1
|
Lockbaum GJ, Rusere LN, Henes M, Kosovrasti K, Rao DN, Spielvogel E, Lee SK, Nalivaika EA, Swanstrom R, Yilmaz NK, Schiffer CA, Ali A. HIV-1 protease inhibitors with a P1 phosphonate modification maintain potency against drug-resistant variants by increased interactions with flap residues. Eur J Med Chem 2023; 257:115501. [PMID: 37244161 PMCID: PMC10332405 DOI: 10.1016/j.ejmech.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Protease inhibitors are the most potent antivirals against HIV-1, but they still lose efficacy against resistant variants. Improving the resistance profile is key to developing more robust inhibitors, which may be promising candidates for simplified next-generation antiretroviral therapies. In this study, we explored analogs of darunavir with a P1 phosphonate modification in combination with increasing size of the P1' hydrophobic group and various P2' moieties to improve potency against resistant variants. The phosphonate moiety substantially improved potency against highly mutated and resistant HIV-1 protease variants, but only when combined with more hydrophobic moieties at the P1' and P2' positions. Phosphonate analogs with a larger hydrophobic P1' moiety maintained excellent antiviral potency against a panel of highly resistant HIV-1 variants, with significantly improved resistance profiles. The cocrystal structures indicate that the phosphonate moiety makes extensive hydrophobic interactions with the protease, especially with the flap residues. Many residues involved in these protease-inhibitor interactions are conserved, enabling the inhibitors to maintain potency against highly resistant variants. These results highlight the need to balance inhibitor physicochemical properties by simultaneous modification of chemical groups to further improve resistance profiles.
Collapse
Affiliation(s)
- Gordon J Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Linah N Rusere
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, And the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States.
| | - Akbar Ali
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
2
|
Petri YD, Gutierrez CS, Raines RT. Chemoselective Caging of Carboxyl Groups for On-Demand Protein Activation with Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215614. [PMID: 36964973 PMCID: PMC10243506 DOI: 10.1002/anie.202215614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Clair S. Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
3
|
Lockbaum GJ, Henes M, Talledge N, Rusere LN, Kosovrasti K, Nalivaika EA, Somasundaran M, Ali A, Mansky LM, Yilmaz NK, Schiffer CA. Inhibiting HTLV-1 Protease: A Viable Antiviral Target. ACS Chem Biol 2021; 16:529-538. [PMID: 33619959 PMCID: PMC8126997 DOI: 10.1021/acschembio.0c00975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 μM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.
Collapse
Affiliation(s)
- Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nathaniel Talledge
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Louis M. Mansky
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
4
|
Eche S, Gordon ML. Recombinant expression of HIV-1 protease using soluble fusion tags in Escherichia coli: A vital tool for functional characterization of HIV-1 protease. Virus Res 2021; 295:198289. [PMID: 33418026 DOI: 10.1016/j.virusres.2020.198289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
HIV-1 protease expression in the laboratory is demanding because of its high cytotoxicity, making it difficult to express in bacterial expression systems such as Escherichia coli. To overcome these challenges, HIV-1 protease fusion with solubility enhancing tags helps to mitigate its cytotoxic effect and drive its expression as a soluble protein. Therefore, this review focuses on the expression of bioactive HIV-1 protease using solubility-enhancing fusion tags in Escherichia coli and summarises the characteristic features of the different common fusion tags that have been used in the expression of HIV-1 protease. This review will assist researchers with their choice of protein fusion tag for HIV-1 protease expression.
Collapse
Affiliation(s)
- Simeon Eche
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
5
|
Rusere LN, Lockbaum GJ, Henes M, Lee SK, Spielvogel E, Rao DN, Kosovrasti K, Nalivaika EA, Swanstrom R, Kurt Yilmaz N, Schiffer CA, Ali A. Structural Analysis of Potent Hybrid HIV-1 Protease Inhibitors Containing Bis-tetrahydrofuran in a Pseudosymmetric Dipeptide Isostere. J Med Chem 2020; 63:8296-8313. [PMID: 32672965 DOI: 10.1021/acs.jmedchem.0c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and X-ray structural analysis of hybrid HIV-1 protease inhibitors (PIs) containing bis-tetrahydrofuran (bis-THF) in a pseudo-C2-symmetric dipeptide isostere are described. A series of PIs were synthesized by incorporating bis-THF of darunavir on either side of the Phe-Phe isostere of lopinavir in combination with hydrophobic amino acids on the opposite P2/P2' position. Structure-activity relationship studies indicated that the bis-THF moiety can be attached at either the P2 or P2' position without significantly affecting potency. However, the group on the opposite P2/P2' position had a dramatic effect on potency depending on the size and shape of the side chain. Cocrystal structures of inhibitors with wild-type HIV-1 protease revealed that the bis-THF moiety retained similar interactions as observed in the darunavir-protease complex regardless of the position on the Phe-Phe isostere. Analyses of cocrystal structures and molecular dynamics simulations provide insights into optimizing HIV-1 PIs containing bis-THF in non-sulfonamide dipeptide isosteres.
