1
|
Balakrishnan D, Bateman N, Kariyat RR. Rice physical defenses and their role against insect herbivores. PLANTA 2024; 259:110. [PMID: 38565704 PMCID: PMC10987372 DOI: 10.1007/s00425-024-04381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.
Collapse
Affiliation(s)
- Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nick Bateman
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rupesh R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Shahtousi S, Talaee L. The effect of spermine on Tetranychus urticae-Cucumis sativus interaction. BMC PLANT BIOLOGY 2023; 23:575. [PMID: 37978429 PMCID: PMC10655325 DOI: 10.1186/s12870-023-04573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Two spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) is one of the most important plant pests in the world. Due to increased resistance of mites to acaricides, it is necessary to use other methods such as inducing resistance in plants by natural compounds for pests' management. Polyamins such as spermine are effective in increasing plant resistance to biotic and abiotic stressors. In this research, the effect of spermine treatments in cucumber plants on life table parameters of T. urticae was investigated. Also, top-down effect of spermine and T. urticae on cucumber biochemical parameters was measured. In the experiments, 1, 2 and 3 mM spermine concentrations were used. RESULTS Amongst the spermine treatments, those mites that fed on cucumbers which received 1 mM spermine showed the shortest protonymphal period and higher ovipositon period, fecundity, gross and net reproductive rates and life expectancy compare to control. Treatment with 2 mM spermine lead to the longest teleochrysalis period and shortest range of age-stage-specific fecundity period. In addition, 2 mM spermine lowered intrinsic and finite rate of population increase in T. urticae. The longest larval period of T. urticae was observed in 3 mM spermine. Feeding of T. urticae from cucumber plants increased hydrogen peroxide (H2O2), malondialdehyde (MDA) content, electrolyte leakage (EL) level and ascorbate peroxidase (APX) activity but inhibited catalase (CAT) activity in this plant. Infested cucumber plants treated with 2 mM spermine showed lower H2O2 and MDA content and highest activity of APX and CAT on day 1 and 3 compare to the others. The 3 mM spermine increased H2O2 content in infested plants during the whole experiment as well as non-infested plants in day 5 and 9 only. This treatment induced the highest MDA content and lowest catalase activity on day1, 3 and 5 of experiment in infested plants. CONCLUSION This study showed that 2 mM spermine was the only effective concentration that reduce cucumber sensitivity to T. urticae. The trend of changes in biochemical parameters, especially H2O2, in 3 mM spermine was abnormal, and this concentration could be considered toxic.
Collapse
Affiliation(s)
- Shima Shahtousi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ladan Talaee
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
3
|
Huang Y, Huang J. Analysis of plant expression profiles revealed that aphid attack triggered dynamic defense responses in sorghum plant. Front Genet 2023; 14:1194273. [PMID: 37655065 PMCID: PMC10465342 DOI: 10.3389/fgene.2023.1194273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/27/2023] [Indexed: 09/02/2023] Open
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is one of the most important cereal crops grown worldwide but is often attacked by greenbug (aphid). In response to aphid attack, host plant initiates a large transcriptional reorganization, leading to activation of the host defense genes in aphid-attacked plants. In this study, our objective was to analyze defensive responses of sorghum against aphid and identify aphid resistance genes in sorghum. For the experiments, seedlings developed from an aphid resistant germplasm line (PI 550607) were divided into two groups, then, one group was infested with greenbug ((Schizaphis graminum Rondani) and the other group was used as control (un-infested). In addition, seedlings of sorghum cultivar Tx 7000, a susceptible genotype, prepared under the same conditions, were used as a genetic control. Those plant samples were used to develop transcriptional profiles using the microarray method, from which 26.1% of the 1,761 cDNA sequences spotted on the microarray showed altered expression between two treatments at 4 days after infestation. Sequence annotation and molecular analysis revealed that many differentially expressed genes (DEGs) were related to direct host defense or signal transduction pathways, which regulate host defense. In addition to common responsive genes, unique transcripts were identified in response to greenbug infestation specifically. Later, a similar transcriptional profiling was conducted using the RNA-seq method, resulted in the identification of 2,856 DEGs in the resistant line with a comparison between infested and non-infested at 4 days and 4,354 DEGs in the resistant genotype compared to the susceptible genotype at 4 days. Based on the comparative analysis, the data of RNA-seq provided a support for the results from the microarray study as it was noticed that many of the DEGs are common in both platforms. Analysis of the two differential expression profiles indicate that aphid triggered dynamic defense responses in sorghum plants and sorghum plant defense against aphid is a complex process involving both general defense systems and specific resistance mechanisms. Finally, the results of the study provide new insights into the mechanisms underlying host plant defense against aphids and will help us design better strategies for effectively controlling aphid pest.
Collapse
Affiliation(s)
- Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, Stillwater, OK, United States
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Jian Huang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
4
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
5
|
Mason CJ, Peiffer M, Hoover K, Felton G. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. J Chem Ecol 2023; 49:313-324. [PMID: 36964896 DOI: 10.1007/s10886-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Insect herbivores face multiple challenges to their ability to grow and reproduce. Plants can produce a series of defenses that disrupt and damage the herbivore digestive system, which are heightened upon injury by insect feeding. Additionally, insects face threats from virulent microorganisms that can incur their own set of potential costs to hosts. Microorganisms that invade through the digestive system may function in concert with defenses generated by plants, creating combined assailments on host insects. In our study, we evaluated how tomato defenses interact with an enteric bacterial isolate, Serratia marcescens, in the corn earworm (Helicoverpa zea). We performed bioassays using different tomato cultivars that were induced by methyl jasmonate and larvae orally inoculated with a S. marcescens isolate. Untreated corn earworm larval mortality was low on constitutive tomato, while larvae inoculated with S. marcescens exhibited > 50% mortality within 5 days. Induction treatments elevated both control mortality (~ 45%) and in combination with S. marcescens (> 95%). Larvae also died faster when encountering induced defenses and Serratia. Using a tomato mutant, foliar polyphenol oxidase activity likely had stronger impacts on S. marcescens-mediated larval mortality. Induction treatments also elevated the number of bacterial colony-forming units in the hemolymph of larvae inoculated with Serratia. Larval mortality by S. marcescens was low (< 10%) on artificial diets. Our results demonstrate that plant chemical defenses enhance larval mortality from an opportunistic gut microbe. We propose that the combined damage from both the plant and microbial agent overwhelm the herbivore to increase mortality rates and expedite host death.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA.
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
6
|
Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023; 28:molecules28052158. [PMID: 36903403 PMCID: PMC10004730 DOI: 10.3390/molecules28052158] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Polyphenol oxidase (PPO) is present in most higher plants, but also in animals and fungi. PPO in plants had been summarized several years ago. However, recent advances in studies of PPO in plants are lacking. This review concludes new researches on PPO distribution, structure, molecular weights, optimal temperature, pH, and substrates. And, the transformation of PPO from latent to active state was also discussed. This state shift is a vital reason for elevating PPO activity, but the activation mechanism in plants has not been elucidated. PPO has an important role in plant stress resistance and physiological metabolism. However, the enzymatic browning reaction induced by PPO is a major problem in the production, processing, and storage of fruits and vegetables. Meanwhile, we summarized various new methods that had been invented to decrease enzymatic browning by inhibiting PPO activity. In addition, our manuscript included information on several important biological functions and the transcriptional regulation of PPO in plants. Furthermore, we also prospect some future research areas of PPO and hope they will be useful for future research in plants.
