1
|
Shosha EAEM, Zanaty AM, Darwesh MM, Fotouh A. Molecular characterization and immunopathological investigation of Avian reticuloendotheliosis virus in breeder flocks in Egypt. Virol J 2024; 21:259. [PMID: 39438969 DOI: 10.1186/s12985-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Reticuloendotheliosis virus (REV) is an oncogenic immunosuppressive retrovirus that infects different kinds of avian species; posing significant economic losses to the poultry industry worldwide. METHODS In Egypt, there is an unidentified disease associated with the runting-stunting syndrome with neoplasia, suspected to be REV, that has been continuously monitored in several breeder flocks. To diagnose and analyze REV by cell cultures, enzyme-linked immunosorbent assay (ELISA), histopathological investigation, the polymerase chain reaction (PCR) test, and sequencing analysis, 200 blood samples, and 50 tissue specimens were collected. The current study targets the occurrence and genetic characteristics of a viral neoplastic disease, resembling REV infection, circulating in breeder flocks from 2022 to 2023 in the Ismailia, El-Sharqia, and El-Dakahliya governorates. RESULT Here, REV was isolated on chicken embryo fibroblast cell culture; exhibiting cell aggregation, rounding, and cell detachments. Collectively, only 70 serum samples were positive for anti-REV antibodies with seroprevalence rates of 35% based on the ELISA test. The histopathological observation demonstrated lymphoreticular tumors in the liver, spleen, and other examined organs. The immunohistochemical staining method confirmed the REV-positive signals in all examined organs (liver, kidney, spleen, bursa, ovaries) except for the heart. The PCR assay of the LTR gene assessed 370 base pairs with only 5 positive samples with a percentage of 16.6%. Three positive samples were further sequenced and submitted to the Genbank under accession numbers (PP763709, PP763710, PP763711). Phylogenetic analysis of the REV-LTR gene showed that our three isolates (Sharquia-1-REV, Ismilia-2-REV, Mansoura-3-REV) are REV subtype III which predominantly circulated in breeders in Egypt. These three isolates are highest similar to American, Chinese, and Taiwanese REV reference strains, and other Egyptian strains with nucleotide identity percentages of 100%, 99%, and 99%; respectively, and on the amino acid identity level were with (99-100%), (98%, 99%), (99%, 100%); respectively. CONCLUSIONS This study established that REV infection was extensively distributed in the breeders and became one of the causes of the clinical outbreaks of tumors, raising awareness of REV as the causative agent of avian oncogenic disease in Egypt.
Collapse
Affiliation(s)
- Eman Abd El-Menamm Shosha
- Virology Department, Faculty of Veterinary Medicine, New Valley University, The New Valley Governorate, Egypt.
| | - Ali Mahmoud Zanaty
- Gene Analysis Unit, Reference Laboratory for Quality Control On Poultry, Animal Health Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Marwa Mostafa Darwesh
- Pathology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Ahmed Fotouh
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, New Valley University, The New Valley Governorate, Egypt
| |
Collapse
|
2
|
Liu H, Li T, Tang J, Ding S, Wang D. Complete genome sequence analysis of Reticuloendotheliosis virus integrated in nonhomologous Avipoxvirus. Microb Pathog 2024; 194:106827. [PMID: 39084308 DOI: 10.1016/j.micpath.2024.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Integration of nucleic acid sequences of Reticuloendotheliosis virus (REV) in Avipoxvirus(APV) has become commonplace. In this study, 4 strains of suspected Fowlpox virus (FPV) and 1 strain of suspected Pigeonpox virus (PPV) collected in Taiyuan, Shanxi Province were cultured in chicken embryos, and the 4b core protein gene was amplified by PCR, and the identity and genome similarity were determined by sequence analysis. The sequences between the end of ORF201 and the beginning of ORF203 of FPV and PPV were then amplified, sequenced, and subjected to sequence comparison to determine genome similarity. The results showed that the isolates were 4 strains of FPV and 1 strain of PPV. The 4 isolated strains of FPV belong to type A1 virus, with 100 % identity to each other and to the FWPV-09-Jilin strain isolated in Jilin, China, and the lowest identity to the type B2 virus TNPV5/NZL/2009, which is only 74 %. PPV belongs to type A2 virus, and its identity with local strain of fowlpox virus was 90.1 %, with the highest identity of 100 % with PPLH and ROPI/W370/ON/2012 and ow_2017_3 strains, which also belong to type A2 pigeonpox virus, and the lowest identity of 73.7 % with TNPV5/NZL/2009, a type B2 virus. The complete genome of REV sequences integrated into FPV and PPV were amplified, and 5 REV nucleic acid sequences were obtained after sequencing and concatenation, with lengths ranging from 7942 to 8005 bp. The identity analysis results indicate that it has high identity with isolates from Northeast China, Guangdong, and Guangxi regions in China. Based on its gp90 protein gene, the REV integrated into the poxvirus belong to type III, with the highest identity of 99.9% with strains such as APC-566 and CY1111, and the lowest identity with REV-Anhui1, at 95.4 %. The length of the pol gene varies among different strains of REV, and its encoded amino acid changes significantly after position 675, with deletions and alterations. This study indicates that all fowlpox viruses isolated in Taiyuan, Shanxi Province have integrated the entire REV gene sequence, with high identity between them. At the same time, it indicates that the pigeonpox virus isolate has also integrated the entire REV gene sequence, and has the highest identity with the integrated REV gene sequence in fowlpox virus.
Collapse
Affiliation(s)
- Huadong Liu
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China.
