1
|
Yang Y, Zhou T, Zhao X, Cai Y, Xu Y, Gang X, Wang G. Main mechanisms and clinical implications of alterations in energy expenditure state among patients with pheochromocytoma and paraganglioma: A review. Medicine (Baltimore) 2024; 103:e37916. [PMID: 38669419 PMCID: PMC11049756 DOI: 10.1097/md.0000000000037916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Xu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
3
|
Garg R, Katekar R, Parwez S, Agarwal A, Sahu S, Dadge S, Verma S, Goand UK, Siddiqi MI, Gayen JR. Pancreastatin inhibitor PSTi8 ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Eur J Pharmacol 2023; 944:175559. [PMID: 36764353 DOI: 10.1016/j.ejphar.2023.175559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Elevated plasma glucose concentration, as a consequence of excessive hepatic glucose production, plays a pivotal role in the development of diabetes. A chromogranin A-derived diabetogenic peptide Pancreastatin (PST) enhances hepatic glucose output leading to diabetes. Therefore, here we probed the role of PSTi8, a PST inhibitor in ameliorating diabetes by investigating the effect of high glucose (HG) or PST on glucose metabolism. Further, we also explored the action mechanism of the underlying anti-hyperglycemic effect of PSTi8. PSTi8 treatment rescue cultured L6 and HepG2 cells from HG and PST-induced insulin resistance, respectively. It also enhances insulin receptor kinase activity by interacting with the insulin receptor and enhancing GLUT4 translocation and glucose uptake. Thus, our in-silico and in-vitro data support the PST-dependent and independent activity of PSTi8. Additionally, PSTi8 treatment in streptozotocin-induced diabetic rats improved glucose tolerance by lowering blood glucose and plasma PST levels. Concomitantly, the treated animals exhibited reduced hepatic glucose production accompanied by downregulation of hepatic gluconeogenic genes PEPCK and G6Pase. PSTi8-treated rats also exhibited enhanced hepatic glycogen in line with reduced plasma glucagon concentrations. Consistently, improved plasma insulin levels in PSTi8-treated rats enhanced skeletal muscle glucose disposal via enhanced P-Akt expression. In summary, these findings suggest PSTi8 has anti-hyperglycemic properties with enhanced skeletal muscle glucose disposal and reduced hepatic gluconeogenesis both PST dependent as well as independent.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahid Parwez
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, India; Pharmacology Division, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Garg R, Agarwal A, Katekar R, Dadge S, Yadav S, Gayen JR. Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes. Amino Acids 2023:10.1007/s00726-023-03252-x. [PMID: 36914766 DOI: 10.1007/s00726-023-03252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Chromogranin A (ChgA) is an acidic pro-protein found in neuroendocrine organs, pheochromocytoma chromaffin granules, and tumor cells. Proteolytic processing of ChgA gives rise to an array of biologically active peptides such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin, which have diverse roles in regulating cardiovascular functions and metabolism, as well as inflammation. Intricate tissue-specific role of ChgA-derived peptide activity in preclinical rodent models of metabolic syndrome reveals complex effects on carbohydrate and lipid metabolism. Indeed, ChgA-derived peptides, PST and CST, play a pivotal role in metabolic syndrome such as obesity, insulin resistance, and diabetes mellitus. Additionally, supplementation of specific peptide in ChgA-KO mice have an opposing effect on physiological functions, such as PST supplementation reduces insulin sensitivity and enhances inflammatory response. In contrast, CST supplementation enhances insulin sensitivity and reduces inflammatory response. In this review, we focus on the tissue-specific role of PST and CST as therapeutic targets in regulating carbohydrate and lipid metabolism, along with the associated risk factors.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Agarwal
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Roshan Katekar
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailesh Dadge
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhi Yadav
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II–VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
6
|
Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 2019; 1455:34-58. [PMID: 31588572 PMCID: PMC6899468 DOI: 10.1111/nyas.14249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Chromogranin A (CgA)-the index member of the chromogranin/secretogranin secretory protein family-is ubiquitously distributed in endocrine, neuroendocrine, and immune cells. Elevated levels of CgA-related polypeptides, consisting of full-length molecules and fragments, are detected in the blood of patients suffering from neuroendocrine tumors, heart failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease. Full-length CgA and various CgA-derived peptides, including vasostatin-1, pancreastatin, catestatin, and serpinin, are expressed at different relative levels in normal and pathological conditions and exert diverse, and sometime opposite, biological functions. For example, CgA is overexpressed in genetic hypertension, whereas catestatin is diminished. In rodents, the administration of catestatin decreases hypertension, cardiac contractility, obesity, atherosclerosis, and inflammation, and it improves insulin sensitivity. By contrast, pancreastatin is elevated in diabetic patients, and the administration of this peptide to obese mice decreases insulin sensitivity and increases inflammation. CgA and the N-terminal fragment of vasostatin-1 can enhance the endothelial barrier function, exert antiangiogenic effects, and inhibit tumor growth in animal models, whereas CgA fragments lacking the CgA C-terminal region promote angiogenesis and tumor growth. Overall, the CgA system, consisting of full-length CgA and its fragments, is emerging as an important and complex player in cardiovascular, immunometabolic, and cancer regulation.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System, San Diego, California.,Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
7
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
8
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
9
|
Abstract
Chromogranin A (CgA) is an established plasma marker of neuroendocrine tumors and has been suggested to also have a role as biomarker in other diseases. Whether CgA has any role as biomarker in diabetes is, however, unresolved, but its widespread distribution in the secretory granules in endocrine tissues including β cells and α cells in pancreas, and the metabolic effects of its peptide fragments suggest that CgA may play a pathophysiological role in diabetes, and thus also be a potential diabetes biomarker. In this review, we summarize the available information on CgA and some of its functional post-translational cleavage products in diabetes, followed by a discussion of its potential as a plasma marker in diabetes and the methodological concerns involved.
