1
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Amin MS, Reza E, El-Shahat E, Wang HW, Tesson F, Leenen FH. Enhanced expression of epithelial sodium channels in the renal medulla of Dahl S rats. Can J Physiol Pharmacol 2011; 89:159-68. [DOI: 10.1139/y11-005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inner medullary collecting duct (IMCD) cells from salt-sensitive (S) Dahl rats transport twice as much Na+ as cells from salt-resistant (R) rats, possibly related to dysregulation of the renal epithelial sodium channel (ENaC). The effect of a high-salt diet on ENaC expression in the inner medulla of S versus R rats has not yet been studied. Young, male S and R rats were placed on a regular-salt (0.3%) or high-salt (8%) diet for 2 or 4 weeks. mRNA and protein expression of ENaC subunits were studied by real-time PCR and immunoblotting. Intracellular distribution of the subunits in the IMCD was evaluated by immunohistochemistry. On regular salt, the abundance of the mRNA of β and γENaC was higher in the medulla of S rats than R rats. This was associated with a greater protein abundance of 90 kDa γENaC and higher immunoreactivity for both α and γ ENaC. High salt did not affect mRNA abundance in either strain and decreased apical staining of βENaC in IMCD of R rats. In contrast, high salt did not affect the higher apical localization of αENaC and increased the apical membrane staining for β and γENaC in the IMCD of S rats. Expression of ENaC subunits is enhanced in the medulla of S vs. R rats on regular salt, and further increased on high salt. The persistent high expression of αENaC and increase in apical localization of β and γENaC may contribute to greater retention of sodium in S rats on a high-salt diet.
Collapse
Affiliation(s)
- Md. Shahrier Amin
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Erona Reza
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Esraa El-Shahat
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hong-Wei Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Frédérique Tesson
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Frans H.H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
|
4
|
Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 2008; 19:1845-54. [PMID: 18753254 DOI: 10.1681/asn.2008020225] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epithelial Na+ channel (ENaC) transports Na+ across tight epithelia, including the distal nephron. Different paradigms of ENaC regulation include extrinsic and intrinsic factors that affect the expression, single-channel properties, and intracellular trafficking of the channel. In particular, recent discoveries highlight new findings regarding proteolytic processing, ubiquitination, and recycling of the channel. Understanding the regulation of this channel is critical to the understanding of various clinical phenomena, including normal physiology and several diseases of kidney and lung epithelia, such as blood pressure (BP) control, edema, and airway fluid clearance. Significant progress has been achieved in this active field of research. Although ENaC is classically thought to be a mediator of BP and volume status through Na+ reabsorption in the distal nephron, several studies in animal models highlight important roles for ENaC in lung pathophysiology, including in cystic fibrosis. The purpose of this review is to highlight the various modes and mechanisms of ENaC regulation, with a focus on more recent studies and their clinical implications.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
5
|
Brown DR, O’Grady SM. The Ussing Chamber and Measurement of Drug Actions on Mucosal Ion Transport. ACTA ACUST UNITED AC 2008; Chapter 7:Unit 7.12. [DOI: 10.1002/0471141755.ph0712s41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David R. Brown
- University of Minnesota, Departments of Veterinary & Biomedical Sciences (DRB) and Animal Science (SMO) St. Paul Minnesota
| | - Scott M. O’Grady
- University of Minnesota, Departments of Veterinary & Biomedical Sciences (DRB) and Animal Science (SMO) St. Paul Minnesota
| |
Collapse
|
6
|
Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR. AMP-activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2. J Biol Chem 2006; 281:26159-69. [PMID: 16844684 DOI: 10.1074/jbc.m606045200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the beta-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the beta-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California 94107, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hallows KR. Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens 2005; 14:464-71. [PMID: 16046906 DOI: 10.1097/01.mnh.0000174145.14798.64] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW It has long been recognized that the coupling of membrane transport to underlying cellular metabolic status is critical because transport processes consume a large portion of total cellular energy. Recently, the finely tuned metabolic sensor AMP-activated protein kinase (AMPK) has emerged as a membrane transport regulator, which may permit sensitive transport-metabolism crosstalk. This review will discuss how AMPK may play an important role in the regulation of ion and solute transport across the plasma membrane under both physiological and pathological conditions in epithelia and other tissues. RECENT FINDINGS Recent studies have found that AMPK, which becomes activated during cellular metabolic stress, promotes the cellular uptake of fuel sources such as glucose and fatty acids to promote ATP generation and inhibits ion-transport proteins such as the cystic fibrosis transmembrane conductance regulator Cl channel and the epithelial Na channel, thereby limiting the dissipation of transmembrane ion gradients. An understanding of the underlying cellular and molecular mechanisms for AMPK-dependent regulation of transport proteins is beginning to emerge. SUMMARY As earlier studies have focused on the role of nucleotides such as ATP in regulating transport-protein activities, the regulation of membrane transport by AMPK represents a novel and more-sensitive mechanism for the coupling of membrane transport to cellular metabolic status. Identifying new membrane-transport targets of AMPK and elucidating the mechanisms involved in their AMPK-dependent regulation are fruitful areas for new investigation that should yield valuable insights into the pathophysiology of hypoxic and ischemic tissue injury.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S976 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR. Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. J Biol Chem 2005; 280:17608-16. [PMID: 15753079 DOI: 10.1074/jbc.m501770200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Genetic analysis has demonstrated that Na absorption in the aldosterone-sensitive distal nephron (ASDN) critically determines extracellular blood volume and blood pressure variations. The epithelial sodium channel (ENaC) represents the main transport pathway for Na+ absorption in the ASDN, in particular in the connecting tubule (CNT), which shows the highest capacity for ENaC-mediated Na+ absorption. Gain-of-function mutations of ENaC causing hypertension target an intracellular proline-rich sequence involved in the control of ENaC activity at the cell surface. In animal models, these ENaC mutations exacerbate Na+ transport in response to aldosterone, an effect that likely plays an important role in the development of volume expansion and hypertension. Recent studies of the functional consequences of mutations in genes controlling Na+ absorption in the ASDN provide a new understanding of the molecular and cellular mechanisms underlying the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- L Schild
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.
