1
|
Minniti C, Brugnara C, Steinberg MH. HbSC disease: A time for progress. Am J Hematol 2022; 97:1390-1393. [PMID: 36073655 DOI: 10.1002/ajh.26702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Caterina Minniti
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Division of Hematology and Medical Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Delpire E, Gagnon KB. Water Homeostasis and Cell Volume Maintenance and Regulation. CURRENT TOPICS IN MEMBRANES 2018; 81:3-52. [PMID: 30243436 PMCID: PMC6457474 DOI: 10.1016/bs.ctm.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From early unicellular organisms that formed in salty water environments to complex organisms that live on land away from water, cells have had to protect a homeostatic internal environment favorable to the biochemical reactions necessary for life. In this chapter, we will outline what steps were necessary to conserve the water within our cells and how mechanisms have evolved to maintain and regulate our cellular and organismal volume. We will first examine whole body water homeostasis and the relationship between kidney function, regulation of blood pressure, and blood filtration in the process of producing urine. We will then discuss how the composition of the lipid-rich bilayer affects its permeability to water and salts, and how the cell uses this differential to drive physiological and biochemical cellular functions. The capacity to maintain cell volume is vital to epithelial transport, neurotransmission, cell cycle, apoptosis, and cell migration. Finally, we will wrap up the chapter by discussing in some detail specific channels, cotransporters, and exchangers that have evolved to facilitate the movement of cations and anions otherwise unable to cross the lipid-rich bilayer and that are involved in maintaining or regulating cell volume.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine
| | | |
Collapse
|
3
|
Abstract
Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.
Collapse
Affiliation(s)
- Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sears DA, Udden MM, Johnston MD. Red cell osmotic fragility studies in hemoglobin C-β
thalassemia: osmotically resistant microspherocytes. ACTA ACUST UNITED AC 2003; 25:367-72. [PMID: 14641140 DOI: 10.1046/j.0141-9854.2003.00554.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Typically certain features of red cell morphology predict the results of osmotic fragility testing. Microspherocytes generally have increased and target cells decreased fragility. Blood smears in homozygous hemoglobin C disease show an interesting admixture of microspherocytes and target cells. Yet osmotic fragility studies generally show only reduced fragility and no population of fragile cells to correspond with the spherocytes. The present study demonstrates that the red cells of patients with hemoglobin C-beta thalassemia share many characteristics with hemoglobin C red cells, including the decreased osmotic fragility of all cells despite the presence of both spherocytes and target cells. These paradoxically osmotically resistant spherocytes probably arise because of cellular dehydration due to a K-Cl transport system which may be activated by binding of hemoglobin C to the red cell membrane.
Collapse
Affiliation(s)
- D A Sears
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
5
|
Romero JR, Suzuka SM, Nagel RL, Fabry ME. Expression of HbC and HbS, but not HbA, results in activation of K-Cl cotransport activity in transgenic mouse red cells. Blood 2003; 103:2384-90. [PMID: 14615383 DOI: 10.1182/blood-2003-01-0237] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevation of K-Cl cotransport in patients with homozygous hemoglobin (Hb) S or HbC increases red cell mean corpuscular hemoglobin concentration (MCHC) and contributes significantly to pathology. Elucidation of the origin of elevated K-Cl cotransport in red cells with mutant hemoglobins has been confounded by the concomitant presence of reticulocytes with high K-Cl cotransport. In red cells of control mice (C57BL), transgenic mice that express only human HbA, and transgenic mice that express both mouse globins and human HbS, volume stimulation is weak and insensitive to NO3- and dihydroindenyl-oxy-alkanoic acid (DIOA). DIOA and NO3- are inhibitors in all other mammalian red cells. In contrast, in knock-out mice expressing exclusively human hemoglobin HbC or HbS+ gamma, replacement of isotonic Cl- media by hypotonic Cl- resulted in strong volume stimulation and sensitivity to DIOA, okadaic acid, and NO3-. In summary, we find that HbC, under all conditions, and HbS+ gamma, in the absence of mouse globins, have significant quantitative and qualitative effects on K-Cl cotransport in mouse red cells and activate mouse K-Cl. We conclude that human globins are able to stimulate the activity and/or regulation of K-Cl cotransport in mouse red cells. These observations support the contention that HbS and HbC stimulate K-Cl cotransport in human red cells.
