1
|
Liu G, Yan Z, Guo Y, Guo C, Tan C, Zhu J, Han J. Effect of tissue fixatives on the corrosion of biomedical magnesium alloys. Heliyon 2024; 10:e30286. [PMID: 38765150 PMCID: PMC11098805 DOI: 10.1016/j.heliyon.2024.e30286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
In this work, the corrosion behavior of pure Mg, Mg3Ag, Mg6Ag, and MgZnYNd alloys in different fixatives (ethyl alcohol (EA), 85 % ethyl alcohol (85 % EA), 10 % neutral buffered formalin (10 % NBF), 4 % glutaric dialdehyde (4 % GD), and 4 % paraformaldehyde (4 % PFA)) was investigated to provide a valuable reference for the selection of fixatives during the histological evaluation of Mg implants. Through the hydrogen evolution test, pH test, and corrosion morphology and product characterization, it was found that corrosion proceeded slowest in the EA and 85 % EA groups, slightly faster in 4 % GD, faster in 10 % NBF, and fastest in 4 % PFA. After corrosion, the EA group surface remained unchanged, while the 85%EA group surface developed minor cracks and warping. The 4%GD fixative formed a dense needle-like protective layer on the Mg substrate. The 10%NBF group initially grew a uniform layer, but later developed irregular pits due to accelerated corrosion. In contrast, the 4%PFA solution caused more severe corrosion attributed to chloride ions. The main corrosion products in the EA and 85%EA groups were MgO and Mg(OH)2, while the other fixatives containing diverse ions also yielded phosphates like Mg3(PO4)2 and MgHPO4. In 4 % PFA, AgCl formed on the surface of Mg6Ag alloy after corrosion. Therefore, to minimize Mg alloy corrosion without compromising staining quality, EA or 85 % EA is recommended, while 4 % PFA is not recommended due to its significant impact.
Collapse
Affiliation(s)
- Guanqi Liu
- Central laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Yan
- Central laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yuzhu Guo
- Central laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Chengwen Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianhua Zhu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jianmin Han
- Central laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
2
|
Wang S, Zhou H, Chen W, Jiang Y, Yan X, You H, Li X. CryoFIB milling large tissue samples for cryo-electron tomography. Sci Rep 2023; 13:5879. [PMID: 37041258 PMCID: PMC10090186 DOI: 10.1038/s41598-023-32716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Cryo-electron tomography (cryoET) is a powerful tool for exploring the molecular structure of large organisms. However, technical challenges still limit cryoET applications on large samples. In particular, localization and cutting out objects of interest from a large tissue sample are still difficult steps. In this study, we report a sample thinning strategy and workflow for tissue samples based on cryo-focused ion beam (cryoFIB) milling. This workflow provides a full solution for isolating objects of interest by starting from a millimeter-sized tissue sample and ending with hundred-nanometer-thin lamellae. The workflow involves sample fixation, pre-sectioning, a two-step milling strategy, and localization of the object of interest using cellular secondary electron imaging (CSEI). The milling strategy consists of two steps, a coarse milling step to improve the milling efficiency, followed by a fine milling step. The two-step milling creates a furrow-ridge structure with an additional conductive Pt layer to reduce the beam-induced charging issue. CSEI is highlighted in the workflow, which provides on-the-fly localization during cryoFIB milling. Tests of the complete workflow were conducted to demonstrate the high efficiency and high feasibility of the proposed method.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China
| | - Heng Zhou
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China
| | - Wei Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yifeng Jiang
- ZEISS Microscopy Customer Center, Beijing Laboratory, Beijing, 100088, China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China.
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China.
| |
Collapse
|
3
|
Master A, Huang W, Huang L, Honkanen R, Rigas B. An Improved Ocular Impression Cytology Method: Quantitative Cell Transfer to Microscope Slides Using a Novel Polymer. Curr Eye Res 2022; 47:41-50. [PMID: 34841993 PMCID: PMC8792174 DOI: 10.1080/02713683.2021.1951300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To develop a more efficient impression cytology (IC) method for the transfer of ocular surface cells onto glass microscope slides for cytochemical, immunocytochemical, and immunofluorescence studies. METHODS Cells are lifted off the ocular surface with a mixed cellulose ester membrane and then firmly attached to a glass slide using a novel triblock copolymer comprised of collagen type I, polyethylenimine and poly-L-lysine (CPP), and crosslinking cells and glass slide by heating and cooling. The membrane is removed intact after softening it with a butanol/ethanol solution. Transfer of cells is complete in about 10-15 minutes and is ready for staining. The efficiency of our cell transfer method was compared to current methods based on poly-L-lysine and albumin paste. RESULTS Our method ensured almost complete transfer of cells. In contrast, the transfer of rabbit conjunctiva cells onto poly-L-lysine-covered slides was 37.5 ± 6.3% lower, and onto albumin-paste covered slides 62.5 ± 5.6% lower (mean ± SD); the transfer of rabbit goblet cells was even less efficient. The new method was also more efficient for transfer of cells from human oral mucosa obtained by IC. Transferred cells were successfully stained with H&E, chemiluminescence, and immunofluorescence agents. Using our method, we stained ocular surface cells for S100A4 and ATF4, both of which play a role in the pathophysiology of dry eye disease. We obtained similar results with oral mucosal cells, suggesting the generalizability of our approach. We propose an explanation for the strong adhesion of cells to the glass slide, which is based on their interactions with the triblock copolymer. CONCLUSIONS We developed a novel approach for the efficient and rapid transfer of cells obtained by IC onto glass microscope slides using a novel copolymer. Compared to available methods, our improved approach makes IC robust and simple, and should increase its diagnostic yield and clinical applicability.