Collapse
|
7
|
Jiang W, Ye Q, Wu Z, Zhang Q, Wang L, Liu J, Hu X, Guo D, Wang X, Zhang Z, He H, Hu L. Analysis of CAT Gene Family and Functional Identification of OsCAT3 in Rice. Genes (Basel) 2023; 14:138. [PMID: 36672879 PMCID: PMC9858675 DOI: 10.3390/genes14010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Catalase (CAT) is an important antioxidant enzyme in plants that plays a key role in plant growth and stress responses. CAT is usually encoded by a small gene family that has been cloned and functionally studied in some species, such as Arabidopsis, wheat and cucumber, but its specific roles in rice are not clear at present. In this study, we identified three CAT family genes (OsCAT1, OsCAT2 and OsCAT3) in the rice genome and performed a systematic bioinformatics analysis. RT-PCR analysis revealed that OsCAT1-OsCAT3 was primarily expressed in vegetative tissues such as roots, stems and leaves. Since OsCAT3 showed the highest expression level among the three OsCAT genes, we then focused on its related functions. OsCAT3 prokaryotic expression protein has an obvious ability to remove H2O2. The OsCAT3crispr plant was short and had a low survival rate, the leaves were small with brown lesions, and the activities of the CAT, POD and SOD enzymes were significantly reduced. A microarray analysis showed that differentially expressed genes were primarily enriched in toxin metabolism and photosynthesis. This study laid a foundation for further understanding the function of the rice OsCAT gene.
Collapse
Affiliation(s)
- Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiuyun Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lianhong Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jialin Liu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Szabó AK, Bálint J, Molnár A, Aszalos SE, Fora CG, Loxdale HD, Balog A. Associational susceptibility of crop plants caused by the invasive weed Canadian goldenrod, Solidago canadensis, via local aphid species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present study, field surveys were conducted to detect potential associational susceptibility of crop plants (potato, alfalfa and maize) caused by Canadian goldenrod, Solidago canadensis (L.), one of the most common invasive weeds in Central and Eastern Europe, via plant associated virus vectoring aphids. Assessments were made in two major agricultural land types: crops grown under high input vs. low-input (LIF) conditions, with and without fertilizers and pesticides. The two most frequent aphid species, found both on Canadian goldenrod and crop plants, were the leaf-curling plum aphid, Brachycaudus helichrysi Kaltenbach and the glasshouse-potato aphid, Aulacorthum solani (Kaltenbach). Plant viruses in both weed and crop plants were identified using high-throughput sequencing of small RNAs. Peroxidase (POD) enzyme activity was tested in weed and crop plants to connect aphids feeding processes in weeds and crops. In addition, conceptual modeling was used to detect direct relationships between viruses and other crops. The Canadian goldenrod density was only relevant in the LIF regime. Furthermore, its association with B. helichrysi and associational susceptibility was detected only in LIF. In total, 18 viruses comprising 17 plant and one insect virus were detected in Canadian goldenrod, of which 11 were also detected in potato and alfalfa crops. POD activity was high and correlated with high aphid density in both weed and crop plants, suggesting a direct associational susceptibility between these plants through aphid infestation and viral transmission.
Collapse
|
9
|
Gao Z, Ju X, Yang M, Xue R, Li Q, Fu K, Guo W, Tong L, Song Y, Zeng R, Wang J. Colorado potato beetle exploits frass-associated bacteria to suppress defense responses in potato plants. PEST MANAGEMENT SCIENCE 2022; 78:3778-3787. [PMID: 35102699 DOI: 10.1002/ps.6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB; Leptinotarsa decemlineata) is a destructive quarantine pest that develops broad physiological adaptations to potato plants. During feeding, CPB deposits a copious amount of wet frass onto the surface of leaves and stems that remains in place for long periods. Insect behaviors such as feeding, crawling and oviposition are able to mediate plant defenses. However, the specific role of CPB defecation-associated cues in manipulating plant defenses remains unclear. RESULTS CPB larval frass significantly suppressed potato polyphenol oxidase activity and enhanced larval growth on treated potato plants. The incorporation of antibiotics into larval frass triggered higher jasmonic acid (JA)-regulated defense responses in potato plants compared with antibiotic-free frass. Four bacterial symbionts belonging to the genera Acinetobacter, Citrobacter, Enterobacter and Pantoea were isolated from larval frass and suppressed plant defenses. After reinoculation of these bacteria into axenic larvae, Acinetobacter and Citrobacter were found to be highly abundant in the frass, whereas Enterobacter and Pantoea were less abundant probably due to the negative effect of potato steroidal glycoalkaloids (SGA) such as α-solanine. Furthermore, direct application of Acinetobacter and Citrobacter to wounded potato plants significantly inhibited the expression of genes associated with the JA-mediated defense signaling pathway and SGA biosynthesis. CONCLUSION Our findings demonstrate that CPB exploits frass-associated bacteria as a deceptive strategy of plant defense suppression, adding an interesting dimension to our understanding of how CPB successfully specializes on potato plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Department of Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wenchao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Metwally RA, Azab HS, Al-Shannaf HM, Rabie GH. Prospective of mycorrhiza and Beauvaria bassiana silica nanoparticles on Gossypium hirsutum L. plants as biocontrol agent against cotton leafworm, Spodoptera littoralis. BMC PLANT BIOLOGY 2022; 22:409. [PMID: 35987628 PMCID: PMC9392270 DOI: 10.1186/s12870-022-03763-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/14/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plant-herbivorous insects are a severe danger to the world's agricultural production of various crops. Insecticides used indiscriminately resulted in habitat destruction due to their high toxicity, as well as disease resistance. In this respect, the development of a sustainable approach to supreme crop production with the least damage is a crucially prerequisite. As a result, the current study was carried out to understand the potential effect of arbuscular mycorrhizal (AM) fungi along with Beauvaria bassiana silica nanoparticles (Si NPs) as a new approach to increase cotton (Gossypium hirsutum L. Merr.) defense against an insect herbivore, Spodoptera littoralis. AM and non-AM cotton plants were infested with S. littoralis and then sprayed with a biopesticide [B. bassiana Si NPs] or a chemical insecticide (Chlorpyrifos). RESULTS The gas chromatography-mass spectrometry (GC-MS) analysis of B. bassiana Si NPs fungal extract showed that the major constituents identified were Oleyl alcohol, trifluoroacetate, 11-Dodecen-1-AL and 13-Octadecenal, (Z)-(CAS). Besides, results revealed a highly significant decrease in growth parameters in S. littoralis infested plants, however, with AM fungal inoculation a substantial improvement in growth traits and biochemical parameters such as protein and carbohydrates contents was observed. In addition, stimulation in proline and antioxidant enzymes activity and a decrease in malondialdehyde content were observed after AM inoculation. CONCLUSION AM fungi mitigate the harmful effects of herbivorous insects by strengthening the cotton plant's health via enhancing both morphological and biochemical traits that can partially or completely replace the application of chemical insecticides.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Hala Sh Azab
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hatem M Al-Shannaf
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Gamal H Rabie
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Anti-Herbivore Resistance Changes in Tomato with Elevation. J Chem Ecol 2022; 48:196-206. [DOI: 10.1007/s10886-021-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
12
|