| | - Tingting Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Juan Tang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Shurong Ding
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Dongcai Wang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| |
Collapse
|
3
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Kannaki TR, Edigi P, Yalagandula N, Haunshi S. Simultaneous detection and differentiation of three oncogenic viral diseases of chicken by use of multiplex PCR. Anim Biotechnol 2022; 33:1760-1765. [PMID: 33928832 DOI: 10.1080/10495398.2021.1914643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Avian oncogenic or tumor diseases are common in poultry industry causing significant economic loss. Marek's disease (MD), avian leukosis (AL) and Reticuloendotheliosis (RE) are the three major viral oncogenic infections that are difficult to differentiate with gross lesions. Multiplex PCR for simultaneous detection and differentiation of these three viruses was developed and validated. The primers targeting the genes of pp38, pol and LTR for MDV, ALV and REV were designed to yield 206, 429, and 128 bp, respectively. The sensitivity of the PCR primers was checked with serial dilution of positive template DNA for each virus and found to be in the range of 10-5 to 10-7 of 1 µg/µl of initial template DNA. Out of 114 suspected tumor samples screened, 8 samples were positive for MDV, 13 samples were positive for ALV and 31 samples positive for REV. Five samples were positive for both MD and ALV; 3 samples were positive for MD and REV and 25 samples were positive for ALV and REV. Eight samples were positive for all three viruses. Multiplex PCR demonstrated to be a useful technique for simultaneous, rapid detection and differentiation of major tumor causing and immunosuppressive viral diseases of chicken.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Priyanka Edigi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Nishitha Yalagandula
- Department of Veterinary Microbiology, P. V. Narsimha Rao Telangana Veterinary University, Hyderabad, India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Complete Genome Characterization of Reticuloendotheliosis Virus Detected in Chickens with Multiple Viral Coinfections. Viruses 2022; 14:v14040798. [PMID: 35458529 PMCID: PMC9028558 DOI: 10.3390/v14040798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Reticuloendotheliosis virus (REV) is a retroviral pathogen capable of infecting several avian hosts and is associated with immunosuppression, anemia, proventriculitis, neoplasia, and runting–stunting syndrome. Its genome contains the three major genes, gag, pol, and env, and two flanking long terminal repeat (LTR) regions. Complete genome sequences of REV are limited in terms of geographical origin. The aim of this study was to characterize the complete genome of REV detected in Brazilian chickens with multiple viral coinfections and analyze the polymorphisms in the deduced amino acids sequences corresponding to its encoded proteins. We tested the presence and completeness of REV as well as other viral pathogens in samples from Brazilian poultry farms by qPCR. The complete genomes of two REV strains were sequenced by overlapping fragments through the dideoxy method. Phylogenetic analysis, pairwise identity matrix, polymorphism identification and protein modeling were performed along the entire genome. We detected REV in 65% (26/40) of the tested samples. Concomitant viral infections were detected in 82.5% (33/40) of the samples and in 90% (9/10) of the farms. Multiple infections included up to seven viruses. Phylogenetic analysis classified both Brazilian strains into REV subtype 3, and the pairwise comparison indicated that strains from the USA and fowlpox virus (FWPV)-related strains were the most identical. The subdomain p18 in gag, the reverse transcriptase/ribonuclease H in pol, and the surface (SU) in the env protein were the most polymorphic in genomic comparisons. The relevant motifs for each protein were highly conserved, with fewer polymorphisms in the fusion peptide, immunosuppression domain, and disulfide bonds on the surface (SU) and transmembrane (TM) of env. This is the first study to include complete genomes of REV in Brazil and South America detected in farms with multiple viral coinfections. Our findings suggest an involvement of REV as an immunosuppressor and active agent in the emergence and progression of multiple infectious diseases. We also found a possible etiological relationship between Brazilian strains and the USA and FWPV recombinant strains. This information highlights the need for epidemiological vigilance regarding REV in association with another pathogens.
Collapse
|
6
|
Chacón RD, Astolfi-Ferreira CS, De la Torre DI, de Sá LRM, Piantino Ferreira AJ. An atypical clinicopathological manifestation of fowlpox virus associated with reticuloendotheliosis virus in commercial laying hen flocks in Brazil. Transbound Emerg Dis 2020; 67:2923-2935. [PMID: 32519513 DOI: 10.1111/tbed.13668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox (FP) is a common epitheliotropic disease in chickens that is usually controlled by live attenuated vaccines. However, there have been some reports of outbreaks of FP in recent years, even in vaccinated flocks, presenting as atypical lesions and feathering abnormalities in chickens. These findings can be associated with fowlpox virus (FPV) with the reticuloendotheliosis virus (REV) integrated into its genome. In the present study, outbreaks of atypical FP were explored in vaccinated commercial laying hen flocks to determine the nature of the causative agent by histopathologic and molecular approaches. FPV and REV were detected and classified into subclade A1 of the genus Avipoxvirus and subtype 3 of REV (REV3), respectively. Additionally, heterogeneous populations of FPV with partial (containing only a remnant long terminal repeat-LTR) or total (all functional genes) integration of REV were identified by heterologous PCRs and detected considering reference integration sites. These results indicate the mechanism of chimeric genome FPV-REV associated with outbreaks and atypical clinicopathological manifestations in commercial laying hens for the first time in Brazil and in South America. In addition, this study demonstrates the emergence of REV integrated in the FPV genome in Brazilian chicken flocks.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.,Inter-units Program in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - David I De la Torre
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian R M de Sá
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Liu J, Li H, Liu B, Zhao B, Zhang P, Yu X, Ning Z. Emergence of spontaneously occurring neoplastic disease caused by reticuloendotheliosis virus in breeding Muscovy ducks in China, 2019. Transbound Emerg Dis 2020; 67:1442-1446. [PMID: 32068970 DOI: 10.1111/tbed.13519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 01/04/2023]
Abstract
Reticuloendotheliosis virus (REV) has a wide range of avian hosts leading to reticuloendotheliosis, and its characteristic of vertical transmission makes it to be one of the most important diseases in breeder avian populations. Up to date, reports on neoplastic disease caused by REV in breeding ducks are few. Here, spontaneously occurring neoplastic disease caused by REV in breeding Muscovy ducks was reported in Guangdong province, China. The most significant gross lesions of sick ducks were tumour-bearing liver and enlarged spleen. Histopathological examination found proliferation of malignant lymphoreticular cells in the liver and reticuloendothelial cells in the spleen. REV strain, CH-GD2019, was successfully isolated using DF-1 cells, and the presence of REV was confirmed by PCR detection and transmission electron microscopy. The length of complete proviral genome is 8,238 nucleotides. Genetic and phylogenetic analyses revealed that CH-GD2019 was closely related to chicken-origin REV strains circulating in China. The results will provide a basic data for better understanding of REV in breeding ducks and suggest that REV from chickens may be a threat to ducks.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pengtao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianglong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
First report on molecular characterization and phylogenetic analysis of Reticuloendotheliosis virus in Sudan. Trop Anim Health Prod 2020; 52:2073-2078. [PMID: 32040658 DOI: 10.1007/s11250-020-02235-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
The reticuloendotheliosis virus (REV) group of retroviruses infects a wide range of avian species, including chickens, turkeys, ducks, geese, quail, and prairie chickens. The infection can result in immunosuppression, runting syndrome, high mortality, acute reticular cell neoplasia, or T- and/or B-cell lymphoma. One PCR positive chicken spleen sample obtained in a previous study in addition to one Marek's disease and three fowl pox (FP) vaccine samples were investigated in this study. A PCR assay was performed to detect the presence of REV provirus DNA in these samples. The results indicated the contamination of fowl pox virus and Marek's disease vaccines with REV. In addition, detection of integration of REV inside the genome of fowl pox vaccine was confirmed using primers corresponding to the FPV DNA regions flanking the REV integration site. Alignments of two sequences, one from the spleen tissue and the other from contaminated FP vaccine with REV, with other REV (env) gene sequences obtained from GenBank indicated their high similarity. Furthermore, phylogenetic analysis indicated that the partial part of (env) gene of our two isolates was closely related to variants from India, USA, Taiwan, and China. These results confirmed the contamination of commercial fowl pox and Marek's disease vaccines used in Sudan with REV. Phylogenetic analysis indicated that the partial part of (env) gene sequences from Sudan was closely related to variants from India, USA, Taiwan, and China.
