1
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Buczyńska A, Grzybowska-Chlebowczyk U, Pawlicki K. IgE-Dependent Food Sensitisation and Its Role in Clinical and Laboratory Presentation of Paediatric Inflammatory Bowel Disease. Nutrients 2023; 15:nu15081804. [PMID: 37111022 PMCID: PMC10145321 DOI: 10.3390/nu15081804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
The rising prevalence of inflammatory bowel disease (IBD) and food allergies and their partially overlapping mechanisms such as microbiome diversity reduction raise questions about the role of allergies in IBD. While data on their comorbidity are available, analysis of IgE-sensitization's influence on the clinical presentation of IBD is lacking and is the aim of this study. Histories of 292 children with newly diagnosed IBD (173 cases of ulcerative colitis, 119 cases of Crohn's disease) were analyzed. Disease age of onset, activity, location, behaviour, and anthropometric and laboratory parameters were tested for its dependence on the presence of chosen IgE sensitization markers. A.o. Chi2, OR and phi coefficient were assessed. In Crohn's disease (CD), elevated total IgE (tIgE) correlated with weight loss, rectal bleeding, ASCA IgG positivity (φ = 0.19 for all) and negatively correlated with complicated disease behaviour (φ = -0.19). TIgE > 5 × reference range correlated with being underweight (φ = 0.2), ASCA IgG positivity (φ = 0.3), ASCA double (IgA and IgG) positivity (φ = 0.25) and elevated total IgG (φ = 0.18). The presence of specific IgEs (sIgE) correlated with extraintestinal manifestations of IBD (φ = 0.19): Egg white sIgE correlated with upper GI involvement (L4b) (φ = 0.26), severe growth impairment (φ = 0.23) and colonic mucosal eosinophilia (φ = 0.19). In ulcerative colitis, decreased IgA correlated with egg white sIgE (φ = 0.3), as well as the presence of any (φ = 0.25) or multiple sIgEs (φ = 0.2); the latter correlated also with elevated IgG (φ = 0.22), fever (φ = 0.18), abdominal pain (φ = 0.16) and being underweight (φ = 0.15). Cow's milk sIgE correlated positively with growth impairment (φ = 0.15) and elevated IgG (φ = 0.17) and negatively with extensive colitis (φ = -0.15). Pancolitis correlated negatively with sIgE presence (φ = -0.15). In summary, single moderate and numerous weak but interesting relationships were observed.
Collapse
Affiliation(s)
- Anna Buczyńska
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Krzysztof Pawlicki
- Department of Biophysics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Zhao Q, Zhang T, Yang H. ScRNA-seq identified the metabolic reprogramming of human colonic immune cells in different locations and disease states. Biochem Biophys Res Commun 2022; 604:96-103. [PMID: 35303685 DOI: 10.1016/j.bbrc.2022.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
Abstract
Different regions and states of the human colon are likely to have a distinct influence on immune cell functions. Here we studied the immunometabolic mechanisms for spatial immune specialization and dysregulated immune response during ulcerative colitis at single-cell resolution. We revealed that the macrophages and CD8+ T cells in the lamina propria of the human colon possessed an effector phenotype and were more activated, while their lipid metabolism was suppressed compared with those in the epithelial. Also, IgA+ plasma cells accumulated in lamina propria of the sigmoid colon were identified to be more metabolically activated versus those in the cecum and transverse colon, and the improved metabolic activity was correlated with the expression of CD27. In addition to the immunometabolic reprogramming caused by spatial localization colon, we found dysregulated cellular metabolism was related to the impaired immune functions of macrophages and dendritic cells in patients with ulcerative colitis. The cluster of OSM+ inflammatory monocytes was also identified to play its role in resistance to anti-TNF treatment, and we explored targeted metabolic reactions that could reprogram them to a normal state. Altogether, this study revealed a landscape of metabolic reprogramming of human colonic immune cells in different locations and disease states, and offered new insights into treating ulcerative colitis by immunometabolic modulation.
Collapse
Affiliation(s)
- Qiuchen Zhao
- College of Life Sciences, Wuhan University, NO.299 Ba Yi Avenue, Wuchang, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Tong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Hao Yang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Li T, Liu W, Hui W, Shi T, Liu H, Feng Y, Gao F. Integrated Analysis of Ulcerative Colitis Revealed an Association between PHLPP2 and Immune Infiltration. DISEASE MARKERS 2022; 2022:4983471. [PMID: 35308140 PMCID: PMC8931176 DOI: 10.1155/2022/4983471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2 overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial-mesenchymal transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0.04), M0 macrophages (P = 0.01), and activated mast cells (P < 0.01) was significantly greater than that of the control group. The Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells (rho = 0.62, P = 0.013) and Tregs (rho = 0.55, P = 0.03), but negatively correlated with those of activated mast cells (rho = -0.8, P < 0.01) and macrophages (rho = -0.73, P < 0.01). These results indicate that PHLPP2 is associated with immune cells in the pathogenesis of UC, as well as provide new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Ting Li
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weidong Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Wenjia Hui
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Tian Shi
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Huan Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Yan Feng
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Feng Gao
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| |
Collapse
|
5
|
Penrose HM, Iftikhar R, Collins ME, Toraih E, Ruiz E, Ungerleider N, Nakhoul H, Flemington EF, Kandil E, Shah SB, Savkovic SD. Ulcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapy. Sci Rep 2021; 11:9010. [PMID: 33907256 PMCID: PMC8079702 DOI: 10.1038/s41598-021-88489-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their association with treatment outcomes. The global immune cell landscape of UC tissue included increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and cellular signaling. We identified a specific transcriptional signature of one hundred DEGs (UC100) that distinctly separated UC inflamed from uninflamed transcriptomes. Several UC100 DEGs, with unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders to both therapies of which four had significant predictive power to treatment outcome. We demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC signature across cohorts and a UC resistant signature with predictive performance to biologic therapy outcome.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Eman Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Shamita B Shah
- Division of Gastroenterology, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M, Waldman J, Sud M, Andrews E, Velonias G, Haber AL, Jagadeesh K, Vickovic S, Yao J, Stevens C, Dionne D, Nguyen LT, Villani AC, Hofree M, Creasey EA, Huang H, Rozenblatt-Rosen O, Garber JJ, Khalili H, Desch AN, Daly MJ, Ananthakrishnan AN, Shalek AK, Xavier RJ, Regev A. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell 2020; 178:714-730.e22. [PMID: 31348891 DOI: 10.1016/j.cell.2019.06.029] [Citation(s) in RCA: 763] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/25/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and co-regulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.
Collapse
Affiliation(s)
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Department of Molecular Biology, MGH, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Keri M Sullivan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Grace Burgin
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Daniel B Graham
- Department of Molecular Biology, MGH, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Rebecca H Herbst
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Malika Sud
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Elizabeth Andrews
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Gabriella Velonias
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | | | - Sanja Vickovic
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Junmei Yao
- Center for Computational and Integrative Biology, MGH, Boston, MA, USA
| | | | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | | | - Hailiang Huang
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Analytical and Translational Genetics Unit, MGH, Boston, MA, USA
| | | | - John J Garber
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Hamed Khalili
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - A Nicole Desch
- Broad Institute, Cambridge, MA, USA; Center for Computational and Integrative Biology, MGH, Boston, MA, USA
| | - Mark J Daly
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Analytical and Translational Genetics Unit, MGH, Boston, MA, USA; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA.
