1
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Arin RM, Gorostidi A, Navarro-Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and Indirect Actions on Gastric Acid Secretion. Front Physiol 2017; 8:737. [PMID: 29018360 PMCID: PMC5614973 DOI: 10.3389/fphys.2017.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.
Collapse
Affiliation(s)
- Rosa M Arin
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Adriana Gorostidi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Hiart Navarro-Imaz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
4
|
Di Mario F, Goni E. Gastric acid secretion: changes during a century. Best Pract Res Clin Gastroenterol 2014; 28:953-65. [PMID: 25439063 DOI: 10.1016/j.bpg.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 01/31/2023]
Abstract
The advances in knowledge of gastric physiology within the past century have been the most exciting and important in this area of interest for many decades. The aim of this presentation consists of a comprehensive review of the extensive recent literature on this topic in order to highlight milestones in the field of gastric physiology, in particular in gastric acid secretion, gastric pathophysiology, acid-related diseases and use of acid regulatory drugs. Moreover, in the 21st century there have been many epidemiologic changes as well as a decrease of Helicobacter pylori infection and gastric cancer together with an increase of gastroesophageal reflux disease and the related increase of pomp proton inhibitor wide use.
Collapse
Affiliation(s)
- Francesco Di Mario
- Department of Clinical and Experimental Medicine, University of Parma, School of Medicine, Via Gramsci 14, 43125, Parma, Italy.
| | - Elisabetta Goni
- Department of Clinical and Experimental Medicine, University of Parma, School of Medicine, Via Gramsci 14, 43125, Parma, Italy.
| |
Collapse
|
5
|
Sachs G, Shin JM, Munson K, Scott DR. Gastric acid-dependent diseases: a twentieth-century revolution. Dig Dis Sci 2014; 59:1358-69. [PMID: 24852882 DOI: 10.1007/s10620-014-3104-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- George Sachs
- Department of Medicine, David Geffen School of Medicine, The Veterans Administration Greater Los Angeles Healthcare System, University of California at Los Angeles, Bldg 113, Rm 324 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA,
| | | | | | | |
Collapse
|
6
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
7
|
Abstract
Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M₃ with a small contribution of the M₁ receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M₂ and M₃ with the M₂ outnumbering the M₃ by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M₃ receptor mechanism despite the major presence of the M₂ receptor in smooth muscle. These results are consistent with the conditional role of the M₂ receptor in smooth muscle. That is, the contractile role of the M₂ receptor depends on that of the M₃ so that antagonism of the M₃ receptor eliminates the response of the M₂. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M₃ antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.
Collapse
|
8
|
Schubert ML, D. Kaunitz J. Gastric Secretion. SLEISENGER AND FORDTRAN'S GASTROINTESTINAL AND LIVER DISEASE 2010:817-832.e7. [DOI: 10.1016/b978-1-4160-6189-2.00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Shin JM, Vagin O, Munson K, Kidd M, Modlin IM, Sachs G. Molecular mechanisms in therapy of acid-related diseases. Cell Mol Life Sci 2008; 65:264-81. [PMID: 17928953 PMCID: PMC3081136 DOI: 10.1007/s00018-007-7249-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists.
Collapse
Affiliation(s)
- J. M. Shin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California USA
- VA Greater Los Angeles Healthcare System, West LA Medical Center, 11301 Wilshire Boulevard, Building 113, Los Angeles, California 90073 USA
| | - O. Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California USA
- VA Greater Los Angeles Healthcare System, West LA Medical Center, 11301 Wilshire Boulevard, Building 113, Los Angeles, California 90073 USA
| | - K. Munson
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California USA
- VA Greater Los Angeles Healthcare System, West LA Medical Center, 11301 Wilshire Boulevard, Building 113, Los Angeles, California 90073 USA
| | - M. Kidd
- Department of Surgery, Yale University School of Medicine, TMP202, 333 Cedar Street, New Haven Connecticut, 06520-8062 USA
| | - I. M. Modlin
- Department of Surgery, Yale University School of Medicine, TMP202, 333 Cedar Street, New Haven Connecticut, 06520-8062 USA
| | - G. Sachs
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California USA
- VA Greater Los Angeles Healthcare System, West LA Medical Center, 11301 Wilshire Boulevard, Building 113, Los Angeles, California 90073 USA
| |
Collapse
|
10
|
Lopez-Diaz L, Hinkle KL, Jain RN, Zavros Y, Brunkan CS, Keeley T, Eaton KA, Merchant JL, Chew CS, Samuelson LC. Parietal cell hyperstimulation and autoimmune gastritis in cholera toxin transgenic mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G970-9. [PMID: 16399875 DOI: 10.1152/ajpgi.00461.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.