Collapse
|
9
|
Detection and Molecular Characterization of a Natural Coinfection of Marek's Disease Virus and Reticuloendotheliosis Virus in Brazilian Backyard Chicken Flock. Vet Sci 2019; 6:vetsci6040092. [PMID: 31756886 PMCID: PMC6958383 DOI: 10.3390/vetsci6040092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Marek’s disease virus (MDV) and the reticuloendotheliosis virus (REV) are two of the primary oncogenic viruses that significantly affect chickens. In Brazil, there have been no previous published reports on the presence of field REV alone or in coinfection. This retrospective study analyzes samples from a case of lymphoproliferative lesions from a backyard chicken flock. MDV and REV were detected by PCR and classified as MDV1 and REV3, respectively, through sequencing and phylogenetic analysis based on the glycoprotein B (gB) genes for MDV and the polymerase (pol) and envelope (env) genes for REV. Real-time PCR reactions were performed for MDV to rule out the presence of the Rispens vaccine strain. This is the first report of the presence of REV in coinfection with a MDV clinical case in Brazil and the first molecular characterization of REV in South America. This study highlights the importance of molecular diagnosis for REV and MDV in poultry. In addition, this study highlights the distribution of these two viruses worldwide and the latent risk of them solely or in coinfection to this part of the world.
Collapse
|
10
|
Thontiravong A, Wannaratana S, Sasipreeyajan J. Genetic characterization of reticuloendotheliosis virus in chickens in Thailand. Poult Sci 2019; 98:2432-2438. [PMID: 30668827 DOI: 10.3382/ps/pez025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Reticuloendotheliosis virus (REV) causes an immunosuppressive, runting, and oncogenic disease in poultry, posing a significant threat to the poultry industry. In Thailand, an unidentified disease associated with runting-stunting syndrome and neoplasia, resembling REV infection, has been continuously observed in several chicken farms. However, REV infection in Thailand has never been reported. In this study, we investigated the occurrence and genetic characteristics of REVs in chickens in Thailand from 2013 to 2016. Of the 130 clinical samples obtained from 29 chicken farms from 9 provinces located in the major chicken-raising regions of Thailand, including the central, eastern, northern, and northeastern parts of Thailand, 51 samples (39.23%) and 21 farms (72.41%) were REV-positive. REV-positive samples were detected in all 9 provinces tested. Our results demonstrated that REV was extensively distributed in the major chicken-raising regions of Thailand. Phylogenetic analysis of the whole genome sequence showed that Thai REV was most closely related to Chinese, Taiwanese, and the US REV strains isolated from different avian species and clustered into REV subtype III. This finding indicates that REV subtype III was predominantly circulated in Thai chicken flocks. This study is the first report on REV infection in chickens in Thailand. Our findings raise the awareness of REV as another causative agent of runting and oncogenic disease in chickens in Thailand and highlight the wide distribution of REV infection among chickens worldwide.
Collapse
Affiliation(s)
- Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Jiroj Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Zhai J, Gao C, Fu L, Jing L, Dang S, Zheng S. Integrative Analyses of Transcriptome Sequencing Identify Functional miRNAs in the Chicken Embryo Fibroblasts Cells Infected With Reticuloendotheliosis Virus. Front Genet 2018; 9:340. [PMID: 30233638 PMCID: PMC6128223 DOI: 10.3389/fgene.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, we found a much higher proportion of reticuloendotheliosis virus (REV) infected chicken embryo fibroblasts (CEF) were in active cell division phase than that of control cells which indicated that REV can affect the fate of CEF. So, we performed high-throughput sequencing and transcriptomic analysis to identify functional miRNAs, in order to figure out the possible mechanism in the interaction of REV with CEF. In total, 50 differentially expressed miRNAs (DEmiRNAs) were identified. Then target genes of DEmiRNAs were predicted and identified by transcriptome profile results. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified target genes of miRNAs which showed that metabolism, cell cycle, and apoptosis were the most related pathways involved in infection of REV. We analyzed the genes related to cell cycle which indicated that CyclinD1-CDK6 complex played an important role in regulating the transition of the cell cycle from G1 phase to S phase during REV infection. Fluorescence microscope identification showed that REV inhibited the apoptosis of CEF which was in accordance with transcriptome results. A novel miRNA, named novel-72 was found, KEGG analysis was conducted to predict the biological function of its target genes which showed that those target genes were significantly enriched in mTOR signaling pathway and functioned to promote cell cycle and cell growth during the REV infection. In conclusion, REV could induce the up-regulation of cell metabolism, cell cycle and mTOR signaling pathway while inhibit apoptosis of the cell.
Collapse
Affiliation(s)
- Jie Zhai
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Gao
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lisheng Fu
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Long Jing
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shengyuan Dang
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shimin Zheng
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Khordadmehr M, Firouzamandi M, Zehtab-Najafi M, Shahbazi R. Naturally Occurring Co-infection of Avian Leukosis Virus (subgroups A-E) and Reticuloendotheliosis Virus in Green Peafowls (Pavo muticus). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2017-0506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus. Arch Virol 2017; 162:1187-1199. [PMID: 28097424 PMCID: PMC5387025 DOI: 10.1007/s00705-016-3180-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/19/2016] [Indexed: 10/30/2022]
Abstract
Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the family Retroviridae, can result in immunosuppression and subsequent increased susceptibility to secondary infections. In the present study, we identified differentially expressed proteins in the spleens of chickens infected with the REV-A HLJ07I strain, using two-dimensional gel electrophoresis on samples from time points coinciding with different phases of the REV life cycle. Differentially expressed proteins were identified using one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). Comparative analysis of multiple gels revealed that the majority of changes occurred at early stages of infection. In total, 60 protein spots representing 28 host proteins were detected as either quantitatively (false discovery rate [FDR] ≤0.05 and fold change ≥2) or qualitatively differentially expressed at least once during different sampling points. The differentially expressed proteins identified in this study included antioxidants, molecular chaperones, cellular metabolism, formation of the cytoskeleton, signal transduction, cell proliferation and cellar aging. The present findings provide a basis for further studies to elucidate the role of these proteins in REV-host interactions. This could lead to a better understanding of REV infection mechanisms that cause immune suppression.
Collapse
|
14
|
Thomas JM, Allison AB, Holmes EC, Phillips JE, Bunting EM, Yabsley MJ, Brown JD. Molecular Surveillance for Lymphoproliferative Disease Virus in Wild Turkeys (Meleagris gallopavo) from the Eastern United States. PLoS One 2015; 10:e0122644. [PMID: 25897755 PMCID: PMC4405500 DOI: 10.1371/journal.pone.0122644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Lymphoproliferative disease virus (LPDV) is a poorly understood, oncogenic avian retrovirus of domestic turkeys that has historically been restricted to Europe and Israel. However, a recent study reported LPDV in multiple wild turkey diagnostic cases from throughout the eastern United States of America (USA). To better understand the distribution of LPDV in the eastern USA, we surveyed 1,164 reportedly asymptomatic hunter-harvested wild turkeys from 17 states for the presence of LPDV proviral DNA by PCR. In total, 564/1,164 (47%) turkeys were positive for LPDV. Wild turkeys from each state had a relatively high prevalence of LPDV, although statewide prevalence varied from 26 to 83%. Phylogenetic analysis revealed two major clades of LPDV in the USA, although one was at a low frequency suggesting restricted transmission, as well as significant clustering by state of isolation. To determine the best tissue to target for diagnostic purposes, liver, spleen, and bone marrow were tested from a subset of 15 hunter-harvested wild turkeys and 20 wild turkey diagnostic cases. Overall, bone marrow provided the highest level of detection for both hunter-harvested turkeys and diagnostic cases. The sensitivity of LPDV detection between tissues was not significantly different for diagnostic cases, but was for hunter-harvested birds. These results indicate that LPDV infection is common and widespread in wild turkey populations throughout the eastern USA, even without overt signs of disease.