Collapse
Affiliation(s)
- Kasper Broedbaek
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Allu PKR, Chirasani VR, Ghosh D, Mani A, Bera AK, Maji SK, Senapati S, Mullasari AS, Mahapatra NR. Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 2014; 289:4455-69. [PMID: 24338022 PMCID: PMC3924307 DOI: 10.1074/jbc.m113.520916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/08/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.
Collapse
Affiliation(s)
- Prasanna K. R. Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Venkat R. Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Dhiman Ghosh
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Anitha Mani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Amal K. Bera
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Samir K. Maji
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Ajit S. Mullasari
- the Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai 600037, India
| | - Nitish R. Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| |
Collapse
|
11
|
Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism. PLoS One 2014; 9:e84132. [PMID: 24465394 PMCID: PMC3896336 DOI: 10.1371/journal.pone.0084132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
RATIONALE The chromogranin A-derived peptide pancreastatin (PST) is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. METHODS AND RESULTS We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide) as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP) as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones), involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR") in CHGA(-/-) mice compared to wild-type (+/+). By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/-) mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM). PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin) in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis). In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP) increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. CONCLUSIONS Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion), but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic response to UPR activation. PST decreases insulin-stimulated cellular glucose uptake, and PST as well as other chaperone ATPase activity inhibitors augment expression of G6Pase; GRP78 over-expression antagonizes this PST action. Analysis of the novel PST/GRP78 interaction may provide a new avenue of investigation into cellular glycemic control as well as dysglycemia.
Collapse
|
12
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
13
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Álvarez J. Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 165:71-7. [PMID: 20934461 DOI: 10.1016/j.regpep.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCβ-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
14
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Alvarez J. Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 161:8-14. [PMID: 20184923 DOI: 10.1016/j.regpep.2010.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/20/2022]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCbeta-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
15
|
Sánchez-Margalet V, González-Yanes C, Najib S. Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol 2001; 35:80-5. [PMID: 11495046 DOI: 10.1016/s0168-8278(01)00071-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIMS Pancreastatin, a chromogranin A-derived peptide, has a counter-regulatory effect on insulin action. We have previously characterized pancreastatin receptor and signalling in rat liver and HTC hepatoma cells. A G alpha(q/11)-PLC-beta pathway leads to an increase in [Ca2+]i, PKC and mitogen activated protein kinase (MAPK) activation. These data suggested that pancreastatin might have a role in growth and proliferation, similar to other calcium-mobilizing hormones. METHODS DNA and protein synthesis were measured as [3H]-thymidine and [3H]-leucine incorporation. Nitric oxide (NO) was determined by the Griess method and cGMP production was quantified by enzyme-linked immunoassay. RESULTS Contrary to the expected results, we have found that pancreastatin inhibits protein and DNA synthesis in HTC hepatoma cells. On the other hand, when the activity of NO synthase was inhibited by N-monomethyl-L-arginine (NMLA), the inhibitory effect of pancreastatin on DNA and protein synthesis was not only reverted, but a dose-dependent stimulatory effect was observed, probably due to MAPK activation, since it was prevented by PD98059. These data strongly suggested the role of NO in the inhibitory effect of pancreastatin on protein and DNA synthesis, which is overcoming the effect on MAPK activation. Moreover, pancreastatin dose-dependently increased NO production in parallel to cyclic guanosine monophosphate (cGMP). Both effects were prevented by NMLA. Finally, an indirect effect of pancreastatin through the induction of apoptosis was ruled out. CONCLUSIONS Therefore, the NO and the cGMP produced by the NO-activated guanylate cyclase may mediate the dose-dependent inhibitory effect of pancreastatin on growth and proliferation in HTC hepatoma cells.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University Hospital Virgen Macarena, Seville, Spain.