Collapse
Affiliation(s)
- Lymari Lopez-Diaz
- Department of Molecular and Integrative Physiology, University of Michigan, 7761 Medical Science II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin2 receptors on parietal cells in isolated mouse stomach. Life Sci 2005; 77:2040-50. [PMID: 15919097 DOI: 10.1016/j.lfs.2005.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 04/11/2005] [Indexed: 11/29/2022]
Abstract
The existence of a direct action of acetylcholine and gastrin on muscarinic M3 and cholecystokinin2 (CCK2) receptors on gastric parietal cells has not yet been convincingly established because these stimulated acid secretions are remarkably inhibited by histamine H2 receptor antagonists. In the present study, we investigated the necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and CCK2 receptors on parietal cells using an isolated mouse stomach preparation. Bethanechol (10-300 microM) produced a marked increase in acid output and this increase was completely blocked by famotidine (10 microM). In the presence of famotidine, bethanechol (1-30 microM) augmented the acid secretory response to dibutyryl AMP (200 microM) in a concentration-dependent manner. The augmentation was blocked by atropine (1 microM), 4-DAMP (0.1 microM), a muscarinic M3-selective antagonist, and by Ca2+ exclusion from the serosal nutrient solution. Pentagastrin (0.3-3 microM) also concentration-dependently stimulated gastric acid secretion, but the effect was completely inhibited by famotidine. In the presence of famotidine, pentagastrin (0.1-0.3 microM) elicited a definite potentiation of the acid secretory response to dibutyryl cyclic AMP (200 microM). This potentiation was inhibited by YM022 (1 microM), a CCK2 receptor antagonist, and by exclusion of Ca2+ from the serosal nutrient solution. The present results suggest that gastric acid secretion via the activation of muscarinic M3 and CCK2 receptors on the parietal cells is induced by activation of the cyclic AMP-dependent secretory pathway.
Collapse
Affiliation(s)
- Yasuo Ochi
- Laboratory of Molecular Pharmacology and Pharmacotherapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|
12
|
Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1199-207. [PMID: 15691866 DOI: 10.1152/ajpgi.00514.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscarinic acetylcholine receptors play an important role in the regulation of gastric acid secretion stimulated by acetylcholine; nonetheless, the precise role of each receptor subtype (M(1)-M(5)) remains unclear. This study examined the involvement of M(1), M(3), and M(5) receptors in cholinergic regulation of acid secretion using muscarinic receptor knockout (KO) mice. Gastric acid secretion was measured in both mice subjected to acute gastric fistula production under urethane anesthesia and conscious mice that had previously undergone pylorus ligation. M(3) KO mice exhibited impaired gastric acid secretion in response to carbachol. Unexpectedly, M(1) KO mice exhibited normal intragastric pH, serum gastrin and mucosal histamine levels, and gastric acid secretion stimulated by carbachol, histamine, and gastrin. Pirenzepine, known as an M(1)-receptor antagonist, inhibited carbachol-stimulated gastric acid secretion in a dose-dependent manner in M(1) KO mice as well as in wild-type (WT) mice, suggesting that the inhibitory effect of pirenzepine on gastric acid secretion is independent of M(1)-receptor antagonism. Notably, M(5) KO mice exhibited both significantly lower carbachol-stimulated gastric acid secretion and histamine-secretory responses to carbachol compared with WT mice. RT-PCR analysis revealed M(5)-mRNA expression in the stomach, but not in either the fundic or antral mucosa. Consequently, cholinergic stimulation of gastric acid secretion is clearly mediated by M(3) (on parietal cells) and M(5) receptors (conceivably in the submucosal plexus), but not M(1) receptors.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Female
- Gastric Acid/metabolism
- Male
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- Pirenzepine/pharmacology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M1/biosynthesis
- Receptor, Muscarinic M1/genetics
- Receptor, Muscarinic M1/physiology
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptor, Muscarinic M5/biosynthesis