Collapse
Affiliation(s)
- Jesse M. Thomas
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- Daniel B. Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia, United States of America
| | - Andrew B. Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jamie E. Phillips
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth M. Bunting
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- Daniel B. Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia, United States of America
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jiang L, Deng X, Gao Y, Li K, Chai H, Fan Z, Ren X, Wang Q, Zhang L, Yun B, Yin C, Chen Y, Qin L, Gao H, Wang Y, Hua Y, Wang X. First isolation of reticuloendotheliosis virus from mallards in China. Arch Virol 2014; 159:2051-7. [PMID: 24643331 DOI: 10.1007/s00705-013-1821-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/04/2013] [Indexed: 11/26/2022]
Abstract
Reticuloendotheliosis virus (REV) causes an oncogenic, immunosuppressive and runting syndrome in many avian hosts worldwide. REV infection has never been reported in mallard ducks, however. To identify REV infection in mallards, we collected 40 mallard duck samples from Jilin Province of China. In this study, the REV strain, DBYR1102, was first isolated from a mallard in China and identified by PCR, indirect immunofluorescence assay and electron microscopy. The gp90 gene and complete LTR of DBYR1102 were amplified and sequenced. Phylogenetic analysis based on gp90 genes of REV indicated that the REV strain DBYR1102 is closely related to strain HLJR0901 from northeastern China, the prairie chicken isolate APC-566, and REV subtype III, represented by chick syncytial virus. This new strain is distantly related to two other subtypes of REV, 170A and SNV. Phylogenetic analysis based on the LTR yielded information similar to that obtained with the gp90 genes. The results of this study not only expand our epidemiological understanding of REV in the wild birds of China but also demonstrate the potential role of wild waterfowl in REV transmission.
Collapse
Affiliation(s)
- Lili Jiang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xue M, Shi X, Zhao Y, Cui H, Hu S, Cui X, Wang Y. Effects of reticuloendotheliosis virus infection on cytokine production in SPF chickens. PLoS One 2013; 8:e83918. [PMID: 24358317 PMCID: PMC3865284 DOI: 10.1371/journal.pone.0083918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/10/2013] [Indexed: 01/08/2023] Open
Abstract
Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, can result in immunosuppression and subsequent increased susceptibility to secondary infections. The effects of REV infection on expression of mRNA for cytokine genes in chickens have not been completely elucidated. In this study, using multiplex branched DNA (bDNA) technology, we identified molecular mediators that participated in the regulation of the immune response during REV infection in chickens. Cytokine and chemokine mRNA expression levels were evaluated in the peripheral blood mononuclear cells (PBMCs). Expression levels of interleukin (IL)-4, IL-10, IL-13 and tumor necrosis factor (TNF)-α were significantly up-regulated while interferon (IFN)-α, IFN-β, IFN-γ, IL-1β, IL-2, IL-3, IL-15, IL-17F, IL-18 and colony-stimulating factor (CSF)-1 were markedly decreased in PBMCs at all stages of infection. Compared with controls, REV infected chickens showed greater expression levels of IL-8 in PBMCs 21 and 28 days post infection. In addition, REV regulates host immunity as a suppressor of T cell proliferative responses. The results in this study will help us to understand the host immune response to virus pathogens.
Collapse
Affiliation(s)
- Mei Xue
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Xingming Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Shunlei Hu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Xianlan Cui
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| |
Collapse
|
17
|
Complete Genome Sequence of Reticuloendotheliosis Virus Strain MD-2, Isolated from a Contaminated Turkey Herpesvirus Vaccine. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00785-13. [PMID: 24092783 PMCID: PMC3790087 DOI: 10.1128/genomea.00785-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the complete genomic sequence of a reticuloendotheliosis virus (REV) isolated from a contaminated turkey herpesvirus (HVT) vaccine. This report will be helpful for epidemiological studies on REV infection in avian flocks.
Collapse
|
18
|
Wu NH, Tsai WT, Chen HW, Wang LC, Wang CH. Detection of Anti-Reticuloendotheliosis Virus Antibody by Blocking Enzyme-Linked Immunosorbent Assay with Expression Envelope Protein. Avian Dis 2013; 57:71-5. [DOI: 10.1637/10290-062512-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Identification of a conserved B-cell epitope on reticuloendotheliosis virus envelope protein by screening a phage-displayed random peptide library. PLoS One 2012. [PMID: 23185456 PMCID: PMC3504085 DOI: 10.1371/journal.pone.0049842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The gp90 protein of avian reticuloendotheliosis-associated virus (REV-A) is an important envelope glycoprotein, which is responsible for inducing protective antibody immune responses in animals. B-cell epitopes on the gp90 protein of REV have not been well studied and reported. Methods and Results This study describes the identification of a linear B-cell epitope on the gp90 protein by screening a phage-displayed 12-mer random peptide library with the neutralizing monoclonal antibody (mAb) A9E8 directed against the gp90. The mAb A9E8 recognized phages displaying peptides with the consensus motif SVQYHPL. Amino acid sequence of the motif exactly matched 213SVQYHPL219 of the gp90. Further identification of the displayed B cell epitope was conducted using a set of truncated peptides expressed as GST fusion proteins and the Western blot results indicated that 213SVQYHPL219 was the minimal determinant of the linear B cell epitope recognized by the mAb A9E8. Moreover, an eight amino acid peptide SVQYHPLA was proven to be the minimal unit of the epitope with the maximal binding activity to mAb A9E8. The REV-A-positive chicken serum reacted with the minimal linear epitopes in Western blot, revealing the importance of the eight amino acids of the epitope in antibody-epitope binding activity. Furthermore, we found that the epitope is a common motif shared among REV-A and other members of REV group. Conclusions and Significance We identified 213SVQYHPL219 as a gp90-specific linear B-cell epitope recognized by the neutralizing mAb A9E8. The results in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines against REV-A and other viruses of the REV group.