| | | | | |
Collapse
|
16
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Pancreastatin. Biological effects and mechanisms of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:247-62. [PMID: 11192586 DOI: 10.1007/0-306-46837-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, and Investigation Unit, University Hospital Virgen Macarena, Seville, Spain
| | | | | | | |
Collapse
|
17
|
González-Yanes C, Santos-Alvarez J, Sánchez-Margalet V. Pancreastatin, a chromogranin A-derived peptide, activates Galpha(16) and phospholipase C-beta(2) by interacting with specific receptors in rat heart membranes. Cell Signal 2001; 13:43-9. [PMID: 11257446 DOI: 10.1016/s0898-6568(00)00127-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pancreastatin (PST) is one of the chromogranin A (CGA)-derived peptides with known biological activity. It has a general inhibitory effect on secretion in many exocrine and endocrine systems including the heart atrium. Besides, a role of PST as a counter-regulatory peptide of insulin action has been proposed in the light of its effects on glucose and lipid metabolism in the liver and adipose tissue, where receptors and signaling have been described. Galpha(q/11) pathway seems to mediate PST action. Since PST has been shown to function as a typical calcium-dependent hormone, and increased plasma levels have been found in essential hypertension correlating with catecholamines, we sought to study its possible interaction and signaling in heart membranes. Here, we are characterizing specific PST binding sites and signaling in rat heart membranes. We have found that PST receptor has a K(d) of 0.5 nM and a B(max) of 34 fmol/mg of protein. The PST binding is inhibited by guanine nucleotides, suggesting the functional coupling of the receptor with GTP binding proteins (G proteins). Moreover, PST dose-dependently increases GTP binding to rat heart membranes. Finally, we have studied PST signaling-effector system by measuring phospholipase C (PLC) activity using blocking antibodies against different G proteins and PLC isoforms. We have found that PST stimulates PLCbeta(2)>PLCbeta(1)>PLCbeta(3) by activating Galpha(16) in rat heart membranes. These data suggest that PST may modulate the cardiac function.
Collapse
Affiliation(s)
- C González-Yanes
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009, Seville, Spain
| | | | | |
Collapse
|
18
|
Sánchez-Margalet V, González-Yanes C, Santos-Alvarez J, Najib S. Characterization of pancreastatin receptor and signaling in rat HTC hepatoma cells. Eur J Pharmacol 2000; 397:229-35. [PMID: 10844119 DOI: 10.1016/s0014-2999(00)00253-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreastatin, a chromogranin A-derived peptide widely distributed throughout the neuroendocrine system, has a general inhibitory effect on endocrine secretion and a counterregulatory effect on insulin action. We have recently described the cross-talk of pancreastatin with insulin signaling in rat hepatoma cells (HTC), where it inhibits insulin action and signaling through the serine phosphorylation of the insulin receptor, thereby impairing tyrosine kinase activity. Here, we have characterized pancreastatin receptors and signaling in HTC cells. The pancreastatin effector systems were studied by determining phospholipase C activity in HTC membranes and mitogen-activated protein kinase (MAPK) phosphorylation activity in HTC cells. Binding studies with radiolabeled pancreastatin showed a population of high affinity binding sites, with a B(max) of 8 fmol/mg protein and a K(d) of 0.6 nM. Moreover, we assessed the coupling of the receptor with a G protein system by inhibiting the binding with guanine nucleotide and by measuring the GTP binding to HTC membranes. We found that pancreastatin receptor was coupled with a G alpha(q/11) protein which activates phospholipase C-beta(1) and phospholipase C-beta(3), in addition to MAPK via both beta gamma and alpha(q/11).
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Av. Sánchez Pizjuan 4, 41009, Sevilla, Spain.
| | | | | | | |
Collapse
|
19
|
Santos-Alvarez J, Sánchez-Margalet V. Affinity purification of pancreastatin receptor-Gq/11 protein complex from rat liver membranes. Arch Biochem Biophys 2000; 378:151-6. [PMID: 10871055 DOI: 10.1006/abbi.2000.1789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin, a chromogranin A derived peptide, exerts a glycogenolytic effect on the hepatocyte. This effect is initiated by binding to membrane receptors which are coupled to pertussis toxin insensitive G proteins belonging to the Gq/11 family. We have recently solubilized active pancreastatin receptors from rat liver membranes still functionally coupled to G proteins. Here, we have purified pancreastatin receptors by a two-step procedure. First, pancreastatin receptors with their associated Gq/11 regulatory proteins were purified from liver membranes by lectin absorption chromatography on wheat germ agglutinin immobilized on agarose. A biotinylated rat pancreastatin analog was tested for binding to liver membranes before using it for affinity purification. Unlabeled biotinylated rat pancreastatin competed for 125I-labeled [Tyr0]PST binding to solubilized receptors with a Kd = 0.27 nM, comparable to that of native pancreastatin. The biotinylated analog was immobilized on streptavidin-coated Sepharose beads and used to further affinity purify wheat germ agglutinin eluted receptor material. Specific elution at low pH showed that the receptor protein was purified as an 80-kDa protein in association with a G protein of the q/11 family, as demonstrated by specific immunoblot analysis. The specificity of the receptor band was assessed by chemical cross-linking of the purified material followed by SDS-PAGE and autoradiography. In conclusion, we have purified pancreastatin receptor as a glycoprotein of 80 kDa physically associated with a Gq/11 protein.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
20
|
González-Yanes C, Santos-Alvarez J, Sánchez-Margalet V. Characterization of pancreastatin receptors and signaling in adipocyte membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:153-62. [PMID: 10446397 DOI: 10.1016/s0167-4889(99)00084-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.