| |
Collapse
|
10
|
Ishikawa T, Jiang C, Stutts MJ, Marunaka Y, Rotin D. Regulation of the epithelial Na+ channel by cytosolic ATP. J Biol Chem 2003; 278:38276-86. [PMID: 12876281 DOI: 10.1074/jbc.m307216200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na+ channel (ENaC), composed of three subunits (alphabetagamma), is expressed in various Na(+)-absorbing epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. By using patch clamp techniques, we have examined the effect of cytosolic ATP on the activity of the rat alphabetagammaENaC (rENaC) stably expressed in NIH-3T3 cells and in Madin-Darby canine kidney epithelial cells. The inward whole-cell current attributable to rENaC activity ran down when these cells were dialyzed with an ATP-free pipette solution in the conventional whole-cell voltage-clamping technique. This run down was prevented by 2 mM ATP (but not by AMP or ADP) in the pipette solution or by the poorly or non-hydrolyzable analogues of ATP (adenosine 5'-O-(thiotriphosphate) and adenosine 5'-(beta,gamma-imino)triphosphate) in both cell lines, suggesting that protection from run down was mediated through non-hydrolytic nucleotide binding. Accordingly, we demonstrate binding of ATP (but not AMP) to alpharENaC expressed in Madin-Darby canine kidney cells, which was inhibited upon mutation of the two putative nucleotide-binding motifs of alpharENaC. Single channel analyses indicated that the run down of currents observed in the whole-cell recording was attributable to run down of channel activity, defined as NPo (the product of the number of channels and open probability). We propose that this novel ATP regulation of ENaC may be, at least in part, involved in the fine-tuning of ENaC activity under physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- Toru Ishikawa
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | |
Collapse
|
11
|
Ji HL, Parker S, Langloh AL, Fuller CM, Benos DJ. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity. Am J Physiol Cell Physiol 2001; 281:C64-74. [PMID: 11401828 DOI: 10.1152/ajpcell.2001.281.1.c64] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.
Collapse
Affiliation(s)
- H L Ji
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | |
Collapse
|
12
|
Ji HL, Fuller CM, Benos DJ. Peptide inhibition of constitutively activated epithelial Na(+) channels expressed in Xenopus oocytes. J Biol Chem 1999; 274:37693-704. [PMID: 10608827 DOI: 10.1074/jbc.274.53.37693] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothesis that 30-amino acid peptides corresponding to the C-terminal portion of the beta- and/or gamma-rat epithelial sodium channel (rENaC) subunits block constitutively activated ENaC was tested by examining the effects of these peptides on wild-type (wt) rENaC (alphabetagamma-rENaC), truncated Liddle's mutants (alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC), and point mutants (alphabeta(Y)gamma-, alphabetagamma(Y)-rENaC) expressed in Xenopus oocytes. The chord conductances of alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC were 2- or 3-fold greater than for wt alphabetagamma-rENaC. Introduction of peptides into oocytes expressing alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC produced a concentration-dependent inhibition of the amiloride-sensitive Na(+) conductances, with apparent dissociation constants (K(d)) ranging from 1700 to 160 microM, depending upon whether individual peptides or their combination was used. Injection of peptides alone or in combination into oocytes expressing wt alphabetagamma-rENaC or single-point mutants did not affect the amiloride-sensitive whole-cell currents. The single channel conductances of all the mutant ENaCs were the same as that of wild type (alphabetagamma-). The single channel activities (N.P(o)) of the mutants were approximately 2.2-2.6-fold greater than wt alphabetagamma-rENaC (1.08 +/- 0.24, n = 7) and were reduced to 1.09 +/- 0.17 by 100 microM peptide mixture (n = 9). The peptides were without effect on the single channel properties of either wt or single-point mutants of rENaC. Our data demonstrate that the C-terminal peptides blocked the Liddle's truncation mutant (alphabeta(T)gamma(T)) expressed in Xenopus oocytes but not the single-point mutants (alphabeta(Y)gamma or alphabetagamma(Y)). Moreover, the blocking effect of both peptides in combination on alphabeta(T)gamma(T)-rENaC was synergistic.
Collapse
Affiliation(s)
- H L Ji
- Department of Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | |
Collapse
|
13
|
Jiang X, Ingbar DH, O'Grady SM. Adrenergic stimulation of Na+ transport across alveolar epithelial cells involves activation of apical Cl- channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1610-20. [PMID: 9843723 DOI: 10.1152/ajpcell.1998.275.6.c1610] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alveolar epithelial cells were isolated from adult Sprague-Dawley rats and grown to confluence on membrane filters. Most of the basal short-circuit current (Isc; 60%) was inhibited by amiloride (IC50 0. 96 microM) or benzamil (IC50 0.5 microM). Basolateral addition of terbutaline (2 microM) produced a rapid decrease in Isc, followed by a slow recovery back to its initial amplitude. When Cl- was replaced with methanesulfonic acid, the basal Isc was reduced and the response to terbutaline was inhibited. In permeabilized monolayer experiments, both terbutaline and amiloride produced sustained decreases in current. The current-voltage relationship of the terbutaline-sensitive current had a reversal potential of -28 mV. Increasing Cl- concentration in the basolateral solution shifted the reversal potential to more depolarized voltages. These results were consistent with the existence of a terbutaline-activated Cl- conductance in the apical membrane. Terbutaline did not increase the amiloride-sensitive Na+ conductance. We conclude that beta-adrenergic stimulation of adult alveolar epithelial cells results in an increase in apical Cl- permeability and that amiloride-sensitive Na+ channels are not directly affected by this stimulation.
Collapse
Affiliation(s)
- X Jiang
- Departments of Physiology and Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
14
|
Ishikawa T, Marunaka Y, Rotin D. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J Gen Physiol 1998; 111:825-46. [PMID: 9607939 PMCID: PMC2217156 DOI: 10.1085/jgp.111.6.825] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC), composed of three subunits (alpha, beta, and gamma), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat alpha beta gamma ENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the alpha beta gamma rENaC-expressing MDCK cells exhibited greater whole cell Na+ current at -143 mV (-1,466.2 +/- 297.5 pA) than did untransfected cells (-47.6 +/- 10.7 pA). This conductance was completely and reversibly inhibited by 10 microM amiloride, with a Ki of 20 nM at a membrane potential of -103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing alpha beta or alpha gamma subunits alone was -115.2 +/- 41.4 pA and -52.1 +/- 24.5 pA at -143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-D-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be approximately 5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (Po), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nPo) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (microM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 microM Ca2+ caused a biphasic inhibition, with time constants of 1.7 +/- 0.3 min (n = 3) and 128.4 +/- 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 microM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 microM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 microM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.