Collapse
Affiliation(s)
- Linah N Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
6
|
Henes M, Lockbaum GJ, Kosovrasti K, Leidner F, Nachum GS, Nalivaika EA, Lee SK, Spielvogel E, Zhou S, Swanstrom R, Bolon DN, Yilmaz NK, Schiffer CA. Picomolar to Micromolar: Elucidating the Role of Distal Mutations in HIV-1 Protease in Conferring Drug Resistance. ACS Chem Biol 2019; 14:2441-2452. [PMID: 31361460 PMCID: PMC6941144 DOI: 10.1021/acschembio.9b00370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance continues to be a growing global problem. The efficacy of small molecule inhibitors is threatened by pools of genetic diversity in all systems, including antibacterials, antifungals, cancer therapeutics, and antivirals. Resistant variants often include combinations of active site mutations and distal "secondary" mutations, which are thought to compensate for losses in enzymatic activity. HIV-1 protease is the ideal model system to investigate these combinations and underlying molecular mechanisms of resistance. Darunavir (DRV) binds wild-type (WT) HIV-1 protease with a potency of <5 pM, but we have identified a protease variant that loses potency to DRV 150 000-fold, with 11 mutations in and outside the active site. To elucidate the roles of these mutations in DRV resistance, we used a multidisciplinary approach, combining enzymatic assays, crystallography, and molecular dynamics simulations. Analysis of protease variants with 1, 2, 4, 8, 9, 10, and 11 mutations showed that the primary active site mutations caused ∼50-fold loss in potency (2 mutations), while distal mutations outside the active site further decreased DRV potency from 13 nM (8 mutations) to 0.76 μM (11 mutations). Crystal structures and simulations revealed that distal mutations induce subtle changes that are dynamically propagated through the protease. Our results reveal that changes remote from the active site directly and dramatically impact the potency of the inhibitor. Moreover, we find interdependent effects of mutations in conferring high levels of resistance. These mechanisms of resistance are likely applicable to many other quickly evolving drug targets, and the insights may have implications for the design of more robust inhibitors.
Collapse
Affiliation(s)
- Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gily S. Nachum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shuntai Zhou
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States,Corresponding authors Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856 1867;
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States,Corresponding authors Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856 1867;
| |
Collapse
|
7
|
Henes M, Kosovrasti K, Lockbaum GJ, Leidner F, Nachum GS, Nalivaika EA, Bolon DN, Yilmaz NK, Schiffer CA, Whitfield TW. Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance. Biochemistry 2019; 58:3711-3726. [PMID: 31386353 PMCID: PMC6941756 DOI: 10.1021/acs.biochem.9b00446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.
Collapse
Affiliation(s)
- Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Gily S. Nachum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA,Corresponding Author Celia A. Schiffer: Phone: +1 508 856 8008; , Troy W. Whitfield: Phone: +1 508 856 4401;
| | - Troy W. Whitfield
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA,Corresponding Author Celia A. Schiffer: Phone: +1 508 856 8008; , Troy W. Whitfield: Phone: +1 508 856 4401;
| |
Collapse
|
8
|
Rusere LN, Lockbaum GJ, Lee SK, Henes M, Kosovrasti K, Spielvogel E, Nalivaika EA, Swanstrom R, Yilmaz NK, Schiffer CA, Ali A. HIV-1 Protease Inhibitors Incorporating Stereochemically Defined P2' Ligands To Optimize Hydrogen Bonding in the Substrate Envelope. J Med Chem 2019; 62:8062-8079. [PMID: 31386368 DOI: 10.1021/acs.jmedchem.9b00838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A structure-guided design strategy was used to improve the resistance profile of HIV-1 protease inhibitors by optimizing hydrogen bonding and van der Waals interactions with the protease while staying within the substrate envelope. Stereoisomers of 4-(1-hydroxyethyl)benzene and 4-(1,2-dihydroxyethyl)benzene moieties were explored as P2' ligands providing pairs of diastereoisomers epimeric at P2', which exhibited distinct potency profiles depending on the configuration of the hydroxyl group and size of the P1' group. While compounds with the 4-(1-hydroxyethyl)benzene P2' moiety maintained excellent antiviral potency against a panel of multidrug-resistant HIV-1 strains, analogues with the polar 4-(1,2-dihydroxyethyl)benzene moiety were less potent, and only the (R)-epimer incorporating a larger 2-ethylbutyl P1' group showed improved potency. Crystal structures of protease-inhibitor complexes revealed strong hydrogen bonding interactions of both (R)- and (S)-stereoisomers of the hydroxyethyl group with Asp30'. Notably, the (R)-dihydroxyethyl group was involved in a unique pattern of direct hydrogen bonding interactions with the backbone amides of Asp29' and Asp30'. The SAR data and analysis of crystal structures provide insights for optimizing these promising HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Linah N Rusere
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| |
Collapse
|
9
|
Lockbaum GJ, Leidner F, Rusere LN, Henes M, Kosovrasti K, Nachum GS, Nalivaika EA, Bolon DN, Ali A, Yilmaz NK, Schiffer CA. Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease. ACS Infect Dis 2019; 5:316-325. [PMID: 30543749 PMCID: PMC6941150 DOI: 10.1021/acsinfecdis.8b00336] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nese Kurt Yilmaz