Collapse
Affiliation(s)
- Adam Master
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY
| | - Wei Huang
- Department of Preventive Medicine, The State University of New York at Stony Brook, Stony Brook, NY
| | - Liqun Huang
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY,Medicon Pharmaceuticals, Inc., Setauket, NY
| | - Robert Honkanen
- Department of Ophthamology, The State University of New York at Stony Brook, Stony Brook, NY
| | - Basil Rigas
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY,Department of Preventive Medicine, The State University of New York at Stony Brook, Stony Brook, NY,Medicon Pharmaceuticals, Inc., Setauket, NY
| |
Collapse
|
4
|
Czerwińska-Główka D, Krukiewicz K. Guidelines for a Morphometric Analysis of Prokaryotic and Eukaryotic Cells by Scanning Electron Microscopy. Cells 2021; 10:3304. [PMID: 34943812 PMCID: PMC8699492 DOI: 10.3390/cells10123304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.
Collapse
Affiliation(s)
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
5
|
Exploring the human cerebral cortex using confocal microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:3-9. [PMID: 34536443 PMCID: PMC8992370 DOI: 10.1016/j.pbiomolbio.2021.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023]
Abstract
Cover-all mapping of the distribution of neurons in the human brain would have a significant impact on the deep understanding of brain function. Therefore, complete knowledge of the structural organization of different human brain regions at the cellular level would allow understanding their role in the functions of specific neural networks. Recent advances in tissue clearing techniques have allowed important advances towards this goal. These methods use specific chemicals capable of dissolving lipids, making the tissue completely transparent by homogenizing the refractive index. However, labeling and clearing human brain samples is still challenging. Here, we present an approach to perform the cellular mapping of the human cerebral cortex coupling immunostaining with SWITCH/TDE clearing and confocal microscopy. A specific evaluation of the contributions of the autofluorescence signals generated from the tissue fixation is provided as well as an assessment of lipofuscin pigments interference. Our evaluation demonstrates the possibility of obtaining an efficient clearing and labeling process of parts of adult human brain slices, making it an excellent method for morphological classification and antibody validation of neuronal and non-neuronal markers.
Collapse
|
6
|
Velamoor S, Mitchell A, Bostina M, Harland D. Processing hair follicles for transmission electron microscopy. Exp Dermatol 2021; 31:110-121. [PMID: 34351648 DOI: 10.1111/exd.14439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Transmission electron microscopy (TEM) has greatly advanced our knowledge of hair growth and follicle morphogenesis, but complex preparations such as fixation, dehydration and embedding compromise ultrastructure. While recent developments with cryofixation have been shown to preserve the ultrastructure of biological materials close to native state, they do have limitations. This review will focus on each stage of the TEM sample preparation process and their effects on the structural integrity of follicles.
Collapse
Affiliation(s)
- Sailakshmi Velamoor
- Proteins and Metabolites, AgResearch Limited, Lincoln, New Zealand.,Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Allan Mitchell
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| | - Duane Harland
- Proteins and Metabolites, AgResearch Limited, Lincoln, New Zealand
| |
Collapse
|
7
|
Li Z, Cheng S, Lin Q, Cao W, Yang J, Zhang M, Shen A, Zhang W, Xia Y, Ma X, Ouyang Z. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat Commun 2021; 12:2869. [PMID: 34001877 PMCID: PMC8129106 DOI: 10.1038/s41467-021-23161-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell analysis is critical to revealing cell-to-cell heterogeneity that would otherwise be lost in ensemble analysis. Detailed lipidome characterization for single cells is still far from mature, especially when considering the highly complex structural diversity of lipids and the limited sample amounts available from a single cell. We report the development of a general strategy enabling single-cell lipidomic analysis with high structural specificity. Cell fixation is applied to retain lipids in the cell during batch treatments prior to single-cell analysis. In addition to tandem mass spectrometry analysis revealing the class and fatty acyl-chain for lipids, batch photochemical derivatization and single-cell droplet treatment are performed to identify the C=C locations and sn-positions of lipids, respectively. Electro-migration combined with droplet-assisted electrospray ionization enables single-cell mass spectrometry analysis with easy operation but high efficiency in sample usage. Four subtypes of human breast cancer cells are correctly classified through quantitative analysis of lipid C=C location or sn-position isomers in ~160 cells. Most importantly, the single-cell deep lipidomics strategy successfully discriminates gefitinib-resistant cells from a population of wild-type human lung cancer cells (HCC827), highlighting its unique capability to promote precision medicine.