- Receptor, Muscarinic M5/genetics
- Receptor, Muscarinic M5/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Stomach/physiology
Collapse
Affiliation(s)
- Takeshi Aihara
- Dept. of Applied Pharmacology, Kyoto Pharmaceutical Univ., Misasagi, Yamashina, Kyoto 607-8414 Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
Proton pump inhibitors, which act at the terminal point of acid secretion--the H+, K+-ATPase--are currently the most effective pharmacological treatments available for reflux disease. Despite the efficacy of the proton pump inhibitors, there is still potential for clinical improvement in gastro-oesophageal reflux disease pharmacotherapy. Faster onset of complete acid inhibition and improved duration of efficacy are two potential areas for improvement A number of novel pharmaceutical agents are currently undergoing clinical evaluation for the treatment of gastro-oesophageal reflux disease. These include transient lower oesophageal sphincter relaxation-reducing agents, serotonergic agents/prokinetics, potassium-competitive acid blockers, mucosal protectants, histamine H3 agonists and anti-gastrin agents. One or more of these drug groups may represent the future medical therapy for gastro-oesophageal reflux disease, should they prove effective in the clinical setting. This review summarizes the state of the art with these agents.
Collapse
Affiliation(s)
- N Vakil
- University of Wisconsin Medical School, Madison, WI, USA.
| |
Collapse
|
14
|
Abstract
Most patients with peptic ulcer disease are currently treated with proton pump inhibitors or histamine H(2) receptor antagonists. The long-term use of these compounds has been associated with two potential problems. Firstly, proton pump inhibitors may induce enterochromaffin-like (ECL) cell hyperplasia. Secondly, ulcers may relapse despite maintenance therapy with histamine H(2) antagonists. This has been the rationale for the development of new antisecretory agents, including antagonists against gastrin and gastrin releasing peptide (GRP), as well as ligands to histamine H(3) receptors. Several potent, high affinity cholecystokinin (CCK)-2 receptor antagonists have recently been identified such as L-365260, YM-022, RP-73870, S-0509, spiroglumide and itriglumide (CR-2945). Current data suggest that they all have antisecretory and anti-ulcer effects. In addition to reducing acid production, CCK-2 receptor antagonists may possibly also accelerate gastric emptying, a combination of functions which could potentially be beneficial in patients with functional dyspepsia. Receptors for bombesin and its mammalian counterpart GRP have been localised in the brain, spinal cord and enteric nerve fibres of the gut as well as on secretory cells and smooth muscle cells of the intestinal tract. Current data clearly indicate that endogenous GRP is involved in the regulation of basal and postprandial acid secretion. However, at this stage it is not clear whether GRP agonists or GRP antagonists can be developed into useful drugs. The peptide has a wide range of biological effects and it is likely that analogues of GRP or antagonists of the peptide affect not only gastric acid secretion but also induce considerable side effects. Histamine plays a central role in the stimulation of acid secretion. After their detection in the brain, H(3) receptors have been identified in a variety of tissues including perivascular nerve terminals, enteric ganglia of the ileum and lung, and ECL cells. Despite many studies, the role of H(3) receptors in the regulation of gastric acid secretion is still unclear. Controversial data have been presented, and study results largely depend on the species and experimental models. It seems unlikely that proton pump inhibitors or H(2) receptor antagonists will be replaced in the near future by new antisecretory agents. The current shortcomings of the new compounds include mainly their reduced clinical effectiveness and pharmacological limitations. However, the development of these new antisecretory compounds provides interesting tools to assess the physiological and pharmacological role of different receptors within the gastrointestinal tract. The use of CCK-2 receptor antagonists in patients with functional dyspepsia and Zollinger-Ellison syndrome should be examined in randomised, controlled trials.