- Corresponding Author Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856-1867;
| | - Celia A. Schiffer
- Corresponding Author Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856-1867;
| |
Collapse
|
10
|
Zhou H, Li S, Badger J, Nalivaika E, Cai Y, Foulkes-Murzycki J, Schiffer C, Makowski L. Modulation of HIV protease flexibility by the T80N mutation. Proteins 2015; 83:1929-39. [PMID: 25488402 PMCID: PMC4461556 DOI: 10.1002/prot.24737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 01/02/2023]
Abstract
The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle X-ray scattering (WAXS) data was measured for a series of HIVp variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared with the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIVp and is critical to catalytic function.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
| | - Shangyang Li
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
| | | | - Ellen Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Yufeng Cai
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Jennifer Foulkes-Murzycki
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Celia Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, MA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA
| |
Collapse
|
11
|
Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity. Sci Rep 2015; 5:11286. [PMID: 26261098 PMCID: PMC4531283 DOI: 10.1038/srep11286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/14/2015] [Indexed: 11/17/2022] Open
Abstract
A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s−1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.
Collapse
|
12
|
Nguyen HLT, Nguyen TT, Vu QT, Le HT, Pham Y, Trinh PL, Bui TP, Phan TN. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies. Protein Expr Purif 2015; 116:59-65. [PMID: 26231073 DOI: 10.1016/j.pep.2015.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022]
Abstract
Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application.
Collapse
Affiliation(s)
- Hong-Loan Thi Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thuy Thi Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Quy Thi Vu
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Hang Thi Le
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Yen Pham
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Phuong Le Trinh
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thuan Phuong Bui
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tuan-Nghia Phan
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
13
|
Caldarini M, Sonar P, Valpapuram I, Tavella D, Volonté C, Pandini V, Vanoni M, Aliverti A, Broglia R, Tiana G, Cecconi C. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations. Biophys Chem 2014; 195:32-42. [DOI: 10.1016/j.bpc.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
|
14
|
Foulkes-Murzycki JE, Rosi C, Kurt Yilmaz N, Shafer RW, Schiffer CA. Cooperative effects of drug-resistance mutations in the flap region of HIV-1 protease. ACS Chem Biol 2013; 8:513-8. [PMID: 23252515 DOI: 10.1021/cb3006193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the interdependence of multiple mutations in conferring drug resistance is crucial to the development of novel and robust inhibitors. As HIV-1 protease continues to adapt and evade inhibitors while still maintaining the ability to specifically recognize and efficiently cleave its substrates, the problem of drug resistance has become more complicated. Under the selective pressure of therapy, correlated mutations accumulate throughout the enzyme to compromise inhibitor binding, but characterizing their energetic interdependency is not straightforward. A particular drug resistant variant (L10I/G48V/I54V/V82A) displays extreme entropy-enthalpy compensation relative to wild-type enzyme but a similar variant (L10I/G48V/I54A/V82A) does not. Individual mutations of sites in the flaps (residues 48 and 54) of the enzyme reveal that the thermodynamic effects are not additive. Rather, the thermodynamic profile of the variants is interdependent on the cooperative effects exerted by a particular combination of mutations simultaneously present.
Collapse
Affiliation(s)
- Jennifer E. Foulkes-Murzycki
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Christina Rosi
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Robert W. Shafer
- Division
of Infectious Diseases,
Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Celia A. Schiffer
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| |
Collapse
|
15
|
King NM, Prabu-Jeyabalan M, Bandaranayake RM, Nalam MNL, Nalivaika EA, Özen A, Haliloǧlu T, Yılmaz NK, Schiffer CA. Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chem Biol 2012; 7:1536-46. [PMID: 22712830 DOI: 10.1021/cb300191k] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.
Collapse
Affiliation(s)
- Nancy M. King
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Rajintha M. Bandaranayake
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Madhavi N. L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Türkan Haliloǧlu
- Polymer Research Center and Department
of Chemical Engineering, Bogazici University, TR-34342, Bebek, Istanbul, Turkey
| | - Neşe Kurt Yılmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
16
|
Alvizo O, Mittal S, Mayo SL, Schiffer CA. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease. Protein Sci 2012; 21:1029-41. [PMID: 22549928 DOI: 10.1002/pro.2086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 02/02/2023]
Abstract
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.