Collapse
Affiliation(s)
- Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Simin Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jing Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Qin Y, Jiang W, Li A, Gao M, Liu H, Gao Y, Tian X, Gong G. The Combination of Paraformaldehyde and Glutaraldehyde Is a Potential Fixative for Mitochondria. Biomolecules 2021; 11:711. [PMID: 34068806 PMCID: PMC8151741 DOI: 10.3390/biom11050711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are highly dynamic organelles, constantly undergoing shape changes, which are controlled by mitochondrial movement, fusion, and fission. Mitochondria play a pivotal role in various cellular processes under physiological and pathological conditions, including metabolism, superoxide generation, calcium homeostasis, and apoptosis. Abnormal mitochondrial morphology and mitochondrial protein expression are always closely related to the health status of cells. Analysis of mitochondrial morphology and mitochondrial protein expression in situ is widely used to reflect the abnormality of cell function in the chemical fixed sample. Paraformaldehyde (PFA), the most commonly used fixative in cellular immunostaining, still has disadvantages, including loss of antigenicity and disruption of morphology during fixation. We tested the effect of ethanol (ETHO), PFA, and glutaraldehyde (GA) fixation on cellular mitochondria. The results showed that 3% PFA and 1.5% GA (PFA-GA) combination reserved mitochondrial morphology better than them alone in situ in cells. Mitochondrial network and protein antigenicity were well maintained, indicated by preserved MitoTracker and mitochondrial immunostaining after PFA-GA fixation. Our results suggest that the PFA-GA combination is a valuable fixative for the study of mitochondria in situ.
Collapse
Affiliation(s)
- Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| | - Yufei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| | - Xiangang Tian
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical Center of PLA, Chongqing 400037, China;
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Q.); (W.J.); (A.L.); (M.G.); (H.L.); (Y.G.)
| |
Collapse
|
9
|
Campos Y, Sola FJ, Fuentes G, Quintanilla L, Almirall A, Cruz LJ, Rodríguez-Cabello JC, Tabata Y. The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers (Basel) 2021; 13:907. [PMID: 33809430 PMCID: PMC7999668 DOI: 10.3390/polym13060907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the restoration of articular cartilage were prepared and characterized in this study to emulate the concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking process were analyzed. The correlation among SEM micrographs, physical-chemical characterization, swelling behavior, rheological measurements and cell studies were examined. Storage moduli at 1 Hz were 0.3-1.7 kPa for physically crosslinked scaffolds, and 4-5 kPa (EDC/NHS system) and 15-20 kPa (glutaraldehyde) for chemically crosslinked scaffolds. Intrinsic viscoelasticity and poroelasticity were considered in discussing the physical mechanism dominating in different time/frequency scales. Cell evaluation showed that all samples are available as alternatives to repair and/or substitute cartilage in articular osteoarthritis.
Collapse
Affiliation(s)
- Yaima Campos
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Francisco J. Sola
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
| | - Gastón Fuentes
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Luis Quintanilla
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Amisel Almirall
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Luis J. Cruz
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - José C. Rodríguez-Cabello
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| |
Collapse
|
10
|
Bik E, Dorosz A, Mateuszuk L, Baranska M, Majzner K. Fixed versus live endothelial cells: The effect of glutaraldehyde fixation manifested by characteristic bands on the Raman spectra of cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118460. [PMID: 32526395 DOI: 10.1016/j.saa.2020.118460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
This work shows an impact of glutaraldehyde (GA) fixation on endothelial cells. Raman spectroscopy imaging was used as a method to monitor biochemical content of the cells due to GA fixation since this is an approach frequently used for studying cells by means of Raman imaging. To get a deeper insight into the changes and to understand them better the measurements of live and fixed cells were performed using two lasers, i.e. 488 and 532 nm. It has been demonstrated that GA fixation affects lipids, proteins, nucleic acid and carbohydrates to small extent. The application of 488 nm laser line seems to be more efficient for live cells due to the small impact of cytochrome resonance on Raman spectra, however 532 nm line is more beneficial for fixed cells due to higher quantum efficiency of the detector, thus leading to higher intensity of Raman bands. Generally, the changes due to fixation are not pronounced but cannot be ignored and the knowledge about them can help in a proper interpretation of data collected for fixed versus live cells.
Collapse
Affiliation(s)
- E Bik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - A Dorosz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - L Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - K Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
11
|
Reid JA, Callanan A. Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 108:910-924. [PMID: 31369699 PMCID: PMC7079155 DOI: 10.1002/jbm.b.34444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023]
Abstract
The aim when designing a scaffold is to provide a supportive microenvironment for the native cells, which is generally achieved by structurally and biochemically imitating the native tissue. Decellularized extracellular matrix (ECM) possesses the mechanical and biochemical cues designed to promote native cell survival. However, when decellularized and reprocessed, the ECM loses its cell supporting mechanical integrity and architecture. Herein, we propose dissolving the ECM into a polymer/solvent solution and electrospinning it into a fibrous sheet, thus harnessing the biochemical cues from the ECM and the mechanical integrity of the polymer. Bovine aorta and myocardium were selected as ECM sources. Decellularization was achieved using sodium dodecyl sulfate (SDS), and the ECM was combined with polycaprolactone and hexafluoro-2-propanol for electrospinning. The scaffolds were seeded with human umbilical vein endothelial cells (HUVECs). The study found that the inclusion of aorta ECM increased the scaffold's wettability and subsequently lead to increased HUVEC adherence and proliferation. Interestingly, the inclusion of myocardium ECM had no effect on wettability or cell viability. Furthermore, gene expression and mechanical changes were noted with the addition of ECM. The results from this study show the vast potential of electrospun ECM/polymer bioscaffolds and their use in tissue engineering.
