1
|
Etim IIN, Njoku DI, Uzoma PC, Kolawole SK, Olanrele OS, Ekarenem OO, Okonkwo BO, Ikeuba AI, Udoh II, Njoku CN, Etim IP, Emori W. Microbiologically Influenced Corrosion: A Concern for Oil and Gas Sector in Africa. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
2
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
3
|
On-Line Monitoring of Biofilm Accumulation on Graphite-Polypropylene Electrode Material Using a Heat Transfer Sensor. BIOSENSORS 2021; 12:bios12010018. [PMID: 35049646 PMCID: PMC8773567 DOI: 10.3390/bios12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Biofilms growing on electrodes are the heart piece of bioelectrochemical systems (BES). Moreover, the biofilm morphology is key for the efficient performance of BES and must be monitored and controlled for a stable operation. For the industrial use of BES (i.e., microbial fuel cells for energy production), monitoring of the biofilm accumulation directly on the electrodes during operation is desirable. In this study a commercially available on-line heat transfer biofilm sensor is applied to a graphite-polypropylene (C-PP) pipe and compared to its standard version where the sensor is applied to a stainless-steel pipe. The aim was to investigate the transferability of the sensor to a carbonaceous material (C-PP), that are preferably used as electrode materials for bioelectrochemical systems, thereby enabling biofilm monitoring directly on the electrode surface. The sensor signal was correlated to the gravimetrically determined biofilm thickness in order to identify the sensitivity of the sensor for the detection and quantification of biofilm on both materials. Results confirmed the transferability of the sensor to the C-PP material, despite the sensor sensitivity being decreased by a factor of approx. 5 compared to the default biofilm sensor applied to a stainless-steel pipe.
Collapse
|
4
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
5
|
Lama S, Kim J, Ramesh S, Lee YJ, Kim J, Kim JH. Highly Sensitive Hybrid Nanostructures for Dimethyl Methyl Phosphonate Detection. MICROMACHINES 2021; 12:648. [PMID: 34073136 PMCID: PMC8228009 DOI: 10.3390/mi12060648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/12/2023]
Abstract
Nanostructured materials synthesized by the hydrothermal and thermal reduction process were tested to detect the dimethyl methylphosphonate (DMMP) as a simulant for chemical warfare agents. Manganese oxide nitrogen-doped graphene oxide with polypyrrole (MnO2@NGO/PPy) exhibited the sensitivity of 51 Hz for 25 ppm of DMMP and showed the selectivity of 1.26 Hz/ppm. Nitrogen-doped multi-walled carbon nanotube (N-MWCNT) demonstrated good linearity with a correlation coefficient of 0.997. A comparison between a surface acoustic wave and quartz crystal microbalance sensor exhibited more than 100-times higher sensitivity of SAW sensor than QCM sensor.
Collapse
Affiliation(s)
- Sanjeeb Lama
- INHA IST and Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea; (S.L.); (J.K.); (J.K.)
| | - Jinuk Kim
- INHA IST and Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea; (S.L.); (J.K.); (J.K.)
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Young-Jun Lee
- INHA IST and Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea; (S.L.); (J.K.); (J.K.)
| | - Jihyun Kim
- INHA IST and Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea; (S.L.); (J.K.); (J.K.)
| | - Joo-Hyung Kim
- INHA IST and Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea; (S.L.); (J.K.); (J.K.)
| |
Collapse
|
6
|
|
7
|
Begly C, Ackart D, Mylius J, Basaraba R, Chicco AJ, Chen TW. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1051-1064. [PMID: 32746361 DOI: 10.1109/tbcas.2020.3011918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The purpose of this paper is to demonstrate the use of 2-D impedance spectroscopy to identify areas of biofilm growth on a CMOS biosensor microelectrode-array. METHODS This paper presents the design and use of a novel multichannel impedance spectroscopy instrument to allow 2-D spatial and temporal evaluation of biofilm growth. The custom-designed circuits can provide a wide range of frequencies (1 Hz-100 kHz) to allow customization of impedance measurements, as the frequency of interest varies based on the type and state of biofilm under measurement. The device is capable of taking measurements as fast as once per second on the entire set of impedance sensors, allowing real-time observation. It also supports adjustable stimulus voltages. The distance between neighboring sensors is 220 micrometers which provides reasonable spatial resolution for biofilm study. RESULTS Biofilm was grown on the surface of the chip, occupancy was measured using the new tool, and the results were validated optically using fluorescent staining. The results show that the developed tool can be used to determine the bacterial biofilm presence at a given location. CONCLUSION This paper confirms that 2-D impedance spectroscopy can be used to measure biofilm occupancy. The new tool developed to perform the measurements was able to display real-time results, and determine biofilm coverage of the array electrodes. SIGNIFICANCE The system presented in this report is the first fully integrated 2-D EIS measurement system with full software support for capturing biofilm growth dynamics in real-time. Due to its ability to nondestructively monitor biofilms over time, 2-D impedance spectroscopy using a microelectrode-array is a useful tool for studying biofilms.