Collapse
Affiliation(s)
- C González-Yanes
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación del Hospital Universitario Virgen Macarena, Av. Sánchez Pizjuan 4, Sevilla 41009, Spain
| | | | | |
Collapse
|
21
|
Santos-Alvarez J, Sánchez-Margalet V. G protein G alpha q/11 and G alpha i1,2 are activated by pancreastatin receptors in rat liver: studies with GTP-gamma 35S and azido-GTP-alpha-32P. J Cell Biochem 1999; 73:469-77. [PMID: 10733341 DOI: 10.1002/(sici)1097-4644(19990615)73:4<469::aid-jcb5>3.0.co;2-u] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the liver, pancreastatin exerts a glycogenolytic effect through interaction with specific receptors, followed by activation of phospholipase C and guanylate cyclase. Pancreastatin receptor seems to be coupled to two different G protein systems: a pertussis toxin-insensitive G protein that mediates activation of phospholipase C, and a pertussis toxin sensitive G protein that mediates the cyclic GMP production. The aim of this study was to identify the specific G protein subtypes coupling pancreastatin receptors in rat liver membranes. GTP binding was determined by using gamma-35S-GTP; specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Activation of G proteins was demonstrated by the incorporation of the photoreactive GTP analogue 8-azido-alpha-32P-GTP into liver membranes and into specific immunoprecipitates of different Galpha subunits from soluble rat liver membranes. Pancreastatin stimulation of rat liver membranes increases the binding of gamma-35S-GTP in a time- and dose-dependent manner. Activation of the soluble receptors still led to the pancreastatin dose-dependent stimulation of gamma-35S-GTP binding. Besides, WGA semipurified receptors also stimulates GTP binding. The binding was inhibited by treatment with anti-Galphaq/11 (85%) and anti-Galphai1,2 (15%) sera, whereas anti-Galphao,i3 serum failed to affect the binding. Finally, pancreastatin stimulates GTP photolabeling of particulate membranes. Moreover, it specifically increased the incorporation of 8-azido-alpha-32P-GTP into Galphaq/11 and Galpha, but not into Galphao,i3 from soluble rat liver membranes. In conclusion, pancreastatin stimulation of rat liver membranes led to the activation of Galphaq/11 and Galphai1,2 proteins. These results suggest that Galphaq/11 and Galphai1,2 may play a functional role in the signaling of pancreastatin receptor by mediating the production of IP3 and cGMP respectively.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | |
Collapse
|
22
|
Sánchez-Margalet V, González-Yanes C. Pancreastatin inhibits insulin action in rat adipocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E1055-60. [PMID: 9843749 DOI: 10.1152/ajpendo.1998.275.6.e1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin (PST), a regulatory peptide with a general inhibitory effect on secretion, is derived from chromogranin A, a glycoprotein present throughout the neuroendocrine system. We have previously demonstrated the counterregulatory role of PST on insulin action in rat hepatocytes. Here, we are reporting the PST effects on rat adipocytes. PST dose dependently inhibits basal and insulin-stimulated glucose transport, lactate production, and lipogenesis, impairing the main metabolic actions of insulin in adipocytes. These effects were observed in a wide range of insulin concentrations, leading to a shift to the right in the dose-response curve. Maximal effect was observed at 10 nM PST, and the IC50 value was approximately 1 nM. Moreover, PST has a lipolytic effect in rat adipocytes (ED50 0.1 nM), although it was completely inhibited by insulin. In contrast, PST dose dependently stimulated protein synthesis and enhanced insulin-stimulated protein synthesis. In summary, these data show the lipokinetic effect of PST and the inhibitory effect of PST on insulin metabolic action within a range of physiological concentrations. Therefore, these results give new pathophysiological basis for the association of PST with insulin resistance.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the University Hospital Virgen Macarena, Seville 41009, Spain
| | | |
Collapse
|
23
|
Santos-Alvarez J, Sánchez-Margalet V. Pancreastatin activates beta3 isoform of phospholipase C via G(alpha)11 protein stimulation in rat liver membranes. Mol Cell Endocrinol 1998; 143:101-6. [PMID: 9806354 DOI: 10.1016/s0303-7207(98)00137-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin (PST) receptors have been recently shown to mediate activation of phospholipase C (PLC) in rat liver membranes. There is evidence that the G protein that links pancreastatin receptor with PLC-beta is pertussis toxin-insensitive and belongs to the G(alpha)q family. Here, we have employed blocking antisera to sort out the specific PLC-beta isoform as well as the specific G(alpha) subunit activated by PST receptor in rat liver membranes. The presence of different PLC-beta isoforms was checked by immunoblot analysis. Only PLC-beta4 was not detected, whereas PLC-beta1, beta2 and beta3 were abundant in rat liver membranes. However, only anti-PLC-beta3 serum was able to block the PST receptor response. We also checked the expression of G(alpha)q and Galpha11 in rat liver membranes by immunoblot. Even though both isoforms were present. only anti-Galpha11 serum was able to block the PST receptor response. In order to check the specificity of the blocking antisera, we employed them to block the effect of ADP and thrombin stimulating PLC activity in platelet membranes, a system lacking Galpha11. Anti-G(alpha)q but not anti-Galpha11 sera were able to block the agonist stimulated PLC activity. These data suggest that PST receptor response is mediated by the activation of the beta3 isoform of PLC via Galpha11 protein stimulation in rat liver membranes.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