Wang J, Mason CJ, Ju X, Xue R, Tong L, Peiffer M, Song Y, Zeng R, Felton GW. Parasitoid Causes Cascading Effects on Plant-Induced Defenses Mediated Through the Gut Bacteria of Host Caterpillars. Front Microbiol 2021; 12:708990. [PMID: 34552570 PMCID: PMC8452159 DOI: 10.3389/fmicb.2021.708990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Koinobiont endoparasitoid wasps whose larvae develop inside a host insect alter several important facets of host physiology, potentially causing cascading effects across multiple trophic levels. For instance, the hijacking of the host immune responses may have effects on how insects interact with host plants and microbial associates. However, the parasitoid regulation of insect-plant-microbiome interactions is still understudied. In this study, we used the fall armyworm (FAW), Spodoptera frugiperda, and the braconid parasitoid Cotesia marginiventris to evaluate impacts of parasitism on the gut microbiome of FAW larvae, and respective maize plant defense responses. The level of reactive oxygen species and the microbial community in larval gut underwent significant changes in response to parasitism, leading to a significant reduction of Enterococcus, while elevating the relative abundance of Pseudomonas. FAW with parasitism had lower glucose oxidase (GOX) activity in salivary glands and triggered lower defense responses in maize plants. These changes corresponded to effects on plants, as Pseudomonas inoculated larvae had lower activity of salivary GOX and triggered lower defense responses in maize plants. Our results demonstrated that parasitism had cascading effects on microbial associates across trophic levels and also highlighted that insect gut bacteria may contribute to complex interrelationships among parasitoids, herbivores, and plants.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Charles J. Mason
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gary W. Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
13
|
Lin PA, Liu CM, Ou JA, Sun CH, Chuang WP, Ho CK, Kinoshita N, Felton GW. Changes in arthropod community but not plant quality benefit a specialist herbivore on plants under reduced water availability. Oecologia 2021; 195:383-396. [PMID: 33502629 DOI: 10.1007/s00442-020-04845-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Plants growing under reduced water availability can affect insect herbivores differently, in some instances benefitting them. However, the forces mediating these positive impacts remain mostly unclear. To identify how water availability impacts plant quality and multi-trophic interactions, we conducted manipulative field studies with two populations of the specialist herbivore Pieris rapae, and its host plant, Rorippa indica. We found that P. rapae larvae experienced higher survival on R. indica growing under low water availability compared with plants grown under high water availability. Higher survival of eggs and larvae was related to the reduced abundance of other herbivores and natural enemies. Water availability had differential impacts on other members of the herbivore community by altering plant quality. Low water availability decreased the quality of R. indica to most herbivores, as indicated by reduced abundance in the field and decreased relative growth rate in laboratory feeding assays. In contrast, P. rapae larval performance was not affected by sympatric R. indica grown under different water availability. These results indicate that local P. rapae populations possess physiological adaptations to overcome fluctuations in host quality. Our findings illustrate that reduced water availability is beneficial to a specialist herbivore but detrimental to most other herbivores. Our work highlights the complex effects of the arthropod communities associated with plants in determining the impacts of water availability on insect herbivores.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Chia-Ming Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Jia-Ang Ou
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Cheng-Han Sun
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Natsuko Kinoshita
- Department of Agro-Bioresources Science and Technology, Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
14
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
15
|
Zheng Y, Zhang X, Liu X, Qin N, Xu K, Zeng R, Liu J, Song Y. Nitrogen Supply Alters Rice Defense Against the Striped Stem Borer Chilo suppressalis. FRONTIERS IN PLANT SCIENCE 2021; 12:691292. [PMID: 34381479 PMCID: PMC8351598 DOI: 10.3389/fpls.2021.691292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Plant nutrition status is closely associated with plant defense against insect herbivores. However, the way nitrogen supply regulates rice anti-herbivore is not clear. This study investigated the effects of low (LN, 0.3 mM) and high (HN, 3 mM) nitrate levels on rice resistance against the striped stem borer Chilo suppressalis (SSB), one of the major destructive rice pests. Seven-day-old rice seedlings were cultured with different nitrate levels for 30 days and then inoculated with third instars of SSB. LN significantly enhanced rice anti-herbivore defense and lowered the total nitrogen content in the plants, but increased the content of free amino acids after SSB infestation. Additionally, LN significantly increased the accumulation of phenolic acids and flavonoids, especially lignin, resulting in enhanced constitutive defense in SSB-infested plants. SSB feeding led to a rapid accumulation of secondary metabolites. HN application led to the accumulation of metabolites derived from cinnamic acid, p-coumaric acid, p-coumaric CoA, feruloyl CoA, and apigenin, while LN led to the accumulation of metabolites derived from 3-dehydroquinic acid, phenylalanine, acetyl CoA, and aspartic acid. Collectively, our finding suggests that nitrogen deficiency enhances rice anti-herbivore defense via constitutive defense by the accumulation of phenolic acids and flavonoids.
Collapse
Affiliation(s)
- Yueqin Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiyong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaifang Xu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Liu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jian Liu,
| | - Yuanyuan Song
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanyuan Song,
| |
Collapse
|
16
|
Homayoonzadeh M, Moeini P, Talebi K, Allahyari H, Torabi E, Michaud JP. Physiological responses of plants and mites to salicylic acid improve the efficacy of spirodiclofen for controlling Tetranychus urticae (Acari: Tetranychidae) on greenhouse tomatoes. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:319-333. [PMID: 33068164 DOI: 10.1007/s10493-020-00559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a signaling molecule that can induce plant resistance to certain herbivores. Although the role of jasmonic acid in mediating mite-tomato plant interactions has been well studied, the role of salicylic acid has not. This study examined how the application of exogenous SA, via its effects on tomato plant physiology, alters the activity of mite digestive enzymes, mite energy reserves, and mite susceptibility to spirodiclofen. Enzymatic activity-including superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase-along with contents of total phenolic, hydrogen peroxide, and total chlorophyll significantly increased in plants 24 h after treatment with 2 mM of SA. In contrast, catalase activity significantly decreased in treated plants, and malondialdehyde content was unaffected. Mites fed on tomato plants treated with SA had significantly lower glutathione S-transferase, esterase, α-amylase, and aminopeptidase activities than those fed on control plants. Energy reserve analyses demonstrated a significant decrease in contents of lipid, protein, and glycogen in mites fed on SA-treated plants, whereas carbohydrate content significantly increased. The LC50 of spirodiclofen was decreased 1.8-fold for Tetranychus urticae fed on SA-treated tomato plants compared to controls. Treatment of adult mites with 2 mM SA on leaf discs did not cause any direct mortality after 24 h. Finally, a greenhouse bioassay confirmed that spider mite mortality following exposure to spirodiclofen was significantly higher on SA plants than on control plants. Mortality of mites exposed to half of the recommended rate of spirodiclofen was similar to those exposed to the recommended rate when they were held on treated plants. These results have valuable implications for T. urticae management programs in tomato production.