Collapse
Affiliation(s)
- Oscar Alvizo
- Division of Biology, Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
17
|
Borkar A, Rout MK, Hosur RV. Denaturation of HIV-1 Protease (PR) Monomer by Acetic Acid: Mechanistic and Trajectory Insights from Molecular Dynamics Simulations and NMR. J Biomol Struct Dyn 2012; 29:893-903. [DOI: 10.1080/073911012010525025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Volontè F, Piubelli L, Pollegioni L. Optimizing HIV-1 protease production in Escherichia coli as fusion protein. Microb Cell Fact 2011; 10:53. [PMID: 21718537 PMCID: PMC3141379 DOI: 10.1186/1475-2859-10-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/30/2011] [Indexed: 11/22/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr) is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr) was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA) or glutathione S-transferase (GST), also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis) and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3)-RIL host and in TB or M9 medium to which 1% (w/v) glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts) and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth). GST:HIVPr was in part (50%) produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1Pr per liter. Conclusions By using this optimized expression and purification procedure fairly large amounts of good-quality HIV-1Pr recombinant enzyme can be produced at the lab-scale and thus used for further biochemical studies.
Collapse
Affiliation(s)
- Federica Volontè
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, Varese, 21100, Italy
| | | | | |
Collapse
|
19
|
Matsumura H, Adachi M, Sugiyama S, Okada S, Yamakami M, Tamada T, Hidaka K, Hayashi Y, Kimura T, Kiso Y, Kitatani T, Maki S, Yoshikawa HY, Adachi H, Takano K, Murakami S, Inoue T, Kuroki R, Mori Y. Crystallization and preliminary neutron diffraction studies of HIV-1 protease cocrystallized with inhibitor KNI-272. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1003-6. [PMID: 18997326 DOI: 10.1107/s1744309108029679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/16/2008] [Indexed: 11/11/2022]
Abstract
This paper reports the crystallization and preliminary neutron diffraction measurements of HIV-1 protease, a potential target for anti-HIV therapy, complexed with an inhibitor (KNI-272). The aim of this neutron diffraction study is to obtain structural information about the H atoms and to determine the protonation states of the residues within the active site. The crystal was grown to a size of 1.4 mm(3) by repeated macroseeding and a slow-cooling method using a two-liquid system. Neutron diffraction data were collected at room temperature using a BIX-4 diffractometer at the JRR-3 research reactor of the Japan Atomic Energy Agency (JAEA). The data set was integrated and scaled to 2.3 A resolution in space group P2(1)2(1)2, with unit-cell parameters a = 59.5, b = 87.4, c = 46.8 A.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Altman MD, Nalivaika EA, Prabu-Jeyabalan M, Schiffer CA, Tidor B. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins 2008; 70:678-94. [PMID: 17729291 PMCID: PMC2802840 DOI: 10.1002/prot.21514] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods-namely, charge optimization and protein design-were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT-RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a 10-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease.
Collapse
Affiliation(s)
- Michael D. Altman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
- Corresponding Authors: (CAS) and (BT)
| | - Bruce Tidor
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
21
|
Tyndall JDA, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL. Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism. Biochemistry 2008; 47:3736-44. [DOI: 10.1021/bi7023157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joel D. A. Tyndall
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Leonard K. Pattenden
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Robert C. Reid
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Shu-Hong Hu
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Dianne Alewood
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Paul F. Alewood
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Terry Walsh
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - David P. Fairlie
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Jennifer L. Martin
- National School of Pharmacy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand, Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia, and Centre for Molecular Biotechnology, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
22
|
Foulkes JE, Prabu-Jeyabalan M, Cooper D, Henderson GJ, Harris J, Swanstrom R, Schiffer CA. Role of invariant Thr80 in human immunodeficiency virus type 1 protease structure, function, and viral infectivity. J Virol 2006; 80:6906-16. [PMID: 16809296 PMCID: PMC1489026 DOI: 10.1128/jvi.01900-05] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sequence variability associated with human immunodeficiency virus type 1 (HIV-1) is useful for inferring structural and/or functional constraints at specific residues within the viral protease. Positions that are invariant even in the presence of drug selection define critically important residues for protease function. While the importance of conserved active-site residues is easily understood, the role of other invariant residues is not. This work focuses on invariant Thr80 at the apex of the P1 loop of HIV-1, HIV-2, and simian immunodeficiency virus protease. In a previous study, we postulated, on the basis of a molecular dynamics simulation of the unliganded protease, that Thr80 may play a role in the mobility of the flaps of protease. In the present study, both experimental and computational methods were used to study the role of Thr80 in HIV protease. Three protease variants (T80V, T80N, and T80S) were examined for changes in structure, dynamics, enzymatic activity, affinity for protease inhibitors, and viral infectivity. While all three variants were structurally similar to the wild type, only T80S was functionally similar. Both T80V and T80N had decreased the affinity for saquinavir. T80V significantly decreased the ability of the enzyme to cleave a peptide substrate but maintained infectivity, while T80N abolished both activity and viral infectivity. Additionally, T80N decreased the conformational flexibility of the flap region, as observed by simulations of molecular dynamics. Taken together, these data indicate that HIV-1 protease functions best when residue 80 is a small polar residue and that mutations to other amino acids significantly impair enzyme function, possibly by affecting the flexibility of the flap domain.