Collapse
Affiliation(s)
- T Ishikawa
- Hospital for Sick Children, Division of Respiratory Research, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
15
|
Hilgemann DW. Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu Rev Physiol 1997; 59:193-220. [PMID: 9074761 DOI: 10.1146/annurev.physiol.59.1.193] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many ion transporters and channels appear to be regulated by ATP-dependent mechanisms when studied in planar bilayers, excised membrane patches, or with whole-cell patch clamp. Protein kinases are obvious candidates to mediate ATP effects, but other mechanisms are also implicated. They include lipid kinases with the generation of phosphatidylinositol phosphates as second messengers, allosteric effects of ATP binding, changes of actin cytoskeleton, and ATP-dependent phospholipases. Phosphatidylinositol-4,5-bisphosphate (PIP2) is a possible membrane-delimited messenger that activates cardiac sodium-calcium exchange, KATP potassium channels, and other inward rectifier potassium channels. Regulation of PIP2 by phospholipase C, lipid phosphatases, and lipid kinases would thus tie surface membrane transport to phosphatidylinositol signaling. Sodium-hydrogen exchange is activated by ATP through a phosphorylation-independent mechanism, whereas ion cotransporters are activated by several protein kinase mechanisms. Ion transport in epithelium may be particularly sensitive to changes of cytoskeleton that are regulated by ATP-dependent cell signaling mechanisms.
Collapse
Affiliation(s)
- D W Hilgemann
- University of Texas Southwestern, Medical Center at Dallas 75235-9040, USA
| |
Collapse
|
16
|
Barbry P, Lazdunski M. Structure and regulation of the amiloride-sensitive epithelial sodium channel. ION CHANNELS 1996; 4:115-167. [PMID: 8744208 DOI: 10.1007/978-1-4899-1775-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- P Barbry
- Institute of Molecular and Cellular Pharmacology, CNRS, Valbonne, France
| | | |
Collapse
|
17
|
Rachamim N, Latter H, Malinin N, Asher C, Wald H, Garty H. Dexamethasone enhances expression of mitochondrial oxidative phosphorylation genes in rat distal colon. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C1305-10. [PMID: 7491922 DOI: 10.1152/ajpcell.1995.269.5.c1305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dexamethasone and aldosterone are major activators of Na+ reabsorption in tight epithelia. The genes whose expression mediates the steroid actions are mostly unknown. To identify such genes, we performed differential screening of a rat colon cDNA library with total 32P-labeled cDNA probes reverse transcribed from steroid-stimulated and steroid-depleted poly(A)+ RNA. Several cDNAs whose corresponding mRNA is enhanced two- to threefold after dexamethasone injection were identified. Partial sequencing indicated that four of them code for subunits of cytochrome-c oxidase and 16S mitochondrial mRNA. The dexamethasone-induced increase in mitochondrial RNA abundance could not be mimicked by a low-salt diet, found to increase plasma aldosterone from 1.0 +/- 0.1 to 12.8 +/- 1.4 nM. Induction of mitochondrial genes by adrenal steroids may serve to prevent limitation of transport by the ATP supply to the Na(+)-K+ pump under conditions of maximal stimulation of Na+ transport.
Collapse
Affiliation(s)
- N Rachamim
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
1. When added to the Na(+)-containing solution bathing the isolated toad skin, dinitrophenol (DNP, an uncoupler of oxidative phosphorilation) caused decreases in the baseline values of short circuit current (SCC) and transepithelial conductance (G). 2. DNP also inhibited the increases in SCC and G caused by theophylline, whether added prior to the xanthine, or after the effect of the latter was fully developed. 3. In skins exposed to theophylline and bathed in Cl(-)-free (sulfate Ringer's) solution, the changes in SCC and G had a similar time course (t1/2 > 15 min). In the presence of Cl- (skins bathed in Ringer's solution), SCC decreased with a similar rate, whereas the rate of the decrease in G was greater (t1/2 < 15 min). 4. DNP also decreased the SCC induced by a Cl- concentration gradient in skins exposed to theophylline (SCCg) with a time course similar to its effect on the theophylline-increased G in the presence of Cl-. DNP was effective irrespective of the presence of ambient Na+. 5. A similar difference was observed in skins bathed in CIR and exposed to forskolin. In contrast to theophylline, however, forskolin partially overcame the inhibition of G brought about by DNP; no such recovery was observed in SCC. 6. In contrast to its influence on the responses to theophylline and forskolin, DNP failed to prevent either the increase in G or the onset of SCCg in skins exposed to dibutyryl cyclic AMP. 7. Rotenone, an inhibitor of the electron-transport chain, significantly decreased SCC and G in the unstimulated skin. It also prevented the SCC response to theophylline, and decreased it if added after the effects of the xanthine were fully developed, but failed to modify the increase in G brought about by theophylline. The time course of SCC inhibition by rotenone was similar to that caused by DNP. 8. Ouabain, an inhibitor of Na+,K(+)-ATPase, decreased SCC in the theophylline-stimulated skin, without affecting G. 9. We conclude that, whereas integrity of oxidative energy metabolism is necessary to sustain SCC in the isolated toad skin, it is not a strict requirement for the increase of Cl(-)-dependent G activated by cAMP. 10. The effect of DNP on Cl(-)-dependent G activated by cAMP is probably exerted at the cAMP generation step, by inhibition of adenyl cyclase and/or a decrease in the availability of ATP.
Collapse
Affiliation(s)
- G Castillo
- Dept. Physiology, INSIBIO (UNT-CONICET), Tucumán, Argentina
| | | |
Collapse
|
19
|
Kemendy AE, Kleyman TR, Eaton DC. Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C825-37. [PMID: 1329547 DOI: 10.1152/ajpcell.1992.263.4.c825] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We used patch-clamp methods to examine the effects of depletion and readdition of aldosterone on single, highly selective, amiloride-blockable sodium channels in the A6 cell line. Single-channel characteristics changed little before 24 h of continuous aldosterone depletion, although there was some reduction in short-circuit current. Thereafter, apical sodium permeability, measured as product of channel number per patch and individual channel open probability (NPo), was reduced between five- and sevenfold, primarily due to a large decrease in channel mean open time. With about the same time course, short-circuit current also decreased approximately fivefold. Readdition of aldosterone to depleted cells produced an increase in NPo within 2 h, primarily through an increase in mean open time. After readdition, channel number per patch increased twofold compared with cells not hormone deprived, with a return to control levels between 24 and 48 h after continuous exposure. The increase in short-circuit current followed a similar time course. The primary effect of aldosterone appears to be modulation of the open time of channels continuously present in the apical membrane, rather than promotion of the appearance or disappearance of channels from the membrane. In particular, it cannot be demonstrated statistically that aldosterone removal reduces the number of channels per patch, and there may actually be up to a twofold increase after a long period of aldosterone depletion.