Collapse
Affiliation(s)
- James A. Reid
- Institute for Bioengineering, School of EngineeringThe University of EdinburghEdinburghUK
| | - Anthony Callanan
- Institute for Bioengineering, School of EngineeringThe University of EdinburghEdinburghUK
| |
Collapse
|
12
|
Park YG, Sohn CH, Chen R, McCue M, Yun DH, Drummond GT, Ku T, Evans NB, Oak HC, Trieu W, Choi H, Jin X, Lilascharoen V, Wang J, Truttmann MC, Qi HW, Ploegh HL, Golub TR, Chen SC, Frosch MP, Kulik HJ, Lim BK, Chung K. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol 2018; 37:nbt.4281. [PMID: 30556815 PMCID: PMC6579717 DOI: 10.1038/nbt.4281] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
Understanding complex biological systems requires the system-wide characterization of both molecular and cellular features. Existing methods for spatial mapping of biomolecules in intact tissues suffer from information loss caused by degradation and tissue damage. We report a tissue transformation strategy named stabilization under harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD), which uses a flexible polyepoxide to form controlled intra- and intermolecular cross-link with biomolecules. SHIELD preserves protein fluorescence and antigenicity, transcripts and tissue architecture under a wide range of harsh conditions. We applied SHIELD to interrogate system-level wiring, synaptic architecture, and molecular features of virally labeled neurons and their targets in mouse at single-cell resolution. We also demonstrated rapid three-dimensional phenotyping of core needle biopsies and human brain cells. SHIELD enables rapid, multiscale, integrated molecular phenotyping of both animal and clinical tissues.
Collapse
Affiliation(s)
- Young-Gyun Park
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Chang Ho Sohn
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Ritchie Chen
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Margaret McCue
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Dae Hee Yun
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Gabrielle T. Drummond
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Taeyun Ku
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Nicholas B. Evans
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | | | | | - Heejin Choi
- Institute for Medical Engineering and Science
- Picower Institute for Learning and Memory
| | - Xin Jin
- Institute for Medical Engineering and Science
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ji Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Matthias C. Truttmann
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Harvard Medical School
| | - Helena W. Qi
- Department of Chemical Engineering
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Todd R. Golub
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science
- Department of Brain and Cognitive Sciences
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| |
Collapse
|
13
|
Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-981-10-9020-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Yeager AN, Weber PK, Kraft ML. Cholesterol is enriched in the sphingolipid patches on the substrate near nonpolarized MDCK cells, but not in the sphingolipid domains in their plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2004-2011. [PMID: 29684331 DOI: 10.1016/j.bbamem.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Information about the distributions of cholesterol and sphingolipids within the plasma membranes of mammalian cells provides insight into the roles of these molecules in membrane function. In this report, high-resolution secondary ion mass spectrometry was used to image the distributions of metabolically incorporated rare isotope-labeled sphingolipids and cholesterol on the surfaces of nonpolarized epithelial cells. Sphingolipid domains that were not enriched with cholesterol were detected in the plasma membranes of subconfluent Madin-Darby canine kidney cells. Surprisingly, cholesterol-enriched sphingolipid patches were observed on the substrate adjacent to these cells. Based on the shapes of these cholesterol-enriched sphingolipid patches on the substrate and their proximity to cellular projections, we hypothesize that they are deposits of membranous particles released by the cell.
Collapse
Affiliation(s)
- Ashley N Yeager
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
| | - Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
15
|
Tu R, Quijano R, Lu C, Shen S, Wang E, Hata C, Lin D. A Preliminary Study of the Fixation Mechanism of Collagen Reaction with a Polyepoxy Fixative. Int J Artif Organs 2018. [DOI: 10.1177/039139889301600707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new biomaterial has been developed by fixing native collagens with a polyepoxy compound (PC) fixative. Prior studies have shown that this biomaterial has comparable properties as compared to collagen fixed with glutaraldehyde (GA) and thus has a great promise for use as an implantable bioprosthesis. The purpose of this study was to understand the mechanism of the amino acids-PC reactions in the fixation process. Bovine arteries were fixed with PC under various pH, concentration and temperature conditions as a function of fixation time. Individual amino acid components in the fresh and the fixed arteries were assayed using a Beckman amino acid analyzer to determine the degree of tanning. The denaturation temperature (Td) was also measured on each sample. Since the denaturation temperature is a direct indication of cross-linking of individual amino acids with the fixative, the difference in the degree of tanning for the same increase in Td may be indicative of the quantity of the masked, non-cross-linked amino acids. The fixation reaction data indicated that not all amino acids were cross-linked upon contacting the PC fixative. Masking appeared to be more substantial with a fixation at higher pH values.