Collapse
Affiliation(s)
- Mohammad Homayoonzadeh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Pedram Moeini
- Plant Virology Research Center, College of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - Khalil Talebi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Hossein Allahyari
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, 67601, USA.
| |
Collapse
|
17
|
Waterman JM, Hall CR, Mikhael M, Cazzonelli CI, Hartley SE, Johnson SN. Short‐term resistance that persists: Rapidly induced silicon anti‐herbivore defence affects carbon‐based plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamie M. Waterman
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Casey R. Hall
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Meena Mikhael
- School of Medicine Western Sydney University Campbelltown NSW Australia
| | | | | | - Scott N. Johnson
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| |
Collapse
|
18
|
Secondary Metabolite Profiling Via LC-HRMS Q-TOF of Foleyola Billotii, an Endemic Brassicaceae Plant of North-Western Sahara. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Portman SL, Felton GW, Kariyat RR, Marden JH. Host plant defense produces species-specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms. J Exp Biol 2020; 223:jeb224907. [PMID: 32647018 DOI: 10.1242/jeb.224907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Insects manifest phenotypic plasticity in their development and behavior in response to plant defenses, via molecular mechanisms that produce tissue-specific changes. Phenotypic changes might vary between species that differ in their preferred hosts and these effects could extend beyond larval stages. To test this, we manipulated the diet of southern armyworm (SAW; Spodoptera eridania) and fall armyworm (FAW; Spodoptera frugiperda) using a tomato mutant for jasmonic acid plant defense pathway (def1), and wild-type plants, and then quantified gene expression of Troponin t (Tnt) and flight muscle metabolism of the adult insects. Differences in Tnt spliceform ratios in insect flight muscles correlate with changes to flight muscle metabolism and flight muscle output. We found that SAW adults reared on induced def1 plants had a higher relative abundance (RA) of the A isoform of Troponin t (Tnt A) in their flight muscles; in contrast, FAW adults reared on induced def1 plants had a lower RA of Tnt A in their flight muscles compared with adults reared on def1 and controls. Although mass-adjusted flight metabolic rate showed no independent host plant effects in either species, higher flight metabolic rates in SAW correlated with increased RA of Tnt A Flight muscle metabolism also showed an interaction of host plants with Tnt A in both species, suggesting that host plants might be influencing flight muscle metabolic output by altering Tnt This study illustrates how insects respond to variation in host plant chemical defense by phenotypic modifications to their flight muscle proteins, with possible implications for dispersal.
Collapse
Affiliation(s)
- Scott L Portman
- Invasive Species and Pollinator Health Research Unit, Western Regional Research Center, United States Department of Agriculture - Agricultural Research Services, 800 Buchanan St, Albany, CA 94710, USA
| | - Gary W Felton
- Department of Entomology, 501 ASI Building, Pennsylvania State University, University Park, PA 16802, USA
| | - Rupesh R Kariyat
- Department of Biology, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539, USA
- School of Earth, Environment and Marine Sciences, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX 78539, USA
| | - James H Marden
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Paudel S, Lin PA, Hoover K, Felton GW, Rajotte EG. Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. J Chem Ecol 2020; 46:891-905. [PMID: 32700062 PMCID: PMC7467972 DOI: 10.1007/s10886-020-01201-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
The effect of temperature on insect-plant interactions in the face of changing climate is complex as the plant, its herbivores and their interactions are usually affected differentially leading to an asymmetry in response. Using experimental warming and a combination of biochemical and herbivory bioassays, the effects of elevated temperatures and herbivore damage (Helicoverpa zea) on resistance and tolerance traits of Solanum lycopersicum var. Better boy (tomato), as well as herbivory performance and salivary defense elicitors were examined. Insects and plants were differentially sensitive towards warming within the experimental temperature range. Herbivore growth rate increased with temperature, whereas plants growth as well as the ability to tolerate stress measured by photosynthesis recovery and regrowth ability were compromised at the highest temperature regime. In particular, temperature influenced the caterpillars’ capacity to induce plant defenses due to changes in the amount of a salivary defense elicitor, glucose oxidase (GOX). This was further complexed by the temperature effects on plant inducibility, which was significantly enhanced at an above-optimum temperature; this paralleled with an increased plants resistance to herbivory but significantly varied between previously damaged and undamaged leaves. Elevated temperatures produced asymmetry in species’ responses and changes in the relationship among species, indicating a more complicated response under a climate change scenario.
Collapse
Affiliation(s)
- Sulav Paudel
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Po-An Lin
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Tan C, Peiffer ML, Ali JG, Luthe DS, Felton GW. Top‐down effects from parasitoids may mediate plant defence and plant fitness. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ching‐Wen Tan
- Department of Entomology Penn State University University Park PA USA
| | | | - Jared G. Ali
- Department of Entomology Penn State University University Park PA USA
| | - Dawn S. Luthe
- Department of Plant Science Penn State University University Park PA USA
| | - Gary W. Felton
- Department of Entomology Penn State University University Park PA USA
| |
Collapse
|
22
|
Paudel Timilsena B, Seidl-Adams I, Tumlinson JH. Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses. PLANT, CELL & ENVIRONMENT 2020; 43:787-800. [PMID: 31759336 DOI: 10.1111/pce.13688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 05/03/2023]
Abstract
Plants produce species-specific herbivore-induced plant volatiles (HIPVs) after damage. We tested the hypothesis that herbivore-specific HIPVs prime neighboring plants to induce defenses specific to the priming herbivore. Since Manduca sexta (specialist) and Heliothis virescens (generalist) herbivory induced unique HIPV profiles in Nicotiana benthamiana, we used these HIPVs to prime receiver plants for defense responses to simulated herbivory (mechanical wounding and herbivore regurgitant application). Jasmonic acid (JA) accumulations and emitted volatile profiles were monitored as representative defense responses since JA is the major plant hormone involved in wound and defense signaling and HIPVs have been implicated as signals in tritrophic interactions. Herbivore species-specific HIPVs primed neighboring plants, which produced 2 to 4 times more volatiles and JA after simulated herbivory when compared to similarly treated constitutive volatile-exposed plants. However, HIPV-exposed plants accumulated similar amounts of volatiles and JA independent of the combination of priming or challenging herbivore. Furthermore, volatile profiles emitted by primed plants depended only on the challenging herbivore species but not on the species-specific HIPV profile of damaged emitter plants. This suggests that feeding by either herbivore species primed neighboring plants for increased HIPV emissions specific to the subsequently attacking herbivore and is probably controlled by JA.