Collapse
Affiliation(s)
- Jennifer E Foulkes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, 01605, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Parolin C, Gatto B, Del Vecchio C, Pecere T, Tramontano E, Cecchetti V, Fravolini A, Masiero S, Palumbo M, Palù G. New anti-human immunodeficiency virus type 1 6-aminoquinolones: mechanism of action. Antimicrob Agents Chemother 2003; 47:889-96. [PMID: 12604517 PMCID: PMC149318 DOI: 10.1128/aac.47.3.889-896.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 6-aminoquinolone derivative, WM5, which bears a methyl substituent at the N-1 position and a 4-(2-pyridyl)-1-piperazine moiety at position 7 of the bicyclic quinolone ring system, was previously shown to exhibit potent activity against replication of human immunodeficiency virus type 1 (HIV-1) in de novo-infected human lymphoblastoid cells (V. Cecchetti et al., J. Med. Chem. 43:3799-3802, 2000). In this report, we further investigated WM5's mechanism of antiviral activity. WM5 inhibited HIV-1 replication in acutely infected cells as well as in chronically infected cells. The 50% inhibitory concentrations were 0.60 +/- 0.06 and 0.85 +/- 0.05 micro M, respectively. When the effects of WM5 on different steps of the virus life cycle were analyzed, the reverse transcriptase activity and the integrase and protease activities were not impaired. By using a transient trans-complementation assay to examine the activity of WM5 on the replicative potential of HIV-1 in a single round of infection, a sustained inhibition of Tat-mediated long terminal repeat (LTR)-driven transcription (>80% of controls) was obtained in the presence of 5 micro M WM5. Interestingly, the aminoquinolone was found to efficiently complex TAR RNA, with a dissociation constant in the nanomolar range (19 +/- 0.6 nM). These data indicate that WM5 is a promising lead compound for the development of a new class of HIV-1 transcription inhibitors characterized by recognition of viral RNA target(s).
Collapse
Affiliation(s)
- Cristina Parolin
- Department of Histology, Microbiology and Medical Biotechnologies, Section of Microbiology and Virology, University of Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA. Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol 2003; 77:1306-15. [PMID: 12502847 PMCID: PMC140781 DOI: 10.1128/jvi.77.2.1306-1315.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 10/11/2002] [Indexed: 11/20/2022] Open
Abstract
Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | |
Collapse
|
25
|
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 2002; 10:369-81. [PMID: 12005435 DOI: 10.1016/s0969-2126(02)00720-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, yet most internal hydrogen bonds and waters are conserved. However, no substrate side chain hydrogen bond is conserved. Specificity of HIV-1 protease appears to be determined by an asymmetric shape rather than a particular amino acid sequence.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
26
|
King NM, Melnick L, Prabu-Jeyabalan M, Nalivaika EA, Yang SS, Gao Y, Nie X, Zepp C, Heefner DL, Schiffer CA. Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease. Protein Sci 2002; 11:418-29. [PMID: 11790852 PMCID: PMC2373441 DOI: 10.1110/ps.25502] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Revised: 11/01/2001] [Accepted: 11/06/2001] [Indexed: 10/16/2022]
Abstract
The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements seen in the second tightest inhibitor complex. This occurs as adaptations in the S1 pocket of one monomer propagate through the dimer and affect the conformation of the S1 loop near P81 of the other monomer. Therefore, structural rearrangements that occur within the protease when it binds to an inhibitor with a single modification must be accounted for in the design of inhibitors with multiple modifications. This consideration is necessary to develop inhibitors that bind sufficiently tightly to drug-resistant variants of HIV-1 protease to potentially become the next generation of therapeutic agents.
Collapse
Affiliation(s)
- Nancy M King
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol 2000; 301:1207-20. [PMID: 10966816 DOI: 10.1006/jmbi.2000.4018] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with the backbone of the peptide substrate. Two water molecules bridge the two monomers through the loops Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other complexes are compared, the mobility of these loops is correlated with the content of the P1 and P1' sites. Interdependence of the conformational changes allows the protease to exhibit its wide range of substrate specificity.