Collapse
|
8
|
Yeor-Davidi E, Zverzhinetsky M, Krivitsky V, Patolsky F. Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array. J Nanobiotechnology 2020; 18:81. [PMID: 32448291 PMCID: PMC7247256 DOI: 10.1186/s12951-020-00637-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial biofilms are communities of surface-associated microorganisms living in cellular clusters or micro-colonies, encapsulated in a complex matrix composed of an extracellular polymeric substance, separated by open water channels that act as a circulatory system that enable better diffusion of nutrients and easier removal of metabolic waste products. The monitoring of biofilms can provide important information on fundamental biofilm-related processes. That information can shed light on the bacterial processes and enable scientists to find ways of preventing future bacterial infections. Various approaches in use for biofilm analysis are based on microscopic, spectrochemical, electrochemical, and piezoelectrical methods. All these methods provide significant progress in understanding the bio-process related to biofilm formation and eradication, nevertheless, the development of novel approaches for the real-time monitoring of biochemical, in particular metabolic activity, of bacterial species during the formation, life and eradication of biofilms is of great potential importance. RESULTS Here, detection and monitoring of the metabolic activity of bacterial biofilms in high-ionic-strength solutions were enabled as a result of novel surface modification by an active redox system, composed of 9,10-dihydroxyanthracene/9,10-anthraquinone, on the oxide layer of the SiNW, yielding a chemically-gated FET array. With the use of enzymatic reactions of oxidases, metabolites can be converted to H2O2 and monitored by the nanosensors. Here, the successful detection of glucose metabolites in high-ionic-strength solutions, such as bacterial media, without pre-processing of small volume samples under different conditions and treatments, has been demonstrated. The biofilms were treated with antibiotics differing in their mechanisms of action and were compared to untreated biofilms. Further examination of biofilms under antibiotic treatment with SiNW-FET devices could shed light on the bioprocess that occurs within the biofilm. Moreover, finding proper treatment that eliminates the biofilm could be examined by the novel nanosensor as a monitoring tool. CONCLUSIONS To summarize, the combination of redox-reactive SiNW-FET devices with micro-fluidic techniques enables the performance of rapid, automated, and real-time metabolite detection with the use of minimal sample size, noninvasively and label-free. This novel platform can be used as an extremely sensitive tool for detection and establishing medical solutions for bacterial-biofilm eradication and for finding a proper treatment to eliminate biofilm contaminations. Moreover, the sensing system can be used as a research tool for further understanding of the metabolic processes that occur within the bacterial biofilm population.
Collapse
Affiliation(s)
- Ella Yeor-Davidi
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Marina Zverzhinetsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Vadim Krivitsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Fernando Patolsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
9
|
Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117604] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Kanematsu H, Nakagawa R, Sano K, Barry DM, Ogawa A, Hirai N, Kogo T, Kuroda D, Wada N, Lee S, Mizunoe Y. Graphene‐dispersed silane compound used as a coating to sense immunity from biofilm formation. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/mds3.10043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ryoichi Nakagawa
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | | | - Dana M. Barry
- Department of Electrical & Computer Engineering Clarkson University Potsdam NY USA
- Science / Math Tutoring Center the State University of New York at Canton in Canton NY USA
| | - Akiko Ogawa
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | - Nobumitsu Hirai
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | - Takeshi Kogo
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | - Daisuke Kuroda
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | - Noriyuki Wada
- National Institute of Technology Suzuka College Suzuka Mie Japan
| | - Seung‐Hyo Lee
- Division of Marine Engineering Korea Maritime University Busan Korea
| | | |
Collapse
|
11
|
Stenclova P, Freisinger S, Barth H, Kromka A, Mizaikoff B. Cyclic Changes in the Amide Bands Within Escherichia coli Biofilms Monitored Using Real-Time Infrared Attenuated Total Reflection Spectroscopy (IR-ATR). APPLIED SPECTROSCOPY 2019; 73:424-432. [PMID: 30654633 DOI: 10.1177/0003702819829081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Contrary to the planktonic state of bacteria, their biofilm form represents severe complications in areas such as human medicine or food industry due to the increasing resistance against harsh conditions and treatment. In the present study, infrared attenuated total reflection (IR-ATR) spectroscopy has been applied as an analytic tool studying Escherichia coli ( E. coli) biofilm formation close to real time. We report on IR spectroscopic investigations on the biofilm formation via ATR waveguides probing the biofilm in the spectral window of 1800-900 cm-1 at dynamic flow conditions, which facilitated monitoring the growth dynamics during several days. Key IR bands are in the range 1700-1590 cm-1 (amide I), 1580-1490 cm-1 (amide II), and 1141-1006 cm-1 extracellular polymeric substances (EPS), which were evaluated as a function of time. Cyclic fluctuations of the amide I and amide II bands and a continuous increase of the EPS band were related to the starvation of bottom-layered bacteria caused by the nutrient gradient. Potential death of bacteria may then result in cannibalistic behavior known for E. coli colonies. Observing this behavior via IR spectroscopy allows revealing these cyclical changes in bottom-layered bacteria within the biofilm under continuous nutrient flow, in molecular detail, and during extended periods for the first time.