| | - Alex K Shalek
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Department of Molecular Biology, MGH, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Center for Computational and Integrative Biology, MGH, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Wechsler JB, Szabo A, Hsu CL, Krier-Burris R, Schroeder H, Wang MY, Carter R, Velez T, Aguiniga LM, Brown JB, Miller ML, Wershil BK, Barrett TA, Bryce PJ. Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis. Mucosal Immunol 2018; 11:861-870. [PMID: 29363669 PMCID: PMC5976516 DOI: 10.1038/mi.2017.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/16/2017] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) patients exhibit elevated histamine, but how histamine exacerbates disease is unclear as targeting histamine 1 receptor (H1R) or H2R is clinically ineffective. We hypothesized that histamine functioned instead through the other colon-expressed histamine receptor, H4R. In humans, UC patient biopsies exhibited increased H4R RNA and protein expression over control tissue, and immunohistochemistry showed that H4R was in proximity to immunopathogenic myeloperoxidase-positive neutrophils. To characterize this association further, we employed both the oxazolone (Ox)- and dextran sulfate sodium (DSS)-induced experimental colitis mouse models and also found upregulated H4R expression. Mast cell (MC)-derived histamine and H4R drove experimental colitis, as H4R-/- mice had lower symptom scores, neutrophil-recruitment mediators (colonic interleukin-6 (IL-6), CXCL1, CXCL2), and mucosal neutrophil infiltration than wild-type (WT) mice, as did MC-deficient KitW-sh/W-sh mice reconstituted with histidine decarboxylase-deficient (HDC-/-) bone marrow-derived MCs compared with WT-reconstituted mice; adaptive responses remained intact. Furthermore, Rag2-/- × H4R-/- mice had reduced survival, exacerbated colitis, and increased bacterial translocation than Rag2-/- mice, revealing an innate protective antibacterial role for H4R. Taken together, colonic MC-derived histamine initiates granulocyte infiltration into the colonic mucosa through H4R, suggesting alternative therapeutic targets beyond adaptive immunity for UC.
Collapse
Affiliation(s)
- Joshua B. Wechsler
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alison Szabo
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chia-Lin Hsu
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rebecca Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Holly Schroeder
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ming Y. Wang
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roderick Carter
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Tania Velez
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lizath M. Aguiniga
- Department of Urology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Jeff B. Brown
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mendy L. Miller
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Barry K. Wershil
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Terrence A. Barrett
- Division of Digestive Disease and Nutrition, Department of Medicine, University of Kentucky Health Care, Lexington, KY USA
| | - Paul J. Bryce
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
8
|
Mast Cells Exert Anti-Inflammatory Effects in an IL10 -/- Model of Spontaneous Colitis. Mediators Inflamm 2018; 2018:7817360. [PMID: 29849494 PMCID: PMC5932457 DOI: 10.1155/2018/7817360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mast cells are well established as divergent modulators of inflammation and immunosuppression, but their role in inflammatory bowel disease (IBD) remains to be fully defined. While previous studies have demonstrated a proinflammatory role for mast cells in acute models of chemical colitis, more recent investigations have shown that mast cell deficiency can exacerbate inflammation in spontaneous colitis models, thus suggesting a potential anti-inflammatory role of mast cells in IBD. Here, we tested the hypothesis that in chronic, spontaneous colitis, mast cells are protective. We compared colitis and intestinal barrier function in IL10−/− mice to mast cell deficient/IL10−/− (double knockout (DKO): KitWsh/Wsh × IL10−/−) mice. Compared with IL10−/− mice, DKO mice exhibited more severe colitis as assessed by increased colitis scores, mucosal hypertrophy, intestinal permeability, and colonic cytokine production. PCR array analyses demonstrated enhanced expression of numerous cytokine and chemokine genes and downregulation of anti-inflammatory genes (e.g., Tgfb2, Bmp2, Bmp4, Bmp6, and Bmp7) in the colonic mucosa of DKO mice. Systemic reconstitution of DKO mice with bone marrow-derived mast cells resulted in significant amelioration of IL10−/−-mediated colitis and intestinal barrier injury. Together, the results presented here demonstrate that mast cells exert anti-inflammatory properties in an established model of chronic, spontaneous IBD. Given the previously established proinflammatory role of mast cells in acute chemical colitis models, the present findings provide new insight into the divergent roles of mast cells in modulating inflammation during different stages of colitis. Further investigation of the mechanism of the anti-inflammatory role of the mast cells may elucidate novel therapies.
Collapse
|
9
|
Ileal Pouch Biopsy Triggers Investigation and Diagnosis of Systemic Mastocytosis. ACG Case Rep J 2016; 3:e94. [PMID: 27807556 PMCID: PMC5062667 DOI: 10.14309/crj.2016.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
We report a unique case of systemic mastocytosis (SM) diagnosed in an ileal pouch biopsy obtained from a 44-year-old woman with ulcerative colitis. She presented with intermittent abdominal pain and watery diarrhea that did not respond to antibiotic therapy. The pouch biopsy showed expansion of the lamina propria by aggregates of CD117 and CD25-positive abnormal mast cells. A subsequent bone marrow analysis showed an increase in abnormal mast cells. Based on World Health Organization criteria, she was diagnosed with SM and responded to cromolyn sodium therapy. Systemic mastocytosis can mimic pouchitis, and thus recognition of this condition is important for appropriate clinical management.
Collapse
|
10
|
Vukman KV, Lalor R, Aldridge A, O'Neill SM. Mast cells: new therapeutic target in helminth immune modulation. Parasite Immunol 2016; 38:45-52. [PMID: 26577605 DOI: 10.1111/pim.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.
Collapse
Affiliation(s)
- K V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvarad ter 4., H-1089, Budapest, Hungry.,Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - R Lalor
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - A Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - S M O'Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
11
|
Anfinsen KP, Berghoff N, Priestnall SL, Suchodolski JS, Steiner JM, Allenspach K. Urinary and faecal N-methylhistamine concentrations do not serve as markers for mast cell activation or clinical disease activity in dogs with chronic enteropathies. Acta Vet Scand 2014; 56:90. [PMID: 25528646 PMCID: PMC4288550 DOI: 10.1186/s13028-014-0090-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background This study sought to correlate faecal and urinary N-methylhistamine (NMH) concentrations with resting versus degranulated duodenal mast cell numbers in dogs with chronic enteropathies (CE), and investigate correlations between intestinal mast cell activation and clinical severity of disease as assessed by canine chronic enteropathy clinical activity index (CCECAI), and between urinary and faecal NMH concentrations, mast cell numbers, and histopathological scores. Twenty-eight dogs with CE were included. Duodenal biopsies were stained with haematoxylin and eosin (H&E), toluidine blue, and by immunohistochemical labelling for tryptase. Duodenal biopsies were assigned a histopathological severity score, and duodenal mast cell numbers were counted in five high-power fields after metachromatic and immunohistochemical staining. Faecal and urinary NMH concentrations were measured by gas chromatography–mass spectrometry. Results There was no correlation between the CCECAI and faecal or urinary NMH concentrations, mast cell numbers, or histopathological score – or between faecal or urinary NMH concentration and mast cell numbers. Post hoc analysis revealed a statistically significant difference in toluidine blue positive mast cells between two treatment groups (exclusion diet with/without metronidazole versus immunosuppression (IS)), with higher numbers among dogs not requiring IS. Conclusion Faecal and urinary NMH concentrations and duodenal mast cell numbers were not useful indicators of severity of disease as assessed by the CCECAI or histological evaluation. The number of duodenal mast cells was higher in dogs that did not need IS, i.e. in dogs responding to an exclusion diet (with/without metronidazole), than in dogs requiring IS. Further studies comparing the role of mast cells in dogs with different forms of CE are needed.
Collapse
|
12
|
Brenner SA, Zacheja S, Schäffer M, Feilhauer K, Bischoff SC, Lorentz A. Soluble CD14 is essential for lipopolysaccharide-dependent activation of human intestinal mast cells from macroscopically normal as well as Crohn's disease tissue. Immunology 2014; 143:174-83. [PMID: 24697307 DOI: 10.1111/imm.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells are now considered sentinels in immunity. Given their location underneath the gastrointestinal barrier, mast cells are entrusted with the task of tolerating commensal microorganisms and eliminating potential pathogens in the gut microbiota. The aim of our study was to analyse the responsiveness of mast cells isolated from macroscopically normal and Crohn's disease-affected intestine to lipopolysaccharide (LPS). To determine the LPS-mediated signalling, human intestinal mast cells were treated with LPS alone or in combination with soluble CD14 due to their lack of surface CD14 expression. LPS alone failed to stimulate cytokine expression in human intestinal mast cells from both macroscopically normal and Crohn's disease tissue. Upon administration of LPS and soluble CD14, there was a dose- and time-dependent induction of cytokine and chemokine expression. Moreover, CXCL8 and interleukin-1β protein expression was induced in response to activation with LPS plus soluble CD14. Expression of cytokines and chemokines was at similar levels in mast cells from macroscopically normal and Crohn's disease-affected intestine after LPS/soluble CD14 treatment. In conclusion, human intestinal mast cells appear to tolerate LPS per se. The LPS-mediated activation in mast cells may be provoked by soluble CD14 distributed by other LPS-triggered cells at the gastrointestinal barrier.
