptophan as a tryptamine competitor may not counteract the deleterious influence of tryptamine. The pivotal role of TrpRS in protecting against neurodegeneration is suggested, providing an insight into the pathogenesis and a possible treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Higashi E, Nakajima M, Katoh M, Tokudome S, Yokoi T. Inhibitory Effects of Neurotransmitters and Steroids on Human CYP2A6. Drug Metab Dispos 2007; 35:508-14. [PMID: 17237153 DOI: 10.1124/dmd.106.014084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human CYP2A6 catalyzes the metabolism of nicotine, cotinine, and coumarin as well as some pharmaceutical drugs. CYP2A6 is highly expressed in liver and, also, in brain and steroid-related tissues. In this study, we investigated the inhibitory effects of neurotransmitters and steroid hormones on CYP2A6 activity. We found that coumarin 7-hydroxylation and cotinine 3'-hydroxylation by recombinant CYP2A6 expressed in baculovirus-infected insect cells were competitively inhibited by tryptamine (both K(i) = 0.2 microM), serotonin (K(i) = 252 microM and 167 microM), dopamine (K(i) = 49 microM and 22 microM), and histamine (K(i) = 428 microM and 359 microM). Cotinine formation from nicotine was inhibited by tryptamine (K(i) = 0.7 microM, competitive), serotonin (K(i) = 272 microM, noncompetitive), dopamine, noradrenaline, and adrenaline (K(i) = 11 microM, 54 microM, and 81 microM, uncompetitive). Estrogens (K(i) = 0.6-3.8 microM), androgens (K(i) = 60-149 microM), and corticosterone (K(i) = 36 microM) also inhibited cotinine formation, but coumarin 7-hydroxylation and cotinine 3'-hydroxylation did not. Nicotine-Delta(5'(1'))-iminium ion formation from nicotine was not affected by these steroid hormones, indicating that the inhibition of cotinine formation was due to the inhibitory effects on aldehyde oxidase. The nicotine-Delta(5'(1'))-iminium ion formation was competitively inhibited by tryptamine (K(i) = 0.3 microM), serotonin (K(i) = 316 microM), dopamine (K(i) = 66 microM), and histamine (K(i) = 209 microM). Thus, we found that some neurotransmitters inhibit CYP2A6 activity, being related with inter- and intraindividual differences in CYP2A6-dependent metabolism. The inhibitory effects of steroid hormones on aldehyde oxidase may also contribute to interindividual differences in nicotine metabolism.
Collapse
Affiliation(s)
- Eriko Higashi
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | |
Collapse
|
23
|
Vanderlinden C, Mallefet J. Synergic effects of tryptamine and octopamine on ophiuroid luminescence(Echinodermata). J Exp Biol 2004; 207:3749-56. [PMID: 15371482 DOI: 10.1242/jeb.01209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn ophiuroids, bioluminescence is under nervous control. Previous studies have shown that acetylcholine is the main neurotransmitter triggering light emission in Amphipholis squamata and Amphiura filiformis. By contrast, none of the neurotransmitters tested so far induced luminescence in two other ophiuroid species, Ophiopsila aranea and Ophiopsila californica. The aim of this work was thus to investigate the putative involvement of two biogenic amines, tryptamine and octopamine, in light emission of three ophiuroid species. A. filiformis responds to both tryptamine and octopamine, mainly on its arm segments, while O. californica only responds to tryptamine stimulation. By contrast,tryptamine and octopamine do not seem to be involved in O. aranealuminescence control since none of these substances induced light emission in this species. The synergic effects of several other drugs with tryptamine and octopamine were also tested.