Collapse
Affiliation(s)
- M Prabu-Jeyabalan
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | | |
Collapse
|
28
|
Markland W, Rao BG, Parsons JD, Black J, Zuchowski L, Tisdale M, Tung R. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir. J Virol 2000; 74:7636-41. [PMID: 10906218 PMCID: PMC112285 DOI: 10.1128/jvi.74.16.7636-7641.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent drug regimens have had much success in the treatment of human immunodeficiency virus (HIV)-infected individuals; however, the incidence of resistance to such drugs has become a problem that is likely to increase in importance with long-term therapy of this chronic illness. An analysis and understanding of the molecular interactions between the drug(s) and the mutated viral target(s) is crucial for further progress in the field of AIDS therapy. The protease inhibitor amprenavir (APV) generates a signature set of HIV type 1 (HIV-1) protease mutations associated with in vitro resistance (M46I/L, I47V, and I50V [triple mutant]). Passage of the triple-mutant APV-resistant HIV-1 strain in MT4 cells, in the presence of increasing concentrations of saquinavir (SQV), gave rise to a new variant containing M46I, G48V, I50V, and I84L mutations in the protease and a resulting phenotype that was resistant to SQV and, unexpectedly, resensitized to APV. This phenotype was consistent with a subsequent kinetic analysis of the mutant protease, together with X-ray crystallographic analysis and computational modeling which elucidated the structural basis of these observations. The switch in protease inhibitor sensitivities resulted from (i) the I50V mutation, which reduced the area of contact with APV and SQV; (ii) the compensating I84L mutation, which improved hydrophobic packing with APV; and (iii) the G-to-V mutation at residue 48, which introduced steric repulsion with the P3 group of SQV. This analysis establishes the fine detail necessary for understanding the loss of protease binding for SQV in the quadruple mutant and gain in binding for APV, demonstrating the powerful combination of virology, molecular biology, enzymology, and protein structural and modeling studies in the elucidation and understanding of viral drug resistance.
Collapse
Affiliation(s)
- W Markland
- Vertex Pharmaceuticals, Cambridge, Massachusetts 02139-4242, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tomasselli AG, Heinrikson RL. Targeting the HIV-protease in AIDS therapy: a current clinical perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:189-214. [PMID: 10708858 DOI: 10.1016/s0167-4838(99)00273-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review deals with clinical applications of compounds that inhibit the action of the protease encoded within the genome of human immunodeficiency virus (HIV). The HIV-protease is essential for viral maturation and represents an important therapeutic target in the fight against AIDS. Following a brief overview of the enzyme structure and function, the article focuses on a number of peptide and non-peptide based HIV-protease inhibitors that are in current clinical use. These drugs are discussed both with respect to their efficacy in treatment of AIDS, and to problems related to insurgence of viral resistance and side effects seen to date in patient populations.
Collapse
Affiliation(s)
- A G Tomasselli
- Department of Protein Science, Pharmacia and Upjohn, Kalamazoo, MI 49001, USA
| | | |
Collapse
|
30
|
Gulnik S, Erickson JW, Xie D. HIV protease: enzyme function and drug resistance. VITAMINS AND HORMONES 2000; 58:213-56. [PMID: 10668400 DOI: 10.1016/s0083-6729(00)58026-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
HIV protease is responsible for processing of the gag and gag-pol polyproteins during virion maturation. The activity of this enzyme is essential for virus infectivity, rendering the protein a major therapeutic target for AIDS treatment. This articles reviews the biochemical and biophysical properties of the enzyme. The clinical and in vitro observations of resistance to protease inhibitors are discussed from the perspective of drug resistance mechanisms of HIV protease mutants.
Collapse
Affiliation(s)
- S Gulnik
- SAIC Frederick, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
31
|
Hearn MT. Physicochemical factors in polypeptide and protein purification and analysis by high-performance liquid chromatographic techniques: current status and challenges for the future. HANDBOOK OF BIOSEPARATIONS 2000. [DOI: 10.1016/s0149-6395(00)80050-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Reddy A, Grimwood BG, Plummer TH, Tarentino AL. High-level expression of the Endo-beta-N-acetylglucosaminidase F2 gene in E.coli: one step purification to homogeneity. Glycobiology 1998; 8:633-6. [PMID: 9592130 DOI: 10.1093/glycob/8.6.633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.
Collapse
Affiliation(s)
- A Reddy
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
33
|
Maschera B, Darby G, Palú G, Wright LL, Tisdale M, Myers R, Blair ED, Furfine ES. Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J Biol Chem 1996; 271:33231-5. [PMID: 8969180 DOI: 10.1074/jbc.271.52.33231] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in the human immunodeficiency virus (HIV) protease (L90M, G48V, and L90M/G48V) arise when HIV is passaged in the presence of the HIV protease inhibitor saquinavir. These mutations yield a virus with less sensitivity to the drug (L90M > G48V >> L90M/G48V). L90M, G48V, and L90M/G48V proteases have 1/20, 1/160, and 1/1000 the affinity for saquinavir compared to WT protease, respectively. Therefore, the affinity of mutant protease for saquinavir decreased as the sensitivity of the virus to saquinavir decreased. Association rate constants for WT and mutant proteases with saquinavir were similar, ranging from 2 to 4 x 10(7) M-1 s-1. In contrast, the dissociation rate constants for WT, L90M, G48V, and L90M/G48V proteases complexed with saquinavir were 0.0014, 0.019, 0.128, and 0. 54 s-1, respectively. This indicated that the reduced affinity for mutant proteases and saquinavir is primarily the result of larger dissociation rate constants. The increased dissociation rate constants may be the result of a decrease in the internal equilibrium between the bound inhibitor with the protease flaps up and the bound inhibitor with the flaps down. Interestingly, the affinity of these mutant proteases for VX-478, ABT-538, AG-1343, or L-735,524 was not reduced as much as that for saquinavir. Finally, the catalytic constants of WT and mutant proteases were determined for eight small peptide substrates that mimic the viral cleavage sites in vivo. WT and L90M proteases had similar catalytic constants for these substrates. In contrast, G48V and L90M/G48V proteases had catalytic efficiency (kcat/Km) values with TLNF-PISP, RKIL-FLDG, and AETF-YVDG that were 1/10 to 1/20 the value of WT protease. The decreased catalytic efficiencies were primarily the result of increased Km values. Thus, mutations in the protease decrease the affinity of the enzyme for saquinavir and the catalytic efficiency with peptide substrates.