Collapse
|
20
|
Deng X, Qi X, Wu G, Gao Y, Qin L, Wang Y, Gao H, Wang X. Construction and characterization of the infectious clone of Reticuloendotheliosis virus carrying a genetic marker. Virus Res 2012; 167:146-51. [DOI: 10.1016/j.virusres.2012.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/12/2012] [Accepted: 02/12/2012] [Indexed: 11/26/2022]
|
21
|
Mays JK, Silva RF, Lee LF, Fadly AM. Characterization of reticuloendotheliosis virus isolates obtained from broiler breeders, turkeys, and prairie chickens located in various geographical regions in the United States. Avian Pathol 2010; 39:383-9. [DOI: 10.1080/03079457.2010.510828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Cheng Z, Liu J, Cui Z, Zhang L. Tumors associated with avian leukosis virus subgroup J in layer hens during 2007 to 2009 in China. J Vet Med Sci 2010; 72:1027-33. [PMID: 20467208 DOI: 10.1292/jvms.09-0564] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the 3 years leading up to November 2009, 6 different types of naturally occurring neoplasms associated with avian leukosis virus subgroup J (ALV-J) were diagnosed by histopathology, polymerase chain reaction (PCR) and immunohistochemistry (IHC) in 140 layer hens out of approximately 100,000. The most prevalent tumor type was hemangioma (50%) in commercial layer flocks; the second most prevalent neoplasm type was myelocytoma (38.6%); a small number of ALV-J positive lymphomas (4.3%) that were not associated with Marek's disease (MD) or lymphoid leukosis (LL) was observed. Histiocytic sarcomas (2.1%) were found mainly in the spleen, liver and kidney. Fibrosarcomas (2.8%) presented as metastatic thigh, liver, lung and kidney neoplasms. Three cases of intestinal adenocarcinoma (2.1%) were found associated with ALV-J. Chickens with multiple tumors were a common phenomenon. Usually, hemangiomas plus myelocytomas (8.6%), myelocytomas plus histiocytic sarcomas (2.1%), hemangioma plus myelocytoma and lymphoma (3.6%) were found in various viscera organs. The present report describes the occurrence of multiple neoplasms associated with ALV-J in field layer hens.
Collapse
Affiliation(s)
- Ziqiang Cheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.
| | | | | | | |
Collapse
|
23
|
Fadly AM, Witter RL, Smith EJ, Silva RF, Reed WM, Hoerr FJ, Putnam MR. An outbreak of lymphomas in commercial broiler breeder chickens vaccinated with a fowlpox vaccine contaminated with reticuloendotheliosis virus. Avian Pathol 2009; 25:35-47. [PMID: 18645835 DOI: 10.1080/03079459608419118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gross and microscopic examinations of affected tissues from chickens of two commercial broiler breeder flocks aged 27 and 31 weeks revealed lesions of visceral lymphomas with bursal involvement in some chickens. Reticuloendotheliosis virus (REV), but not avian leukosis virus (ALV), was isolated from blood of affected chickens. Furthermore, DNA extracted from tumours tested positive for REV, but not for ALV or Marek's disease virus by polymerase chain reaction (PCR) test. Attempts to determine the source of REV infection included testing a commercial fowlpox (FP) vaccine used to immunize flocks at 7 days of age. Chicken-embryo fibroblasts inoculated with the FP vaccine tested positive for REV by PCR and immunofluorescent tests. REV was also isolated from plasma of pathogen-free chickens experimentally inoculated with FP vaccine at hatch; two of eight (25%) inoculated chickens developed lymphomas by 34 weeks of age. Antigenic characterization of REV isolated from commercial broiler breeder chickens and from FP vaccine, using monoclonal antibodies, revealed that both isolates belong to subtype 3 of REV. The data represent the first report of an outbreak of REV-induced lymphomas in commercial chickens. The data also indicate that the source of REV infection is an REV-contaminated commercial FP vaccine.
Collapse
Affiliation(s)
- A M Fadly
- USDA-Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Drechsler Y, Bohls RL, Smith R, Silvy N, Lillehoj H, Collisson EW. An avian, oncogenic retrovirus replicates in vivo in more than 50% of CD4+ and CD8+ T lymphocytes from an endangered grouse. Virology 2009; 386:380-6. [PMID: 19237181 DOI: 10.1016/j.virol.2009.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/15/2008] [Accepted: 01/12/2009] [Indexed: 11/18/2022]
Abstract
Reoccurring infection of reticuloendotheliosis virus (REV), an avian oncogenic retrovirus, has been a major obstacle in attempts to breed and release an endangered grouse, the Attwater's prairie chicken (Tympanicus cupido attwateri). REV infection of these birds in breeding facilities was found to result in significant decreases in the CD4(+) and increases in the CD8(+) lymphocyte populations, although experimental infection of birds resulted in only increases in the CD8(+) lymphocytes. Because our indirect immunofluorescent assay readily detected infection of both CD4(+) and CD8(+) lymphocytes, a triple labeling flow cytometric procedure was developed to quantify the individual lymphocytes infected in vivo with REV. Lymphocytes were gated with a biotinylated pan-leukocyte marker bound to streptavidin R-PE-Cy5. Chicken CD4 or CD8 specific mouse MAb directly labeled with R-PE identified the phenotype and with permeabilizing of cells, infection was indirectly labeled with rabbit IgG specific for the REV gag polypeptide and FITC conjugated goat anti-rabbit antibody. More than 50% of the total lymphocytes and of the total CD4(+) or CD8(+) lymphocytes supported in vivo viral expression in all infected birds examined. Remarkably, this level of infection was detected in the absence of visible clinical signs of illness.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lin CY, Chen CL, Wang CC, Wang CH. Isolation, identification, and complete genome sequence of an avian reticuloendotheliosis virus isolated from geese. Vet Microbiol 2008; 136:246-9. [PMID: 19131189 DOI: 10.1016/j.vetmic.2008.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Naturally occurring lymphoreticular tumors in geese have been found from time to time in Taiwan, but their etiology has not been determined except through morphological descriptions. This study observed a reticuloendotheliosis virus (REV) infection occurring in a white Roman goose (Anser anser) farm in Yunlin, Taiwan in 2006. These geese showed growth-retarded and nodular lymphoma-like tumors in the liver, lung, kidney, and pancreas. Thirty blood samples were taken for REV detection and 21 (70%) of them contained REV genetic sequences using polymerase chain reaction (PCR). Virus isolation was attempted from 11 blood samples by inoculating the buffy coat onto DF1 cells. Nine (81%) REVs were isolated after three blind passages. The complete proviral sequence from one isolate was determined for phylogenetic analysis by direct sequencing using overlapping PCR products. The length of the provial genome is 8284 nucleotides. By comparing with other published REV complete sequences, the nucleotide percent identity ranged from 93.5% to 99.8% with most LTR varieties, ranging from 74.9% to 99.8%. The present isolated goose REV is most close to REV APC-566, a REV isolated from Attwater's Prairie chickens.