Collapse
Affiliation(s)
- C Vanderlinden
- Laboratoire de Biologie Marine, Université Catholique de Louvain, Bâtiment Kellner, Place Croix du Sud, 3, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
24
|
Gervasini G, Carrillo JA, Benitez J. Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds. Clin Pharmacokinet 2004; 43:693-706. [PMID: 15301574 DOI: 10.2165/00003088-200443110-00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytochrome P450 (CYP) enzymes catalyse phase I metabolic reactions of psychotropic drugs. The main isoenzymes responsible for this biotransformation are CYP1A2, CYP2D6, CYP3A and those of the subfamily CYP2C. Although these enzymes are present in the human brain, their specific role in this tissue remains unclear. However, because CYP enzymatic activities have been reported in the human brain and because brain microsomes have been shown to metabolise the same probe substrates used to assess specific hepatic CYP activities and substrates of known hepatic CYPs, local drug metabolism is believed to be likely. There are also indications that CYP2D6 is involved in the metabolism of endogenous substrates in the brain. This, along with the fact that several neurotransmitters modulate CYP enzyme activities in human liver microsomes, indicates that CYP enzymes present in brain could be under various regulatory mechanisms and that those mechanisms could influence drug pharmacokinetics and, hence, drug response. In this paper we review the presence of CYP1A2, CYP2C9, CYP2D6 and CYP3A in brain, as well as the possible existence of local brain metabolism, and discuss the putative implications of endogenous modulation of these isoenzymes by neurotransmitters.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Pharmacology and Psychiatry, Medical School, University of Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
25
|
Gervasini G, Martínez C, Agúndez JA, García-Gamito FJ, Benítez J. Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. PHARMACOGENETICS 2001; 11:29-37. [PMID: 11207028 DOI: 10.1097/00008571-200102000-00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, the occurrence of a modulatory effect of 14 neurotransmitters, precursors and metabolites on the cytochrome P450 2C9 (CYP2C9) enzyme activity, as determined by diclofenac 4-hydroxylation, was studied in human liver microsomes. Two indoleamines, 5-hydroxytryptamine (5-HT) and adrenaline, showed a non-competitive-type inhibitory effect of approximately 90% of the diclofenac 4-hydroxylase activity, with Ki values of 63.5 (0.7 and 156 (89.3 microM, respectively. The rest of substances analysed were weak inhibitors or had no inhibitory effect. CYP2C subfamily is present in human brain, although CYP2C9 isozyme has not yet been identified in this tissue, and CYP2C9 is involved in the metabolism of psychoactive drugs. Therefore, the fact that endogenous compounds could modulate the CYP2C9 activity, suggests that an hypothetical local activity of brain CYP2C9 might be susceptible to regulatory mechanisms. The possible clinical implications of this modulation are discussed.
Collapse
Affiliation(s)
- G Gervasini
- Department of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
26
|
Bengtsson F. Brain tryptophan/serotonin perturbations in metabolic encephalopathy and the hazards involved in the use of psychoactive drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:139-54. [PMID: 10721051 DOI: 10.1007/978-1-4615-4709-9_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Several combined pathogenetic factors such as hyperammonemia, different brain tryptophan metabolic disturbances and serotonin physiological/pharmacological alterations not yet defined in all details, will often give rise to the clinical neuropsychiatric condition known as hepatic encephalopathy (HE). Indeed, to this the probable exposure to novel potent CNS-monoamine acting drugs today may put such patients at certain risk for other pharmacodynamic (PD) responses than usually are expected from these "safe" drugs. Moreover, with a compromised liver function in HE, also pharmacokinetic (PK) features for the drugs are likely changed in these patients. Thus, the ultimate clinical outcome by this probable but unknown PD/PK-deviation for such psychoactive drugs when given to HE-patients needs further clarification. Accordingly, delineation of both PD- and PK-effects in experimental HE should shed light on this issue of relevance for monoamine-active drug safety as well as on some further details in the complex tryptophan/monoamine-related pathophysiology that comes into play in HE.
Collapse
Affiliation(s)
- F Bengtsson
- Department of Psychiatry, University Hospital, Linköping, Sweden.
| |
Collapse
|
27
|
Sherry R, Coutts R, Baker G. 4-fluorotranylcypromine, a novel monoamine oxidase inhibitor: Neurochemical effects in rat brain after short- and long-term administration. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199910)48:2<61::aid-ddr3>3.0.co;2-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Massey KA, Blakeslee CH, Pitkow HS. A review of physiological and metabolic effects of essential amino acids. Amino Acids 1999; 14:271-300. [PMID: 9871473 DOI: 10.1007/bf01318848] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors review ten essential amino acids with regard to their metabolic, physiologic and therapeutic effects throughout the human body. Physical properties of these biologically active compounds are discussed as a foundation for their diverse roles in special nitrogen containing products, neurotransmitters, and as alternative energy sources. Both normal and abnormal amino acid metabolism are considered in the areas of digestion, elimination of metabolic products, metabolic intermediates, and defects in these systems. Recent developments in therapeutic applications are further examined for clinical utility and as an economical alternative to traditional clinical treatment modalities.