Collapse
Affiliation(s)
- R. Tu
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - R.C. Quijano
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - C.L. Lu
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - S. Shen
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - E. Wang
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - C. Hata
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| | - D. Lin
- Baxter Healthcare Corporation, Edwards CVS Division, Irvine, California - USA
| |
Collapse
|
16
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
17
|
Bu Y, Hu Q, Xu K, Xie X, Wang S. Improved cell membrane bioaffinity sample pretreatment technique with enhanced stability for screening of potential allergenic components from traditional Chinese medicine injections. J Mater Chem B 2018; 6:624-633. [DOI: 10.1039/c7tb02768k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aiming at improving reliability in conventional cell membrane chromatography, an improved bioaffinity sample pretreatment technique with enhanced stability was developed to fast screen and extract potential allergenic components from traditional Chinese medicine injections.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Qi Hu
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Ke Xu
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Xiaoyu Xie
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Sicen Wang
- School of Pharmacy
- Health Science Center
- Xi’an Jiaotong University
- Xi’an 710061
- China
| |
Collapse
|
18
|
Tools and limitations to study the molecular composition of synapses by fluorescence microscopy. Biochem J 2017; 473:3385-3399. [PMID: 27729584 DOI: 10.1042/bcj20160366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/23/2016] [Indexed: 01/21/2023]
Abstract
The synapse is densely packed with proteins involved in various highly regulated processes. Synaptic protein copy numbers and their stoichiometric distribution have a drastic influence on neuronal integrity and function. Therefore, the molecular analysis of synapses is a key element to understand their architecture and function. The overall structure of the synapse has been revealed with an exquisite amount of details by electron microscopy. However, the molecular composition and the localization of proteins are more easily addressed with fluorescence imaging, especially with the improved resolution achieved by super-resolution microscopy techniques. Notably, the fast improvement of imaging instruments has not been reflected in the optimization of biological sample preparation. During recent years, large efforts have been made to generate affinity probes smaller than conventional antibodies adapted for fluorescent super-resolution imaging. In this review, we briefly discuss the current views on synaptic organization and necessary key technologies to progress in the understanding of synaptic physiology. We also highlight the challenges faced by current fluorescent super-resolution methods, and we describe the prerequisites for an ideal study of synaptic organization.
Collapse
|
19
|
Schelkle KM, Schmid C, Yserentant K, Bender M, Wacker I, Petzoldt M, Hamburger M, Herten DP, Wombacher R, Schröder RR, Bunz UHF. Cell Fixation by Light-Triggered Release of Glutaraldehyde. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Korwin M. Schelkle
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab GmbH; Speyerer Strasse 4 69115 Heidelberg Germany
| | - Christopher Schmid
- Center of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Klaus Yserentant
- Center of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
- Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks; Single Molecule Spectroscopy; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Irene Wacker
- Center of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Martin Petzoldt
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab GmbH; Speyerer Strasse 4 69115 Heidelberg Germany
| | - Manuel Hamburger
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab GmbH; Speyerer Strasse 4 69115 Heidelberg Germany
| | - Dirk-Peter Herten
- Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 229 69120 Heidelberg Germany
- CellNetworks; Single Molecule Spectroscopy; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Center of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
- CellNetworks; Cryo Electron Microscopy; Universitätsklinikum Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
20
|
Schelkle KM, Schmid C, Yserentant K, Bender M, Wacker I, Petzoldt M, Hamburger M, Herten DP, Wombacher R, Schröder RR, Bunz UHF. Cell Fixation by Light-Triggered Release of Glutaraldehyde. Angew Chem Int Ed Engl 2017; 56:4724-4728. [PMID: 28328078 DOI: 10.1002/anie.201612112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/23/2017] [Indexed: 01/13/2023]
Abstract
Chemical fixation of living cells for microscopy is commonly achieved by crosslinking of intracellular proteins with dialdehydes prior to examination. We herein report a photocleavable protecting group for glutaraldehyde that results in a light-triggered and membrane-permeable fixative, which is nontoxic prior to photocleavage. Lipophilic ester groups allow for diffusion across the cell membrane and intracellular accumulation after enzymatic hydrolysis. Irradiation with UV light releases glutaraldehyde. The in situ generated fixative crosslinks intracellular proteins and preserves and stabilizes the cell so that it is ready for microscopy. In contrast to conventional glutaraldehyde fixation, tissue autofluorescence does not increase after fixation. Caged glutaraldehyde may in future enable functional experiments on living cells under a light microscope in which events of interest can be stopped in spatially confined volumes at defined time points. Samples with individually stopped events could then later be analyzed in ultrastructural studies.
Collapse
Affiliation(s)
- Korwin M Schelkle
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab GmbH, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Christopher Schmid
- Center of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Yserentant
- Center of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany.,Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany.,CellNetworks, Single Molecule Spectroscopy, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Irene Wacker
- Center of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Martin Petzoldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab GmbH, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Manuel Hamburger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab GmbH, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Dirk-Peter Herten
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany.,CellNetworks, Single Molecule Spectroscopy, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Center of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany.,CellNetworks, Cryo Electron Microscopy, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Center of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
21
|
Rouleau N, Murugan NJ, Tessaro LWE, Costa JN, Persinger MA. When Is the Brain Dead? Living-Like Electrophysiological Responses and Photon Emissions from Applications of Neurotransmitters in Fixed Post-Mortem Human Brains. PLoS One 2016; 11:e0167231. [PMID: 27907050 PMCID: PMC5131983 DOI: 10.1371/journal.pone.0167231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022] Open
Abstract
The structure of the post-mortem human brain can be preserved by immersing the organ within a fixative solution. Once the brain is perfused, cellular and histological features are maintained over extended periods of time. However, functions of the human brain are not assumed to be preserved beyond death and subsequent chemical fixation. Here we present a series of experiments which, together, refute this assumption. Instead, we suggest that chemical preservation of brain structure results in some retained functional capacity. Patterns similar to the living condition were elicited by chemical and electrical probes within coronal and sagittal sections of human temporal lobe structures that had been maintained in ethanol-formalin-acetic acid. This was inferred by a reliable modulation of frequency-dependent microvolt fluctuations. These weak microvolt fluctuations were enhanced by receptor-specific agonists and their precursors (i.e., nicotine, 5-HTP, and L-glutamic acid) as well as attenuated by receptor-antagonists (i.e., ketamine). Surface injections of 10 nM nicotine enhanced theta power within the right parahippocampal gyrus without any effect upon the ipsilateral hippocampus. Glutamate-induced high-frequency power densities within the left parahippocampal gyrus were correlated with increased photon counts over the surface of the tissue. Heschl’s gyrus, a transverse convexity on which the primary auditory cortex is tonotopically represented, retained frequency-discrimination capacities in response to sweeps of weak (2μV) square-wave electrical pulses between 20 Hz and 20 kHz. Together, these results suggest that portions of the post-mortem human brain may retain latent capacities to respond with potential life-like and virtual properties.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada
| | - Nirosha J. Murugan
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada
| | - Lucas W. E. Tessaro
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada
- Human Studies Program, Laurentian University, Sudbury, Ontario, Canada
| | - Justin N. Costa
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Michael A. Persinger
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada
- Human Studies Program, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Nodzyński T, Vanneste S, Zwiewka M, Pernisová M, Hejátko J, Friml J. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components. MOLECULAR PLANT 2016; 9:1504-1519. [PMID: 27622590 PMCID: PMC5106287 DOI: 10.1016/j.molp.2016.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 05/25/2023]
Abstract
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.