Collapse
Affiliation(s)
- Chia-Yao Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
26
|
Santos VLSL, Williams SM, Zavala G, Barbosa T, Zhang J, Cheng S, Shivaprasad HL, Hafner S, Fadly A, Santos RL, Brown CC. Detection of reticuloendotheliosis virus by immunohistochemistry andin situhybridization in experimentally infected Japanese quail embryos and archived formalin-fixed and paraffin-embedded tumours. Avian Pathol 2008; 37:451-6. [DOI: 10.1080/03079450802210663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Zavala G, Cheng S, Barbosa T, Haefele H. Enzootic reticuloendotheliosis in the endangered Attwater's and greater prairie chickens. Avian Dis 2007; 50:520-5. [PMID: 17274288 DOI: 10.1637/7655-052806r.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reticuloendotheliosis (RE) in captive greater prairie chickens (GPC, Tympanuchus cupido pinnatus) and Attwater's prairie chickens (APC, Tympanuchus cupido attwateri) was first reported in 1998. RE is caused by avian reticuloendotheliosis virus (REV), an oncogenic and immunosuppressive retrovirus infecting multiple species of wild and domestic birds. During August 2004 through May 2006 a captive population of prairie chickens was affected simultaneously with a neoplastic condition and also avian pox, the latter being detected in 7.4% (2 of 27) of all birds submitted for histopathology. A survey for REV was conducted in order to examine its possible role in mortality observed primarily in juvenile and adult specimens of prairie chickens. The investigative procedures included postmortem examinations, histopathology, molecular detection, and virus isolation. In total, 57 Attwater's prairie chickens and two greater prairie chickens were included in the study. REV infection was diagnosed using virus isolation or polymerase chain reaction (PCR) or both in 59.5% (28 of 47) of blood samples and/or tumors from suspect birds. Lymphosarcomas were detected in the tissues of 37% (10 of 27) of the birds submitted for histopathology. Such lymphosarcomas suggestive of RE represented the most frequent morphologic diagnosis on histopathology among 27 separate submissions of naturally dead prairie chickens. Overall, REV was detected or RE diagnosed in 34 of 59 prairie chickens (57.62%). The average death age of all birds diagnosed with lymphosarcomas on histopathology was 2.2 yr, ranging from <1 to 4 yr. Although deaths associated with neoplasia occurred in males and females in equal proportions based on submissions, overall more males were diagnosed as REV infected or RE affected (16 males vs. 7 females, and 11 birds of undetermined gender). Reticuloendotheliosis virus was confirmed as a significant cause of mortality in captive prairie chickens.
Collapse
Affiliation(s)
- Guillermo Zavala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
28
|
Barbosa T, Zavala G, Cheng S, Villegas P. Pathogenicity and Transmission of Reticuloendotheliosis Virus Isolated from Endangered Prairie Chickens. Avian Dis 2007; 51:33-9. [PMID: 17461264 DOI: 10.1637/0005-2086(2007)051[0033:patorv]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pathogenicity and transmission of a field isolate of reticuloendotheliosis virus (REV) was studied using an experimental model in Japanese quail. Oncogenicity was also evaluated after inoculations in chickens and turkeys. The original REV (designated APC-566) was isolated from Attwater's prairie chickens (Tympanuchus cupido attwateri), an endangered wild avian species of the southern United States. The transmissibility of the REV isolate was studied in young naive Japanese quail in contact with experimentally infected quail. Vertical transmission was not detected by virus isolation and indirect immunofluorescence. Seroconversion was detected in few contact quails, suggesting horizontal transmission. The APC-566 isolate induced tumors beginning at 6 wk of age in quails infected as embryos. Most of the tumors detected in Japanese quail were lymphosarcomas, and 81% of these neoplasias contained CD3+ cells by immunoperoxidase. REV APC-566 was also oncogenic in chickens and turkeys infected at 1 day of age, with tumors appearing as early as 58 days after infection in chickens and at 13 wk of age in turkeys. This study was conducted in part as an attempt to understand the potential for pathogenicity and transmission of REV isolated from endangered avian species.
Collapse
Affiliation(s)
- Taylor Barbosa
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, 953 College Station Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
29
|
Barbosa T, Zavala G, Cheng S, Lourenço T, Villegas P. Effects of Reticuloendotheliosis Virus on the Viability and Reproductive Performance of Japanese Quail. J APPL POULTRY RES 2006. [DOI: 10.1093/japr/15.4.558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Bohls RL, Linares JA, Gross SL, Ferro PJ, Silvy NJ, Collisson EW. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken. Virus Res 2006; 119:187-94. [PMID: 16497405 DOI: 10.1016/j.virusres.2006.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/04/2006] [Accepted: 01/10/2006] [Indexed: 11/15/2022]
Abstract
Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Galliformes/virology
- Genes, env
- Genes, pol
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Proviruses/genetics
- Reticuloendotheliosis Viruses, Avian/classification
- Reticuloendotheliosis Viruses, Avian/genetics
- Reticuloendotheliosis Viruses, Avian/isolation & purification
- Retroviridae Infections/veterinary
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tumor Virus Infections/veterinary
- Tumor Virus Infections/virology
- United States
Collapse
Affiliation(s)
- Ryan L Bohls
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
31
|
Tadese T, Reed WM. Detection of specific reticuloendotheliosis virus sequence and protein from REV-integrated fowlpox virus strains. J Virol Methods 2003; 110:99-104. [PMID: 12757926 DOI: 10.1016/s0166-0934(03)00106-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The detection is described of reticuloendotheliosis virus (REV) protein in tissue culture of chicken embryonated cells (CEFs) infected with field isolates of fowl poxvirus (FPV). By the polymerase chain reaction (PCR), five out of the six field isolates, but two out of the seven vaccine strains of FPV, were found to have had a 291 bp repeat sequence of REV-LTR integrated in their genomic DNA. An immunofluorescence (IF) method was employed using a monoclonal antibody (MAb) known to specify strain common envelope proteins for REV and allowed to detect the presence of a specific REV protein. The IF results indicate the localization of REV proteins in boundaries defined precisely within cells infected with these field strains of FPV carrying REV (FPV-REV). Furthermore, by immunoblotting (IB) using a chemiluminescent detection kit, the REV protein reacted specifically with the MAb and had a relative molecular mass (RMM) of 62 kDa. The data have the potential to advance substantially the current understanding of the integrated REV in FPV strains; and the identification of a unique protein associated with variant forms of FPV will also offer great potential for identification of novel vaccine candidates for use in poultry against variant forms of FPV.
Collapse
Affiliation(s)
- Theodros Tadese
- Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health, Michigan State University, A510 East Fee Hall, East Lansing, MI 48824, USA.
| | | |
Collapse
|
32
|
Crespo R, Woolcock PR, Fadly AM, Hall C, Shivaprasad HL. Characterization of T-cell lymphomas associated with an outbreak of reticuloendotheliosis in turkeys. Avian Pathol 2002; 31:355-61. [PMID: 12396336 DOI: 10.1080/03079450220141624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increased mortality and decreased egg production associated with disseminated lymphoma were observed in a turkey breeding flock for more than 20 weeks. A few unrelated meat turkey flocks, from the same integrator, experienced increased condemnation due to neoplasia in a few organs. Lymphoma was characterized by a uniform population of large lymphocytes with large vesicular nuclei containing one or two nucleoli and with little, faintly staining, basophilic cytoplasm. Neoplastic cells replaced normal tissue and were consistent with lesions seen with reticuloendotheliosis virus (REV) infection. Immunoperoxidase and fluorescent antibody staining characterized the neoplastic cells as CD3+, CD4+ and CD8- lymphocytes. Infection with REV was confirmed by virus isolation, polymerase chain reaction, serology and indirect fluorescent antibody. Poults hatched from these breeders tested positive for REV antibodies at hatch, but the performance of these flocks was normal and lymphoma was not observed. The origin of REV infection in this outbreak could not be determined. This is the first documented report of T-cell lymphomas associated with REV in commercial flocks. Furthermore, this is the first time that lymphomas have been characterized as T helper cells (CD3+ CD4+ and CD8-) in an outbreak of REV in turkeys.