Collapse
Affiliation(s)
- Frank Lehmann
- Division of Gastroenterology, University Hospital of Basel, Petersgraben 4, Basel 4031, Switzerland
| | | | | |
Collapse
|
15
|
Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S. Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology 2003; 125:1774-84. [PMID: 14724830 DOI: 10.1053/j.gastro.2003.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The physiologic significance of the M(3) muscarinic receptor is unclear due to an absence of specific ligand. In the present study, M(3) receptor knockout (KO) mice were used to elucidate the role of M(3) receptors in gastric acid secretion and gastric mucosal integrity. METHODS M(3) KO versus wild-type mice aged 1 month to 2 years were included. Gastric acid secretion was assessed by both direct intragastric pH measurement and pylorus ligation. Serum gastrin and gastric mucosal histamine levels were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. Morphologic analysis was performed by both immunohistochemistry and transmission electron microscopy. RESULTS Fasted M(3) KO mice exhibited higher intragastric pH, lower acid output after pylorus ligation, a lower proportion of active parietal cells, and higher serum gastrin levels than fasted wild-type mice. Acid secretion in response to carbachol, histamine, gastrin 17, and 2-deoxy-D-glucose was impaired in the mutant mice. Although carbachol was still able to cause approximately 30% acid output in M(3) KO mice, the acid secretion was inhibited by pirenzepine or famotidine. Despite remarkable hypergastrinemia in M(3) KO mice, there were no trophic responses in the oxyntic mucosa with respect to the mucosal thickness, proliferation rate, and numbers of parietal and enterochromaffin-like cells. Cholecystokinin type 2 receptor antagonist YM022 was without the effect in M(3) KO mice. CONCLUSIONS The present study shows that M(3) receptors are essential for basal acid secretion, a fully acid secretory response to histamine and gastrin, and the trophic responses of oxyntic mucosa to gastrin.
Collapse
Affiliation(s)
- Takeshi Aihara
- Departmentof Applied Pharmacology, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Furutani K, Aihara T, Nakamura E, Tanaka S, Ichikawa A, Ohtsu H, Okabe S. Crucial role of histamine for regulation of gastric acid secretion ascertained by histidine decarboxylase-knockout mice. J Pharmacol Exp Ther 2003; 307:331-8. [PMID: 12893847 DOI: 10.1124/jpet.103.052019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histidine decarboxylase (HDC) represents the sole enzyme that produces histamine in the body. The present work investigated the role of endogenous histamine in carbachol- and gastrin-induced gastric acid secretion with HDC-knockout (HDC-/-) mice. Acid secretion was measured in either mice subjected to acute fistula production under urethane anesthesia or conscious mice that had previously undergone pylorus ligation. In wild-type mice, carbachol and gastrin significantly stimulated acid secretion, increasing gastric mucosal histamine. In contrast, in HDC-/- mice, carbachol and gastrin had little impact when either delivered alone or together. Nonetheless, the two agents achieved a synergistic effect when delivered together with exogenous histamine, stimulating acid secretion in HDC-/- mice. Such synergism was abolished by the histamine H2-receptor antagonist famotidine. cAMP involvement in acid secretion was also examined with theophylline, a phosphodiesterase inhibitor, and forskolin, an adenylate cyclase activator. In wild-type mice, theophylline significantly increased acid secretion, enhancing carbachol- and gastrin-stimulated acid secretion. In contrast, in HDC-/- mice, theophylline failed to exert an effect on basal acid secretion, as well as carbachol- and gastrin-stimulated acid secretion. Although forskolin interacted with carbachol, allowing acid secretion in HDC-/- mice, similar results were not achieved with gastrin. Such results suggest that 1) histamine is essential for carbachol- and gastrin-stimulated gastric acid secretion in mice; and 2) histamine-induced cAMP production contributes to the in vivo response to carbachol or gastrin.