Collapse
Affiliation(s)
- Sibylle A Brenner
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Kotlyar DS, Shum M, Hsieh J, Blonski W, Greenwald DA. Non-pulmonary allergic diseases and inflammatory bowel disease: A qualitative review. World J Gastroenterol 2014; 20:11023-11032. [PMID: 25170192 PMCID: PMC4145746 DOI: 10.3748/wjg.v20.i32.11023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/06/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
While the etiological underpinnings of inflammatory bowel disease (IBD) are highly complex, it has been noted that both clinical and pathophysiological similarities exist between IBD and both asthma and non-pulmonary allergic phenomena. In this review, several key points on common biomarkers, pathophysiology, clinical manifestations and nutritional and probiotic interventions for both IBD and non-pulmonary allergic diseases are discussed. Histamine and mast cell activity show common behaviors in both IBD and in certain allergic disorders. IgE also represents a key immunoglobulin involved in both IBD and in certain allergic pathologies, though these links require further study. Probiotics remain a critically important intervention for both IBD subtypes as well as multiple allergic phenomena. Linked clinical phenomena, especially sinonasal disease and IBD, are discussed. In addition, nutritional interventions remain an underutilized and promising therapy for modification of both allergic disorders and IBD. Recommending new mothers breastfeed their infants, and increasing the duration of breastfeeding may also help prevent both IBD and allergic diseases, but requires more investigation. While much remains to be discovered, it is clear that non-pulmonary allergic phenomena are connected to IBD in a myriad number of ways and that the discovery of common immunological pathways may usher in an era of vastly improved treatments for patients.
Collapse
|
14
|
Baratelli F, Le M, Gershman GB, French SW. Do mast cells play a pathogenetic role in neurofibromatosis type 1 and ulcerative colitis? Exp Mol Pathol 2014; 96:230-4. [DOI: 10.1016/j.yexmp.2014.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
|
15
|
Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy 2014; 69:273-81. [PMID: 24286351 DOI: 10.1111/all.12330] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/28/2022]
Abstract
Histamine is a biogenic amine with extensive effects on many cell types, mediated by the activation of its four receptors (H1R-H4R). Distinct effects are dependent on receptor subtypes and their differential expression. Within the gastrointestinal tract, histamine is present at relatively high concentrations, particularly during inflammatory responses. In this review, we discuss the immunoregulatory influence of histamine on a number of gastrointestinal disorders, including food allergy, scombroid food poisoning, histamine intolerance, irritable bowel syndrome, and inflammatory bowel disease. It is clear that the effects of histamine on mucosal immune homeostasis are dependent on expression and activity of the four currently known histamine receptors; however, the relative protective or pathogenic effects of histamine on inflammatory processes within the gut are still poorly defined and require further investigation.
Collapse
Affiliation(s)
- S. Smolinska
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- ‘ALL-MED’ Medical Research Institute; Wroclaw Poland
| | - R. Crameri
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos Switzerland
| |
Collapse
|
16
|
Abstract
PURPOSE The intestinal mucosal immune cells such as the mast cells and eosinophils play an important role in the pathogenesis of ulcerative colitis (UC). The aim of present study was to compare the number of mast cells and eosinophils in patients with active and non-active ulcerative colitis. Another purpose was to found whether the number of eosinophils could correlate with number of mast cells in both tested groups. MATERIAL AND METHODS The twenty-five of formalin-fixed, paraffin-embedded tissue specimens of active ulcerative colitis, the twenty of non-active ulcerative colitis and the ten of controls were retrieved from archival material. Tryptase and chymase immunopositive cells were detected using immunohistochemical method. Additionally, the number of mast cells and eosinophils were detected using the most common histochemical methods. RESULTS The number of eosinophils and toluidine blue stained and tryptase immunopositive mast cells was significantly increased in active UC compared to non-active UC. In active stage of UC positive correlation between the number of mast cells stained with toluidine blue and the number of chymase and tryptase immunopositive mast cells were observed. Moreover, the number of eosinophils was significantly correlated with number of mast cells stained with toluidine blue and number of tryptase- and chymase immunopositive mast cells. In non-active stage of UC positive correlation was observed only between the number of mast cells stained with toluidine blue and chymase immunopositive cells and eosinophils. CONCLUSIONS In conclusion, our findings confirmed that mast cells and eosinophils are functionally involved in the course of UC.
Collapse
|
17
|
Accumulation of Mast Cells in the Lesions and Effects of Antiallergic Drugs on the Patients with Inflammatory Bowel Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/714807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathomechanism of inflammatory bowel disease (IBD) has not yet been fully demonstrated. However, it is well known that mast cells are present in the gastrointestinal tract, suggesting that mast cells may take part in it. So, we investigated the number of mast cells in IBD, such as ulcerative colitis (UC) and eosinophilic colitis, and showed that the number of mast cells was increased in the inflammatory lesions. We also presented a case of UC which was treated successfully with an antiallergic drug, tranilast. Furthermore, possible new approaches to treating the disease with immunomodulators including suplatast are introduced. However, our investigations were performed with a limited number of patients with IBD, and additional further studies are required to confirm the findings.
Collapse
|
18
|
Innate immunity modulation by the IL-33/ST2 system in intestinal mucosa. BIOMED RESEARCH INTERNATIONAL 2012; 2013:142492. [PMID: 23484079 PMCID: PMC3591220 DOI: 10.1155/2013/142492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Innate immunity prevents pathogens from entering and spreading within the body. This function is especially important in the gastrointestinal tract and skin, as these organs have a large surface contact area with the outside environment. In the intestine, luminal commensal bacteria are necessary for adequate food digestion and play a crucial role in tolerance to benign antigens. Immune system damage can create an intestinal inflammatory response, leading to chronic disease including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) is an IBD of unknown etiology with increasing worldwide prevalence. In the intestinal mucosa of UC patients, there is an imbalance in the IL-33/ST2 axis, an important modulator of the innate immune response. This paper reviews the role of the IL-33/ST2 system in innate immunity of the intestinal mucosa and its importance in inflammatory bowel diseases, especially ulcerative colitis.
Collapse
|
19
|
Surgical Therapy of End-Stage Heart Failure: Understanding Cell-Mediated Mechanisms Interacting with Myocardial Damage. Int J Artif Organs 2011; 34:529-45. [DOI: 10.5301/ijao.5000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 01/19/2023]
Abstract
Worldwide, cardiovascular disease results in an estimated 14.3 million deaths per year, giving rise to an increased demand for alternative and advanced treatment. Current approaches include medical management, cardiac transplantation, device therapy, and, most recently, stem cell therapy. Research into cell-based therapies has shown this option to be a promising alternative to the conventional methods. In contrast to early trials, modern approaches now attempt to isolate specific stem cells, as well as increase their numbers by means of amplifying in a culture environment. The method of delivery has also been improved to minimize the risk of micro-infarcts and embolization, which were often observed after the use of coronary catheterization. The latest approach entails direct, surgical, transepicardial injection of the stem cell mixture, as well as the use of tissue-engineered meshes consisting of embedded progenitor cells.