Collapse
Affiliation(s)
- Pavla Stenclova
- 1 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Simon Freisinger
- 2 Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- 2 Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Kromka
- 1 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Boris Mizaikoff
- 3 Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Dutta Sinha S, Das S, Tarafdar S, Dutta T. Monitoring of Wild Pseudomonas Biofilm Strain Conditions Using Statistical Characterization of Scanning Electron Microscopy Images. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suparna Dutta Sinha
- Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata−700032, India
| | - Saptarshi Das
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Power
Engineering, Jadavpur University, Salt Lake Campus, LB-8, Sector 3, Kolkata−700098, India
| | - Sujata Tarafdar
- Condensed Matter Physics Research Centre, Department of Physics, Jadavpur University, Kolkata−700032, India
| | - Tapati Dutta
- Physics Department, St. Xavier’s College, Kolkata−700016, India
| |
Collapse
|
13
|
Castro P, Elvira L, Maestre JR, Montero de Espinosa F. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. SENSORS 2017; 17:s17061395. [PMID: 28617343 PMCID: PMC5492035 DOI: 10.3390/s17061395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/24/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM) resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor) that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus (G* = G′ + jG″) of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli, is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms.
Collapse
Affiliation(s)
- Pedro Castro
- Institute of Physical and Information Technologies, CSIC, C/Serrano, 144, 28006 Madrid, Spain.
| | - Luis Elvira
- Institute of Physical and Information Technologies, CSIC, C/Serrano, 144, 28006 Madrid, Spain.
| | - Juan Ramón Maestre
- Servicio de Microbiología Clínica, Hospital Central de la Defensa Gómez-Ulla, Glorieta del Ejército, s/n, 28047 Madrid, Spain.
| | | |
Collapse
|
14
|
Abstract
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.
Collapse
|
15
|
Li T, Podola B, de Beer D, Melkonian M. A method to determine photosynthetic activity from oxygen microsensor data in biofilms subjected to evaporation. J Microbiol Methods 2015; 117:100-7. [DOI: 10.1016/j.mimet.2015.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 01/05/2023]
|
16
|
Maurício R, Dias CJ, Jubilado N, Santana F. Biofilm thickness measurement using an ultrasound method in a liquid phase. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:8125-8133. [PMID: 23494195 DOI: 10.1007/s10661-013-3160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/01/2013] [Indexed: 06/01/2023]
Abstract
In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.
Collapse
Affiliation(s)
- R Maurício
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
| | | | | | | |
Collapse
|
17
|
Strathmann M, Mittenzwey KH, Sinn G, Papadakis W, Flemming HC. Simultaneous monitoring of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, real-time, non-destructive, optical sensor. BIOFOULING 2013; 29:573-583. [PMID: 23682638 DOI: 10.1080/08927014.2013.791287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Deposits on surfaces in water-bearing systems, also known as 'fouling', can lead to substantial losses in the performance of industrial processes as well as a decreased product quality. Early detection and localization of such deposits can, to a considerable extent, save such losses. However, most of the surfaces that become fouled, for example, in process water pipes, membrane systems, power plants, and food and beverage industries, are difficult to access and analyses conducted on the water phase do not reveal the site or extent of deposits. Furthermore, it is of interest to distinguish biological from non-biological deposits. Although they usually occur together, different countermeasures are necessary. Therefore, sensors are required that indicate the development of surface fouling in real-time, non-destructively, and in situ, preferably allowing for discrimination between chemical and/or biological deposits. In this paper, an optical deposit sensor is presented which fulfills these requirements. Based on multiple fluorescence excitation emission matrix analysis, it detects autofluorescence of amino acids as indicators of biomass. Autofluorescence of nicotinamide adenine dinucleotide + hydrogen is interpreted as an indicator of biological activity, thus it acts as a viability marker, making the method suited for assessing the efficacy of disinfection treatments. Scattering signals from abiotic deposits such as calcium carbonate or corrosion products can clearly be distinguished from biotic substances and monitored separately. The sensor provides an early warning of fouling, allowing for timely countermeasures to be deployed. It also provides an assessment of the success of cleaning treatments and is a promising tool for integrated antifouling strategies.