Collapse
Affiliation(s)
- Kazuharu Furutani
- Department of Applied Pharmacology, Kyoto Pharmaceutical University, Misasagi, Yamashina, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Fährmann M, Heinzmann A, Seidler U. CaMKII is activated and translocated to the secretory apical membrane during cholinergically conveyed gastric acid secretion. Cell Signal 2002; 14:161-8. [PMID: 11781141 DOI: 10.1016/s0898-6568(01)00231-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to be activated during the cholinergic stimulation of gastric acid secretion. The carbachol-induced acid production of cultured rabbit parietal cells was dose-dependently inhibited by the CaMKII inhibitor KN-62 as measured by accumulation of the weak base [(14)C]aminopyrine ([(14)C]-AP). Inhibition by KN-62 was most efficient at concentrations of carbachol >10(-6) M. After carbachol stimulation, we observed an activation of CaMKII activity, and its translocation to the apical membrane of gastric mucosal cells. We found a doubling of the abundance of CaMKII to the stimulus-associated apical membrane (SA vesicles) compared to the apical membrane from the resting state after carbachol induction. This was shown by both an anti-CaMKII serum and the 1.8-fold increase of the CaMKII phosphotransferase activity in vitro. The SA vesicles exhibited a strong increase of autoactivated CaMKII probed with an anti-autoactivated CaMKII antibody. Additionally, we observed a colocalization of both CaMKII and the H(+)-K(+)-ATPase of SA vesicles similar to the colocalization of both enzymes to the tubulovesicles suggesting them as at least one pool for the SA vesicular CaMKII. Our data indicate that the activation of CaMKII and the carbachol-dependent redistribution of CaMKII to the SA vesicles are distinct processes that occur in parallel to regulate the activity and localization of CaMKII. These findings contribute to the model implicating an involvement for CaMKII in the intracellular dynamics of the acid secretion.
Collapse
Affiliation(s)
- Michael Fährmann
- Institut für Zoophysiologie der Westfälischen Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany.
| | | | | |
Collapse
|
18
|
Mensah-Brown EP, Lawrence PA. Neurotransmitters regulating acid secretion in the proventriculus of the Houbara bustard (Chlamydotis undulata): a morphological viewpoint. J Morphol 2001; 248:175-84. [PMID: 11304748 DOI: 10.1002/jmor.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endocrine cells containing somatostatin (Som), gastrin-releasing peptide (GRP), and neuronal nitric oxide synthase (nNOS) and nerve fibers containing choline acetyl transferase (ChAT), tyrosine hydroxylase (TH), galanin (Gal), substance P (SP), and vasoactive intestinal polypeptide (VIP) were immunolocalized in the proventriculus of the Houbara bustard, Chlamydotis undulata. While GRP-immunoreactive (GRP-IR) cells occur in the inner zone, somatostatin (Som-IR) and polyclonal nNOS (nNOS-IR) immunoreactive cells were localized mainly in the peripheral zone of submucosal glands. GRP-IR, Som-IR, and nNOS-IR cells were occasionally observed in the walls of the gastric glands. Endocrine cells are of the closed variety and usually possess apical processes extending along the basal surfaces of adjacent nonreactive cells. Ultrastructural features of these cells are typical. ChAT, Gal, SP, VIP, and TH were immunolocalized in nerve fibers and terminals in the walls of arterioles and capillaries at the periphery of submucosal glands. Immunoreactivity to monoclonal nNOS occurred mainly in neuronal cell bodies in ganglia located around the submucosal glands. ChAT and TH immunoreactive cell bodies were also occasionally seen around the submucosal glands in the peripheral region. Immunoreactivity to Gal, SP, and VIP, but not ChAT or TH, was discernible around the walls of gastric glands. It was concluded that the distribution of neurotransmitters in neuronal structures is similar, but that of the endocrine cells varies from that of some avian species. The roles of these neurotransmitters in the regulation of acid secretion are discussed.