Collapse
Affiliation(s)
- Tomasz Nodzyński
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Marta Zwiewka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Markéta Pernisová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Hejátko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
23
|
Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol 2016; 32:713-741. [DOI: 10.1146/annurev-cellbio-111315-125001] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuki Tainaka
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shimpei I. Kubota
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatzya Murakami
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
24
|
Libio IC, Demori R, Ferrão MF, Lionzo MI, da Silveira NP. Films based on neutralized chitosan citrate as innovative composition for cosmetic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:115-124. [DOI: 10.1016/j.msec.2016.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
|
25
|
Seo J, Choe M, Kim SY. Clearing and Labeling Techniques for Large-Scale Biological Tissues. Mol Cells 2016; 39:439-46. [PMID: 27239813 PMCID: PMC4916395 DOI: 10.14348/molcells.2016.0088] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022] Open
Abstract
Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems.
Collapse
Affiliation(s)
- Jinyoung Seo
- Department of Chemistry, Seoul National University, Seoul 08826,
Korea
| | - Minjin Choe
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826,
Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826,
Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826,
Korea
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
26
|
Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, Choi H, Park YG, Park JY, Hubbert A, McCue M, Vassallo S, Bakh N, Frosch MP, Wedeen VJ, Seung HS, Chung K. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell 2016; 163:1500-14. [PMID: 26638076 DOI: 10.1016/j.cell.2015.11.025] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.
Collapse
Affiliation(s)
- Evan Murray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Goodwin
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sung-Yon Kim
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Gyun Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong-Yoon Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Austin Hubbert
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret McCue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Vassallo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Naveed Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory of Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Van J Wedeen
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - H Sebastian Seung
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA; Princeton Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
27
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
28
|
Targosz-Korecka M, Brzezinka GD, Danilkiewicz J, Rajfur Z, Szymonski M. Glutaraldehyde fixation preserves the trend of elasticity alterations for endothelial cells exposed to TNF-α. Cytoskeleton (Hoboken) 2015; 72:124-30. [PMID: 25786919 DOI: 10.1002/cm.21217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/08/2015] [Accepted: 02/20/2015] [Indexed: 01/27/2023]
Abstract
Among the users of atomic force microscopy based techniques, there is an ongoing discussion, whether cell elasticity measurements performed on fixed cells could be used for determination of the relative elasticity changes of the native (unfixed) cells subjected to physiologically active external agents. In this article, we present a case, for which the legitimacy of cell fixation for elasticity measurements is justified. We provide an evidence that the alterations of cell elasticity triggered by tumor necrosis factor alpha (TNF-α) in EA.hy926 endothelial cells are preserved after glutaraldehyde (GA) fixation. The value of post-fixation elasticity parameter is a product of the elasticity parameter obtained for living cells and a constant value, dependent on the GA concentration. The modification of the initial value of elasticity parameter caused by remodeling of the cortical actin cytoskeleton is reflected in the elasticity measurements performed on fixed cells. Thus, such fixation procedure may be particularly helpful for experiments, where the influence of an external agent on the cell cortex should be assessed and AFM measurements of living cells are problematic or better statistics is needed.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University in Krakow, Krakow, Poland
| | | | | | | | | |
Collapse
|
29
|
Fornasiero EF, Opazo F. Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays 2015; 37:436-51. [PMID: 25581819 DOI: 10.1002/bies.201400170] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The recent 2014 Nobel Prize in chemistry honored an era of discoveries and technical advancements in the field of super-resolution microscopy. However, the applications of diffraction-unlimited imaging in biology have a long road ahead and persistently engage scientists with new challenges. Some of the bottlenecks that restrain the dissemination of super-resolution techniques are tangible, and include the limited performance of affinity probes and the yet not capillary diffusion of imaging setups. Likewise, super-resolution microscopy has introduced new paradigms in the design of projects that require imaging with nanometer-resolution and in the interpretation of biological images. Besides structural or morphological characterization, super-resolution imaging is quickly expanding towards interaction mapping, multiple target detection and live imaging. Here we review the recent progress of biologists employing super-resolution imaging, some pitfalls, implications and new trends, with the purpose of animating the field and spurring future developments.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- STED Microscopy Group, European Neuroscience Institute, Göttingen, Germany; Department of Neuro- and Sensory-physiology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
30
|
Chan BD, Icoz K, Huang W, Chang CL, Savran CA. On-demand weighing of single dry biological particles over a 5-order-of-magnitude dynamic range. LAB ON A CHIP 2014; 14:4188-4196. [PMID: 25162712 DOI: 10.1039/c4lc00765d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a simple and highly versatile system to select and weigh individual dry biological particles. The system is composed of a microtweezer to pick and place individual particles and a cantilever-based resonator to weigh them. The system can weigh entities that vary from a red blood cell (~10(-11) g) to the eye-brain complex of an insect (~10(-6) g), covering a 5-order-of-magnitude mass range. Due to its versatility and ease of use, this weighing method is highly compatible with established laboratory practices. The system can provide complementary mass information for a wide variety of individual particles imaged using scanning electron microscopy and determine comparative weights of individual biological entities that are attached to microparticles as well as weigh fractions of individual biological entities that have been subjected to focused ion beam milling.