Collapse
Affiliation(s)
- B Maschera
- Department of Virology, Glaxo Wellcome, Stevenage SG1 2NY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dergousova NI, Volynskaya AM, Rumsh LD. HIV-I protease. Cloning, expression, and purification. Appl Biochem Biotechnol 1996; 61:97-107. [PMID: 9100348 DOI: 10.1007/bf02785692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new method for obtaining HIV-I protease was suggested. Fusion proteins composed of the N-terminal fragment of human gamma-interferon and HIV-I protease connected with (Asp)4Lys (protein I) or Asp-Pro (protein II) linkers were expressed in Escherichia coli cells. The fusion proteins were produced as insoluble inclusion bodies in the 20% yield of total cell protein. Protein I was cleaved by enterokinase. The solubility of protein I was increased by treating with Na-sulfite/Na-tetrathionate under denaturing conditions. Optimal conditions for efficient acidic hydrolysis of protein II at Asp-Pro bond were found. The hydrolysis products were separated by reversed-phase FPLC. The amount of tryptophan and cysteine residues in the enzyme obtained was estimated. The activity of HIV-I protease was determined using the chromogenic peptide. AlaArgVal NleNphGluAlaNleNH2 and a high-mol-wt substrate consisting of beta-galactosidase and a fragment of gag proteins, including p17-p24 processing site.
Collapse
Affiliation(s)
- N I Dergousova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
35
|
Chou KC, Tomasselli AG, Reardon IM, Heinrikson RL. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method. Proteins 1996; 24:51-72. [PMID: 8628733 DOI: 10.1002/(sici)1097-0134(199601)24:1<51::aid-prot4>3.0.co;2-r] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Based on the sequence-coupled (Markov chain) model and vector-projection principle, a discriminant function method is proposed to predict sites in protein substrates that should be susceptible to cleavage by the HIV-1 protease. The discriminant function is defined by delta = phi+ - phi-, where phi+ and phi- are the cleavable and noncleavable attributes for a given peptide, and they can be derived from two complementary sets of peptides, S+ and S-, known to be cleavable and noncleavable, respectively, by the enzyme. The rate of correct prediction by the method for the 62 cleavable peptides and 239 noncleavable peptides in the training set are 100 and 96.7%, respectively. Application of the method to the 55 sequences which are outside the training set and known to be cleaved by the HIV-1 protease accurately predicted 100% of the peptides as substrates of the enzyme. The method also predicted all but one of the sites hydrolyzed by the protease in native HIV-1 and HIV-2 reverse transcriptases, where the HIV-1 protease discriminates between nearly identical sequences in a very subtle fashion. Finally, the algorithm predicts correctly all of the HIV-1 protease processing sites in the native gag and gag/pol HIV-1 polyproteins, and all of the cleavage sites identified in denatured protease and reverse transcriptase. The new predictive algorithm provides a novel route toward understanding the specificity of this important therapeutic target.