24
|
Santos-Alvarez J, González-Yanes C, Sánchez-Margalet V. Pancreastatin receptor is coupled to a guanosine triphosphate-binding protein of the G(q/11)alpha family in rat liver membranes. Hepatology 1998; 27:608-14. [PMID: 9462664 DOI: 10.1002/hep.510270240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreastatin (PST), a recently discovered regulatory peptide derived from chromogranin A, has been shown to have a glycogenolytic effect in the hepatocyte that is mediated by increasing intracellular calcium. Our previous studies on pancreastatin signaling suggested that PST receptor is coupled to some G proteins in the plasma membrane of the hepatocyte. The nature of this interaction was investigated using antisera against G(q/11)alpha by different approaches. Indirect evidence of a pertussis toxin (PT)-insensitive G protein of the family of G(q/11)alpha was obtained by measuring high-affinity guanosine triphosphatase (GTPase) activity in soluble rat liver membranes. PST increased GTPase activity in a dose-dependent manner. This effect was only slightly inhibited by PT pretreatment of the membranes, whereas anti-G(q/11)alpha antisera blocked most of the PST-stimulated GTPase activity. The selective association of the PST receptor with this G protein was further studied by the coelution in wheat germ agglutinin semipurification of the receptor and by immunoprecipitation of the G protein-PST receptor complexes using G-protein-specific antisera. A G protein of the family of G(q/11)alpha was found to be associated with the semipurified PST receptor. Moreover, anti-G(q/11)alpha antisera immunoprecipitated most PST-binding activity (95%), bringing down most of the specific G protein, whereas anti-G(il,2)alpha and -G(o,i3)alpha failed to immunoprecipitate the PST-binding activity. Finally, the coupling of the PST receptor with the effector phospholipase C was disrupted by blocking with G(q/11)alpha antisera, suggesting that a G protein of the family of G(q/11)alpha is a signal mediator from PST receptors to phospholipase C activation in rat liver membranes.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Unidad de Investigación Hospital Universitario Virgen Macarena, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
25
|
Sánchez-Margalet V, Santos-Alvarez J. Solubilization and molecular characterization of active pancreastatin receptors from rat liver membranes. Endocrinology 1997; 138:1712-8. [PMID: 9075735 DOI: 10.1210/endo.138.4.5075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreastatin receptors were solubilized from rat liver membranes with the nonionic detergent Triton X-100. Binding of a iodinated analog of rat pancreastatin ([125I-Tyr0]pancreastatin) to the soluble fraction was time dependent, saturable, and reversible. Scatchard analysis of binding under equilibrium conditions indicated that the soluble extracts contained a single class of pancreastatin-binding sites, with a binding capacity of 14 fmol/mg protein and a Kd of 0.3 nM. As observed with membrane-bound receptors, binding of [125I]pancreastatin to soluble extracts was inhibited by guanine nucleotides with the following rank order of potency: guanyl-5'-yl-imidodiphosphate > GTP > GDP > GMP, indicating that the soluble receptors are functionally linked to G proteins. Molecular analysis of the soluble pancreastatin receptor by covalent cross-linking to [125I]pancreastatin using disuccinimidyl suberate and further identification on SDS-PAGE indicated a single band of 85,000 Mr. Gel filtration of soluble extracts on Sephacryl S-300 revealed two molecular components with binding abilities (Mr 80,000 and 170,000). The higher molecular mass component was more sensitive to guanine nucleotides, and covalent cross-linking of both components to [125I]pancreastatin and further SDS-PAGE analysis revealed again a single band of 85,000 Mr, suggesting an association of the receptor with a G protein. Moreover, direct evidence that a Gq was present in the same chromatographic fraction was obtained by specific immunodetection. The soluble receptor is a glycoprotein that can be specifically bound to the wheat-germ agglutinin lectin. We conclude that we solubilized active pancreastatin receptors from rat liver membranes, and these results support the conclusion that the liver pancreastatin receptor consists of a 80,000 Mr glycoprotein associated with G proteins.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, University of Seville, Spain.