Collapse
Affiliation(s)
- Bin-Da Chan
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
31
|
Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3396-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
|
33
|
Opazo F. Probing Biological Samples in High-Resolution Microscopy: Making Sense of Spots. NEUROMETHODS 2014. [DOI: 10.1007/978-1-62703-983-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Kaieda S, Plivelic TS, Halle B. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering. Phys Chem Chem Phys 2014; 16:4002-11. [DOI: 10.1039/c3cp54219j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Christensen PC, Brideau C, Poon KWC, Döring A, Yong VW, Stys PK. High-resolution fluorescence microscopy of myelin without exogenous probes. Neuroimage 2013; 87:42-54. [PMID: 24188810 DOI: 10.1016/j.neuroimage.2013.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/09/2013] [Accepted: 10/26/2013] [Indexed: 01/05/2023] Open
Abstract
Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required.
Collapse
Affiliation(s)
- Pia Crone Christensen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Craig Brideau
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Kelvin W C Poon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Axinia Döring
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Jacobo C, Torrella F, Bravo-González LA, Ortiz AJ, Vicente A. In vitro study of the antibacterial properties and microbial colonization susceptibility of four self-etching adhesives used in orthodontics. Eur J Orthod 2013; 36:200-6. [PMID: 23720449 DOI: 10.1093/ejo/cjt032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES 1. To determine the in vitro antibacterial effectiveness of the orthodontic bonding Transbond XT (3M Unitek) and four self-etching adhesives with possible use in orthodontic bonding (Clearfil Protect Bond, CPB; Clearfil Self-etching Bond, CSB; Transbond Plus Self-Etching Primer, TSEP; iBond) against Streptococcus mutans and Lactobacillus gasseri in order to compare that capacity among the adhesives and with respect to Transbond XT; 2. To determine the bacterial adhesion capacity of the above mentioned microorganisms to the tested adhesives. MATERIALS AND METHODS The inhibitory effects of the adhesives against S. mutans and L. gasseri were examined using the agar diffusion method with Whatman No.1 5mm disks loaded with 15 μl of adhesive, UV polymerized, layered on previously inoculated BHI and MRS plates incubated microaerobically for 48 hours at 37 degree C. Data were analysed with Kruskal-Wallis (P < 0.05) and Mann-Whitney tests, applying the Bonferroni correction (P < 0.003). Bacterial adhesion was studied with scanning electron microscopy. RESULTS Only CPB and iBond produced a clear growth inhibition halo against S. mutans and L. gasseri (P < 0.0001). iBond was the only tested product to which the bacteria adhere profusely, particularly S. mutans. CONCLUSIONS CPB has shown antimicrobial properties in vitro, and, provided the limitations of an in vitro study, the use of this self-etching adhesive may contribute to reduce microbial decalcification, making the use of this self-etching adhesive an attractive option for bracket bonding.
Collapse
|
37
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 715] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
38
|
Zeng F, Yang W, Huang J, Chen Y, Chen Y. Determination of the lowest concentrations of aldehyde fixatives for completely fixing various cellular structures by real-time imaging and quantification. Histochem Cell Biol 2012. [DOI: 10.1007/s00418-012-1058-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Abstract
Atomic force microscopy (AFM) has been used in numerous studies to visualize and analyze the structure and conformation of biological samples, from single molecules to biopolymers to cells. The possibility to analyze native samples without fixation, staining and in physiological buffer conditions, combined with the sub-nanometer resolution, makes AFM a versatile tool for the analysis of protein aggregation and amyloid structures. Here, we describe the application of AFM to study fibrillar Tau protein aggregates.