Collapse
Affiliation(s)
- K C Chou
- Pharmacia & Upjohn Laboratories, Kalamazoo, Michigan 49001-4940, USA
| | | | | | | |
Collapse
|
36
|
Tomasselli AG, Thaisrivongs S, Heinrikson RL. Discovery and design of HIV protease inhibitors as drugs for treatment of aids. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1075-8593(96)80106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
37
|
Maschera B, Furfine E, Blair ED. Analysis of resistance to human immunodeficiency virus type 1 protease inhibitors by using matched bacterial expression and proviral infection vectors. J Virol 1995; 69:5431-6. [PMID: 7636988 PMCID: PMC189389 DOI: 10.1128/jvi.69.9.5431-5436.1995] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are already reports, from clinical trials with human immunodeficiency virus type 1 protease inhibitors, of the emergence of drug-resistant mutants which have one or more point mutations in their protease genes. To examine roles of individual and multiple amino acid substitutions in terms of altered enzyme and virus drug sensitivities, we have produced matched vectors for bacterial expression and virus production. Both vectors accept the same restriction enzyme fragment, produced by PCR or PCR-mutagenesis of the protease gene, allowing parallel expression of mutant enzymes in Escherichia coli and in recombinant viruses. The utility of this vector system was demonstrated by using protease variants glycine to valine at amino acid 48 (G48V) and leucine to methionine at amino acid 90 (L90M) identified after passage of HIV-1 in the Roche phase II clinical trial protease inhibitor Ro 31-8959 (H. Jacobsen, K. Yasargil, D. L. Winslow, J. C. Craig, A. Krohn, I. B. Duncan, and J. Mous, Virology 206:527, 1995). G48V, L90M, and G48V/L90M exhibited successively less processing in vitro than the wild-type enzyme, and the purified enzymes were 220-, 20-, and 720-fold, respectively, less sensitive to Ro 31-8959. The reduced enzyme sensitivity correlated directly with the sensitivities of the matched recombinant viruses, in that individual mutations L90M and G48V conferred 2-fold and 4- to 6-fold increases in 50% inhibitory concentration, respectively, whereas G48V/L90M was 8 to 10 times less sensitive to Ro 31-8959. A proviral vector with the entire protease gene deleted was constructed for use as an in vivo recombination target for an overlapping protease PCR fragment, generating wild-type infectious virus. Finally, direct ligation of restriction fragments, generated from random PCR mutagenesis, into the proviral vector should provide a library of protease mutations that allow extremely rapid selection of highly resistant viral variants.
Collapse
Affiliation(s)
- B Maschera
- Gene Targets Group, Wellcome Research Laboratories, Beckenham, United Kingdom
| | | | | |
Collapse
|
38
|
The Differential Processing of Homodimers of Reverse Transcriptases from Human Immunodeficiency Viruses Type 1 and 2 Is a Consequence of the Distinct Specificities of the Viral Proteases. J Biol Chem 1995. [DOI: 10.1016/s0021-9258(18)92316-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Tomasselli AG, Mildner AM, Rothrock DJ, Sarcich JL, Lull J, Leone J, Heinrikson RL. Mutants of HIV-1 protease with enhanced stability to autodegradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:387-98. [PMID: 8540348 DOI: 10.1007/978-1-4615-1871-6_51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A G Tomasselli
- Upjohn Laboratories, Upjohn Company, Kalamazoo, Michigan 49001, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tomasselli AG, Mildner AM, Rothrock DJ, Sarcich JL, Lull J, Leone J, Heinrikson R. Site-directed mutagenesis of HIV-1 protease: generation of mutant proteases with increased stability to autodigestion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:473-7. [PMID: 8540360 DOI: 10.1007/978-1-4615-1871-6_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A G Tomasselli
- Upjohn Laboratories, Upjohn Company, Kalamazoo, Michigan 49001, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Tomasselli AG, Sarcich JL, Barrett LJ, Reardon IM, Howe WJ, Evans DB, Sharma SK, Heinrikson RL. Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease. Protein Sci 1993; 2:2167-76. [PMID: 7507754 PMCID: PMC2142316 DOI: 10.1002/pro.5560021216] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A study has been made of the susceptibility of recombinant constructs of reverse transcriptase (RT) and ribonuclease H (RNase H) from human immunodeficiency virus type 1 (HIV-1) to digestion by the HIV-1 protease. At neutral pH, the protease attacks a single peptide bond, Phe440-Tyr441, in one of the protomers of the folded, active RT/RNase H (p66/p66) homodimer to give a stable, active heterodimer (p66/p51) that is resistant to further hydrolysis (Chattopadhyay, D., et al., 1992, J. Biol. Chem. 267, 14227-14232). The COOH-terminal p15 fragment released in the process, however, is rapidly degraded by the protease by cleavage at Tyr483-Leu484 and Tyr532-Leu533. In marked contrast to this p15 segment, both p66/p51 and a folded RNase H construct are stable to breakdown by the protease at neutral pH. It is only at pH values around 4 that these latter proteins appear to unfold and, under these conditions, the heterodimer undergoes extensive proteolysis. RNase H is also hydrolyzed at low pH, but cleavage takes place primarily at Gly436-Ala437 and at Phe440-Tyr441, and only much more slowly at residues 483, 494, and 532. This observation can be reconciled by inspection of crystallographic models of RNase H, which show that residues 483, 494, and 532 are relatively inaccessible in comparison to Gly436 and Phe440. Our results fit a model in which the p66/p66 homodimer exists in a conformation that mirrors that of the heterodimer, but with a p15 segment on one of the protomers that is structurally disordered to the extent that all of its potential HIV protease cleavage sites are accessible for hydrolysis.
Collapse
Affiliation(s)
- A G Tomasselli
- Biochemistry Unit, Upjohn Laboratories, Kalamazoo, Michigan 49001
| | | | | | | | | | | | | | | |
Collapse
|