Collapse
Affiliation(s)
- A E Kemendy
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | |
Collapse
|
20
|
Abstract
Mineralocorticoid hormones are a subset of steroid hormones that act primarily in epithelial tissues to regulate ion transport of Na+, K+ and H+. Cellular specificity is conferred by receptors which act in the nucleus to stimulate gene expression. Transcription and subsequent translation result in the production of new proteins which mediate the physiologic effects. The mechanisms involved in receptor specificity and localization, in regulation of gene activation, and in expression of transport effects are reviewed. The cellular actions of mineralocorticoids fit well with the general model of steroid hormone action but considerable questions remain at each step in the process.
Collapse
Affiliation(s)
- J P Johnson
- Department of Nephrology, Walter Reed Army Institute of Research, Washington D.C. 20307
| |
Collapse
|
21
|
Benos DJ, Cunningham S, Baker RR, Beason KB, Oh Y, Smith PR. Molecular characteristics of amiloride-sensitive sodium channels. Rev Physiol Biochem Pharmacol 1992; 120:31-113. [PMID: 1325667 DOI: 10.1007/bfb0036122] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D J Benos
- Department of Physiology and Biophysics, University of Alabama, Birmingham 35294
| | | | | | | | | | | |
Collapse
|
22
|
Schultz SG, Hudson RL. Biology Of Sodium‐Absorbing Epithelial Cells: Dawning of a New Era. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Chapter 12 Development of Epithelial Na+ Channels and Regulation by Guanine Nucleotide Regulatory (G) Proteins and Phospholipids. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Willumsen NJ, Boucher RC. Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 256:C1054-63. [PMID: 2719095 DOI: 10.1152/ajpcell.1989.256.5.c1054] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A method for determination of shunt resistance (Rs) and absolute conductive ion permeabilities of the apical membrane in epithelia from steady-state data is described. The method assumes that the currents are satisfactorily described by the Goldman-Hodgkin-Katz regime. Its application requires measurements of standard transepithelial electrophysiological parameters and of one or more intracellular ion activities. It is applicable under both open- and short-circuit conditions. The method was tested in an electrophysiological analysis of cultured normal and cystic fibrosis (CF) human nasal epithelium. In 15 normal and 10 CF preparations with mean transepithelial resistances of 338 and 427 omega.cm2, Rs was 412 and 623 omega.cm2, respectively. The Rs values determined with the present method were strongly correlated (r = 0.94) with those obtained with another method available in the electrophysiological literature but were as a mean 20% lower. Amiloride increased Rs by 25% in CF and by 8% in normal preparations. In normal preparations, the apical Cl permeability (PCla) was 3.6 x 10(-6) cm/s, and the apical Na permeability (PNaa) was 1.6 x 10(-6) cm/s. In CF preparations, PCla was reduced to a maximum of 2.3 x 10(-7) cm/s, whereas PNaa was increased to 6.2 x 10(-6) cm/s. The apical membrane electromotive force was -1 mV in normal and 43 mV in CF preparations. It is concluded that the method can be used to calculate Rs, apical membrane ion permeabilities, and electromotive forces from steady-state electrophysiological data.
Collapse
Affiliation(s)
- N J Willumsen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27514
| | | |
Collapse
|
25
|
Palmer LG, Andersen OS. Interactions of amiloride and small monovalent cations with the epithelial sodium channel. Inferences about the nature of the channel pore. Biophys J 1989; 55:779-87. [PMID: 2541821 PMCID: PMC1330561 DOI: 10.1016/s0006-3495(89)82876-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The voltage dependence of amiloride-induced inhibition of current flow through apical membrane sodium channels in toad urinary bladder was studied at different ionic conditions. The "inert" salt N-methyl-D-glucamine HCl (NMDG HCl) affected neither the apparent inhibition constant (Kl) for the amiloride-induced current inhibition nor the apparent fraction of the transmembrane voltage that falls between the mucosal solution and the amiloride-binding site (delta). When NMDG+ was replaced with Na+, Kl increased, reflecting amiloride-Na+ competition, whereas delta was unchanged. Similar results were obtained with another permeant cation, Li+. When NMDG+ was replaced by K+, an impermeant but channel-blocking cation, Kl increased whereas delta decreased. Similar results were obtained using another impermeant, channel-blocking cation guanidinium. The results are interpreted on the premise that Na+ and K+ compete with amiloride by binding to cation binding sites within the channel lumen such that ion occupancy of these sites vary with voltage. Occupancy by K+, which cannot traverse the channel, will increase as the mucosal solution becomes positive, relative to the serosal solution. Occupancy by Na+, which can traverse the channel, is comparatively voltage independent. Ion movement through the channels was simulated using discrete-state kinetic models. Two types of models could describe the shape of the current-voltage relationship and the voltage dependence of the amiloride-induced channel block. One model had a single ion-binding site with a broad energy barrier at the inner (cytoplasmic) side of the site. The other model had two binding sites separated from each other and from the aqueous solutions by sharp energy barriers.
Collapse
Affiliation(s)
- L G Palmer
- Department of Physiology and Biophysics, Cornell University Medical College, New York 10021
| | | |
Collapse
|
26
|
Krattenmacher R, Clauss W. Autoregulation of apical sodium entry in the colon of the frog (Rana esculenta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:593-6. [PMID: 2569375 DOI: 10.1016/0300-9629(89)90016-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Na transport (INa) in the K-depolarized colon of the frog was investigated by electro-physiological current-voltage analysis. 2. INa and the intracellular Na activity [(Na)c] increased with increasing mucosal Na concentration ([Na]m), whereas the apical Na-permeability (PNam) and the transepithelial resistance (RT) decreased. 3. The results are consistent with a Na self-inhibition mechanism; however, a feedback inhibition of INa by intracellular Na must also be considered.
Collapse
Affiliation(s)
- R Krattenmacher
- Institut für Veterinärphysiologie, Freie Universität Berlin, FRG
| | | |
Collapse
|
27
|
Scholtz E, Zeiske W. A novel synergistic stimulation of Na+-transport across frog skin (Xenopus laevis) by external Cd2+- and Ca2+-ions. Pflugers Arch 1988; 413:174-80. [PMID: 3217238 DOI: 10.1007/bf00582528] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isolated skin of the clawed frog Xenopus laevis was mounted in an Ussing-chamber. The transcellular sodium-current (INa) was identified either as amiloride-blockable (10(-3) mol/l) short-circuit current (ISC), or by correcting ISC for the shunt-current obtained with mucosal Tris. A dose of 10 mmol/l Cd2+ applied to the mucosal side increased the current by about 70%. The half-maximal effect was reached at a Cd2+-concentration of 2.6 mmol/l (in NaCl-Ringer). The quick and fully reversible effect of Cd2+ could not be seen when 10(-3) mol/l amiloride was placed in the outer, Na+-containing solution, nor when Na+ was replaced by Tris. This suggests that Cd2+ stimulates INa. Cd2+ interfered with the Na+-current self-inhibition, and therefore with the saturation of INa by increasing the apparent Michaelis constant (KNa) of this process. The "INa recline" after stepping up mucosal [Na+] was much reduced in presence of Cd2+. Ca2+-ions on the mucosal side had an identical effect to Cd2+, and 10 mmol/l Ca2+ increase INa by about 100%. The half-maximal effect was obtained with 4.4 mmol/l Ca2+. The mechanism of INa-stimulation by Ca2+ did not seem to differ from that of Cd2+. Thus, although of low Na+-transport capacity, Xenopus skin appears to be as good a model for Na+-transporting epithelia as Ranidae skin, with the exception of the calcium effect which, so far, has not been reported for Ranidae.