Collapse
|
20
|
Wallon C, Persborn M, Jönsson M, Wang A, Phan V, Lampinen M, Vicario M, Santos J, Sherman PM, Carlson M, Ericson AC, McKay DM, Söderholm JD. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 2011; 140:1597-607. [PMID: 21277851 DOI: 10.1053/j.gastro.2011.01.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/23/2010] [Accepted: 01/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Altered intestinal barrier function has been implicated in the pathophysiology of ulcerative colitis (UC) in genetic, functional, and epidemiological studies. Mast cells and corticotropin-releasing factor (CRF) regulate the mucosal barrier in human colon. Because eosinophils are often increased in colon tissues of patients with UC, we assessed interactions among mast cells, CRF, and eosinophils in the mucosal barrier of these patients. METHODS Transmucosal fluxes of protein antigens (horseradish peroxidase) and paracellular markers ((51)Cr-EDTA, fluorescein isothiocyanate-dextran 4000) were studied in noninflamed, colonic mucosal biopsy samples collected from 26 patients with UC and 53 healthy volunteers (controls); samples were mounted in Ussing chambers. We also performed fluorescence and electron microscopy of human tissue samples, assessed isolated eosinophils, and performed mechanistic studies using in vitro cocultured eosinophils (15HL-60), mast cells (HMC-1), and a colonic epithelial cell line (T84). RESULTS Colon tissues from patients with UC had significant increases in permeability to protein antigens compared with controls. Permeability was blocked by atropine (a muscarinic receptor antagonist), α-helical CRF(9-41) (a CRF receptor antagonist), and lodoxamide (a mast-cell stabilizer). Eosinophils were increased in number in UC tissues (compared with controls), expressed the most M2 and M3 muscarinic receptors of any mucosal cell type, and had immunoreactivity to CRF. In coculture studies, carbachol activation of eosinophils caused production of CRF and activation of mast cells, which increased permeability of T84 epithelial cells to macromolecules. CONCLUSIONS We identified a neuroimmune intercellular circuit (from cholinergic nerves, via eosinophils to mast cells) that mediates colonic mucosal barrier dysfunction in patients with UC. This circuit might exacerbate mucosal inflammation.
Collapse
Affiliation(s)
- Conny Wallon
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cho EY, Choi SC, Lee SH, Ahn JY, Im LR, Kim JH, Xin M, Kwon SU, Kim DK, Lee YM. Nafamostat mesilate attenuates colonic inflammation and mast cell infiltration in the experimental colitis. Int Immunopharmacol 2011; 11:412-7. [DOI: 10.1016/j.intimp.2010.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/25/2010] [Accepted: 12/10/2010] [Indexed: 01/14/2023]
|
22
|
Albert EJ, Duplisea J, Dawicki W, Haidl ID, Marshall JS. Tissue eosinophilia in a mouse model of colitis is highly dependent on TLR2 and independent of mast cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:150-60. [PMID: 21224053 DOI: 10.1016/j.ajpath.2010.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/22/2010] [Accepted: 09/09/2010] [Indexed: 12/20/2022]
Abstract
The mechanisms initiating eosinophil influx into sites of inflammation have been well studied in allergic disease but are poorly understood in other settings. This study examined the roles of TLR2 and mast cells in eosinophil accumulation during a nonallergic model of eosinophilia-associated colitis. TLR2-deficient mice (TLR2(-/-)) developed a more severe colitis than wild-type mice in the dextran sodium sulfate (DSS) model. However, they had significantly fewer eosinophils in the submucosa of the cecum (P < 0.01) and mid-colon (P < 0.01) than did wild-type mice after DSS treatment. Decreased eosinophilia in TLR2(-/-) mice was associated with lower levels of cecal CCL11 (P < 0.01). Peritoneal eosinophils did not express TLR2 protein, but TLR2 ligand injection into the peritoneal cavity induced local eosinophil recruitment, indicating that TLR2 activation of other cell types can mediate eosinophil recruitment. After DSS treatment, mast cell-deficient (Kit(W-sh/W-sh)) mice had similar levels of intestinal tissue eosinophilia were observed as those in wild-type mice. However, mast cell-deficient mice were partially protected from DSS-induced weight loss, an effect that was reversed by mast cell reconstitution. Overall, this study indicates a critical role for indirect TLR2-dependent pathways, but not mast cells, in the generation of eosinophilia in the large intestine during experimental colitis and has important implications for the regulation of eosinophils at mucosal inflammatory sites.
Collapse
Affiliation(s)
- Eric J Albert
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
23
|
Mast cell hyperplasia, B-cell malignancy, and intestinal inflammation in mice with conditional expression of a constitutively active kit. Blood 2010; 117:2012-21. [PMID: 21148330 DOI: 10.1182/blood-2008-11-189605] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling through the receptor tyrosine kinase kit controls proliferation and differentiation of hematopoietic precursor cells and mast cells. Somatic point mutations of the receptor that constitutively activate kit signaling are associated with mastocytosis and various hematopoietic malignancies. We generated a Cre/loxP-based bacterial artificial chromosome transgenic mouse model that allows conditional expression of a kit gene carrying the kitD814V mutation (the murine homolog of the most common mutation in human mastocytosis, kitD816V) driven by the kit promoter. Expression of the mutant kit in cells of adult mice, including hematopoietic precursors, caused severe mastocytosis with 100% penetrance at young age frequently associated with additional hematopoietic (mostly B lineage-derived) neoplasms and focal colitis. Restriction of transgene expression to mature mast cells resulted in a similar mast cell disease developing with slower kinetics. Embryonic expression led to a hyperproliferative dysregulation of the erythroid lineage with a high rate of perinatal lethality. In addition, most adult animals developed colitis associated with mucosal mast cell accumulation. Our findings demonstrate that the effects of constitutive kit signaling critically depend on the developmental stage and the state of differentiation of the cell hit by the gain-of-function mutation.
Collapse
|
24
|
Abstract
The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.
Collapse
Affiliation(s)
- David A Hill
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, 19104-4539, USA
| | | |
Collapse
|
25
|
Yu F, Bonaventure P, Thurmond RL. The Future Antihistamines: Histamine H3 and H4 Receptor Ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 709:125-40. [DOI: 10.1007/978-1-4419-8056-4_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
The Role of Immunohistochemistry in Idiopathic Chronic Intestinal Pseudoobstruction (CIPO). Am J Surg Pathol 2009; 33:749-58. [DOI: 10.1097/pas.0b013e31819b381a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Kashiwase Y, Inamura H, Morioka J, Igarashi Y, Kawai-Kowase K, Kurosawa M. Quantitative analysis of mast cells in benign and malignant colonic lesions: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Allergol Immunopathol (Madr) 2009; 36:271-6. [PMID: 19080799 DOI: 10.1016/s0301-0546(08)75222-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Comparison of the number of mast cells in the active stage and that in remission in the same patients with ulcerative colitis with immunohistochemical staining remains to be elucidated, and analysis of the number of mast cells in benign and malignant colonic lesions is insufficient. METHODS Using immunohistochemical methods, morphological examinations of mast cells were undertaken in colonic tissues from 8 patients with ulcerative colitis and 10 patients with colonic primary cancer, which were formalin-fixed and paraffin-embedded. Changes in the number of mast cells in the active stage and in remission in the same patients with ulcerative colitis were investigated. Then, the number of mast cells in malignant tissues and adjacent healthy tissues obtained from the same patients with colonic primary cancer were compared, and finally the number of mast cells was compared among the samples from benign and malignant colonic lesions. RESULTS Accumulation of mast cells was found to be significant in the active stage of ulcerative colitis compared with remission in the same patients. The number of mast cells in colonic primary cancer was significantly increased compared with that in adjacent healthy tissues. The number of mast cells in ulcerative colitis was significantly greater than that in adjacent healthy tissues from patients with colonic primary cancer, irrespective of the stages of ulcerative colitis. CONCLUSIONS We were the first to analyse mast cells in the active stage and in remission in the same patients with ulcerative colitis using immunohisto-chemical methods, and compared the number of mast cells between benign and malignant colonic lesions.