Collapse
Affiliation(s)
- Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Sickle cell disease pathophysiology results from sickle haemoglobin polymerisation and its effects on the sickle erythrocyte and the vasculature. Many of the abnormalities of sickle cell disease are secondary to the damage caused by the polymer and the injured red cell. Pharmacological treatment of the disease is focused on the inhibition of sickle haemoglobin polymerisation, prevention or repair of red cell dehydration and interruption of the interaction of sickle cells with the endothelium.
Collapse
|
7
|
Jennings ML, Adame MF. Direct estimate of 1:1 stoichiometry of K(+)-Cl(-) cotransport in rabbit erythrocytes. Am J Physiol Cell Physiol 2001; 281:C825-32. [PMID: 11502559 DOI: 10.1152/ajpcell.2001.281.3.c825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work was undertaken to obtain a direct measure of the stoichiometry of Na(+)-independent K(+)-Cl(-) cotransport (KCC), with rabbit red blood cells as a model system. To determine whether (86)Rb(+) can be used quantitatively as a tracer for KCC, (86)Rb(+) and K(+) effluxes were measured in parallel after activation of KCC with N-ethylmaleimide (NEM). The rate constant for NEM-stimulated K(+) efflux into isosmotic NaCl was smaller than that for (86)Rb(+) by a factor of 0.68 +/- 0.11 (SD, n = 5). This correction factor was used in all other experiments to calculate the K(+) efflux from the measured (86)Rb(+) efflux. To minimize interference from the anion exchanger, extracellular Cl(-) was replaced with SO, and 4,4'-diisothiocyanothiocyanatodihydrostilbene-2,2'-disulfonic acid was present in the flux media. The membrane potential was clamped near 0 mV with the protonophore 2,4-dinitrophenol. The Cl(-) efflux at 25 degrees C under these conditions is approximately 100,000-fold smaller than the uninhibited Cl(-)/Cl(-) exchange flux and is stimulated approximately 2-fold by NEM. The NEM-stimulated (36)Cl(-) flux is inhibited by okadaic acid and calyculin A, as expected for KCC. The ratio of the NEM-stimulated K(+) to Cl(-) efflux is 1.12 +/- 0.26 (SD, n = 5). We conclude that K(+)-Cl(-) cotransport in rabbit red blood cells has a stoichiometry of 1:1.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
8
|
Romero JR, Suzuka SM, Romero-González GV, Nagel RL, Fabry ME. K:Cl cotransport activity is inhibited by HCO3- in knockout mouse red cells expressing human HbC. Blood Cells Mol Dis 2001; 27:69-70. [PMID: 11358363 DOI: 10.1006/bcmd.2000.0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K:Cl cotransport (KCl) was examined in transgenic mice expressing exclusively human hemoglobin C. In contrast to previous studies in early transgenic mice expressing human alpha and beta(S) and residual mouse globins, we found significant volume and pH stimulation and sensitivity to. Exposure to physiological levels of also blocked a significant fraction of KCl cotransport.
Collapse
Affiliation(s)
- J R Romero
- Endocrine-Hypertension Division, Brigham & Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
9
|
Fabry ME, Romero JR, Suzuka SM, Gilman JG, Feeling-Taylor A, Odunusi E, Factor SM, Bouhassira EE, Lawrence C, Nagel RL. Hemoglobin C in transgenic mice: effect of HbC expression from founders to full mouse globin knockouts. Blood Cells Mol Dis 2000; 26:331-47. [PMID: 11042035 DOI: 10.1006/bcmd.2000.0313] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When present in the homozygous form, hemoglobin C (HbC, CC disease) increases red cell density, a feature that is the major factor underlying the pathology in patients with SC disease (Fabry et al., JCI 70, 1315, 1982). The basis for the increased red cell density has not yet been fully defined. We have generated a HbC mouse in which the most successful founder expresses 56% human alpha and 34% human beta(C). We introduced knockouts (KO) of mouse alpha- and beta-globins in various combinations. In contrast to many KO mice, all partial KOs have normal MCH. Full KOs that express exclusively HbC and no mouse globins have minimally reduced MCH (13. 7 +/- 0.3 pg/cell vs 14.5 +/- 1.0 for C57BL/6) and a ratio of beta- to alpha-globin chains of 0.88 determined by chain synthesis; hence, these mice are not thalassemic. Mice with beta(C) > 30% have increased MCHC, dense reticulocytes, and increased K:Cl cotransport. Red cell morphology studied by SEM is strikingly similar to that of human CC cells with bizarre folded cells. We conclude that red cells of these mice have many properties that closely parallel the pathology of human disease in which HbC is the major determinant of pathogenesis. These studies also establish the existence of the interactions with other gene products that are necessary for pleiotropic effects (red cell dehydration, elevated K:Cl cotransport, morphological changes) that are also present in these transgenic mice, validating their usefulness in the analysis of pathophysiological events induced by HbC in red cells.