Collapse
Affiliation(s)
- E Scholtz
- Institut für Tierphysiologie und angewandte Zoologie, Freie Universität Berlin, Federal Republic of Germany
| | | |
Collapse
|
28
|
Krattenmacher R, Clauss W. Electrophysiological analysis of sodium-transport in the colon of the frog (Rana esculenta). Modulation of apical membrane properties by antidiuretic hormone. Pflugers Arch 1988; 411:606-12. [PMID: 2457866 DOI: 10.1007/bf00580855] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sodium transport and apical bioelectrical membrane properties were investigated in frog colonic epithelium in the absence and presence of the antidiuretic hormone arginine-vasotocin (AVT). Apical Na-permeability and intracellular Na-activity were evaluated by analysis of current-voltage relationships in the serosally K-depolarized tissue. Tissue- and apical membrane capacitance were measured by voltages step analysis. The frog colon was found to be a tight epithelium with a transepithelial resistance of 2.63 +/- 0.25 k omega.muF (n = 17). 85-90% of short circuit current (11.2 +/- 1.1 microA.microF.l-1; n = 17) was related to electrogenic Na-transport from mucosa to serosa. Graded doses of amiloride (less than 50 mumol.l-1) induced Michaelis-Menten-type inhibition kinetics. Serosal addition of 10(-6) mol.l-1 AVT induced a significant increase in sodium current (25%), apical sodium permeability (19%) and tissue capacitance (4.3%) whereas intracellular Na-activity remained unchanged. There was a good correlation between increased Na-current and apical Na-permeability. No correlation was found between Na-current and membrane capacitance. Our results demonstrate that in contrast to other species the amphibian colon shows a natriferic reaction to AVT. We suggest that the regulation of Na-transport in frog colon is similar to that in the toad urinary bladder. It is caused by an activation of preexisting apical Na-channels and not by fusion of subapical cytoplasmic vesicles with the apical membrane.
Collapse
Affiliation(s)
- R Krattenmacher
- Institut für Veterinär-Physiologie, Freie Universität Berlin
| | | |
Collapse
|
29
|
Eaton DC, Hamilton KL. The amiloride-blockable sodium channel of epithelial tissue. ION CHANNELS 1988; 1:251-82. [PMID: 2856493 DOI: 10.1007/978-1-4615-7302-9_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- D C Eaton
- Department of Physiology, Emory University Medical School, Atlanta, Georgia 30322
| | | |
Collapse
|
30
|
Garty H, Asher C, Yeger O. Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent ions. J Membr Biol 1987; 95:151-62. [PMID: 2437308 DOI: 10.1007/bf01869160] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Direct inhibitory effects of Ca2+ and other ions on the epithelial Na+ channels were investigated by measuring the amiloride-blockable 22Na+ fluxes in toad bladder vesicles containing defined amounts of mono- and divalent ions. In agreement with a previous report (H.S. Chase, Jr., and Q. Al-Awqati, J. Gen. Physiol. 81:643-666, 1983) we found that the presence of micromolar concentrations of Ca2+ in the internal (cytoplasmic) compartment of the vesicles substantially lowered the channel-mediated fluxes. This inhibition, however, was incomplete and at least 30% of the amiloride-sensitive 22Na+ uptake could not be blocked by Ca2+ (up to 1 mM). Inhibition of channels could also be induced by millimolar concentrations of Ba2+, Sr2+, or VO2+, but not by Mg2+. The Ca2+ inhibition constant was a strong function of pH, and varied from 0.04 microM at pH 7.8 to greater than 10 microM at pH 7.0. Strong pH effects were also demonstrated by measuring the pH dependence of 22Na+ uptake in vesicles that contained 0.5 microM Ca2+. This Ca2+ activity produced a maximal inhibition of 22Na+ uptake at pH greater than or equal to 7.4 but had no effect at pH less than or equal to 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over this range. The data is compatible with the model that Ca2+ blocks channels by binding to a site composed of several deprotonated groups. The protonation of any one of these groups prevents Ca2+ from binding to this site but does not by itself inhibit transport. The fact that the apical Na+ conductance in vesicles, can effectively be modulated by minor variations of the internal pH near the physiological value, raises the possibility that channels are being regulated by pH changes which alter their apparent affinity to cytoplasmic Ca2+, rather than, or in addition to changes in the cytoplasmic level of free Ca2+.
Collapse
|
31
|
Clauss W, Dürr JE, Guth D, Skadhauge E. Effects of adrenal steroids on Na transport in the lower intestine (coprodeum) of the hen. J Membr Biol 1987; 96:141-52. [PMID: 3599065 DOI: 10.1007/bf01869240] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The influence of adrenal steroids on sodium transport in hen coprodeum was investigated by electrophysiological methods. Laying hens were maintained on low-NaCl diet (LS), or on high-NaCl diet (HS). HS hens were pretreated with aldosterone (128 micrograms/kg) or dexamethasone (1 mg/kg) before experiment. A group of LS hens received spironolactone (70 or 160 mg/kg, for three days). The effects of these dietary and hormonal manipulations on the amiloride-sensitive part of the short-circuit current were examined. This part is in excellent agreement with the net Na flux, and therefore a direct electrical measurement for Na transport. After depolarizing the basolateral membrane potential with a high K concentration, the apical Na permeability and the intracellular Na activity were investigated by current-voltage relations for the different experimental conditions. Plasma aldosterone concentrations (PA) were low in HS hens, dexamethasone-treated HS hens and spironolactone-treated LS hens (less than 70 pM). In contrast LS hens and aldosterone-treated HS hens had a PA concentration of 596 +/- 70 and 583 +/- 172 pM, respectively. LS diet (chronic stimulation) had the largest stimulatory effect on Na transport and apical Na permeability. Hormone-treated animals had three- to fourfold lower values. Spironolactone supply in LS hens decreased Na transport and apical Na permeability about 50%. The results provide evidence that both mineralo- and gluco-corticoids stimulate Na transport in this tissue by increasing the apical Na permeability. Quantitative differences between acute and chronic stimulation reveal a secondary slower adaptation in apical membrane properties.