Collapse
|
28
|
Systemic mastocytosis involving the gastrointestinal tract: clinicopathologic and molecular study of five cases. Mod Pathol 2008; 21:1508-16. [PMID: 18931652 DOI: 10.1038/modpathol.2008.158] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic mastocytosis is an uncommon condition characterized by abnormal proliferation of mast cells in one or more organ. The specific D816V KIT mutation is present in most cases. Gastrointestinal symptoms occur commonly but histologic characterization of gastrointestinal involvement is incomplete. The purpose of this study was (1) to describe the clinicopathologic features in five patients with systemic mastocytosis involving the gastrointestinal tract and (2) to determine whether gastrointestinal involvement is associated with the usual D816V mutation or a different mutation. Clinical details were obtained from the hospital of origin or referring pathologist. Histologic features were documented in slides stained with hematoxylin and eosin, mast cell tryptase and CD117. Molecular analysis for the D816V KIT mutation was performed on formalin-fixed paraffin-embedded sections. Symptoms included diarrhea/loose stools (n=5), abdominal pain (n=4), vomiting (n=3) and weight loss (n=3). Other findings included cutaneous lesions of mastocytosis (n=4), malabsorption (n=2), hypoalbuminemia (n=2) and constitutional growth delay (n=1). Sites of gastrointestinal involvement included the colon (n=5), duodenum (n=3) and terminal ileum (n=3). Endoscopic/gross findings included mucosal nodularity (n=4), erosions (n=2) and loss of mucosal folds (n=2). In three patients the endoscopic appearance was considered consistent with inflammatory bowel disease. All cases showed increased mast cell infiltration of the lamina propria, confirmed by immunohistochemistry for mast cell tryptase and CD117. In two cases, mast cells had abundant clear cytoplasmic resembling histiocytes. Marked eosinophil infiltrates were present in four patients, in one patient leading to confusion with eosinophilic colitis. Architectural distortion was noted in three cases. The D816V KIT mutation was present in all four cases tested. In conclusion, gastrointestinal involvement by systemic mastocytosis is characterized by a spectrum of morphologic features that can be mistaken for inflammatory bowel disease, eosinophilic colitis or histiocytic infiltrates. Systemic mastocytosis involving the gastrointestinal tract is associated with the usual D816V KIT mutation.
Collapse
|
29
|
Higuchi H, Hara M, Yamamoto K, Miyamoto T, Kinoshita M, Yamada T, Uchiyama K, Matsumori A. Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 2008; 118:363-72. [PMID: 18606918 DOI: 10.1161/circulationaha.107.741595] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mast cells are powerful producers of multiple cytokines and chemical mediators playing a pivotal role in the pathogenesis of various cardiovascular diseases. We examined the role of mast cells in murine models of heart failure due to viral myocarditis, using 2 strains of mast cell-deficient mice. METHODS AND RESULTS Two strains of mast cell-deficient mice, WBB6F1-Kit(W)/Kit(W-v) (W/W(V)) and WCB6F1-Kitl(Sl)/Kitl(Sl-d) (Sl/Sl(d)), were inoculated with 10 plaque-forming units of the encephalomyocarditis virus intraperitoneally. On day 14 after inoculation, survival of W/W(V) mice was significantly higher than that of their control littermates (77% versus 31%; P=0.03; n=13). On histological examination on day 7, myocardial necrosis and cellular infiltration were significantly less pronounced in W/W(V) and Sl/Sl(d) mice than in their control littermates (area of infiltration, 7.6+/-3.5% versus 29.3+/-15.6%; P=0.002; area of necrosis, 7.6+/-3.5% versus 30.0+/-17.2%; P=0.003; n=10). Histological examination showed more severe changes in mast cell-reconstituted than in -nonreconstituted W/W(V) and Sl/Sl(d) mice. The gene expressions of mast cell proteases were upregulated in the acute phase of viral myocarditis and rose further in the subacute phase of heart failure. Their activation coincided with the development of myocardial necrosis and fibrosis and correlated with the upregulation of gene expression of matrix metalloproteinase-9. The histamine H1-receptor antagonist bepotastine improved encephalomyocarditis viral myocarditis. CONCLUSIONS These observations suggest that mast cells participate in the acute inflammatory reaction and the onset of ventricular remodeling associated with acute viral myocarditis and that the inhibition of their function may be therapeutic in this disease.
Collapse
Affiliation(s)
- Hirokazu Higuchi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 2008; 26:705-39. [PMID: 18370925 DOI: 10.1146/annurev.immunol.26.021607.090320] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are many parallels between allergic and autoimmune responses. Both are considered hypersensitivity responses: pathologies that are elicited by an exuberant reaction to antigens that do not pose any inherent danger to the organism. Although mast cells have long been recognized as central players in allergy, only recently has their role in autoimmunity become apparent. Because of the commonalities of these responses, much of what we have learned about the underlying mast cell-dependent mechanisms of inflammatory damage in allergy and asthma can be used to understand autoimmunity. Here we review mast cell biology in the context of autoimmune disease. We discuss the huge diversity in mast cell responses that can exert either proinflammatory or antiinflammatory activity. We also consider the myriad factors that cause one response to predominate over another in a particular immune setting.
Collapse
Affiliation(s)
- Blayne A Sayed
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
31
|
Ierna MX, Scales HE, Saunders KL, Lawrence CE. Mast cell production of IL-4 and TNF may be required for protective and pathological responses in gastrointestinal helminth infection. Mucosal Immunol 2008; 1:147-55. [PMID: 19079172 DOI: 10.1038/mi.2007.16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expulsion of the gastrointestinal nematode Trichinella spiralis is associated with Th2 responses and intestinal inflammation, which correlate with a marked mast cell (MC) response. To address the role of MC-derived cytokines in the induction of protective responses, WBB6F1-KitW/KitW-v (W/W(v)) mice were reconstituted with wild-type, tumor necrosis factor (TNF)-alpha(-/-), or interleukin (IL)-4(-/-) bone marrow (BM) prior to infection with T. spiralis. W/W(v) mice reconstituted with TNF-alpha(-/-) or IL-4(-/-) BM expelled the parasite less efficiently and showed diminished enteropathy, whereas protective responses were normal in W/W(v) mice reconstituted with wild-type BM and were accompanied by intestinal pathology. MC responses were reduced in W/W(v) mice reconstituted with IL-4(-/-) BM and to a lesser extent when reconstituted with TNF-alpha(-/-). These results suggest that MC-derived IL-4 and TNF may regulate the induction of protective Th2 responses and intestinal inflammation associated with the expulsion of T. spiralis. Significantly, these studies suggest a role for MC-derived cytokines as autocrine growth factors.
Collapse
Affiliation(s)
- M X Ierna
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | | | | | | |
Collapse
|
32
|
Peterson CGB, Sangfelt P, Wagner M, Hansson T, Lettesjö H, Carlson M. Fecal levels of leukocyte markers reflect disease activity in patients with ulcerative colitis. Scandinavian Journal of Clinical and Laboratory Investigation 2008; 67:810-20. [PMID: 18034391 DOI: 10.1080/00365510701452838] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE A prominent feature of inflammatory bowel disease (IBD) is the presence of inflammatory cells in the gut mucosa, and which contribute to the ongoing inflammatory process. The aim of the study was to evaluate fecal neutrophil, eosinophil, mast cell and macrophage markers in the assessment of disease activity in patients with ulcerative colitis (UC). METHODS Twenty-eight patients with active UC; 4 with proctitis, 16 with left-side colitis and 8 with total colitis, were included in the study. Patient history, endoscopy and histopathology were examined and fecal and serum samples were evaluated at inclusion and after 4 and 8 weeks of treatment. Fecal samples were analysed for myeloperoxidase (MPO), eosinophil protein X (EPX), mast cell tryptase, IL-1beta and TNF-alpha using immunoassays. Blood samples were analysed for MPO, EPX, C-reactive protein, orosomucoid and leucocyte counts. RESULTS Fecal MPO and IL-1beta levels were elevated in all patients at inclusion despite different disease extensions. Striking reductions in fecal levels of MPO, EPX, tryptase and IL-1beta were observed after 4 weeks of treatment in 20/28 patients with complete remission after 8 weeks. No further reductions were seen in 20/27 patients at 8 weeks. Endoscopic score correlated to IL-1beta at all visits (p<0.01), to MPO at visits 2 and 3 (p<0.05, p<0.001), EPX at visit 2 (p<0.05) and tryptase at visit 3 (p<0.01). Levels of fecal markers also related to histological indices of the disease. CONCLUSIONS Measurements of fecal MPO, EPX and IL-1beta could be objective complements to endoscopical and histopathological evaluations in the daily care of patients with UC.