Collapse
Affiliation(s)
- M E Fabry
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Su W, Shmukler BE, Chernova MN, Stuart-Tilley AK, de Franceschi L, Brugnara C, Alper SL. Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation. Am J Physiol Cell Physiol 1999; 277:C899-912. [PMID: 10564083 DOI: 10.1152/ajpcell.1999.277.5.c899] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although K-Cl cotransporter (KCC1) mRNA is expressed in many tissues, K-Cl cotransport activity has been measured in few cell types, and detection of endogenous KCC1 polypeptide has not yet been reported. We have cloned the mouse erythroid KCC1 (mKCC1) cDNA and its flanking genomic regions and mapped the mKCC1 gene to chromosome 8. Three anti-peptide antibodies raised against recombinant mKCC1 function as immunoblot and immunoprecipitation reagents. The tissue distributions of mKCC1 mRNA and protein are widespread, and mKCC1 RNA is constitutively expressed during erythroid differentiation of ES cells. KCC1 polypeptide or related antigen is present in erythrocytes of multiple species in which K-Cl cotransport activity has been documented. Erythroid KCC1 polypeptide abundance is elevated in proportion to reticulocyte counts in density-fractionated cells, in bleeding-induced reticulocytosis, in mouse models of sickle cell disease and thalassemia, and in the corresponding human disorders. mKCC1-mediated uptake of (86)Rb into Xenopus oocytes requires extracellular Cl(-), is blocked by the diuretic R(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2, 3-dihydro-1-oxo-1H-indenyl-5-yl-)oxy]acetic acid, and exhibits an erythroid pattern of acute regulation, with activation by hypotonic swelling, N-ethylmaleimide, and staurosporine and inhibition by calyculin and okadaic acid. These reagents and findings will expedite studies of KCC1 structure-function relationships and of the pathobiology of KCC1-mediated K-Cl cotransport.
Collapse
Affiliation(s)
- W Su
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Boston 02215, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Gllles R, Delpire E. Variations in Salinity, Osmolarity, and Water Availability: Vertebrates and Invertebrates. Compr Physiol 1997. [DOI: 10.1002/cphy.cp130222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
De Franceschi L, Fumagalli L, Olivieri O, Corrocher R, Lowell CA, Berton G. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport. J Clin Invest 1997; 99:220-7. [PMID: 9005990 PMCID: PMC507789 DOI: 10.1172/jci119150] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Src-family kinases play a central role in regulation of hematopoietic cell functions. We found that mouse erythrocytes express the Src-family kinases Fgr and Hck, as well as Lyn. To directly test whether Fgr and Hck play any role in erythrocyte function, we analyzed red cells isolated from fgr-/-, hck-/-, and fgr-/- hck-/- knock-out mice. Mean corpuscular hemoglobin concentration and median density are increased, while K content is decreased, in fgr-/- hck-/- double-mutant erythrocytes compared with wild-type, fgr-/-, or hck-/- erythrocytes. Na/K pump and Na/K/Cl cotransport were not altered, but K/Cl cotransport activity was significantly and substantially higher (approximately three-fold) in fgr-/- hck-/- double-mutant erythrocytes. This enhanced K/Cl cotransport activity did not depend on cell age. In fact, in response to bleeding, K/Cl cotransport activity increased in parallel with reticulocytosis in wild-type erythrocytes, while abnormal K/Cl cotransport did not change as a consequence of reticulocytosis in fgr-/- hck-/- double-mutant erythrocytes. Okadaic acid, an inhibitor of a phosphatase that has been implicated in activation of the K/Cl cotransporter, inhibited K/Cl cotransport in wild-type and fgr-/- hck-/- double-mutant erythrocytes to a comparable extent. In contrast, staurosporine, an inhibitor of a kinase that has been suggested to negatively regulate this same phosphatase enhanced K/Cl cotransport in wild-type but not in fgr-/- hck-/- double-mutant erythrocytes. On the basis of these findings, we propose that Fgr and Hck are the kinases involved in the negative regulation of the K/Cl cotransporter-activating phosphatase. Abnormality of erythrocyte K/Cl cotransport in fgr-/- hck-/- double-mutant animals represents the first demonstration that Src-family kinases may be involved in regulation of membrane transport.