Collapse
Affiliation(s)
- K A Massey
- Department of Biomedical Sciences, Pennsylvania College of Podiatric Medicine, Philadelphia, USA
| | | | | |
Collapse
|
29
|
Bengtsson F, Bergqvist PB, Apelqvist G. Brain tryptophan perturbation in hepatic encephalopathy: implications for effects by neuropsychoactive drugs in clinical practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 420:1-33. [PMID: 9286423 DOI: 10.1007/978-1-4615-5945-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F Bengtsson
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | | | |
Collapse
|
30
|
Buckland PR, Spurlock G, McGuffin P. Amphetamine and vigabatrin down regulate aromatic L-amino acid decarboxylase mRNA levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:69-76. [PMID: 8717341 DOI: 10.1016/0169-328x(95)00182-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aromatic L-amino acid decarboxylase (AADC) has previously been shown to be up-regulated at the level of its protein activity and its mRNA abundance by antipsychotic drugs. Its activity has also been shown to be down-regulated by dopamine agonists including amphetamine. In this study we have injected rats for up to 32 days with amphetamine and the anti-epileptic drug vigabatrin, both of which can cause psychosis with similarities to schizophrenia. We have shown that AADC mRNA levels are reduced in most brain regions by both drugs. Cocaine and other non-psychotogenic anti-epileptic drugs had no effect in this paradigm. Two products of this enzyme are implicated in psychotogenesis.
Collapse
Affiliation(s)
- P R Buckland
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
31
|
Bengtsson F, Bergqvist P. Neuropsychiatric implications of brain tryptophan perturbations appearing in hepatic encephalopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 398:387-95. [PMID: 8906294 DOI: 10.1007/978-1-4613-0381-7_60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Bengtsson
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | |
Collapse
|
32
|
Medvedev AE, Halket J, Goodwin BL, Sandler M, Glover V. Monoamine oxidase A-inhibiting components of urinary tribulin: purification and identification. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1995; 9:225-37. [PMID: 8527006 DOI: 10.1007/bf02259663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endogenous monoamine oxidase (MAO) inhibitory activity, termed tribulin, contains several components. We have previously identified one of them, isatin, which is a selective inhibitor of MAO B. In the present study we have purified several further components of human urinary tribulin which act as selective inhibitors of MAO A. They have been identified by gas chromatography-mass spectrometry (GC-MS) as ethyl indole-3-acetate (and/or methyl indole-3-propionate), methyl indole-3-acetate and ethyl 4-hydroxyphenylacetate. IC50 values for MAO A were found to be 44 microM (105 microM for methyl indole-3-propionate), 88 microM and 120 microM, respectively, whilst those for MAO B were each greater than 1 mM. The artificial formation of these esters was excluded by carrying the parent acids, from which they are presumably synthesized, through the purification procedure. As tribulin output is increased during stress or anxiety, these results point to a possible role for tryptamine and tyramine pathways in such disorders.
Collapse
Affiliation(s)
- A E Medvedev
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- P R Chokka
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
In 1971 Fischer and Baldessarini proposed the hypothesis that hepatic encephalopathy (HE), a neuropsychiatric syndrome associated with hepatic dysfunction, could result from the direct decarboxylation of amino acids leading to trace amines such as tyramine and octopamine which could then act as false neurotransmitters. This was supported by the observation that the clinical symptoms of HE appeared to improve following treatment with L-Dopa, which cannot be metabolized to either of these trace amines. In addition to serum and urine levels of octopamine correlating roughly with the grade of clinical HE, levels of octopamine were also significantly increased in rat brain following coma induced by hepatic devascularization and in portacaval-shunted rats fed high aromatic amino acid content diets. This hypothesis was questioned, however, given the lack of observable adverse behavioural effects following treatments with octopamine. Finally, the equivocal results of a limited number of clinical trials (using L-Dopa) argued against a direct intervention by catecholamine-like trace amines in HE. An alternative hypothesis was advanced by Sourkes in 1978 implicating increased tryptophan metabolism as a factor in the etiology of HE. Hepatic dysfunction in humans alters CNS concentrations of tryptophan which correlate well with levels of the tryptamine metabolite indoleacetic acid (IAA). Furthermore, regional densities of [3H]tryptamine receptors in HE patient brain tissue are significantly decreased. These data support a pathophysiologic role for tryptophan and its neuroactive trace amine metabolite tryptamine in HE.