Collapse
|
18
|
Design and field application of a UV-LED based optical fiber biofilm sensor. Biosens Bioelectron 2012; 33:172-8. [DOI: 10.1016/j.bios.2011.12.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/22/2011] [Accepted: 12/25/2011] [Indexed: 01/23/2023]
|
19
|
Čapla J, Zajác P, Golian J, Bajzík P, Zeleňáková L, Vietoris V, Kozelová D. Microbial biofilms produced by pseudomonas fluorescens on solid surfaces. POTRAVINARSTVO 2011. [DOI: 10.5219/18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A biofilm is a complex aggregation of microorganisms growing on a solid substrate. Biofilms are characterized by structural heterogeneity, genetic diversity, complex community interactions, and an extracellular matrix of polymeric substances. The experimental part was focused on the adhesion of bacterial cells under static conditions and testing the effectiveness of disinfectants on created biofilm. In laboratory conditions we prepared and formed the bacterial biofilms Pseudomonas fluorescens in the four test surfaces of stainless steel, glass and plastic materials - PE (polyethylene) and EPDM (ethylene propylene diene monomer). Over the next 72 hours and 72 hours were observed numbers of adhesion bacterial cells of P. fluorescens on solid surfaces of tested materials. The highest values adhesion cells reached P. fluorescens cells after 72 hours of cultivation on plastic surfaces, where was increased in adhesion bacterial cells for EPDM in the values of 105 CFU/cm2 and for PE up to 106 CFU/cm2. The subsequent repeated 72-hour cultivation P. fluorescens was an increase (growth) in the number of adhesion bacterial cells to all tested surfaces.
Collapse
|
20
|
|
21
|
Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions. SPRINGER SERIES ON BIOFILMS 2011. [DOI: 10.1007/978-3-642-19940-0_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Khan R, Zakir M, Khanam Z, Shakil S, Khan A. Novel compound from Trachyspermum ammi (Ajowan caraway) seeds with antibiofilm and antiadherence activities against Streptococcus mutans: a potential chemotherapeutic agent against dental caries. J Appl Microbiol 2010; 109:2151-9. [DOI: 10.1111/j.1365-2672.2010.04847.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
McLean JS, Majors PD, Reardon CL, Bilskis CL, Reed SB, Romine MF, Fredrickson JK. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. J Microbiol Methods 2008; 74:47-56. [DOI: 10.1016/j.mimet.2008.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
|
24
|
Pereira A, Mendes J, Melo LF. Using nanovibrations to monitor biofouling. Biotechnol Bioeng 2008; 99:1407-15. [DOI: 10.1002/bit.21696] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
|
26
|
Reipa V, Almeida J, Cole KD. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. J Microbiol Methods 2006; 66:449-59. [PMID: 16580080 DOI: 10.1016/j.mimet.2006.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 11/21/2022]
Abstract
A biofilm reactor was constructed to monitor the long-term growth and removal of biofilms as monitored by the use of a quartz crystal microbalance (QCM) and a novel optical method. The optical method measures the reflectance of white light off the surface of the quartz crystal microbalance electrode (gold) for determination of the biofilm thickness. Biofilm growth of Pseudomonas aeruginosa (PA) on the surface was used as a model system. Bioreactors were monitored for over 6 days. Expressing the QCM data as the ratio of changes in resistance to changes in frequency (DeltaR/Deltaf) facilitated the comparison of individual biofilm reactor runs. The various stages of biofilm growth and adaptation to low nutrients showed consistent characteristic changes in the DeltaR/Deltaf ratio, a parameter that reflects changes in the viscoelastic properties of the biofilm. The utility of white light reflectance for thickness measurements was shown for those stages of biofilm growth when the solution was not turbid due to high numbers of unattached cells. The thickness of the biofilms after 6 days ranged from 48 mum to 68 mum. Removal of the biofilm by a disinfectant (chlorine) was also measured in real time. The combination of QCM and reflectance allowed us to monitor in real time changes in the viscoelastic properties and thickness of biofilms over long periods of time.