Collapse
Affiliation(s)
- E P Mensah-Brown
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UAE University, Al Ain, UAE.
| | | |
Collapse
|
19
|
Athmann C, Zeng N, Scott DR, Sachs G. Regulation of parietal cell calcium signaling in gastric glands. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1048-58. [PMID: 11053003 DOI: 10.1152/ajpgi.2000.279.5.g1048] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ligands interacting with enterochromaffin-like (ECL) and parietal cells and the signaling interactions between these cells were investigated in rabbit gastric glands using confocal microscopy. Intracellular calcium concentration ([Ca(2+)](i)) changes were used to monitor cellular responses. Histamine and carbachol increased [Ca(2+)](i) in parietal cells. Gastrin (1 nM) increased [Ca(2+)](i) in ECL cells and adjacent parietal cells. Only the increase of [Ca(2+)](i) in parietal cells was inhibited by H(2) receptor antagonists (H(2)RA). Gastrin (10 nM) evoked an H(2)RA-insensitive [Ca(2+)](i) increase in parietal cells. Carbachol produced large H(2)RA- and somatostatin-insensitive signals in parietal cells. Pituitary adenylate cyclase-activating peptide (PACAP, 100 nM) elevated [Ca(2+)](i) in ECL cells and adjacent parietal cells. H(2)RAs abolished the PACAP-stimulated [Ca(2+)](i) increase in adjacent parietal cells. Somatostatin did not inhibit the increase of [Ca(2+)](i) in parietal cells stimulated with histamine, high gastrin concentrations, or carbachol but abolished ECL cell calcium responses to gastrin or PACAP. Hence, rabbit parietal cells express histaminergic, muscarinic, and CCK-B receptors coupled to calcium signaling but insensitive to somatostatin, whereas rabbit and rat ECL cells express PACAP and CCK-B calcium coupled receptors sensitive to somatostatin.
Collapse
Affiliation(s)
- C Athmann
- Department of Physiology, University of California, Los Angeles, West Los Angeles Healthcare Center, Los Angeles, California 90073, USA
| | | | | | | |
Collapse
|
20
|
Hertzberg H, Guscetti F, Lischer C, Kohler L, Neiger R, Eckert J. Evidence for a parasite-mediated inhibition of abomasal acid secretion in sheep infected with Ostertagia leptospicularis. Vet J 2000; 159:238-51. [PMID: 10775468 DOI: 10.1053/tvjl.1999.0475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The acid secretory capacity of the abomasal mucosa was studied in sheep experimentally infected with Ostertagia leptospicularis. The acidity of the abomasal contents, permanently recorded by a pH probe located inside the abomasum, decreased markedly to mean levels between pH 5 and 6. Subcutaneous administration of histamine or carbachol successfully stimulated acid secretion (pH 3.4). The results indicate that the abomasal mucosa harboured a population of functional parietal cells which were also identified immunohistochemically (H(+)/K(+)-ATPase). Ultrastructural investigation before stimulation revealed that the majority of these cells was in a resting state. Despite high serum gastrin levels, the acid secretion was blocked either at the level of the parietal cell or the enterochromaffin-like cell by an unknown factor, possibly mediated by the parasites. This is the first report of a parietal cell dysfunction associated with a nematode infection in the abomasum. It is suggested that the parasites induce changes in their environment which favour their survival and/or increase their reproduction.
Collapse
Affiliation(s)
- H Hertzberg
- Institute of Parasitology, Clinic of Large Animal Surgery, University of Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Zeng N, Athmann C, Kang T, Lyu RM, Walsh JH, Ohning GV, Sachs G, Pisegna JR. PACAP type I receptor activation regulates ECL cells and gastric acid secretion. J Clin Invest 1999; 104:1383-91. [PMID: 10562300 PMCID: PMC409843 DOI: 10.1172/jci7537] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1999] [Accepted: 09/17/1999] [Indexed: 11/17/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is present in gastric nerves, and PACAP receptors (PAC1) are found on gastric enterochromaffin-like (ECL) cells. Expression of PAC1 splice variants in purified ECL cells was determined by RT-PCR. PACAP effects on ECL cells were analyzed by video imaging of [Ca(2+)](i) and histamine release; its effects on gastric glands were examined by confocal microscopy of [Ca(2+)](i) in ECL and parietal cells. PACAP action on D cells was measured by [Ca(2+)](i) and radioimmunoassay. PACAP effects on acid secretion were determined in fistula rats with or without neutralizing anti-somatostatin antibodies. All splice variants of PAC1 were found, but vasoactive intestinal polypeptide (VIP) receptor (VPAC) products were absent. PACAP-27 and -38 dose-dependently raise [Ca(2+)](i) in ECL cells, and stimulated histamine release. VIP had a much lower affinity, which demonstrates the presence of PAC1 but not VPAC. PACAP elevated [Ca(2+)](i) in ECL and parietal cells of superfused gastric glands, but only the parietal cell signal was inhibited by ranitidine, showing the absence of PAC1 on parietal cells, and demonstrating functional coupling between the cell types. PACAP and VIP stimulated calcium signaling and somatostatin release from D cells with almost equal efficacy. Acid secretion was stimulated after intravenous injection of PACAP into rats treated with somatostatin antibody. PACAP is a candidate as a mediator of neural regulation of acid secretion.