Collapse
Affiliation(s)
- Bipana Paudel Timilsena
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| | - Irmgard Seidl-Adams
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| | - James H Tumlinson
- Chemical Ecology Lab, Center for Chemical Ecology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
23
|
Zhang J, Zhang X, Ye M, Li XW, Lin SB, Sun XL. The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis). J Chem Ecol 2020; 46:308-316. [PMID: 32016775 DOI: 10.1007/s10886-020-01158-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Polyphenol oxidases (PPOs) as inducible defense proteins, contribute to tea (Camellia sinensis) resistance against tea geometrid larvae (Ectropis grisescens), and this resistance has been associated with the jasmonic acid (JA) signaling by testing geometrid performance in our previous work. However, the regulation of PPO-based defense by JA and other hormone signaling underlying these defense responses is poorly understood. Here, we investigated the role of phytohormones in regulating the PPO response to tea geometrids. We profiled levels of defense hormones, PPO activity and CsPPO genes in leaves infested with tea geometrids. Then, hormone levels were manipulated by exogenous application of methyl jasmonate (MeJA), gibberellin acid (GA3), abscisic acid (ABA), JA biosynthesis inhibitors (sodium diethyldithiocarbamate trihydrate, DIECA and salicylhydroxamic acid, SHAM) and GA inhibitor (uniconazole, UNI). Upon geometrid attack, JA levels significantly increased, whereas GA levels notably decreased and ABA level was slightly decreased. And the PPO activity significantly increased in line with the transcript levels of CsPPO2 and CsPPO4 but not CsPPO1. There were an obvious antagonistic cross-talk between JA and GA signals and an association among JA signals, PPO response and herbivore resistance in tea plants. Pretreatment with MeJA increased PPO activity by activating the transcripts of CsPPO2 and CsPPO4, whereas application of JA inhibitor DIECA suppressed PPO activity. GA3 strongly enhanced PPO activity, but ABA did not alter PPO activity. These findings strongly suggest that JA is a central player in PPO-mediated tea resistance against tea geometrids in a manner that prioritizes defense over growth.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Xi-Wang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Song-Bo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Xiao-Ling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, No. 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
24
|
Selvaraj A, Thangavel K, Uthandi S. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 2020; 231:126355. [DOI: 10.1016/j.micres.2019.126355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023]
|
25
|
Tan CW, Peiffer M, Hoover K, Rosa C, Felton GW. Parasitic Wasp Mediates Plant Perception of Insect Herbivores. J Chem Ecol 2019; 45:972-981. [PMID: 31713110 DOI: 10.1007/s10886-019-01120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Microplitis croceipes is a solitary parasitoid that specializes on noctuid larvae of Helicoverpa zea and Heliothis virescens. Both the parasitoid and its hosts are naturally distributed across a large part of North America. When parasitoids deposit their eggs into hosts, venom and polydnaviruses (PDVs) are also injected into the caterpillars, which can suppress host immune responses, thus allowing parasitoid larvae to develop. In addition, PDVs can regulate host oral cues, such as glucose oxidase (GOX). The purpose of this study was to determine if parasitized caterpillars differentially induce plant defenses compared to non-parasitized caterpillars using two different caterpillar host/plant systems. Heliothis virescens caterpillars parasitized by M. croceipes had significantly lower salivary GOX activity than non-parasitized caterpillars, resulting in lower levels of tomato defense responses, which benefited parasitoid performance by increasing the growth rate of parasitized caterpillars. In tobacco plants, parasitized Helicoverpa zea caterpillars had lower GOX activity but induced higher plant defense responses. The higher tobacco defense responses negatively affected parasitoid performance by reducing the growth rate of parasitized caterpillars, causing longer developmental periods, and reduced cocoon mass and survival of parasitoids. These studies demonstrate a species-specific effect in different plant-insect systems. Based on these results, plant perception of insect herbivores can be affected by parasitoids and lead to positive or negative consequences to higher trophic levels depending upon the particular host-plant system.
Collapse
Affiliation(s)
- Ching-Wen Tan
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
26
|
Uawisetwathana U, Chevallier OP, Xu Y, Kamolsukyeunyong W, Nookaew I, Somboon T, Toojinda T, Vanavichit A, Goodacre R, Elliott CT, Karoonuthaisiri N. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 2019; 15:151. [PMID: 31741127 DOI: 10.1007/s11306-019-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Olivier P Chevallier
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yun Xu
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thapakorn Somboon
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Apichart Vanavichit
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
27
|
Ma L, Li MY, Chang CY, Chen FF, Hu Y, Liu XD. The host range of Aphis gossypii is dependent on aphid genetic background and feeding experience. PeerJ 2019; 7:e7774. [PMID: 31579627 PMCID: PMC6768058 DOI: 10.7717/peerj.7774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Background A polyphagous insect herbivore has a wide range of host plants. However, it has been found that many polyphagous herbivores commonly exhibit a strong preference for a subset of species in their broad host range, and various host biotypes exist in herbivore populations. Nutrition and secondary metabolites in plants affect herbivore preference and performance, but it is still not clear which factors determine the host range and host preference of polyphagous herbivores. Method Cotton-melon aphids, Aphis gossypii Glover, collected from cotton and cucumber crops, were used in this study. The genetic backgrounds of these aphids were detected using microsatellite PCR and six genotypes were evaluated. Performance of these six aphid genotypes on excised leaves and plants of cotton and cucumber seedlings were examined through a reciprocal transplant experiment. In order to detect whether the feeding experience on artificial diet would alter aphid host range, the six genotypes of aphids fed on artificial diet for seven days were transferred onto cotton and cucumber leaves, and then their population growth on these two host plants was surveyed. Results Aphids from cotton and cucumber plants could not colonize the excised leaves and intact plants of cucumber and cotton seedlings, respectively. All six genotypes of aphids collected from cotton and cucumber plants could survive and produce offspring on artificial diet, which lacked plant secondary metabolites. The feeding experience on the artificial diet did not alter the ability of all six genotypes to use their native host plants. However, after feeding on this artificial diet for seven days, two aphid genotypes from cotton and one from cucumber acquired the ability to use both of the excised leaves from cucumber and cotton plants. The two aphid genotypes from cotton conditioned by the feeding experience on artificial diet and then reared on excised cucumber leaves for >12 generations still maintained the ability to use intact cotton plants but did not establish a population on cucumber plants. However, one cucumber genotype conditioned by artificial diet and then reared on excised cotton leaves could use both the intact cotton and cucumber plants, showing that the expansion of host range was mediated by feeding experience. Conclusion Feeding experience on artificial diet induced the expansion of host range of the cucurbit-specialized A. gossypii, and this expansion was genotype-specific. We speculated that feeding on a constant set of host plants in the life cycle of aphids may contribute to the formation of host specialization.
Collapse
Affiliation(s)
- Lin Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yue Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chun-Yan Chang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Fang-Fang Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yang Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. J Chem Ecol 2019; 45:693-707. [DOI: 10.1007/s10886-019-01090-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
|
29
|
Pan Q, Shikano I, Hoover K, Liu TX, Felton GW. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J Chem Ecol 2019; 45:515-524. [PMID: 31127421 DOI: 10.1007/s11829-018-9634-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Collapse
Affiliation(s)
- Qinjian Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
30
|
Szabó AK, Kiss J, Bálint J, Kőszeghi S, Loxdale HD, Balog A. Low and high input agricultural fields have different effects on pest aphid abundance via different invasive alien weed species. NEOBIOTA 2019. [DOI: 10.3897/neobiota.43.31553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were Stenactisannua, Erigeroncanadensis and Solidagocanadensis. These species were hosts predominantly for the aphids Brachycaudushelichrysi and Aulacorthumsolani in both management systems. The 13% higher coverage of S.annua under LIF conditions resulted in a 30% higher B.helichrysi abundance and ~85% higher A.solani abundance compared with HIF conditions. Host plant quality was assessed by measuring peroxidase enzyme activity. There was a significantly increased POD activity at 10 μmol min−1 mg protein−1 unit in S.annua under LIF conditions, suggesting a higher stress by aphids under this management regime. The high colonization intensity of B.helichrysi on maize, potato and alfalfa crops were detected from both S.annua and E.canadensis. We conclude that new and faster methods need to be used to prevent colonization of such virus vectoring aphids and their host plants, even under low input regimes.