Collapse
Affiliation(s)
- Vytas Reipa
- Biochemical Science Division, Chemical Sciences and Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | | | | |
Collapse
|
27
|
Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O. Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol 2005; 71:736-47. [PMID: 16292646 DOI: 10.1007/s00253-005-0202-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/17/2005] [Accepted: 09/23/2005] [Indexed: 11/28/2022]
Abstract
Although Bordetella pertussis, the etiologic agent of whooping cough, adheres and grows on the ciliated epithelium of the respiratory tract, it has been extensively studied only in liquid cultures. In this work, the phenotypic expression of B. pertussis in biofilm growth is described as a first approximation of events that may occur in the colonization of the host. The biofilm developed on polypropylene beads was monitored by chemical methods and Fourier transform infrared (FT-IR) spectroscopy. Analysis of cell envelopes revealed minimal differences in outer membrane protein (OMP) pattern and no variation of lipopolysaccharide (LPS) expression in biofilm compared with planktonically grown cells. Sessile cells exhibited a 2.4- to 3.0-fold higher carbohydrate/protein ratio compared with different types of planktonic cells. A 1.8-fold increased polysaccharide content with significantly increased hydrophilic characteristics was observed. FT-IR spectra of the biofilm cells showed higher intensity in the absorption bands assigned to polysaccharides (1,200-900 cm(-1) region) and vibrational modes of carboxylate groups (1,627, 1,405, and 1,373 cm(-1)) compared with the spectra of planktonic cells. In the biofilm matrix, uronic-acid-containing polysaccharides, proteins, and LPS were detected. The production of extracellular carbohydrates during biofilm growth was not associated with changes in the specific growth rate, growth phase, or oxygen limitation. It could represent an additional virulence factor that may help B. pertussis to evade host defenses.
Collapse
Affiliation(s)
- A Bosch
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, UNLP, calle 50 y 115, 1900 La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Marcotte L, Barbeau J, Lafleur M. Characterization of the diffusion of polyethylene glycol in Streptococcus mutans biofilms by Raman microspectroscopy. APPLIED SPECTROSCOPY 2004; 58:1295-1301. [PMID: 15606934 DOI: 10.1366/0003702042475484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We used Raman microspectroscopy to investigate in situ the spatial distribution of the biomass in Streptococcus mutans biofilms. We used the CH stretching band to probe the organic matter and the area of the OH stretching band as an internal intensity standard, the biofilms being highly hydrated. The size of the biofilm regions that were mapped was 300 x 300 microm. We also recorded, in the confocal mode, the z profiles describing the biomass distribution as a function of depth in the biofilms. In our growth conditions, the biofilm is described as an approximately 75 microm thick mat completely covering the surface and includes columnar clusters with a diameter of approximately 100 microm surrounded by voids filled with water. Raman mapping was also used to examine the diffusion of HOD and polyethylene glycol with a molar mass of 10,000 (PEG-10k) in the biofilms. This study establishes that HOD can diffuse practically everywhere in the biofilms but that the penetration of PEG-10k is limited. There is a correlation between the restricted penetration of the macromolecule and the biomass content in the different regions of the biofilms. The method presented here provides a convenient approach to determine the diffusion of molecules, including antibacterials, in bacterial biofilms.
Collapse
Affiliation(s)
- Lucie Marcotte
- Department of chemistry, Université de Montréal, CP 6128, Succ. Centre Ville, Montréal, Québec, H3C 3J7, Canada
| | | | | |
Collapse
|
29
|
Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, El-Sayed I, El-Sayed MA. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol 2004; 70:4980-8. [PMID: 15294838 PMCID: PMC492445 DOI: 10.1128/aem.70.8.4980-4988.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae forms biofilms, but little is known about its extracellular polymeric substances (EPS) or the kinetics of biofilm formation. A system was developed to enable the simultaneous measurement of cells and the EPS of biofilm-associated S. pneumoniae in situ over time. A biofilm reactor containing germanium coupons was interfaced to an attenuated total reflectance (ATR) germanium cell of a Fourier transform infrared (FTIR) laser spectrometer. Biofilm-associated cells were recovered from the coupons and quantified by total and viable cell count methods. ATR-FTIR spectroscopy of biofilms formed on the germanium internal reflection element (IRE) of the ATR cell provided a continuous spectrum of biofilm protein and polysaccharide (a measure of the EPS). Staining of the biofilms on the IRE surface with specific fluorescent probes provided confirmatory evidence for the biofilm structure and the presence of biofilm polysaccharides. Biofilm protein and polysaccharides were detected within hours after inoculation and continued to increase for the next 141 h. The polysaccharide band increased at a substantially higher rate than did the protein band, demonstrating increasing coverage of the IRE surface with biofilm polysaccharides. The biofilm total cell counts on germanium coupons stabilized after 21 h, at approximately 10(5) cells per cm(2), while viable counts decreased as the biofilm aged. This system is unique in its ability to detect and quantify biofilm-associated cells and EPS of S. pneumoniae over time by using multiple, corroborative techniques. This approach could prove useful for the study of biofilm processes of this or other microorganisms of clinical or industrial relevance.