Collapse
Affiliation(s)
- C G B Peterson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Immunoreactivity for CD25 in gastrointestinal mucosal mast cells is specific for systemic mastocytosis. Am J Surg Pathol 2007; 31:1669-76. [PMID: 18059223 DOI: 10.1097/pas.0b013e318078ce7a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic mastocytosis (SM) is characterized by the accumulation of neoplastic mast cells in bone marrow and other organs. Gastrointestinal (GI) symptoms are common in both SM and cutaneous mastocytosis [urticaria pigmentosa (UP)], and are usually caused by the release of histamine and other inflammatory mediators. Occasionally, neoplastic mast cells may also directly infiltrate the GI tract. Previous studies have suggested that enumeration of the mast cells in GI biopsies may help establish the diagnosis of SM. However, mast cells have been reported to be increased in various inflammatory diseases, and mast cell density has not been systematically evaluated in other GI disorders. Recently, expression of CD25 by mast cells in bone marrow has been shown to be specific for SM. The purpose of this study was (1) to quantitate and compare mast cells in mucosal biopsies from patients with SM involving the GI tract, UP with GI symptoms, and a control group of diverse inflammatory disorders, and (2) to determine whether immunostaining for CD25 can be used to distinguish neoplastic from reactive mast cells in GI biopsies. Seventeen GI biopsies from 6 patients with SM; 17 GI biopsies from 5 patients with UP; and 157 control cases including 10 each normal stomach, duodenum, terminal ileum, and colon, Helicobacter pylori gastritis, bile reflux gastropathy, peptic duodenitis, celiac disease, Crohn disease, ulcerative colitis, lymphocytic colitis, and collagenous colitis, 20 biopsies from 16 patients with irritable bowel syndrome, 8 biopsies from 5 patients with parasitic infections, and 9 biopsies from 7 patients with eosinophilic gastroenteritis were immunostained for mast cell tryptase, c-kit (CD117), and CD25. Mucosal mast cells were quantitated, and the presence or absence of CD25 expression on mast cells was determined. In SM patients, mast cells in the small intestine and colon numbered >100/high-power field (HPF) in nearly all cases (mean 196/HPF; range 74 to 339). This was significantly higher than in GI biopsies from UP patients (mean 17/HPF; range 8 to 32, P<0.0001) and all inflammatory diseases (P<0.01). Mast cell density in other disorders ranged from a mean of 12/HPF in H. pylori gastritis to 47/HPF in parasitic infections. Interestingly, all SM biopsies (and none of the other cases) contained aggregates or confluent sheets of mast cells. In addition, mast cells in all SM cases were positive for CD25, whereas GI mucosal mast cells in UP and all other control cases were negative. In conclusion, quantitation of mast cells can be helpful to diagnose SM in GI mucosal biopsies, although mast cells are also markedly increased in parasitic infections. Aggregates or sheets of mast cells are only seen in SM. Immunoreactivity for CD25 in GI mucosal mast cells is specific for SM and can be used to confirm the diagnosis.
Collapse
|
34
|
Sherman MA. The role of mast cells in bacterial enteritis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:399-401. [PMID: 17569775 PMCID: PMC1934547 DOI: 10.2353/ajpath.2007.070501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Melanie A Sherman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 143 Whitehead Research Building, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Farhadi A, Fields JZ, Keshavarzian A. Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: Stress, intestinal hyperpermeability and inflammation. World J Gastroenterol 2007; 13:3027-30. [PMID: 17589915 PMCID: PMC4172606 DOI: 10.3748/wjg.v13.i22.3027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro-intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.
Collapse
|
36
|
Bedeir A, Jukic DM, Wang L, Mullady DK, Regueiro M, Krasinskas AM. Systemic Mastocytosis Mimicking Inflammatory Bowel Disease: A Case Report and Discussion of Gastrointestinal Pathology in Systemic Mastocytosis. Am J Surg Pathol 2006; 30:1478-82. [PMID: 17063092 DOI: 10.1097/01.pas.0000213310.51553.d7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) symptoms are present in up to 80% of patients with systemic mastocytosis (SM). GI symptoms include mainly abdominal pain, diarrhea, nausea, and vomiting. It is believed that most of the GI symptoms are due to the secondary effect of mast cell mediators on the GI tract. Direct involvement of the GI tract by neoplastic mast cell infiltration has not been well documented. We report a case of SM that initially mimicked inflammatory bowel disease based on clinical, radiographic, endoscopic, and histopathologic findings. On routine histologic sections of small bowel and colonic mucosal biopsies, there was expansion of the lamina propria by mononuclear inflammatory cells, foci of erosions with associated acute inflammation, and evidence of chronic mucosal injury with architectural distortion and gland foreshortening. Only on repeat biopsies and with ancillary tests for mast cells was a diagnosis of SM made, with extensive involvement of the GI tract. This is the first reported case of SM presenting as and mimicking inflammatory bowel disease. It is critical that clinicians and pathologists are aware that neoplastic mast cells in patients with SM can infiltrate the mucosa throughout the GI tract and that this infiltration can lead to symptoms and findings that can mimic inflammatory bowel disease.
Collapse
Affiliation(s)
- Ahmed Bedeir
- Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang M, Venable JD, Thurmond RL. The histamine H4 receptor in autoimmune disease. Expert Opin Investig Drugs 2006; 15:1443-52. [PMID: 17040202 DOI: 10.1517/13543784.15.11.1443] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Histamine exerts its actions through four known receptors. The recently cloned histamine receptor, H4R, has been shown to have a role in chemotaxis and mediator release in various types of immune cells including mast cells, eosinophils, dendritic cells and T cells. H4R antagonists have been shown to have anti-inflammatory properties and efficacy in a number of disease models, such as those for asthma and colitis in vivo. Recently, H4R antagonists have been developed with high receptor affinity and specificity, which make them good tools for further characterisation of the receptor in animal models and, eventually, in humans. Histamine and the cells that produce it, such as mast cells and basophils, have long been thought to be involved in allergic conditions but there has recently been recognition that they may also play a role in various autoimmune diseases. Given this and the fact that the H4R has function in mast cells, dendritic cells and T cells, antagonists for the receptor may be useful in treating autoimmune diseases in addition to allergy.