Collapse
|
31
|
Bonelli M, Bruno D, Caccia S, Sgambetterra G, Cappellozza S, Jucker C, Tettamanti G, Casartelli M. Structural and Functional Characterization of Hermetia illucens Larval Midgut. Front Physiol 2019; 10:204. [PMID: 30906266 PMCID: PMC6418021 DOI: 10.3389/fphys.2019.00204] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 11/29/2022] Open
Abstract
The larvae of Hermetia illucens are among the most promising agents for the bioconversion of low-quality biomass, such as organic waste, into sustainable and nutritionally valuable proteins for the production of animal feed. Despite the great interest in this insect, the current literature provides information limited to the optimization of rearing methods for H. illucens larvae, with particular focus on their efficiency in transforming different types of waste and their nutritional composition in terms of suitability for feed production. Surprisingly, H. illucens biology has been neglected and a deep understanding of the morphofunctional properties of the larval midgut, the key organ that determines the extraordinary dietary plasticity of this insect, has been completely overlooked. The present study aims to fill this gap of knowledge. Our results demonstrate that the larval midgut is composed of distinct anatomical regions with different luminal pH and specific morphofunctional features. The midgut epithelium is formed by different cell types that are involved in nutrient digestion and absorption, acidification of the lumen of the middle region, endocrine regulation, and growth of the epithelium. A detailed characterization of the activity of enzymes involved in nutrient digestion and their mRNA expression levels reveals that protein, carbohydrate, and lipid digestion is associated to specific regions of this organ. Moreover, a significant lysozyme activity in the lumen of the anterior and middle regions of the midgut was detected. This enzyme, together with the strong acidic luminal pH of middle tract, may play an important role in killing pathogenic microorganisms ingested with the feeding substrate. The evidence collected led us to propose a detailed functional model of the larval midgut of H. illucens in which each region is characterized by peculiar features to accomplish specific functions. This platform of knowledge sets the stage for developing rearing protocols to optimize the bioconversion ability of this insect and its biotechnological applications.
Collapse
Affiliation(s)
- Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Costanza Jucker
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
32
|
Kundu A, Vadassery J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:185-189. [PMID: 30521134 DOI: 10.1111/plb.12947] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 05/18/2023]
Abstract
Chlorogenic acid is one of the most abundant beneficial polyphenols in plants and is well known as a nutritional antioxidant in plant-based foods. Apart from its dietary antioxidant activity, it has been proved to be an efficient defence molecule against a broad range of insect herbivores. In the last two decades, several reports have shown the effectiveness of chlorogenic acid in insect growth deterrence. The pathway for chlorogenic acid biosynthesis in plants was previously elucidated, and metabolic engineering of the principal pathway showed high chlorogenic acid production in tomato plants. Herbivore-mediated induction of chlorogenic acid biosynthesis was also demonstrated both at metabolite and transcript level, although herbivore-mediated molecular regulation of chlorogenic acid biosynthesis is not yet fully elucidated. In this communication, we present our views on the efficacy of chlorogenic acid as an anti-herbivore defence molecule in plants and also discuss its future outlook.
Collapse
Affiliation(s)
- A Kundu
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - J Vadassery
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
33
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Kundu A, Mishra S, Vadassery J. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. PLANTA 2018; 248:981-997. [PMID: 29987372 DOI: 10.1007/s00425-018-2953-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 05/27/2023]
Abstract
Metabolite profiling, biochemical assays, and transcript analysis revealed differential modulation of specific induced defense responses in local, older, and younger systemic leaves in Solanum lycopersicum upon Spodoptera litura herbivory. Plants reconfigure their metabolome upon herbivory to induce production of defense metabolites involved in both direct and indirect defenses against insect herbivores. Herbivory mediated leaf-to-leaf systemic induction pattern of primary and non-volatile secondary metabolites is not well studied in tomato. Here, we show that, in cultivated tomato Solanum lycopersicum herbivory by generalist insect, Spodoptera litura results in differential alteration of primary metabolites, majorly sugars and amino acids and specific secondary metabolites in local, younger, and older systemic leaves. Cluster analysis of 55 metabolites identified by GC-MS showed correlation between local and younger systemic leaves. Re-allocation of primary metabolites like glucose and amino acids from the local to systemic leaf was observed. Secondary metabolites chlorogenic acid, caffeic acid, and catechin were significantly induced during herbivory in systemic leaves. Among specific secondary metabolites, chlorogenic acid and catechin significantly inhibits S. litura larval growth in all stages. Local leaf exhibited increased lignin accumulation upon herbivory. Differential alteration of induced defense responses like reactive oxygen species, polyphenol oxidase activity, proteinase inhibitor, cell wall metabolites, and lignin accumulation was observed in systemic leaves. The metabolite alteration also resulted in increased defense in systemic leaves. Thus, comparative analysis of metabolites in local and systemic leaves of tomato revealed a constant re-allocation of primary metabolites to systemic leaves and differential induction of secondary metabolites and induced defenses upon herbivory.
Collapse
Affiliation(s)
- Anish Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box 10531, New Delhi, 110067, India.
| |
Collapse
|
35
|
Pankoke H, Tewes LJ, Matties S, Hensen I, Schädler M, Ebeling S, Auge H, Müller C. Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1825-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Huang C, Zhang J, Zhang X, Yu Y, Bian W, Zeng Z, Sun X, Li X. Two New Polyphenol Oxidase Genes of Tea Plant ( Camellia sinensis) Respond Differentially to the Regurgitant of Tea Geometrid, Ectropis obliqua. Int J Mol Sci 2018; 19:ijms19082414. [PMID: 30115844 PMCID: PMC6121673 DOI: 10.3390/ijms19082414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Polyphenol oxidases (PPOs) have been reported to play an important role in protecting plants from attacks by herbivores. Though PPO genes in other plants have been extensively studied, research on PPO genes in the tea plant (Camellia sinensis) is lacking. In particular, which members of the PPO gene family elicit the defense response of the tea plant are as yet unknown. Here, two new PPO genes, CsPPO1 and CsPPO2, both of which had high identity with PPOs from other plants, were obtained from tea leaves. The full length of CsPPO1 contained an open reading frame (ORF) of 1740 bp that encoded a protein of 579 amino acids, while CsPPO2 contained an ORF of 1788 bp that encoded a protein of 595 amino acids. The deduced CsPPO1 and CsPPO2 proteins had calculated molecular masses of 64.6 and 65.9 kDa; the isoelectric points were 6.94 and 6.48, respectively. The expression products of recombinant CsPPO1 and CsPPO2 in Escherichia coli were about 91 and 92 kDa, respectively, but the recombinant proteins existed in the form of an inclusion body. Whereas CsPPO1 is highly expressed in stems, CsPPO2 is highly expressed in roots. Further results showed that the expression of CsPPO1 and CsPPO2 was wound- and Ectropis obliqua-induced, and that regurgitant, unlike treatment with wounding plus deionized water, significantly upregulated the transcriptional expression of CsPPO2 but not of CsPPO1. The difference between regurgitant and wounding indicates that CsPPO2 may play a more meaningful defensive role against E. obliqua than CsPPO1. Meanwhile, we found the active component(s) of the regurgitant elicited by the expression of CsPPO may contain small molecules (under 3-kDa molecular weight). These conclusions advance the understanding of the biological function of two new PPO genes and show that one of these, CsPPO2, may be a promising gene for engineering tea plants that are resistant to E. obliqua.