Collapse
Affiliation(s)
- R M Donlan
- Biofilm Laboratory, ELB/DHQP/NCID, Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd., N.E., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Foschino R, Picozzi C, Civardi A, Bandini M, Faroldi P. Comparison of surface sampling methods and cleanability assessment of stainless steel surfaces subjected or not to shot peening. J FOOD ENG 2003. [DOI: 10.1016/s0260-8774(03)00060-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Abstract
The extracellular matrix is a complex and extremely important component of all biofilms, providing architectural structure and mechanical stability to the attached population. The matrix is composed of cells, water and secreted/released extracellular macromolecules. In addition, a range of enzymic and regulatory activities can be found within the matrix. Together, these different components and activities are likely to interact and in so doing create a series of local environments within the matrix which co-exist as a functional consortium. The matrix architecture is also subject to a number of extrinsic factors, including fluctuations in nutrient and gaseous levels and fluid shear. Together, these intrinsic and extrinsic factors combine to produce a dynamic, heterogeneous microenvironment for the attached and enveloped cells.
Collapse
Affiliation(s)
- David G Allison
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK,
| |
Collapse
|
32
|
Pereira MO, Morin P, Vieira MJ, Melo LF. A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions. Lett Appl Microbiol 2002; 34:22-6. [PMID: 11849487 DOI: 10.1046/j.1472-765x.2002.01030.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The understanding of the dynamics of surface microbial colonization with concomitant monitoring of biofilm formation requires the development of biofilm reactors that enable direct and real-time evaluation under different hydrodynamic conditions. METHODS AND RESULTS This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, both non-destructive and destructive biofilm analyses. This is managed without the stoppage of the flow, thus reducing the contamination and the disturbance of the biofilm development. With this flow cell, biofilm growth and respiratory activity can be easily followed, either in well-defined laboratory conditions or in an industrial environment. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY The reproducible and typical biofilm development curves obtained, validated this flow cell and confirmed its potential for different biofilm-related studies, which can include biocidal treatment.
Collapse
Affiliation(s)
- M O Pereira
- Centro de Engenharia Biológica-IBQF, Universidade do Minho, Braga, Portugal
| | | | | | | |
Collapse
|
33
|
Jass J, O'Neill JG, Walker JT. Direct biofilm monitoring by a capacitance measurement probe in continuous culture chemostats. Methods Enzymol 2001; 337:63-70. [PMID: 11398451 DOI: 10.1016/s0076-6879(01)37006-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Jass
- Department of Microbiology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
34
|
Nivens DE, Ohman DE, Williams J, Franklin MJ. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 2001; 183:1047-57. [PMID: 11208804 PMCID: PMC94973 DOI: 10.1128/jb.183.3.1047-1057.2001] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 10/26/2000] [Indexed: 11/20/2022] Open
Abstract
Attenuated total reflection/Fourier transform-infrared spectrometry (ATR/FT-IR) and scanning confocal laser microscopy (SCLM) were used to study the role of alginate and alginate structure in the attachment and growth of Pseudomonas aeruginosa on surfaces. Developing biofilms of the mucoid (alginate-producing) cystic fibrosis pulmonary isolate FRD1, as well as mucoid and nonmucoid mutant strains, were monitored by ATR/FT-IR for 44 and 88 h as IR absorbance bands in the region of 2,000 to 1,000 cm(-1). All strains produced biofilms that absorbed IR radiation near 1,650 cm(-1) (amide I), 1,550 cm(-1) (amide II), 1,240 cm(-1) (P==O stretching, C---O---C stretching, and/or amide III vibrations), 1,100 to 1,000 cm(-1) (C---OH and P---O stretching) 1,450 cm(-1), and 1,400 cm(-1). The FRD1 biofilms produced spectra with an increase in relative absorbance at 1,060 cm(-1) (C---OH stretching of alginate) and 1,250 cm(-1) (C---O stretching of the O-acetyl group in alginate), as compared to biofilms of nonmucoid mutant strains. Dehydration of an 88-h FRD1 biofilm revealed other IR bands that were also found in the spectrum of purified FRD1 alginate. These results provide evidence that alginate was present within the FRD1 biofilms and at greater relative concentrations at depths exceeding 1 micrometer, the analysis range for the ATR/FT-IR technique. After 88 h, biofilms of the nonmucoid strains produced amide II absorbances that were six to eight times as intense as those of the mucoid FRD1 parent strain. However, the cell densities in biofilms were similar, suggesting that FRD1 formed biofilms with most cells at depths that exceeded the analysis range of the ATR/FT-IR technique. SCLM analysis confirmed this result, demonstrating that nonmucoid strains formed densely