Collapse
|
32
|
Garty H, Warncke J, Lindemann B. An amiloride-sensitive Na+ conductance in the basolateral membrane of toad urinary bladder. J Membr Biol 1987; 95:91-103. [PMID: 3106636 DOI: 10.1007/bf01869154] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 omega cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5 mM Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-D-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO2-(4) Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60 mM K+. This pathway can be blocked by serosal amiloride (Ki = 13.1 microM) or serosal Na+ ions (Ki approximately 10 to 20 mM). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec-1 at 0 mV.
Collapse
|
33
|
Wills NK, Zweifach A. Recent advances in the characterization of epithelial ionic channels. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 906:1-31. [PMID: 2436665 DOI: 10.1016/0304-4157(87)90003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physiologists have long recognized the importance of channels in the functioning of neurons and excitable membranes. This brief review has been an attempt to illustrate how channel properties are also essential to an understanding of epithelial transport physiology. Among their more important functions, channels influence membrane potentials and serve as conduits for ion movements. As the need to understand the molecular basis for ion transport continues to develop, it is crucial to be able to distinguish between different channel properties. For example, apparent voltage-dependent properties can arise because of a voltage-dependent gating process, or alternatively, because of a rectification of channel conductance. Voltage-dependent effects can also be only indirect, mediated by changes in cell volume, intracellular ion levels, the levels of secondary intracellular messengers such as Ca2+ (perhaps through voltage-dependent membrane Ca2+ channels), or possibly even by morphological changes. An important area for future research is to differentiate mechanisms which modulate the activity of open channels. For example, a decrease in channel number, a reduction in open-channel conductance or a decline in the probability of channel opening can all underlie changes in macroscopic permeability. The factors which mediate hormonal activation of epithelial channels particularly need to be understood. Specifically, the mechanisms of aldosterone and anti-diuretic hormone activation of apical membrane Na+ channels need to be identified. In conclusion, we are witnessing a new era in epithelial electrophysiology which promises to resolve many issues concerning the cellular regulation of ion transport and open new, unanticipated avenues of inquiry.
Collapse
|
34
|
Flonta ML, Galter D, Frangopol PT, Mărgineanu DG. Procaine has opposite effects on passive Na and K permeabilities in frog skin. Pflugers Arch 1987; 408:215-9. [PMID: 3575087 DOI: 10.1007/bf02181461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Procaine has opposite effects on the active transport of Na+ when applied on the mucosal side of the frog skin [where it produces a stimulation of the short-circuit current (Isc)] or when added on the serosal side (where it produces an inhibition of Isc). In an attempt to reveal and localize the primary effect of procaine on either the apical or latero-basal membranes of the epithelial cells, we have tried to "chemically dissect" both membrane functions with inhibitors and ionophores. When applied on the apical side of the latero-basally depolarized epithelium, 25 mmol/l procaine increases Isc and Voc (transepithelial open-circuit potential), while decreasing the transepithelial resistance. The E1-E2 linearity domain of the I-V curves is narrowed. On the serosal side of the depolarized epithelium, the same concentration of procaine does not affect Isc and Voc (which are already inhibited) but it produces an increase in the transepithelial resistance (Rt). Procaine influence on the passive K+ permeability was studied by using the ionophore nystatin, which is assumed to form channels permeable to K+, when applied on the amiloride blocked apical membrane. In nystatin-treated epithelia, 25 mmol/l procaine on the apical side decreased Isc, Voc and Rt. In parallel experiments during Cl- substitution by SO2-(4), the procaine effects on Isc and Voc are no longer maintained, but transient.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Chapter 3 Properties of Epithelial Potassium Channels. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1987. [DOI: 10.1016/s0070-2161(08)60407-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 1986; 78:1245-52. [PMID: 3771796 PMCID: PMC423810 DOI: 10.1172/jci112708] [Citation(s) in RCA: 422] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transepithelial potential difference (PD) of cystic fibrosis (CF) airway epithelium is abnormally raised and the Cl- permeability is low. We studied the contribution of active Na+ absorption to the PD and attempted to increase the Cl- permeability of CF epithelia. Nasal epithelia from CF and control subjects were mounted in Ussing chambers and were short-circuited. The basal rate of Na+ absorption was raised in CF polyps compared with control tissues. Whereas beta agonists induced Cl- secretion in normal and atopic epithelia, beta agonists further increased the rate of Na+ absorption in CF epithelia without inducing Cl- secretion. This unusual effect is not due to an abnormal CF beta receptor because similar effects were induced by forskolin, and because cAMP production was similar in normal and CF epithelia. We conclude that CF airway epithelia absorb Na+ at an accelerated rate. The abnormal response to beta agonists may reflect a primary abnormality in a cAMP-modulated path, or a normal cAMP-modulated process in a Cl- impermeable epithelial cell.
Collapse
|
37
|
Abstract
The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (Vm) was made more negative the slope conductance of the epithelium increased, reaching a maximum at Vm = -100 mV. This rectifying conductance activated with a time constant of 2 msec when Vm was changed abruptly from 0 to -100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. Returning Vm to +100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (GK). Mucosal addition of the K channel blockers TEA and Cs had no effect on GK, while 29 mM Ba diminished it slightly. Mucosal Mg (29 mM) also reduced GK, while Ca (29 mM) stimulated it. GK was blocked by lowering the mucosal pH with an apparent pKI of 4.5. Quinidine (0.5 mM in the serosal bath) reduced GK by 80%. GK was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1 mM), carbachol (100 microM), aldosterone (5 X 10(-7) M for 18 hr), intracellular Li and extracellular CO2.