| | | |
Collapse
|
26
|
Sánchez-Margalet V, Lucas M, Goberna R. Pancreastatin action in the liver: dual coupling to different G proteins. Cell Signal 1996; 8:9-12. [PMID: 8777144 DOI: 10.1016/0898-6568(95)02014-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pancreastatin is a 49 amino acid peptide first isolated, purified and characterized from porcine pancreas. Its biological activity in different tissues can be assigned to the C-terminal part of the molecule. Pancreastatin has a prohormonal precursor, chromogranin A, which is a glycoprotein present in neuroendocrine cells, including the endocrine pancreas. We have been interested in pancreastatin action in the liver. We found that pancreastatin has a glycogenolytic effect in the hepatocyte both in vivo and in vitro. We then studied and characterized the specific pancreastatin receptor in the rat liver plasma membrane, as well as the specific signal transduction. This receptor appears to be coupled to two different G proteins. A pertussis toxin-insensitive G proteins leads to the activation of phospholipase C, and therefore mediates the glycogenolytic effect in the liver by increasing cytoplasmic free calcium and stimulating protein kinase C. The role of cyclic GMP in the action of pancreastatin is not known yet, although it seems to regulate negatively the activation of phospholipase C. The precise mechanism by which pancreastatin stimulates guanylate cyclase activity remains to be studied.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento De Bioquímica Médica y Biología Molecular, Facultad De Medicina, Universidad De Sevilla, Hospital Universitario Virgen Macarena, Spain
| | | | | |
Collapse
|
27
|
Sánchez-Margalet V, Valle M, Lobón JA, Escobar-Jiménez F, Pérez-Cano R, Goberna R. Plasma pancreastatin-like immunoreactivity correlates with plasma norepinephrine levels in essential hypertension. Neuropeptides 1995; 29:97-101. [PMID: 7477767 DOI: 10.1016/0143-4179(95)90090-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pancreastatin (PST), a 49 amino acid peptide originally isolated from porcine pancreas, is derived from chromogranin A (Cg A), an acidic protein co-released with catecholamines from sympathetic nerve terminals and chromaffin cells. Extracellular processing of Cg A yields PST as well as other biological active peptides. Measurement of Cg A and PST-like immunoreactivity (PST-LI) has been used to investigate patients with pheochromocytoma and other neuroendocrine neoplasia. Some studies have found increased plasma norepinephrine (NE) levels in essential hypertension. We therefore measured venous plasma PST-LI and catecholamines in patients with essential hypertension. We employed a radioimmunoassay developed with commercially available reagents for measuring plasma PST-like immunoreactivity, and HPLC with electrochemical detection for measurement of plasma catecholamines. The correlation of PST-LI with epinephrine (E) was very weak. However, its correlation with NE was highly significant. Thus, venous plasma PST-LI immunoreactivity may reflect sympathetic nerve activity in essential hypertension.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Clinical Biochemistry, Hospital Virgen Macarena Medical School, University of Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Sánchez-Margalet V, Lucas M, Goberna R. Pancreastatin activates protein kinase C by stimulating the formation of 1,2-diacylglycerol in rat hepatocytes. Biochem J 1994; 303 ( Pt 1):51-4. [PMID: 7945264 PMCID: PMC1137555 DOI: 10.1042/bj3030051] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe here the stimulation by pancreastatin of 1,2-diacylglycerol production and protein kinase C activity in liver plasma membrane and isolated hepatocytes. The dose-dependency for the stimulation of both processes was similar to the recently described pattern of glucose output and cytosolic Ca2+ transients produced by pancreastatin. The time course of diacylglycerol production at 30 degrees C showed a rapid increase within 5 min, reaching a maximum at 10 min. Protein kinase C from hepatocytes was dependent on Ca2+ and phosphatidylserine. Neither the pancreastatin-stimulated diacylglycerol production nor the activation of protein kinase C was affected by pretreatment with pertussis toxin. However, the presence of GTP partially inhibited this pancreastatin stimulation of 1,2-diacylglycerol in a dose-dependent manner, although GTP alone stimulates diacylglycerol accumulation. This inhibitory effect of GTP on pancreastatin stimulation of diacylglycerol synthesis was completely abolished by the pretreatment with pertussis toxin. In conclusion, this study provides evidence that pancreastatin stimulates the formation of 1,2-diacylglycerol by a pertussis-toxin-independent mechanism, which may be responsible for the pancreastatin activation of protein kinase C.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
29
|
Sánchez-Margalet V, Goberna R. Pancreastatin activates pertussis toxin-sensitive guanylate cyclase and pertussis toxin-insensitive phospholipase C in rat liver membranes. J Cell Biochem 1994; 55:173-81. [PMID: 7916348 DOI: 10.1002/jcb.240550204] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently found the calcium dependent glycogenolytic effect of a pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10(-7)M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30 degrees C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10(-7) M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2-5 min) at 30 degrees C by 10(-7) M pancreastatin, reaching a maximum at 15 min.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departmento de Bioquímica Médica y Biología Molecular, Hospital Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Spain