packed biofilms that were generally less than 6 micrometer in depth. In contrast, FRD1 produced microcolonies that were approximately 40 micrometer in depth. An algJ mutant strain that produced alginate lacking O-acetyl groups gave an amide II signal approximately fivefold weaker than that of FRD1 and produced small microcolonies. After 44 h, the algJ mutant switched to the nonmucoid phenotype and formed uniform biofilms, similar to biofilms produced by the nonmucoid strains. These results demonstrate that alginate, although not required for P. aeruginosa biofilm development, plays a role in the biofilm structure and may act as intercellular material, required for formation of thicker three-dimensional biofilms. The results also demonstrate the importance of alginate O acetylation in P. aeruginosa biofilm architecture.
Collapse
Affiliation(s)
- D E Nivens
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | | | | | | |
Collapse
|
35
|
MacDonald R, Santa M, Brözel VS. The response of a bacterial biofilm community in a simulated industrial cooling water system to treatment with an anionic dispersant. J Appl Microbiol 2000; 89:225-35. [PMID: 10971754 DOI: 10.1046/j.1365-2672.2000.01099.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of a dispersant on the microbial community in a simulated open recirculating cooling water system was determined by continuous operation of the system over two consecutive periods of 196 and 252 d, respectively. An open recirculating cooling water system feeding a modified Robbin's Device with synthetic cooling water to simulate the environment of an industrial cooling water system was set up. Planktonic and biofilm (mild steel and Nylon(R)) samples were taken weekly in 1997 (196-d period) and fortnightly in 1998 (252-d period). Each biofilm was scraped off and diluted in 10-ml 1 x phosphate-buffered saline (PBS). Serial dilutions were performed and plated onto R2A agar (pH 8.0) to obtain the predominant culturable bacteria. The diversity was determined by allocating groups according to colony morphology, diameter and colour. Diversity was calculated according to the Shannon-Weaver Index. During the first run (1997), dispersant was added on day 57 to a final concentration of 15 mg l-1 for 49 d, stopped for 49 d and dosed at 30 mg l-1 for 41 d. The second run entailed adding dispersant to a final concentration of 30 mg l-1 on day 98 for 70 d, stopping dosing for 56 d and resuming dosing at 30 mg l-1 for another 28 d. The 2-year evaluation period demonstrated that the biofilm-removing action of the dispersant decreased to a point where it was not effective at all. Our results showed that the synthetic dispersant evaluated was only effective initially, but was ineffective in controlling biofouling on Nylon, and to a lesser degree on mild steel at the recommended (15 mg l-1) as well as at double the recommended concentration in the long term. The release of cells from biofilms observed when dispersant dosing was terminated, supports the notion that a community attaching in the presence of the surface active agent was selected for. The decreased efficacy may therefore be due to a selection of strains able to remain attached and/or attach in the presence of the dispersant as demonstrated by shifts in the biofilm communities on both Nylon and mild steel.
Collapse
Affiliation(s)
- R MacDonald
- Laboratory for Biofilm Physiology, Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
| | | | | |
Collapse
|
36
|
|
37
|
Kuehn M, Hausner M, Bungartz HJ, Wagner M, Wilderer PA, Wuertz S. Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 1998; 64:4115-27. [PMID: 9797255 PMCID: PMC106617 DOI: 10.1128/aem.64.11.4115-4127.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to develop and apply a quantitative optical method suitable for routine measurements of biofilm structures under in situ conditions. A computer program was designed to perform automated investigations of biofilms by using image acquisition and image analysis techniques. To obtain a representative profile of a growing biofilm, a nondestructive procedure was created to study and quantify undisturbed microbial populations within the physical environment of a glass flow cell. Key components of the computer-controlled processing described in this paper are the on-line collection of confocal two-dimensional (2D) cross-sectional images from a preset 3D domain of interest followed by the off-line analysis of these 2D images. With the quantitative extraction of information contained in each image, a three-dimensional reconstruction of the principal biological events can be achieved. The program is convenient to handle and was generated to determine biovolumes and thus facilitate the examination of dynamic processes within biofilms. In the present study, Pseudomonas fluorescens or a green fluorescent protein-expressing Escherichia coli strain, EC12, was inoculated into glass flow cells and the respective monoculture biofilms were analyzed in three dimensions. In this paper we describe a method for the routine measurements of biofilms by using automated image acquisition and semiautomated image analysis.