Collapse
|
13
|
Lauf PK, Erdmann A, Adragna NC. K-Cl cotransport, pH, and role of Mg in volume-clamped low-K sheep erythrocytes: three equilibrium states. Am J Physiol Cell Physiol 1994; 266:C95-103. [PMID: 8304434 DOI: 10.1152/ajpcell.1994.266.1.c95] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ouabain-resistant K efflux and Rb influx in Cl and NO3 media were studied in volume-clamped low-K (LK) sheep red blood cells (SRBC) with normal and experimentally reduced cytoplasmic Mg (Mgi) levels as function of pH and at 37 degrees C. Sucrose was added to solutions with constant ionic strength and variable pH to maintain normal cell volume. Cl-dependent ouabain-resistant K(Rb) fluxes (K-Cl cotransport) at unity relative cell volume exhibited a maximum at pH approximately 7 in normal-Mgi LK cells consistent with the apparent acid pH activation reported for human erythrocytes. However, in LK SRBC with Mgi lowered by A-23187 and an external Mg chelator, K(Rb)-Cl cotransport was reversibly activated as the pH was raised from 6.5 to 9. The alkaline pH effect on Cl-dependent Rb influx in low-Mgi LK SRBC was due to a 10-fold rise in the maximum velocity values without a major change in the Km values. The pH dependence of the experimental flux reversal point, i.e., the extracellular Rb concentration at which no net K-Cl cotransport occurs, approximately paralleled that of the flux reversal point predicted from the ratio of the ion products, in both control and low-Mgi LK cells, albeit with a small displacement to higher extracellular Rb concentration at all pH values. The kinetic data can be explained by a general minimum three-state equilibrium in which deprotonation recruits transporters from a resting R state into the active A state modified by Mgi to an inactive I state.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P K Lauf
- Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435
| | | | | |
Collapse
|
14
|
Lauf PK, Bauer J, Adragna NC, Fujise H, Zade-Oppen AM, Ryu KH, Delpire E. Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol Cell Physiol 1992; 263:C917-32. [PMID: 1443104 DOI: 10.1152/ajpcell.1992.263.5.c917] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Erythrocytes possess a Cl-dependent, Na-independent K transport system cotransporting K and Cl in a 1:1 stoichiometry that is membrane potential independent. This K-Cl cotransporter is stimulated by cell swelling, acidification, Mg depletion, and thiol modification. Cell shrinkage, elevation of cellular divalent ions, thiol alkylation, phosphatase inhibitors, and derivatives of certain loop diuretics and stilbenes are inhibitory. Thus regulation of K-Cl cotransport at the membrane and cytoplasmic levels is highly complex. Basal K-Cl cotransport decreases with cellular maturation, whereas its modes of stimulation and inhibition are variable between species. The physiological inactivation appears to be prevented in low-K animal erythrocytes. In certain human hemoglobinopathies, K-Cl cotransport may be the cause of cellular dehydration and volume decrease. K-Cl cotransport occurs also in nonerythroid cells, such as in epithelial and liver cells of other species. At the threshold of molecular characterization, this comprehensive review places our present understanding of the mechanisms modulating K-Cl cotransport physiologically and pathophysiologically into kinetic and thermodynamic perspectives.
Collapse
Affiliation(s)
- P K Lauf
- Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45401-0927
| | | | | | | | | | | | | |
Collapse
|
15
|
Sarkadi B, Parker JC. Activation of ion transport pathways by changes in cell volume. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:407-27. [PMID: 1721542 DOI: 10.1016/0304-4157(91)90005-h] [Citation(s) in RCA: 231] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Swelling-activated K+ and Cl- channels, which mediate RVD, are found in most cell types. Prominent exceptions to this rule include red cells, which together with some types of epithelia, utilize electroneutral [K(+)-Cl-] cotransport for down-regulation of volume. Shrinkage-activated Na+/H+ exchange and [Na(+)-K(+)-2 Cl-] cotransport mediate RVI in many cell types, although the activation of these systems may require special conditions, such as previous RVD. Swelling-activated K+/H+ exchange and Ca2+/Na+ exchange seem to be restricted to certain species of red cells. Swelling-activated calcium channels, although not carrying sufficient ion flux to contribute to volume changes may play an important role in the activation of transport pathways. In this review of volume-activated ion transport pathways we have concentrated on regulatory phenomena. We have listed known secondary messenger pathways that modulate volume-activated transporters, although the evidence that volume signals are transduced via these systems is preliminary. We have focused on several mechanisms that might function as volume sensors. In our view, the most important candidates for this role are the structures which detect deformation or stretching of the membrane and the skeletal filaments attached to it, and the extraordinary effects that small changes in concentration of cytoplasmic macromolecules may exert on the activities of cytoplasmic and membrane enzymes (macromolecular crowding). It is noteworthy that volume-activated ion transporters are intercalated into the cellular signaling network as receptors, messengers and effectors. Stretch-activated ion channels may serve as receptors for cell volume itself. Cell swelling or shrinkage may serve a messenger function in the communication between opposing surfaces of epithelia, or in the regulation of metabolic pathways in the liver. Finally, these transporters may act as effector systems when they perform regulatory volume increase or decrease. This review discusses several examples in which relatively simple methods of examining volume regulation led to the discovery of transporters ultimately found to play key roles in the transmission of information within the cell. So, why volume? Because it's functionally important, it's relatively cheap (if you happened to have everything else, you only need some distilled water or concentrated salt solution), and since it involves many disciplines of experimental biology, it's fun to do.