| | | |
Collapse
|
30
|
Sánchez-Margalet V, Goberna R. Pancreastatin inhibits insulin-stimulated glycogen synthesis but not glycolysis in rat hepatocytes. REGULATORY PEPTIDES 1994; 51:215-20. [PMID: 7938705 DOI: 10.1016/0167-0115(94)90067-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of rat pancreastatin on glycogen synthesis and glycolysis rate was studied in insulin-stimulated rat hepatocytes. We have determined the incorporation of [U-14C]glucose into glycogen as a measurement of the rate of glycogen synthesis; and the production of lactate as a measurement of the rate of glycolysis. Rat pancreastatin by itself did not affect either the rate of glycogen synthesis or glycolysis in rat hepatocytes from 6 h fasted rats. However, pancreastatin inhibited about 45% the insulin-stimulated glycogen synthesis whereas it enhanced the rate of glycolysis of insulin-stimulated hepatocytes about 25%. These effects were found to be dependent on pancreastatin concentration from 10(-11) M to 10(-7) M. Maximal effect was achieved at 10(-8) M and the half-maximal effect was observed at 0.3 nM. Pancreastatin decreased the rate of glycogen synthesis in a wide range of insulin concentrations (10(-12) - 10(-8) M). However, the effect on insulin-stimulated glycolysis was only observed at high concentrations of pancreastatin and insulin. These results suggest a role of pancreastatin in the possible mechanisms involved in insulin resistance.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Medical School, Virgen Macarena Hospital, University of Sevilla, Spain
| | | |
Collapse
|
31
|
Sánchez-Margalet V, Lucas M, Goberna R. Pancreastatin increases free cytosolic Ca2+ in rat hepatocytes, involving both pertussis-toxin-sensitive and -insensitive mechanisms. Biochem J 1993; 294 ( Pt 2):439-42. [PMID: 8373359 PMCID: PMC1134473 DOI: 10.1042/bj2940439] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Freshly isolated rat hepatocytes, loaded with the Ca2+ probe Fluo-3, responded to homologous pancreastatin with a sudden increase in free cytosolic Ca2+ ([Ca2+]i) as well as glucose release. Addition of rat pancreastatin (0.1 microM) to hepatocytes resulted in an increase in [Ca2+]i from 150 nM to 700 nM, which declined back to nearly basal values within 2-3 min. Half-maximal and maximal effects were observed at 0.3 and 100 nM pancreastatin respectively. The increase in [Ca2+]i induced by vasopressin and noradrenaline was very similar in extent (from 150 to 800 nM) to that produced by pancreastatin. Neither the alpha 1-adrenergic blocker prazosin nor the vasopressin antagonist V1 modified the increase in [Ca2+]i induced by pancreastatin. Pig pancreastatin and its 33-49 C-terminal fragment produced about 65 and 75% of the effect of homologous pancreastatin respectively. Glucose production correlated with changes in [Ca2+]i in the same order of potency: vasopressin > rat pancreastatin > pig 33-49 pancreastatin > pig 1-49 pancreastatin. The effect of pancreastatin on [Ca2+]i was decreased by 50% when Ca2+ was omitted from the medium, and totally abolished when hepatocytes were depleted of internal Ca2+ stores by preincubation without Ca2+ and with 2 mM EGTA. When hepatocytes were preincubated for 5 min with PMA, the effects of ATP and noradrenaline were prevented, and those of vasopressin and pancreastatin remained unchanged. The pretreatment of hepatocytes with pertussis toxin diminished the response to pancreastatin and vasopressin. These results suggest that pancreastatin is a new Ca(2+)-mobilizing glycogenolytic hormone acting through a specific receptor which may involve both pertussis-toxin-sensitive and -insensitive GTP-binding regulatory proteins.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Hospital Virgen Macarena, Medical School, University of Sevilla, Spain
| | | | | |
Collapse
|
32
|
Sánchez-Margalet V, Goberna R. Pancreastatin (33-49) enhances the priming effect of glucose in the rat pancreas. EXPERIENTIA 1993; 49:551-2. [PMID: 8335081 DOI: 10.1007/bf01955161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Short-term exposure to glucose increases insulin secretion during subsequent stimulation. We investigated the effect of the new regulatory peptide pancreastatin on this priming effect of glucose in the perfused rat pancreas. Pancreastatin (33-49) at a concentration of 10(-8) M inhibited insulin release when stimulated by glucose at a concentration of 16.7 mM. However, after a second pulse of 16.7 mM glucose, pancreastatin potentiated the priming effect of glucose on insulin secretion. The modulation of insulin secretion by pancreastatin results in a potentiation of the priming effect of glucose in the rat pancreas, suggesting a role for pancreastatin in the adaptation of the B cell to glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Virgen Macarena Hospital, Medical School, University of Sevilla, Spain
| | | |
Collapse
|
33
|
Abstract
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, that is known to be derived from chromogranin A. Since chromogranin A-derived peptides have been shown to control secretion from chromaffin cells, we studied the effect of rat pancreastatin, injected intravenously via portal vein, on plasma catecholamine levels in the anesthetized, laparotomized rat. Rat pancreastatin reversibly decreased plasma epinephrine levels, in a dose-dependent manner, without modifying plasma norepinephrine and dopamine levels. These findings suggest that pancreastatin, released from the gastroenteropancreatic system or derived from chromogranin A, may have a role controlling secretion from the adrenal medulla in surgical stress.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Spain