Collapse
|
38
|
|
39
|
Thompson SM, Sellin JH. Relationships among sodium current, permeability, and Na activities in control and glucocorticoid-stimulated rabbit descending colon. J Membr Biol 1986; 92:121-34. [PMID: 3761358 DOI: 10.1007/bf01870702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Effects of a potent synthetic glucocorticoid, methylprednisolone (MP), on transepithelial Na transport were examined in rabbit descending colon. Current-voltage (I-V) relations of the amiloride-sensitive apical Na entry pathway were measured in colonic tissues of control and MP-treated (40 mg im for 2 days) animals. Tissues were bathed mucosally by solutions of various Na activities, (Na)m, ranging from 6.2 to 75.6 mM, and serosally by a high K solution. These I-V relations conformed to the "constant field" flux equation permitting determination of the permeability of the apical membrane to Na, PmNa, and the intracellular Na activity, (Na)c. The following empirical relations were observed for both control and MP-treated tissues: Na transport increases hyperbolically with increasing (Na)m obeying simple Michaelis-Mentin kinetics; PmNa decreased hyperbolically with increasing (Na)m, but was unrelated to individual variations in (Na)c; (Na)c increased hyperbolically with (Na)m; both spontaneous and steroid-stimulated variations in Na entry rate could be attributed entirely to parallel variations in PmNa at each mucosal Na activity. Comparison of these empirical, kinetic relations between control and MP-treated tissues revealed: maximal Na current and PmNa were greater in MP tissues, but the (Na)m's at which current and PmNa were half-maximal were markedly reduced; (Na)c was significantly increased in MP tissues at each (Na)m while the (Na)m at half-maximal (Na)c was unchanged. These results provide direct evidence that glucocorticoids cause marked stimulation of Na absorption across rabbit colon primarily by increasing the Na permeability of the apical membrane. While the mechanism for the increased permeability remains to be determined, the altered relation between PmNa and (Na)m suggests possible differences in the conformation or environment of the Na channel in MP-treated tissues.
Collapse
|
40
|
Klemperer G, Garcia-Diaz JF, Nagel W, Essig A. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium. J Membr Biol 1986; 90:89-96. [PMID: 3486296 DOI: 10.1007/bf01869688] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In studies of apical membrane current-voltage relationships, in order to avoid laborious intracellular microelectrode techniques, tight epithelia are commonly exposed to high serosal K concentrations. This approach depends on the assumptions that high serosal K reduces the basolateral membrane resistance and potential to insignificantly low levels, so that transepithelial values can be attributed to the apical membrane. We have here examined the validity of these assumptions in frog skins (Rana pipiens pipiens). The skins were equilibrated in NaCl Ringer's solutions, with transepithelial voltage Vt clamped (except for brief perturbations delta Vt) at zero. The skins were impaled from the outer surface with 1.5 M KCl-filled microelectrodes (Rel greater than 30 M omega). The transepithelial (short-circuit) current It and conductance gt = -delta It/delta Vt, the outer membrane voltage Vo (apical reference) and voltage-divider ratio (Fo = delta Vo/delta Vt), and the microelectrode resistance Rel were recorded continuously. Intermittent brief apical exposure to 20 microM amiloride permitted estimation of cellular (c) and paracellular (p) currents and conductances. The basolateral (inner) membrane conductance was estimated by two independent means: either from values of gt and Fo before and after amiloride or as the ratio of changes (-delta Ic/delta Vi) induced by amiloride. On serosal substitution of Na by K, within about 10 min, Ic declined and gt increased markedly, mainly as a consequence of increase in gp. The basolateral membrane voltage Vi (= -Vo) was depolarized from 75 +/- 4 to 2 +/- 1 mV [mean +/- SEM (n = 6)], and was partially repolarized following amiloride to 5 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
41
|
Sariban-Sohraby S, Benos DJ. The amiloride-sensitive sodium channel. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 250:C175-90. [PMID: 2420186 DOI: 10.1152/ajpcell.1986.250.2.c175] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Net Na+ movement across the apical membrane of high-electrical resistance epithelia is driven by the electrochemical potential energy gradient. This entry pathway is rate limiting for transepithelial transport, occurs via a channel-type mechanism, and is specifically inhibited by the diuretic drug amiloride. This channel is selective for Na+, Li+, and H+, saturates with increasing extracellular Na+ concentration, and is not affected, at least in frog skin epithelium, by changes in apical membrane surface potential. There also appears to be multiple inhibitory regions associated with each Na+ channel. We discuss the possible implications of a voltage-dependent block by amiloride in terms of macroscopic inhibitory phenomena. We describe the use of cultured epithelial systems, in particular, the toad kidney-derived A6 cell line, and the preparation of apical plasma membrane vesicles to study the Na+ entry process. We discuss experiments in which single, amiloride-sensitive channel activity has been detected and summarize current experimental approaches directed at the biochemical identification of this ubiquitous Na+ transport system.
Collapse
|
42
|
Thompson SM. Relations between chord and slope conductances and equivalent electromotive forces. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 250:C333-9. [PMID: 3953785 DOI: 10.1152/ajpcell.1986.250.2.c333] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonlinear current-voltage relations for ion movement across biological membranes have been observed and significantly complicate the interpretation of electrical measurements on these transport processes. To enable analysis of the electrical measurements two formalisms have evolved, chord and slope, by which equivalent conductances and electromotive forces (emfs) can be obtained. Because, in the presence of nonlinear relations between current and voltage, the chord conductances and emfs are generally not equal to their slope counterparts, it is imperative that they not be intermixed (8). However, when the functional relationship between the current and voltage is known, such as the Goldman-Hodgkin-Katz (GHK) flux equation, it becomes possible to compare the voltage dependencies of these parameters and examine interrelationships between them. In this communication analytical expressions are derived for the chord and slope conductances and emfs for transport of a single ionic species that obeys the GHK flux equation. Using these expressions, it is possible to convert electrical equivalent circuit parameters derived for one formalism to electrical equivalent parameters of the other formalism. Therefore data obtained using either formalism can be used to obtain values for intracellular activity and membrane permeability to the transported ion. Parallel analyses can be applied to other models of ion transport.
Collapse
|
43
|
Mandel LJ. Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int 1986; 29:3-9. [PMID: 3007851 DOI: 10.1038/ki.1986.2] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several metabolic aspects of primary active transport have been explored in this communication. One emphasized theme entailed the need to investigate the properties of the mitochondria and the active transport systems within the intact cell. Several methodological and conceptual approaches were described that permitted such an analysis. The answers provided were sometimes qualitative or quantitative. Qualitative information was provided regarding the cytosolic signal linking active transport with respiration, suggesting that the cytosolic ADP concentration was an important element in that link. The intact renal cell was found to work normally at 50 to 60% of its maximal respiratory capacity, indicating that sufficient reserve capacity was present for increased metabolic demands. Several examples were described in which a combination of qO2 measurements and/or optical techniques were used to differentiate between effects of agents which act primarily on transport or metabolic events. Finally, the control of transport by metabolism was discussed, primarily emphasizing the role of ATP and Pi. One of the overall conclusions from these studies is that, in general, the mitochondria and the transport systems seem to display similar properties in the intact cell as they do in isolated form. However, uncertainties concerning the cellular microenvironment surrounding the mitochondria and the plasma membrane transporters have produced some interesting surprises concerning their function in the intact cell. More quantitative information on the energy compartmentation of the renal cell would be helpful to clarify numerous aspects of metabolic function.