Collapse
Affiliation(s)
- Chen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Wenbo Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Zhongping Zeng
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xinghui Li
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 2018; 44:947-956. [PMID: 29980959 DOI: 10.1007/s10886-018-0987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.
Collapse
|
38
|
Ruuhola T, Nybakken L, Randriamanana T, Lavola A, Julkunen-Tiitto R. Effects of long-term UV-exposure and plant sex on the leaf phenoloxidase activities and phenolic concentrations of Salix myrsinifolia (Salisb.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:55-62. [PMID: 29501893 DOI: 10.1016/j.plaphy.2018.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 05/24/2023]
Abstract
The accumulation of flavonoids on the leaf surface is a well-characterized protective mechanism against UV-B radiation. Other protective mechanisms, such as the induction of antioxidative enzymes and peroxidase-mediated lignification may also be important. The effects of UV-B radiation have mainly been considered in short-term studies, whereas ecologically more relevant long-term field studies are still rare. Here we examined the effects of long-term exposure to enhanced UV-B radiation on the activities of two antioxidative enzymes, polyphenol oxidase (PPO; EC 1.10.2.2 and EC 1.14.18.1) and guaiacol peroxidase (POD; EC 1.11.1.7), as well as the phenolic concentrations in two sexes of the dioecious species, Salix myrsinifolia. After three consecutive growth seasons with enhanced UV-B radiation, we found that PPO activity was decreased by UV radiation in male plants, which might explain their lower UV-B tolerance when compared to female plants. In addition, male plants had higher specific activity than did female plants under ambient conditions, supporting the idea that males of S. myrsinifolia are generally more growth-oriented than females. By contrast, neither UV treatment nor sex had significant effects on the POD activities of willows. Gender differences in the concentrations of phenolic compounds are in line with the general concept that males are less well defended than females. We suggest that the inability to increase PPO and POD activity, along with lower accumulation of UV-B absorbing compounds under UV-B exposure, might be one of the reasons why males had thinner leaves and were less tolerant of UV-B than were females.
Collapse
Affiliation(s)
- Teija Ruuhola
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| | - Line Nybakken
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Tendry Randriamanana
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland.
| | - Anu Lavola
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| |
Collapse
|
39
|
Rivera-Vega LJ, Stanley BA, Stanley A, Felton GW. Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in interactions with host plants. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:97-103. [PMID: 29505761 DOI: 10.1016/j.jinsphys.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 05/13/2023]
Abstract
Insect saliva is one of the first secretions to come in contact with plants during feeding. The composition and role of caterpillar saliva has not been as thoroughly studied as that of sucking insects. This study focuses on characterizing the proteome of the cabbage looper (Trichoplusia ni) saliva using iTRAQ labeling and LC-MS/MS. We also measured how the saliva proteome changed when larvae were reared on different diets - cabbage, tomato, and an artificial pinto bean diet. We identified 254 proteins in the saliva out of which 63 were differentially expressed. A large percentage (56%) of the proteins identified function in protein metabolism, followed by proteins involved in vesicle transport (6%) and oxidoreductase activity (5%), among other categories. Several proteins identified are antioxidants or reactive oxygen species (ROS) scavengers. Among these ROS scavengers, we identified a catalase and further analyzed its gene expression and enzymatic activity. We also applied commercial, purified catalase on tomato and measured the activity of defensive proteins - trypsin proteinase inhibitor, polyphenol oxidase and peroxidase. Catalase gene expression was significantly higher in the salivary glands of larvae fed on tomato. Also, catalase suppressed the induction of tomato trypsin proteinase inhibitor levels, but not the induction of polyphenol oxidase or peroxidase. These results add to our understanding of proteomic plasticity in saliva and its role in herbivore offense against plant defenses.
Collapse
Affiliation(s)
- Loren J Rivera-Vega
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anne Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Abstract
The role of herbivore-associated microbes in mediating plant–herbivore interactions has gained recent attention. We show that a parasitoid associated with its caterpillar host not only suppresses the immune system of the caterpillar but also suppresses the induced defenses of the caterpillar’s host plant. Parasitoids inject eggs into their hosts but also inject polydnaviruses that suppress the caterpillar’s immunity. Immunosuppression enables eggs to hatch and develop as larvae within caterpillars. Additionally, the polydnavirus reduces salivary glucose oxidase, the primary elicitor found in the caterpillar’s oral secretions. Caterpillars injected with polydnavirus induce lower plant defenses than untreated caterpillars. Our results reveal a dimension to the complexity of plant–herbivore interactions indicating that polydnaviruses mediate the phenotypes of the parasitoid, herbivore, and plant. Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called “polydnaviruses.” Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant–herbivore interactions than ever considered.
Collapse
|
41
|
Feistel F, Paetz C, Menezes RC, Veit D, Schneider B. Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula. J Chem Ecol 2018; 44:497-509. [PMID: 29549572 DOI: 10.1007/s10886-018-0945-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022]
Abstract
Salicortin is a phenolic glucoside produced in Salicaceae as a chemical defense against herbivory. The specialist lepidopteran herbivorous larvae of Cerura vinula are able to overcome this defense. We examined the main frass constituents of C. vinula fed on Populus nigra leaves, and identified 11 quinic acid derivatives with benzoate and/or salicylate substitution. We asked whether the compounds are a result of salicortin breakdown and sought answers by carrying out feeding experiments with highly 13C-enriched salicortin. Using HRMS and NMR analyses, we were able to confirm that salicortin metabolism in C. vinula proceeds through deglucosylation and ester hydrolysis, after which saligenin is oxidatively transformed into salicylic acid and, eventually, conjugated to quinic acid. To the best of our knowledge, this is the first report of a detoxification pathway based on conjugation with quinic acid.
Collapse
Affiliation(s)
- Felix Feistel
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany
| | - Riya C Menezes
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany
| | - Daniel Veit
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.
| |
Collapse
|
42
|
Toledo L, Aguirre C. Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives. Crit Rev Food Sci Nutr 2018; 57:3860-3872. [PMID: 27172067 DOI: 10.1080/10408398.2016.1175416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Considering nearly 80 years of research regarding one of the enzymes responsible for catalyzing the formation of pigments in higher animals, plants, fungi and bacteria, this review will focus on collecting and categorizing the existing information about polyphenol oxidase (PPO) in fruits, with particular emphasis on the information in relation to avocado, which is one of the hardiest species in terms of inactivation, has documented dual activity (EC 1.14.18.1/EC 1.10.3.1), and represents one of the oldest challenges for food science research and fruit processors. It is expected that this review will contribute to the further development of the field by highlighting the questions that have arisen during the characterization of PPO, the progress that has been made and the questions that remain today, in addition to new methodologies that are being applied to study this system. Holistic methodologies offer unexplored potential for advancing our understanding of the complex phenomena that govern PPO activity in fruits, because these methodologies will enable the characterization of this family of enzymes in all of its complexity. Subsequently, it will be possible to develop better techniques for controlling enzymatic browning in this valuable fruit.