| | | |
Collapse
|
34
|
Sánchez-Margalet V, Lucas M, Goberna R. Pancreastatin increases cytosolic Ca2+ in insulin secreting RINm5F cells. Mol Cell Endocrinol 1992; 88:129-33. [PMID: 1334006 DOI: 10.1016/0303-7207(92)90017-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the effect of pancreastatin on cytosolic Ca2+ concentration in the insulin secreting cell line RINm5F. Changes in [Ca2+]i induced by pancreastatin were detected by Fluo-3 fluorescence using both flow cytometry and batch analysis measurements, and turned out to be from 90 to 315 nM equivalent to 80% of that caused by ATP, which increased [Ca2+]i from 90 nM to 400 nM. This effect of pancreastatin did not depend on extracellular calcium and was not mediated by alpha-adrenergic receptors since it was not prevented by the alpha-blocker yohimbine. It is concluded that pancreastatin has a role in the homeostasis of free cytosolic calcium in the insulin secreting cell line Rinm5F.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Medical School of Sevilla, Hospital Virgen Macarena, University of Sevilla, Spain
| | | | | |
Collapse
|
35
|
Sánchez-Margalet V, Calvo JR, Lucas M, Goberna R. Pancreastatin and its 33-49 C-terminal fragment inhibit glucagon-stimulated insulin in vivo. GENERAL PHARMACOLOGY 1992; 23:637-8. [PMID: 1397969 DOI: 10.1016/0306-3623(92)90140-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Pancreastatin, a 49 amino acid peptide derived from chromogranin A, has been shown to have an inhibitory effect on insulin secretion in the perfused pancreas and isolated islets. 2. We have studied the effect of pancreastatin on glucagon-stimulated insulin release and the hyperglycemic of glucagon effect in vivo. 3. When administered in the mesenteric vein, pancreastatin inhibited the increase in insulin levels induced by glucagon stimulation, thereby potentiating the hyperglycemic effect of glucagon. 4. This study describes a regulatory role of pancreastatin on glucagon-induced insulin release in vivo.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, Medical School, University of Sevilla, Spain
| | | | | | | |
Collapse
|
36
|
Sánchez V, Lucas M, Calvo JR, Goberna R. Glycogenolytic effect of pancreastatin in isolated rat hepatocytes is mediated by a cyclic-AMP-independent Ca(2+)-dependent mechanism. Biochem J 1992; 284 ( Pt 3):659-62. [PMID: 1377910 PMCID: PMC1132588 DOI: 10.1042/bj2840659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have studied the effect of pig pancreastatin on glucose and lactate production in freshly isolated rat hepatocytes. Pancreastatin stimulated the rate of glucose output, whereas, in contrast with glucagon, it failed to modify the rate of lactate production. The effective concentration of pancreastatin was in the range 0.1-100 nM, with half-maximal rate close to 1 nM. The ability of pancreastatin to increase glucose output was abolished by chelation of the calcium in the medium. By itself, pancreastatin did not increase cyclic AMP (cAMP) levels and had no influence on cAMP levels in glucagon-stimulated hepatocytes. Our results point out a possible role of pancreastatin in glycogenolysis. This appears to be mediated by a cAMP-independent Ca(2+)-dependent mechanism.
Collapse
Affiliation(s)
- V Sánchez
- Department of Medical Biochemistry and Molecular Biology, Medical School, University of Sevilla, Spain
| | | | | | | |
Collapse
|
37
|
Sánchez V, Goberna R, Calvo JR. Glycogenolytic effect of vasoactive intestinal peptide in the rat in vivo. EXPERIENTIA 1991; 47:625-6. [PMID: 2065763 DOI: 10.1007/bf01949891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of VIP (300 pmol/kg), injected via the portal vein, on the glycogen content of the liver and on glycemia, were studied in the rat in vivo. VIP enhanced glycogenolysis and caused hyperglycemia in a time-dependent manner.
Collapse
Affiliation(s)
- V Sánchez
- Department of Medical Biochemistry and Molecular Biology, Medical School, University of Sevilla, Spain
| | | | | |
Collapse
|
38
|
Abstract
Pancreastatin is a 49 amino acid peptide originally isolated from porcine pancreas on the basis of its C-terminal glycinamide as isolation criterion. It is derived by proteolytic processing from chromogranin A, an acidic protein component of secretory granules in endocrine and neuronal cells. The primary structures of human, porcine, bovine and rat pancreastatin have been determined on the protein or cDNA level and show 70% sequence homology. By immunocytochemistry, pancreastatin has been detected in the pituitary, adrenal gland, pancreas, CNS and throughout the gastrointestinal tract. In pancreatic islets, pancreastatin is co-localized with insulin, glucagon and somatostatin. The principle biological activities of this peptide are: inhibition of insulin release and of exocrine pancreatic secretion. These effects which can be assigned to the amidated C-terminal part of the molecule have been demonstrated in several species. Whether or not pancreastatin can be classified as a novel peptide hormone that under physiological conditions plays a role in the regulation of the endocrine and exocrine pancreas, is still a matter of controversy.
Collapse
Affiliation(s)
- W E Schmidt
- Department of Medicine, Georg-August-University of Göttingen, Germany
| | | |
Collapse
|