Collapse
Affiliation(s)
- Rocio Crespo
- California Animal Health and Food Safety Laboratory System, University of California Davis, Fresno Branch, 2789 South Orange Avenue, Fresno, CA 93725, USA.
| | | | | | | | | |
Collapse
|
33
|
Martin J, Herniou E, Cook J, O'Neill RW, Tristem M. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J Virol 1999; 73:2442-9. [PMID: 9971829 PMCID: PMC104491 DOI: 10.1128/jvi.73.3.2442-2449.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are capable of infectious horizontal transmission between hosts, usually between individuals within a single species, although a number of probable zoonotic infections resulting from transmission between different species of placental mammals have also been reported. Despite these data, it remains unclear how often interspecies transmission events occur or whether their frequency is influenced by the evolutionary distance between host taxa. To address this problem we used PCR to amplify and characterize endogenous retroviruses related to the murine leukemia viruses. We show that members of this retroviral genus are harbored by considerably more organisms than previously thought and that phylogenetic analysis demonstrates that viruses isolated from a particular host class generally cluster together, suggesting that infectious virus horizontal transfer between vertebrate classes occurs only rarely. However, two recent instances of transmission of zoonotic infections between distantly related host organisms were identified. One, from mammals to birds, has led to a rapid adaptive radiation into other avian hosts. The other, between placental and marsupial mammals, involves viruses clustering with recently described porcine retroviruses, adding to concerns regarding the xenotransplantation of pig organs to humans.
Collapse
Affiliation(s)
- J Martin
- Department of Biology, Imperial College, Ascot, Berkshire SL5 7PY, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Herniou E, Martin J, Miller K, Cook J, Wilkinson M, Tristem M. Retroviral diversity and distribution in vertebrates. J Virol 1998; 72:5955-66. [PMID: 9621058 PMCID: PMC110400 DOI: 10.1128/jvi.72.7.5955-5966.1998] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used the PCR to screen for the presence of endogenous retroviruses within the genomes of 18 vertebrate orders across eight classes, concentrating on reptilian, amphibian, and piscine hosts. Thirty novel retroviral sequences were isolated and characterized by sequencing approximately 1 kb of their encoded protease and reverse transcriptase genes. Isolation of novel viruses from so many disparate hosts suggests that retroviruses are likely to be ubiquitous within all but the most basal vertebrate classes and, furthermore, gives a good indication of the overall retroviral diversity within vertebrates. Phylogenetic analysis demonstrated that viruses clustering with (but not necessarily closely related to) the spumaviruses and murine leukemia viruses are widespread and abundant in vertebrate genomes. In contrast, we were unable to identify any viruses from hosts outside of mammals and birds which grouped with the other five currently recognized retroviral genera: the lentiviruses, human T-cell leukemia-related viruses, avian leukemia virus-related retroviruses, type D retroviruses, and mammalian type B retroviruses. There was also some indication that viruses isolated from individual vertebrate classes tended to cluster together in phylogenetic reconstructions. This implies that the horizontal transmission of at least some retroviruses, between some vertebrate classes, occurs relatively infrequently. It is likely that many of the retroviral sequences described here are distinct enough from those of previously characterized viruses to represent novel retroviral genera.
Collapse
Affiliation(s)
- E Herniou
- Department of Biology, Imperial College, Ascot, Berkshire SL5 7PY, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Avian leukosis virus (ALV) and reticuloendotheliosis virus (REV) are the most common naturally occurring avian retroviruses associated with neoplastic disease conditions in domesticated poultry. Avian leukosis virus infects primarily chickens, whereas REV infects chickens, turkeys, and other avian species. In addition to causing tumors, both ALV and REV can reduce productivity and induce immunosuppression and other production problems in affected flocks.
Collapse
Affiliation(s)
- A M Fadly
- United States Department of Agriculture, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| |
Collapse
|
36
|
Abstract
Spleen necrosis virus (SNV) is an amphotropic type C retrovirus originally isolated from a duck. The envelope protein is related to that of type D retroviruses, and SNV appears to use the same receptor as do simian retroviruses. However, little is known about envelope-receptor interactions of SNV. We constructed a series of envelope mutants to characterize the SU peptide of SNV. Point mutations were introduced throughout SU in regions that are conserved among all retroviruses belonging to the same receptor interference group. The biological and biochemical properties of these mutants were analyzed. All mutants were transported efficiently to the cell surface. Almost all mutations in the amino-terminal one-third caused a conformational change of the envelope and a significant drop in infectivity and abolished the ability to confer superinfection interference. Similar observations were made with only two of seven mutants with mutations in the middle of SU. Four mutations in this region had little or no effect on biological activity. One mutant envelope protein (Asp to Arg at position 192) was processed normally but showed little infectivity and had no ability to confer superinfection interference. A detailed mutational analysis suggested that this amino acid forms a hydrogen bond to its cellular receptor. Mutations within the carboxy-terminal part of SU had very little or no effect on biological function. Aberrantly processed envelope proteins were proteolytically cleaved at a new point upstream of and differing in sequence from the conserved retroviral SU/TM cleavage site. Surprisingly, these mutants still retained some infectivity (0.01 to 1% of that of the wild type). Our data indicate that the envelope of SNV behaves in a manner very different from that of the envelopes of other studied retroviruses.
Collapse
Affiliation(s)
- I Martinez
- Graduate Program in Microbiology and Molecular Genetics, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | |
Collapse
|
37
|
Davidson I, Yang H, Witter RL, Malkinson M. The immunodominant proteins of reticuloendotheliosis virus. Vet Microbiol 1996; 49:273-84. [PMID: 8734645 DOI: 10.1016/0378-1135(95)00183-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The antigenic profiles of three REV prototype strains, CSV, SNV and REV-T and eight Israeli isolates were analysed by SDS-PAGE and immunoblotting with convalescent chicken serum, three mAbs, 11A25, 11C237 and 11C100, a rabbit antiserum to REV-T whole virus (Cui et al., 1986) and a rabbit antiserum to REV-A p30 gag protein (Tsai et al., 1985). Under both reducing (+DTT) and non-reducing conditions of SDS-PAGE, a major immunodominant 75-100 kDa band was shared by all strains examined. In contrast to the chicken serum that recognized both continuous and discontinuous epitopes on the 75-100 kDa band of all the isolates, the mAbs and the two rabbit sera behaved otherwise. Only the DTT-resistant epitopes on the 75-100 kDa band of REV-T were recognized by the rabbit antisera and the mAb 11C237, and only the DTT-labile epitopes of REV-T 75-100 kDa antigen were detected by mAb 11C100. The two mAbs 11A25 and 11C237 detected discontinuous epitopes of all the strains except SNV, while the rabbit antisera recognized the discontinuous epitopes on the 75-100 kDa band of all the 11 strains. The rabbit antisera and mAb 11C237 detected additional lower molecular weight proteins and the mAb 11C237 also detected three proteins of high molecular weight under non-reducing conditions only. The p30 antiserum detected the low molecular weight proteins demonstrating their gag gene-encoded identity. From these results we conclude that the major immunogen of REV is the 75-100 kDa protein that contains both continuous and discontinuous epitopes. With this panel of antibodies the eight new isolates appeared to belong antigenically to REV subtype 3 (Chen et al., 1987).