Collapse
Affiliation(s)
- B Sarkadi
- National Institute of Haematology and Blood Transfusion, Budapest, Hungary
| | | |
Collapse
|
16
|
|
17
|
Lauf PK. Thiol-dependent passive K: Cl transport in sheep red blood cells: X. A hydroxylamine-oxidation induced K: Cl flux blocked by diethylpyrocarbonate. J Membr Biol 1990; 118:153-9. [PMID: 2266546 DOI: 10.1007/bf01868472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxylamine, a potent oxidizing agent used to reverse carbethoxylation of histidine by diethylpyrocarbonate, activated Cl-dependent K flux (K: Cl cotransport) of low K sheep red blood cells almost sixfold. When K: Cl cotransport was already stimulated by N-ethylmaleimide, hydroxylamine caused an additional twofold activation suggesting modification of sites different from those thiol alkylated. This conclusion was supported by the finding that hydroxylamine additively augmented also the diamide-induced K: Cl flux (Lauf, P.K. 1988. J. Membrane Biol. 101: 179-188) with dithiothreitol fully reversing the diamide but not the hydroxylamine effect. Stimulation of K: Cl cotransport by hydroxylamine was completely inhibited by treatment with diethylpyrocarbonate also known to prevent K: Cl cotransport stimulation by N-ethylmaleimide, both effects being independent of the order of addition. Hence, although the effect of carbethoxy modification of K: Cl flux cannot be reversed by hydroxylamine and thus excludes histidine as the target for diethylpyrocarbonate, our finding reveals an important chemical determinant of K: Cl cotransport stimulation by both hydroxylamine oxidation and thiol group alkylation.
Collapse
Affiliation(s)
- P K Lauf
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, Ohio 45401-0927
| |
Collapse
|
18
|
Bergh C, Kelley SJ, Dunham PB. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling. J Membr Biol 1990; 117:177-88. [PMID: 2213861 DOI: 10.1007/bf01868684] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of osmotic cell swelling were studied on the kinetics of Cl-dependent K+ influx, K-Cl cotransport, in erythrocytes from sheep of the low K+ (LK) phenotype. Swelling approximately 25% stimulated transport by increasing maximum velocity (Jmax) approximately 1.5-fold and by increasing apparent affinity for external K (Ko) nearly twofold. Dithiothreitol (DTT) was shown to be a partial, reversible inhibitor of K-Cl cotransport. It inhibited in cells of normal volume by reducing Jmax more than twofold; apparent affinity for Ko was increased by DTT, suggesting that DTT stabilizes the transporter-Ko complex. Cell swelling reduced the extent of inhibition by DTT: Jmax was inhibited by only about one-third in swollen cells, and apparent affinity was only slightly affected. This result suggested that DTT does not act directly on the transporter, but on a hypothetical regulator, an endogenous inhibitor. Swelling relieves inhibition by the regulator, and reduces the effect of DTT. Reducing intracellular Mg2+, Mgc, stimulated cotransport. Swelling of low-Mg2+ cells stimulated transport further, but only by raising apparent affinity for Ko nearly threefold: Jmax was unaffected. Thus effects of swelling on Jmax and apparent affinity are separable processes. The inhibitory effects of Mgc and DTT were shown to be additive, indicating separate modes of action. There appear to be two endogenous inhibitors: the hypothetical regulator, which holds affinity for Ko, low; and Mgc, which affects Jmax, perhaps by holding some transporters in an inactive form. Swelling stimulates transport by relieving both types of inhibition.
Collapse
Affiliation(s)
- C Bergh
- Department of Biology, Syracuse University, New York 13244
| | | | | |
Collapse
|