Collapse
Affiliation(s)
- Lea Toledo
- a School of Food Engineering , Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Carolina Aguirre
- b Research Center for Biodiversity and Sustainable Environments (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| |
Collapse
|
43
|
Naidoo D, Slavětínská LP, Aremu AO, Gruz J, Biba O, Doležal K, Van Staden J, Finnie JF. Metabolite profiling and isolation of biologically active compounds fromScadoxus puniceus, a highly traded South African medicinal plant. Phytother Res 2017; 32:625-630. [DOI: 10.1002/ptr.6000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Devashan Naidoo
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal Pietermaritzburg; Private Bag X01 Scottsville 3209 South Africa
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague-6 Czech Republic
| | - Adeyemi O. Aremu
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal Pietermaritzburg; Private Bag X01 Scottsville 3209 South Africa
| | - Jiri Gruz
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ 783 71 Olomouc Czech Republic
| | - Ondrej Biba
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ 783 71 Olomouc Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ 783 71 Olomouc Czech Republic
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal Pietermaritzburg; Private Bag X01 Scottsville 3209 South Africa
| | - Jeffrey F. Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences; University of KwaZulu-Natal Pietermaritzburg; Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
44
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics 2017; 18:871. [PMID: 29132375 PMCID: PMC5683215 DOI: 10.1186/s12864-017-4256-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. RESULTS In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. CONCLUSIONS According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
45
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
46
|
Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases. Sci Rep 2017; 7:8860. [PMID: 28821733 PMCID: PMC5562730 DOI: 10.1038/s41598-017-08097-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 02/03/2023] Open
Abstract
Tyrosinases and catechol oxidases belong to the polyphenol oxidase (PPO) enzyme family, which is mainly responsible for the browning of fruits. Three cDNAs encoding PPO pro-enzymes have been cloned from leaves of Malus domestica (apple, MdPPO). The three pro-enzymes MdPPO1-3 were heterologously expressed in E. coli yielding substantial amounts of protein and have been characterized with regard to their optimum of activity resulting from SDS, acidic and proteolytic activation. Significant differences were found in the kinetic characterization of MdPPO1-3 when applying different mono- and diphenolic substrates. All three enzymes have been classified as tyrosinases, where MdPPO1 exhibits the highest activity with tyramine (kcat = 9.5 s−1) while MdPPO2 and MdPPO3 are also clearly active on this monophenolic substrate (kcat = 0.92 s−1 and kcat = 1.0 s−1, respectively). Based on the activity, sequence data and homology modelling it is proposed that the monophenolase and diphenolase activity of PPOs can be manipulated by the appropriate combination of two amino acids, which are located within the active site cleft and were therefore named “activity controllers”.
Collapse
|
47
|
Wang J, Peiffer M, Hoover K, Rosa C, Zeng R, Felton GW. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). THE NEW PHYTOLOGIST 2017; 214:1294-1306. [PMID: 28170113 DOI: 10.1111/nph.14429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 05/10/2023]
Abstract
Insect gut-associated microbes modulating plant defenses have been observed in beetles and piercing-sucking insects, but the role of caterpillar-associated bacteria in regulating plant induced defenses has not been adequately examined. We identified bacteria from the regurgitant of field-collected Helicoverpa zea larvae using 16S ribosomal RNA (rRNA) gene sequencing and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. A combination of biochemical, molecular, and confocal electron microscopy methods were used to determine the role of caterpillar-associated bacteria in mediating defenses in Solanum lycopersicum (tomato). Laboratory-reared H. zea inoculated with one of the bacteria identified in field-collected H. zea, Enterobacter ludwigii, induced expression of the tomato defense-related enzyme polyphenol oxidase and genes regulated by jasmonic acid (JA), whereas the salicylic acid (SA)-responsive pathogenesis-related gene was suppressed. Additionally, saliva and its main component glucose oxidase from inoculated caterpillars played an important role in elevating tomato anti-herbivore defenses. However, there were only low detectable amounts of regurgitant or bacteria on H. zea-damaged tomato leaves. Our results suggest that H. zea gut-associated bacteria indirectly mediate plant-insect interactions by triggering salivary elicitors. These findings provide a proof of concept that introducing gut bacteria to a herbivore may provide a novel approach to pest management through indirect induction of plant resistance.
Collapse
Affiliation(s)
- Jie Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
48
|
Boeckx T, Winters A, Webb KJ, Kingston-Smith AH. Detection of Potential Chloroplastic Substrates for Polyphenol Oxidase Suggests a Role in Undamaged Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:237. [PMID: 28316605 PMCID: PMC5334603 DOI: 10.3389/fpls.2017.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 05/13/2023]
Abstract
Polyphenol oxidases (PPOs) have a recognized role during pathogen and arthropod attack. As an immediate consequence of such wounding, cellular compartmentation is destroyed allowing the chloroplastic PPO enzyme to interact with vacuolar substrates catalyzing the oxidation of monophenols and/or o-diphenols to o-diquinones. This ultimately results in a reduction in the nutritional value of wounded tissue through the formation of non-digestible secondary melanin pigments. However, the chloroplastic location of PPO enzyme could indicate a role for PPO in undamaged tissues. In this study, a wild-type red clover population exhibiting high leaf PPO activity had significantly higher yield than a low leaf PPO mutant population while leaf isoflavonoids and hydroxycinnammates (PPO substrates) accumulated at similar levels in these plants. These data suggest that the presence of leaf PPO activity affects plant vigor. Understanding how this advantage is conferred requires knowledge of the cellular mechanism, including intra-organellar substrates. Here we present evidence of candidate PPO substrates within chloroplasts of wild-type red clover, including the monophenolic acid, coumaroyl malate, and low levels of the diphenolic acid, phaselic acid (caffeoyl malate). Interestingly, chloroplastic phaselic acid concentration increased significantly under certain growth conditions. We discuss the implications of this in regard to a potential role for chloroplastic PPO in undamaged leaves.
Collapse
Affiliation(s)
| | | | | | - Alison H. Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
49
|
Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 2017; 7:39690. [PMID: 28045052 PMCID: PMC5206732 DOI: 10.1038/srep39690] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.
Collapse
|
50
|
Clifford M, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 2017; 34:1391-1421. [DOI: 10.1039/c7np00030h] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review is focussed upon the acyl-quinic acids, the most studied group within theca.400 chlorogenic acids so far reported.
Collapse
Affiliation(s)
- Michael N. Clifford
- School of Biosciences and Medicine
- Faculty of Health and Medical Sciences
- University of Surrey
- Guildford
- UK
| | - Indu B. Jaganath
- Malaysian Agricultural Research and Development Institute
- Kuala Lumpur
- Malaysia
| | - Iziar A. Ludwig
- Department of Food Technology
- University of Lleida
- Lleida
- Spain
| | - Alan Crozier
- Department of Nutrition
- University of California
- Davis
- USA
| |
Collapse
|