Collapse
|
40
|
Chandran PL, Paik DC, Holmes JW. Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connect Tissue Res 2012; 53:285-97. [PMID: 22775003 PMCID: PMC3825191 DOI: 10.3109/03008207.2011.640760] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Soft collagenous tissues that are loaded in vivo undergo crosslinking during aging and wound healing. Bioprosthetic tissues implanted in vivo are also commonly crosslinked with glutaraldehyde (GA). While crosslinking changes the mechanical properties of the tissue, the nature of the mechanical changes and the underlying microstructural mechanism are poorly understood. In this study, a combined mechanical, biochemical and simulation approach was employed to identify the microstructural mechanism by which crosslinking alters mechanical properties. The model collagenous tissue used was an anisotropic cell-compacted collagen gel, and the model crosslinking agent was monomeric GA. The collagen gels were incrementally crosslinked by either increasing the GA concentration or increasing the crosslinking time. In biaxial loading experiments, increased crosslinking produced (1) decreased strain response to a small equibiaxial preload, with little change in response to subsequent loading and (2) decreased coupling between the fiber and cross-fiber direction. The mechanical trend was found to be better described by the lysine consumption data than by the shrinkage temperature. The biaxial loading of incrementally crosslinked collagen gels was simulated computationally with a previously published network model. Crosslinking was represented by increased fibril stiffness or by increased resistance to fibril rotation. Only the latter produced mechanical trends similar to that observed experimentally. Representing crosslinking as increased fibril stiffness did not reproduce the decreased coupling between the fiber and cross-fiber directions. The study concludes that the mechanical changes in crosslinked collagen gels are caused by the microstructural mechanism of increased resistance to fibril rotation.
Collapse
Affiliation(s)
| | - David C. Paik
- Department of Ophthalmology, Columbia University, NY
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering and Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
41
|
Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011; 44:667-78. [PMID: 21963238 DOI: 10.1016/j.molcel.2011.08.027] [Citation(s) in RCA: 964] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/22/2023]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lncRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lncRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3' end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lncRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and chromatin with newfound precision genome wide.
Collapse
Affiliation(s)
- Ci Chu
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
42
|
Sjöström M, Thornell LE, Cedergren E. The application of cryo-ultramicrotomy in the study of the fine structure of myofilaments. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1973.tb04672.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|
44
|
Coetzee J, Merwe CF. Penetration rate of glutaraldehyde in various buffers into plant tissue and gelatin gels. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1985.tb02570.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Luft JH. Fixation for biological ultrastructure. I. A viscometric analysis of the interaction between glutaraldehyde and bovine serum albumin. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1992.tb03235.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Anderton CR, Vaezian B, Lou K, Frisz JF, Kraft ML. Identification of a lipid-related peak set to enhance the interpretation of TOF-SIMS data from model and cellular membranes. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Abstract
RNA editing within the mitochondria of kinetoplastid protozoa is performed by a multicomponent -macromolecular machine known as the editosome. Editosomes are high molecular mass protein assemblies that consist of about 15-25 individual polypeptides. They bind pre-edited transcripts and convert them into translation-competent mRNAs through a biochemical reaction cycle of enzyme-catalyzed steps. At steady-state conditions, several distinct complexes can be purified from mitochondrial detergent lysates. They likely represent RNA editing complexes at different assembly stages or at different functional stages of the processing reaction. Due to their low cellular abundance, single-particle electron microscopy (EM) represents the method of choice for their structural characterization. This chapter describes a set of techniques suitable for the purification and structural characterization of RNA editing complexes by single-particle EM. The RNA editing complexes are isolated from the endogenous pool of mitochondrial complexes by tandem-affinity purification (TAP). Since the TAP procedure results in the isolation of a mixture of different RNA editing complexes, the isolates are further subjected to an isokinetic ultracentrifugation step to separate the complexes based on their sedimentation behavior. The use of the "GraFix" protocol is presented that combines mild chemical cross-linking with ultracentrifugation. Different sample preparation protocols including negative staining, cryo-negative staining, and unstained cryotechniques as well as the single-particle image processing of electron microscopical images are described.
Collapse
|
49
|
Wenger MPE, Mesquida P. The NanoBeamBalance: a passive, tensile-test device for the atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:053908. [PMID: 21639519 DOI: 10.1063/1.3595427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An add-on device is presented, which significantly expands the force measurement capabilities of the atomic force microscope (AFM). The device consists of a completely passive mechanism, which translates the vertical motion of the AFM tip in force measurements into a horizontal motion of two sample support pads. The advantage is that it is much easier to deposit microscopic samples from suspension onto flat surfaces than to attach them reliably between tip and a surface. The working-principle and the design of the device is comprehensively described and demonstrated on the example of collagen fibres with a diameter of a few μm. Well-defined tensile measurements in longitudinal direction were performed, showing that the tensile stiffness of collagen fibres from rat tail tendon decreases by a factor of 5 when rehydrated from a dried sample and slowly increases upon cross-linking with glutaraldehyde.
Collapse
Affiliation(s)
- M P E Wenger
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | | |
Collapse
|
50
|
Aoyagi S, Okamoto M, Kato N, Kudo M. Analyzing TOF-SIMS spectra of biopolymer using multivariate curve resolution. ACTA ACUST UNITED AC 2011. [DOI: 10.1384/jsa.17.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Satoka Aoyagi
- Faculty of Life and Environmental Science, Shimane University
- Division of Production Environment Engineering, United Graduate School of Agricultural Sciences, Tottori University
| | - Masayuki Okamoto
- Division of Production Environment Engineering, United Graduate School of Agricultural Sciences, Tottori University
- Kao Corporation
| | - Nobuhiko Kato
- Faculty of Science and Technology, Seikei University
| | - Masahiro Kudo
- Faculty of Science and Technology, Seikei University
| |
Collapse
|