Collapse
Affiliation(s)
- I Davidson
- Divn. of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | | | | |
Collapse
|
38
|
Takagi M, Ishikawa K, Nagai H, Sasaki T, Gotoh K, Koyama H. Detection of contamination of vaccines with the reticuloendotheliosis virus by reverse transcriptase polymerase chain reaction (RT-PCR). Virus Res 1996; 40:113-21. [PMID: 8725107 DOI: 10.1016/0168-1702(95)01259-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The reverse transcriptase polymerase chain reaction (RT-PCR) was applied to detect contamination of Marek's disease (MD) vaccine with reticuloendotheliosis virus (REV). The env primers were used for the 1st RT-PCR to amplify the DNA fragments of REV-A and -T. The rel and env primers were used for nested-PCR to confirm the sites deleted from REV-T and REV-A. Specific amplification products were detected in the 1st RT-PCR with these primers. By nested PCR with the env and the rel primer pairs, the products originating from REV-A and -T were identified. This system, using the env primer pairs, showed a specific amplification with several REV strains (REV-T, DE, CE, KI and 0202), but no amplified product was detected with MDV, NDV, IBV or ILTV. The 1st RT-PCR detected the virus in a concentration of 10(3) in 50% fluorescent antibody infectious dose per ml (FAID50/ml) and the nested PCR detected 10(1) FAID50/ml virus. The sensitivity of the RT-PCR system was found to be higher than that of the FA assay. This system provides a rapid, sensitive and specific method for detection of contamination of MD vaccines with REV-RNA, and it may be applied for quality control of live vaccines.
Collapse
Affiliation(s)
- M Takagi
- National Veterinary Assay Laboratory, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Aly MM, Smith EJ, Fadly AM. Detection of reticuloendotheliosis virus infection using the polymerase chain reaction. Avian Pathol 1993; 22:543-54. [DOI: 10.1080/03079459308418942] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Calvert JG, Nazerian K, Witter RL, Yanagida N. Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens. J Virol 1993; 67:3069-76. [PMID: 8388488 PMCID: PMC237643 DOI: 10.1128/jvi.67.6.3069-3076.1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eight stable fowlpox virus (FPV) recombinants which express the envelope glycoprotein of the spleen necrosis virus (SNV) strain of reticuloendotheliosis virus (REV), an avian retrovirus, were constructed. These recombinants differ in the genomic location of the inserted genes, in the orientation of the insert relative to flanking viral sequences, and in the promoter used to drive expression of the env gene. Of these variables, promoter strength seems to be the most crucial. The P7.5 promoter of vaccinia virus, which is commonly used in the construction of both vaccinia virus and FPV recombinants, resulted in lower levels of expression of the envelope antigen in infected chicken cells compared with a strong synthetic promoter, as determined by immunofluorescence and enzyme-linked immunosorbent assay. Two peptides encoded by the env gene, the 21-kDa transmembrane peptide and a 62-kDa precursor, were detected by immunoprecipitation of labeled proteins from cells infected with recombinant FPVs, using monoclonal antibodies against REV. These peptides comigrated with those precipitated from REV-infected cells. One of the recombinants (f29R-SNenv) was used for vaccination of 1-day-old chickens. Vaccinated chicks developed neutralizing antibodies to SNV more rapidly than did unvaccinated controls following SNV challenge and were protected against both viremia and the SNV-induced runting syndrome.
Collapse
Affiliation(s)
- J G Calvert
- USDA/ARS Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823
| | | | | | | |
Collapse
|
41
|
Koo HM, Gu J, Varela-Echavarria A, Ron Y, Dougherty JP. Reticuloendotheliosis type C and primate type D oncoretroviruses are members of the same receptor interference group. J Virol 1992; 66:3448-54. [PMID: 1316460 PMCID: PMC241125 DOI: 10.1128/jvi.66.6.3448-3454.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The reticuloendotheliosis viruses (REVs), originally isolated from avian species, constitute a group of retroviruses which are more closely related to mammalian retroviruses than to other avian retroviruses. The envelope glycoproteins of members of the REV group display a striking amino acid sequence identity with a group of primate oncoretroviruses which belong to a single receptor interference group and include all of the type D and some type C primate oncoretroviruses. Members of the REV group also have a broad host range which covers most avian cells and some mammalian cells, including those of simian and human origin. In view of this broad host range and the envelope sequence similarities, we investigated the cross-interference pattern between REV and primate virus groups to determine whether they utilized the same receptor. Superinfection experiments using a vector virus containing an Escherichia coli lacZ gene showed that reticuloendotheliosis and simian oncoretroviruses constitute a single receptor interference group on both human and canine cells and indicate that the viruses bind to the same receptor to initiate infection. These results suggest that this receptor binding specificity has been maintained over a wide range of retroviruses and may be responsible for the broad spread of these retroviruses between different orders of vertebrates.
Collapse
Affiliation(s)
- H M Koo
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635
| | | | | | | | | |
Collapse
|
42
|
Federspiel MJ, Crittenden LB, Hughes SH. Expression of avian reticuloendotheliosis virus envelope confers host resistance. Virology 1989; 173:167-77. [PMID: 2554569 DOI: 10.1016/0042-6822(89)90232-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We constructed two reticuloendotheliosis virus (REV) envelope gene expression plasmids, one containing the REV-A envelope gene, the other the spleen necrosis virus (SNV) envelope gene. Cell lines were generated by transfecting each of the REV envelope plasmids into D17 cells, a canine cell line. The levels of REV envelope glycoprotein in the cell lines were assayed by immunoprecipitating the envelope glycoproteins from lysates of cells that were labeled with [35S]methionine. Virological challenge assays determined the degree of resistance of each of the cell lines to REV-A or SNV infection. The expression of either envelope gene protected the cells from infection by either REV-A or SNV virus. Several cell lines were significantly more resistant to REV infection than the parental D17 cells, and two lines were 25,000-fold more resistant, approaching the resistance of REV-infected D17 cells to reinfection. The resistant cell lines were not able to confer resistance to susceptible cells by cocultivation. The level of resistance was correlated with the uniformity of expression of the REV envelope glycoproteins by the individual cells in a cell line and not with the absolute level of expression by the population of cells.
Collapse
Affiliation(s)
- M J Federspiel
- BRI--Basic Research Program, NCI--Frederick Cancer Research Facility, Maryland 21701
| | | | | |
Collapse
|