Collapse
Affiliation(s)
- M Kuehn
- Institute of Water Quality Control and Waste Management, Technical University of Munich, D-85748 Garching, Technical University of Munich, D-80290 Munich, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Becker G, Holfeld H, Hasselrot AT, Fiebig DM, Menzler DA. Use of a microscope photometer to analyze in vivo fluorescence intensity of epilithic microalgae grown on artificial substrata. Appl Environ Microbiol 1997; 63:1318-25. [PMID: 16535568 PMCID: PMC1389546 DOI: 10.1128/aem.63.4.1318-1325.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An epifluorescence microscope photometer was used to develop a new, in vivo fluorimetric method for analyzing fluorescence intensities of epilithic microalgae grown on clay tiles in the field. This enabled a nondestructive, direct quantification of algal biomass on the substratum surface. Measurements of a chlorophyll a standard in ethanol (90%) with our fluorimetric method (exitation at 546 nm; emission, >590 nm) correlated well with those from conventional spectrofluorimetric and spectrophotometric methods. Biofilms were analyzed with the microscope photometer by measuring the in vivo fluorescence intensity of 70 spots distributed randomly over the tile surface. They were then analyzed by the two in vitro methods after photopigment extraction. Chlorophyll a content and in vivo fluorescence intensity correlated well. The regression curves were linear up to 6 (mu)g cm(sup-2) but were quadratic or hyperbolic at higher concentrations of up to 28 (mu)g cm(sup-2). The degree of scatter among individual measurements was higher in biofilms than chlorophyll a standards. This in vivo analysis is well suited to ecological experiments and has the advantage of measuring on an extremely small scale, which enables direct analysis of the microdistribution of epilithic microalgae in live biofilms. We demonstrated this by comparing fluorescence intensities of the grazing tracks of the snail Ancylus fluviatilis with those of ungrazed areas. Our in vivo analysis is also unique in enabling biofilms on artificial substrata to be removed, analyzed, and then returned intact in field or laboratory experiments.
Collapse
|
39
|
White DC, Arrage AA, Nivens DE, Palmer RJ, Rice JF, Sayler GS. Biofilm ecology: On-line methods bring new insights into mic and microbial biofouling. BIOFOULING 1996; 10:3-16. [PMID: 22115099 DOI: 10.1080/08927019609386267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microbial biofilms were formed on coupons with defined coatings in once-through laminar flow fields of controlled bulk-phase composition and shear. Dilute media were utilized to select for biofilm growth. The formation, succession, and stability of the biofilms were monitored with non-destructive on-line methods (fluorescence, bioluminescence, attenuated total reflectance Fourier transform infrared spectrometry [ATR-FTIR] and electrochemical impedance spectroscopy) and by high resolution destructive analysts (viable and direct counts and phospholipid fatty acid signature methods) at the termination of the experiments. Biofilms of reproducible composition can be formed and the order of inoculation of multi-component biofilms affects their composition at harvest. The corrosion rates of mild steel depended on the biofilm composition but not the attached biomass. Examination of biofilms with the scanning vibrating electrode in a microscope field showed effects of heterogeneity in biofilm structure which promoted localized anodic activity. Pseudomonas stains were engineered to contain the lux gene cassette as a "reporter"; and the formation of the exopolymer alginate was shown not to promote attachment of the strain or secondary colonization by Vibrio. Examination of mutants forming different alginate structures showed differential attachment and biofilm structure. Studies of mutants of lipopolysaccharide structure showed differential attachment to substrata. Specific antifouling and fouling-release coatings showed a wide range of attachment and release properties as well as sublethal toxicity.
Collapse
Affiliation(s)
- D C White
- a Center for Environmental Biotechnology , University of Tennessee , 10515 Research Drive, Suite 300 , Knoxville , TN , 37932 , USA
| | | | | | | | | | | |
Collapse
|