Collapse
Affiliation(s)
- D D Mousseau
- Neuroscience Research Unit, St-Luc Hospital, University of Montreal, Québec, Canada
| | | |
Collapse
|
35
|
Mousseau DD, Butterworth RF. A high-affinity [3H]tryptamine binding site in human brain. PROGRESS IN BRAIN RESEARCH 1995; 106:285-91. [PMID: 8584665 DOI: 10.1016/s0079-6123(08)61225-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro filtration binding revealed high-affinity specific [3H]tryptamine binding sites in human brain. These binding sites are heterogeneously distributed throughout brain, ranging from 280 fmol/mg protein in hippocampus and thalamus to approximately 90 fmol/mg protein in medulla oblongata and cerebellum. Preliminary autoradiographic studies indicate a heterogeneous distribution within layers of the frontal cortex. The observed stereoselectivity of the site, the interaction of the site with a G protein and the observed region-selective downregulation of the site in a human pathological condition, i.e. hepatic encephalopathy (Mousseau et al., 1994), suggests that this binding site is a functional [3H]tryptamine receptor. A similarity in kinetics and distribution of the [3H]tryptamine receptor in human and rat brain indicates that these two entities represent homologous structures, although the difference in pharmacological profiles suggests species variants. One cannot exclude the possibility that the rat and human [3H]tryptamine receptors do represent distinct subtypes. Finally, the suggested role for tryptamine in neuropsychiatric disorders as originally suggested by Dewhurst (1968) is supported by the present series of experiments.
Collapse
Affiliation(s)
- D D Mousseau
- Neuroscience Research Unit, St-Luc Hospital, University of Montreal, Quebec, Canada
| | | |
Collapse
|
36
|
Baker GB, Coutts RT, Holt A. Derivatization with acetic anhydride: applications to the analysis of biogenic amines and psychiatric drugs by gas chromatography and mass spectrometry. J Pharmacol Toxicol Methods 1994; 31:141-8. [PMID: 8068975 DOI: 10.1016/1056-8719(94)90076-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acetylation with acetic anhydride, under both aqueous and anhydrous conditions, has been utilized to derivatize various biogenic amines and psychotropic drugs for subsequent analysis by gas chromatography (GC) or gas chromatography-mass spectrometry (GC-MS). Under basic aqueous conditions, acetic anhydride derivatizes phenols and amines but not alcohols; under anhydrous conditions, all three functions are acetylated. Primary amines, once derivatized with acetic anhydride, can be further derivatized with other reagents; these diderivatives have proven useful for subsequent analysis by GC or GC-MS. Examples of applications of derivatization with acetic anhydride to analysis of biogenic amines, antidepressants, antipsychotics, and some of their metabolites are presented.
Collapse
Affiliation(s)
- G B Baker
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Teuber HJ, Quintanilla-Licea R. Synthese von Heterocyclen mit Hydroxymethylenketonen. XIV [1]. Zur Regioselektivit�t der Reaktion von Acetylacetaldehyd mit Tryptamin. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/prac.19943360513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Portal-Systemic Encephalopathy: a Disorder of Multiple Neurotransmitter Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994. [DOI: 10.1007/978-1-4615-1989-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
39
|
Mousseau DD, Perney P, Layrargues GP, Butterworth RF. Selective loss of pallidal dopamine D2 receptor density in hepatic encephalopathy. Neurosci Lett 1993; 162:192-6. [PMID: 8121627 DOI: 10.1016/0304-3940(93)90593-a] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding parameters of [3H]SCH 23390 and [3H]spiperone (radioligands for dopamine D1 and D2 receptors, respectively) were investigated in autopsied frontal cortex, caudate nucleus and globus pallidus/putamen of cirrhotic patients who died in hepatic coma as well as in age- and sex-matched controls. Specific [3H]SCH 23390 binding site densities were unchanged in all regions; in contrast, specific [3H]spiperone binding site density was decreased (by 44%, P < 0.001) in the globus pallidus/putamen of patients with HE. Decreased densities of pallidal D2 binding sites could relate to the motor dysfunctions commonly encountered in human HE.
Collapse
Affiliation(s)
- D D Mousseau
- Neuroscience Research Unit, Hôpital St-Luc, University of Montreal, Que., Canada
| | | | | | | |
Collapse
|