Collapse
Affiliation(s)
- Mai Zhang
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
38
|
YOSHIDA N, ISOZAKI Y, TAKAGI T, TAKENAKA S, UCHIKAWA R, ARIZONO N, YOSHIKAWA T, OKANOUE T. Review article: anti-tryptase therapy in inflammatory bowel disease. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1746-6342.2006.00053.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Bischoff SC, Gebhardt T. Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 579:177-208. [PMID: 16620019 DOI: 10.1007/0-387-33778-4_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan C Bischoff
- Division of Clinical Nutrition/Prevention and Immunology, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
40
|
Farhadi A, Keshavarzian A, Van de Kar LD, Jakate S, Domm A, Zhang L, Shaikh M, Banan A, Fields JZ. Heightened responses to stressors in patients with inflammatory bowel disease. Am J Gastroenterol 2005; 100:1796-804. [PMID: 16086717 DOI: 10.1111/j.1572-0241.2005.50071.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Several studies suggest that stressful situations (stressors) worsen the course of inflammatory bowel disease (IBD), but the mechanism is not known. Based on several lines of evidence, we hypothesized that psychosocial stress activates the brain-gut axis (BGA) and mucosal mast cells (MC), and activated MC produce proinflammatory cytokines. To test this hypothesis, we determined whether stressor-induced activation of BGA is exaggerated in IBD patients. METHODS Stress was induced in 15 IBD patients who were in remission (inactive IBD) and in seven controls by a widely used stressor, the cold pressor test (CPT), daily for five consecutive days. Induction of stress was confirmed objectively by measurement of stress hormones (serum cortisol and ACTH), and hemodynamic parameters and subjectively by questionnaire. Activation of the BGA by this stressor was assessed by evaluating colonic mucosal MC histology and degranulation, using electron microscopy (EM). The effects of the stressor on the intestinal mucosa were assessed by changes in inflammatory cell histology, epithelial mitochondria (EM), and oxidative tissue injury (assays for protein oxidation). RESULTS In both study groups, the stressor resulted in (1) increased levels of stress hormones, (2) the expected changes in hemodynamic parameters, (3) activation and degranulation of MC, (4) mitochondrial damage to epithelial cells, and (5) mucosal protein oxidation. These changes were more marked in IBD patients. CONCLUSIONS The heightened response to the stressors and the greater epithelial damage in IBD patients suggests that stress-induced activation of the BGA and of mucosal MC is important in the initiation and/or flare up of IBD.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Department of Internal Medicine, Section of Gastroenterology and Nutrition, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kitaura-Inenaga K, Hara M, Higuchi K, Yamamoto K, Yamaki A, Ono K, Nakano A, Kinoshita M, Sasayama S, Matsumori A. Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J 2004; 67:881-4. [PMID: 14578624 DOI: 10.1253/circj.67.881] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study examined the gene expression of mouse mast cell proteases to clarify their role in the pathophysiology of viral myocarditis. Male DBA/2 mice were inoculated intraperitoneally with the encephalomyocarditis virus and the gene expression of mast cell chymase, mouse mast cell protease (mMCP)-4 and -5, and tryptase, mMCP-6, matrix metalloproteinase (MMP)-9 and type-I procollagen was measured by real-time quantitative RT-PCR analysis. The gene expression of mMCP-4, -5 and -6 mRNA was increased at 5 days, and continued to increase to day 14, coinciding with a prominent inflammatory reaction and extensive myocardial necrosis and fibrosis. The gene expression of MMP-9 was also increased, and there was a significant correlation between upregulation of mast cell proteases and MMP-9. The gene expression of type-I procollagen was increased at 5 days and continued to increase to day 14, suggesting that a fibrotic process had already begun during the acute stage of viral myocarditis. These findings suggest that mast cell chymase and tryptase participate in the acute inflammation and remodeling process of viral myocarditis.
Collapse
|
42
|
Abstract
The gastrointestinal tract is a rich source of mast cells with an enormous surface area that permits a high degree of interaction between the mast cell and the intestinal contents. The active metabolic products of the mast cell influence gastrointestinal secretion, absorption, and motility through paracrine effects of local mast cell activation and also cause systemic effects through the release of cellular products into the bloodstream. Recent advances in our knowledge of the immune system and the recognition that the gastrointestinal immune function might be partially mediated through gastrointestinal mucosal mast cells has opened mast cell research to the field of gastroenterology. Local gastrointestinal proliferation of mast cells in response to recognized or obscure stimuli can alter gastrointestinal function and induce systemic symptoms. Symptoms can arise from the increased number of mast cells, overproduction of specific mast cell mediators, and hyperactivity of the enteric nervous system that induces mast cell activation. The diseases mentioned in this review represent a small proportion of areas where mast cell function might play an important role in the response to disease and generation of symptoms.
Collapse
Affiliation(s)
- Ali A Siddiqui
- Oklahoma Foundation for Digestive Research, 711 Stanton L. Young Boulevard, Suite 619, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
43
|
Abstract
Historically, mast cells were known as a key cell type involved in type I hypersensitivity. Until last two decades, this cell type was recognized to be widely involved in a number of non-allergic diseases including inflammatory bowel disease (IBD). Markedly increased numbers of mast cells were observed in the mucosa of the ileum and colon of patients with IBD, which was accompanied by great changes of the content in mast cells such as dramatically increased expression of TNF-α, IL-16 and substance P. The evidence of mast cell degranulation was found in the wall of intestine from patients with IBD with immunohistochemistry technique. The highly elevated histamine and tryptase levels were detected in mucosa of patients with IBD, strongly suggesting that mast cell degranulation is involved in the pathogenesis of IBD. However, little is known of the actions of histamine, tryptase, chymase and carboxypeptidase in IBD. Over the last decade, heparin has been used to treat IBD in clinical practice. The low molecular weight heparin (LMWH) was effective as adjuvant therapy, and the patients showed good clinical and laboratory response with no serious adverse effects. The roles of PGD2, LTC4, PAF and mast cell cytokines in IBD were also discussed. Recently, a series of experiments with dispersed colon mast cells suggested there should be at least two pathways in man for mast cells to amplify their own activation-degranulation signals in an autocrine or paracrine manner. The hypothesis is that mast cell secretogogues induce mast cell degranulation, release histamine, then stimulate the adjacent mast cells or positively feedback to further stimulate its host mast cells through H1 receptor. Whereas released tryptase acts similarly to histamine, but activates mast cells through its receptor PAR-2. The connections between current anti-IBD therapies or potential therapies for IBD with mast cells were discussed, implicating further that mast cell is a key cell type that is involved in the pathogenesis of IBD. In conclusion, while pathogenesis of IBD remains unclear, the key role of mast cells in this group of diseases demonstrated in the current review implicates strongly that IBD is a mast cell associated disease. Therefore, close attentions should be paid to the role of mast cells in IBD.
Collapse
Affiliation(s)
- Shao-Heng He
- Allergy and Inflammation Research Institute, Medical College, Shantou University, Shantou 515031, Guangdong Province, China.
| |
Collapse
|
44
|
Viewpoint 4. Exp Dermatol 2003. [DOI: 10.1111/j.0906-6705.2003.0109e.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Iba Y, Sugimoto Y, Kamei C, Masukawa T. Possible role of mucosal mast cells in the recovery process of colitis induced by dextran sulfate sodium in rats. Int Immunopharmacol 2003; 3:485-91. [PMID: 12689654 DOI: 10.1016/s1567-5769(02)00299-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To clarify the role of mucosal mast cells in the lesion sites of colitis induced by dextran sulfate sodium (DSS) in rats, we investigated the histological changes and alterations relevant to mucosal mast cells in the spontaneous recovery process of colitis. Oral administration of 4% DSS solution for 11 days resulted in surface epithelial loss, crypt loss and goblet cell depletion in the rectal mucosa. A marked infiltration of inflammatory cells into the mucosa, which was consistent with a significant increase in myeloperoxidase (MPO) activity, was observed. In addition, mucosal mast cell number and rat mast cell protease (RMCP) I and II levels in the rectum increased at day 0 after DSS treatment, and most of the mucosal mast cells were degranulated. After replacing 4% DSS solution with water, re-epithelialization and restoration of goblet cells were observed at day 5 and day 10, respectively, but crypt damage was hardly recovered even at day 20. The elevated myeloperoxidase activity was significantly decreased from day 5 after DSS treatment. The increased number of mucosal mast cells was further elevated up to about 1.5-fold at day 10 and day 20 after DSS treatment and little degranulation was observed. In the spontaneous recovery process, the increased rat mast cell protease II level in the rectum was maintained for 20 days, while the increased rat mast cell protease I level was gradually decreased and recovered to control level. These results suggest that proliferated mucosal mast cells remained for 20 days, although most of infiltrated inflammatory cells disappeared in spontaneous recovery process of colitis. It may therefore be presumed that proliferated mucosal mast cells play a role in spontaneous recovery process of the colitis induced by DSS.