Collapse
|
44
|
Marver D. Models of aldosterone action on sodium transport: emerging concepts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 196:153-71. [PMID: 3012976 DOI: 10.1007/978-1-4684-5101-6_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. J Membr Biol 1985; 87:191-9. [PMID: 2416933 DOI: 10.1007/bf01871218] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A simple model of the action of amiloride to block apical Na channels in the toad urinary bladder was tested. According to the model, the positively charged form of the drug binds to a site in the lumen of the channel within the electric field of the membrane. In agreement with the predictions of the model: (1) The voltage dependence of amiloride block was consistent with the assumption of a single amiloride binding site, at which about 15% of the transmembrane voltage is sensed, over a voltage range of +/- 160 mV. (2) The time course of the development of voltage dependence was consistent with that predicted from the rate constants for amiloride binding previously determined. (3) The ability of organic cations to mimic the action of amiloride showed a size dependence implying a restriction of access to the binding site, with an effective diameter of about 5 angstroms. In a fourth test, divalent cations (Ca, Mg, Ba and Sr) were found to block Na channels with a complex voltage dependence, suggesting that these ions interact with two or more sites, at least one of which may be within the lumen of the pore.
Collapse
|
46
|
Warncke J, Lindemann B. Voltage dependence of Na channel blockage by amiloride: relaxation effects in admittance spectra. J Membr Biol 1985; 86:255-65. [PMID: 2413213 DOI: 10.1007/bf01870605] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amiloride, present in the mucosal solution, causes the appearance of a distinct additional dispersion in the admittance spectrum of the apical membrane of toad urinary bladder. The parameters of this dispersion (characteristic frequency, amplitude) change with amiloride concentration and with membrane voltage. They allow the calculation of the overall rate constants for Na channel blockage by the positively charged form of amiloride, and the voltage dependence of these rate constants. The on-rate of blockage increases and the off-rate decreases when the membrane surface to which cationic amiloride has access, is made more positive. This result is suggestive of a blocking model where the cationic amidino group of amiloride, depending on its charge, senses 10 to 13% of the membrane voltage while invading the channel entrance by a single-step process, and rests at an electrical distance corresponding to 24 to 30% of membrane voltage while occupying the blocking position.
Collapse
|
47
|
Garty H, Asher C. Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39476-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Kinetics of the effect of amiloride on the permeability of the apical membrane of rabbit descending colon to sodium. J Membr Biol 1985; 87:55-65. [PMID: 2414447 DOI: 10.1007/bf01870699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of the addition of graded concentrations of amiloride, (A)m, to the mucosal bathing solution on the permeability of the apical membrane of rabbit descending colon to Na (PmNa) were determined when the Na activity in the mucosal bathing solution, (Na)m, was 18, 32 or 100 mM. PmNa was obtained from current-voltage relations determined on tissues bathed with a high-K serosal solution before and after the addition of a maximally inhibitory concentration of amiloride to the mucosal solution as described by Turnheim et al. (Turnheim, K., Thompson, S.M., Schultz, S.G. 1983. J. Membrane Biol. 76:299-309). The results indicate that: (1) As demonstrated previously (Turnheim et al., 1983), PmNa decreases with increasing (Na)m. (2) PmNa also decreases hyperbolically with increasing (A)m. Kinetic analyses of the effect of amiloride on PmNa are consistent with the conclusions that: (i) the stoichiometry between the interaction of amiloride with apical membrane receptors that results in a decrease in PmNa is one-for-one; (ii) there is no evidence for cooperativity between amiloride and these binding sites; (iii) the value of (A)m needed to halve PmNa at a fixed (Na)m is 0.6-1.0 microM; and, (iv) this value is independent of (Na)m over the fivefold range studied. These findings are consistent with the notion that the sites with which amiloride interacts to bring about closure of the channels through which Na crosses the apical membrane are kinetically distinct from the sites with which (Na)m interacts to bring about closure (i.e., "self-inhibition"). In short, the effects of (Na)m and (A)m on PmNa in this tissue appear to be independent and additive.
Collapse
|
49
|
Ehrenfeld J, Garcia-Romeu F, Harvey BJ. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. J Physiol 1985; 359:331-55. [PMID: 2582114 PMCID: PMC1193378 DOI: 10.1113/jphysiol.1985.sp015588] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a psi mc of +50 mV whereas ethoxzolamide exerted minimal effect on psi mc when the ERP was approached either by voltage clamping the apical membrane or by the addition of amiloride. We show that electroneutral sodium-proton countertransport is not the mechanism of active proton excretion in frog skin but that it is the proton excretion which provides a favourable electrical driving force for passive apical sodium entry.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
50
|
Clauss W, Dürr J, Skadhauge E, Hörnicke H. Effects of aldosterone and dexamethasone on apical membrane properties and Na-transport of rabbit distal colon in vitro. Pflugers Arch 1985; 403:186-92. [PMID: 3982969 DOI: 10.1007/bf00584098] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of pre-treatment in vivo with aldosterone and dexamethasone were investigated on rabbit distal colon. Apical Na-permeability and net sodium transport were measured in vitro. In this epithelium, Na-transport is entirely electrogenic. It can therefore be measured electrically as the fraction of short circuit current which is blockable by amiloride. The epithelia were studied in an Ussing chamber and the electrical values recorded by a computerized digital voltage clamp. Transepithelial parameters, and the transapical membrane parameters (in preparations depolarized from the serosal side) were investigated after treatment with the two hormones. Under transepithelial conditions, aldosterone and dexamethasone stimulated the short circuit current (Isc) from control (17.4 microA/cm2) to a similar degree (86.6 and 93.8 microA/cm2). However, whereas aldosterone did not alter the transepithelial resistance (RT) significantly, dexamethasone reduced RT from 357 to 167 omega X cm2. The stimulation of the potential difference (VT) under control condition (6.6 mV) was therefore significantly different between aldosterone (28.7 mV) and dexamethasone (16 mV). Mucosal amiloride (0.1 mM) inhibited Isc and VT completely under all conditions. Steady state current-voltage relations were obtained by voltage clamping the tissues in "staircase" increments before and after mucosal treatment with amiloride. As measured by the difference between these two states, Na-currents were calculated both for the transepithelial and the transapical condition. Intracellular Na-activity and apical Na-permeability were then calculated by the Nernst and Goldman-Hodgkin-Katz equations. These values were found to be increased after treatment with both hormones. Dexamethasone was a more potent stimulator of both values.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|