Collapse
Affiliation(s)
- Yoshinori Iba
- Department of Clinical Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan
| | | | | | | |
Collapse
|
46
|
Sasaki Y, Tanaka M, Kudo H. Differentiation between ulcerative colitis and Crohn's disease by a quantitative immunohistochemical evaluation of T lymphocytes, neutrophils, histiocytes and mast cells. Pathol Int 2002; 52:277-85. [PMID: 12031083 DOI: 10.1046/j.1440-1827.2002.01354.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal biopsy criteria has limited validity in terms of discrimination between ulcerative colitis (UC) and Crohn's disease (CD). The aim of this study was to set up quantitative immunohistochemical criteria, with a special focus on inflammatory cell distribution within individual specimens and throughout the large bowel. Quantitative evaluation was performed for the density of CD8+, CD45RO+, neutrophil elastase+, CD68+ and mast cell tryptase+ cells in affected and unaffected mucosa taken from 41 patients with UC and 61 patients with CD. Each slide was examined at the highest and lowest density fields, which were further divided into the upper and deeper half of mucosa. Multiple logistic regression analysis using 51 features as independent variables constructed a predictive equation finding the probability of UC (PUC), and the diagnostic categories were subsequently defined based on a receiver-operating characteristic curve. The analysis disclosed five significant features suggesting UC; these implied intense infiltration of CD8+ and mast cell tryptase+ cells, diffuse infiltration of neutrophil elastase+ and CD68+ cells, and continuous infiltration of CD45RO+ cells. The criteria consisted of three diagnostic categories, 'suggestive of UC (PUC > or = 0.7)', 'indeterminate (0.3 < PUC < 0.7)', and 'suggestive of CD (PUC < or = 0.3)'; the criteria had values for sensitivity and specificity exceeding 95%. The immunohistochemical criteria distinguishing UC from CD may help to confirm the diagnosis in patients with ambiguous endoscopic and histological diagnosis.
Collapse
Affiliation(s)
- Yoshio Sasaki
- Department of Pathology, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | |
Collapse
|
47
|
Papiez JS, Hassenein A, Wilkinson E, Meynen CA. Recurrent atypical myxoid fibroepithelial polyp associated with vulvar Crohn's disease. Int J Gynecol Pathol 2001; 20:271-6. [PMID: 11444204 DOI: 10.1097/00004347-200107000-00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibroepithelial polyps of the lower female genital tract are common lesions that can rarely exhibit atypical features including increased and atypical mitoses, bizarre nuclei, and hypercellularity, a combination of findings that may suggest malignancy. Five recurrent cases have been published to date, two of which were in pregnant females; the other three followed incomplete excisions. Our case is that of a 25-year-old female with Crohn's disease who developed multiple recurrences of polypoid and domed lesions of the labium minus following surgical excision. Histologic findings in the initial and recurrent lesions were consistent with atypical myxoid fibroepithelial polyps with underlying vulvar Crohn's disease. The lesions subsequently improved with standard Crohn's treatment including 5-amino-salicylic acid (Pentasa) and prednisone. The present case represents the only example of this entity associated with Crohn's disease, and it is the only reported recurrent case not associated with pregnancy, tamoxifen administration, or positive excision margins. The clinical, microscopic, and immunohistochemical findings of this case suggest that atypical fibroepithelial polyps of the lower female genital tract, cutaneous pleomorphic fibroma, and lesions such as fibroepithelial polyps of the anus may represent variants of the same atypical reparative process.
Collapse
Affiliation(s)
- J S Papiez
- Department of Pathology, University of Florida, College of Medicine, 1600 S.W. Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
48
|
Mierke CT, Ballmaier M, Werner U, Manns MP, Welte K, Bischoff SC. Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med 2000; 192:801-11. [PMID: 10993911 PMCID: PMC2193280 DOI: 10.1084/jem.192.6.801] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells (MCs) are immunoregulatory and inflammatory tissue cells preferentially located around blood vessels. Since endothelial cells have been suggested to regulate MC functions, we analyzed MC-endothelial cell interactions in vitro by performing coculture experiments with purified human intestinal MCs and human umbilical vein endothelial cells (HUVECs). We found that HUVECs provide signals allowing MCs to survive for at least 3 wk and to proliferate without addition of cytokines; otherwise all MCs died. HUVEC-dependent MC proliferation was more pronounced than that induced by stem cell factor (SCF), known to act as an MC growth factor both in vitro and in vivo. After coculture with HUVECs, most MCs were of the tryptase and chymase double-positive phenotype (MC(TC)). Transwell experiments suggested that the HUVECs' effects on MCs are not mediated by soluble factors. HUVEC-dependent MC adhesion and proliferation were inhibited by neutralizing antibodies directed against SCF and vascular cell adhesion molecule (VCAM)-1 expressed on HUVECs, and c-kit and very late antigen 4 (VLA-4) on MCs. The data suggest that two mechanisms (membrane-bound SCF/c-kit and VCAM-1/VLA-4) are involved in human MC-endothelial cell interactions. In conclusion, our study provides evidence that endothelial cells regulate MC survival and preferentially support human MC(TC) development.
Collapse
Affiliation(s)
- Claudia T. Mierke
- Department of Gastroenterology and Hepatology, Medical School Hannover, D-30625 Hannover, Germany
| | - Matthias Ballmaier
- Department of Pediatric Hematology and Oncology, Medical School Hannover, D-30625 Hannover, Germany
| | - Uwe Werner
- Department of Visceral and Transplant Surgery, Medical School Hannover, D-30625 Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology and Hepatology, Medical School Hannover, D-30625 Hannover, Germany
| | - Karl Welte
- Department of Pediatric Hematology and Oncology, Medical School Hannover, D-30625 Hannover, Germany
| | - Stephan C. Bischoff
- Department of Gastroenterology and Hepatology, Medical School Hannover, D-30625 Hannover, Germany
| |
Collapse
|
49
|
Nozdrachev AD, Akoev GN, Filippova LV, Sherman NO, Lioudyno MI, Makarov FN. Changes in afferent impulse activity of small intestine mesenteric nerves in response to antigen challenge. Neuroscience 2000; 94:1339-42. [PMID: 10625072 DOI: 10.1016/s0306-4522(99)00377-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sprague-Dawley rats (weight 130-150 g) were sensitized by an intraperitoneal injection of 1 mg chicken egg albumin with 0.25 ml Freund's adjuvant to stimulate immunoglobulin E antibody production. Leukocyte migration inhibitory factor was used as an indicator of animal sensitization. In acute electrophysiological experiments on sensitized animals, an intra-arterial or intraluminal chicken egg albumin (100 microg) challenge evoked a 10% enhancement of the activity of mesenteric nerves of the small intestine, regardless of the injection site chosen. Afferent nerve activity in control animals was not changed during the chicken egg albumin challenge. Morphometry at the light microscope level showed activation of mast cell degranulation after the antigen challenge to presensitized rats. Intraluminal injections of a stimulator of mast cell degranulation, compound 48/80 (20-30 mg), were found to increase afferent discharges in intact rats. An antagonist of H1 histamine receptors, clemastine, reduced the effect of compound 48/80. The results obtained provide direct evidence for the stimulation of sensory nerve endings by mast cell mediators released during mast cell degranulation.
Collapse
Affiliation(s)
- A D Nozdrachev
- Laboratory of Physiology of Sensory Receptors, Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg
| | | | | | | | | | | |
Collapse
|
50
|
Gordon LK, Eggena M, Targan SR, Braun J. Mast cell and neuroendocrine cytoplasmic autoantigen(s) detected by monoclonal pANCA antibodies. Clin Immunol 2000; 94:42-50. [PMID: 10607489 DOI: 10.1006/clim.1999.4805] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pANCA is a marker antibody expressed in most patients with ulcerative colitis, and its cognate antigen is potentially an immunologic target in this disease. This study evaluates whether pANCA detects an autoantigen that is expressed in the colonic mucosa. Immunohistochemistry of colon specimens with human pANCA monoclonal antibodies (Fab 5-2 and 5-3) revealed a minor population of immunoreactive mucosal cells bearing a cytoplasmic vesicle antigen. By distribution, morphology, and tryptase expression, these were identified as mast cells. Immunofluorescent analysis revealed similar immunoreactivity of mouse mast cell lines and human KU812. Western analysis of mouse mast cell lines revealed immunoreactive proteins, and these were distinct from previously proposed pANCA antigens (histone H1, HMG 1 and 2, and neutrophil vesicle antigens). Cognate antigen for Fab 5-2 and 5-3 was also expressed in other tissue mast cells, cerebellar neurons, and pancreatic islet cells. These findings identify a novel cytoplasmic autoantigen(s) associated with UC by its presence in colonic mucosa and recognition by a disease-associated marker antibody.
Collapse
Affiliation(s)
- L K Gordon
- Department of Ophthalmology, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|