Collapse
Affiliation(s)
- N Zeng
- The Center for Ulcer Research and Education: Veterans Administration/University of California-Los Angeles Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Heath Care System at West Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schepp W, Dehne K, Herrmuth H, Pfeffer K, Prinz C. Identification and functional importance of IL-1 receptors on rat parietal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1094-105. [PMID: 9815040 DOI: 10.1152/ajpgi.1998.275.5.g1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We studied the expression of interleukin-1 (IL-1) receptors and the effect of IL-1beta on the function of highly enriched (>97%) rat parietal cells. RT-PCR of parietal cell poly(A)+ RNA with primers specific for the rat IL-1 receptor revealed a single 547-kb PCR product highly homologous to the published sequence of the IL-1 receptor. Northern blot analysis of poly(A)+ RNA of rat parietal cells and brain revealed a single RNA species of 5.7 kb. Cytochemistry of parietal cell IL-1 receptor was performed with biotinylated recombinant human IL-1beta, visualized by avidin-coupled fluorescein. Corresponding to the high degree of parietal cell enrichment, 95% of the cells stained positive. Basal H+ production ([14C]aminopyrine accumulation) was not changed by IL-1beta (0.25-100 pg/ml) nor was the response to histamine or carbachol when added simultaneously with the cytokine. However, when parietal cells were preincubated with IL-1beta (0.5-5 pg/ml) for 10 min before the addition of histamine or carbachol, the response to these secretagogues was reduced by 35 and 67%, respectively. Inhibition by IL-1beta was fully reversed by the human recombinant IL-1 receptor antagonist. Preincubation of parietal cells with IL-1beta failed to alter histamine-stimulated cAMP production but markedly inhibited carbachol-induced formation of D-myo-inositol 1,4, 5-trisphosphate. In fura 2-loaded, purified parietal cells, 10 min preincubation with IL-1beta dramatically reduced the initial transient peak elevation of intracellular Ca2+ concentration in response to carbachol. We conclude that rat parietal cells express IL-1 receptors mediating inhibition of H+ production. The antisecretory effect of IL-1beta may contribute to hypoacidity secondary to acute Helicobacter pylori infection or during chronic colonization by H. pylori preferring the fundic mucosa.
Collapse
Affiliation(s)
- W Schepp
- Department of Medicine II, Bogenhausen Academic Teaching Hospital, D-81925 Munich, Germany
| | | | | | | | | |
Collapse
|
23
|
Chew CS, Säfsten B, Flemström G. Calcium signaling in cultured human and rat duodenal enterocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G296-304. [PMID: 9688657 DOI: 10.1152/ajpgi.1998.275.2.g296] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vagal stimuli increase duodenal mucosal HCO-3 secretion and may provide anticipatory protection against acid injury, but duodenal enterocyte (duodenocyte) responses and cholinoceptor selectivity have not been defined. We therefore developed a stable primary culture model of duodenocytes from rats and humans. Brief digestion of scraped rat duodenal mucosa or human biopsies with collagenase/dispase yielded cells that attached to the extracellular matrix Matrigel within a few hours of plating. Columnar cells with villus enterocyte morphology that exhibited spontaneous active movement were evident between 1 and 3 days of culture. Rat duodenocytes loaded with fura 2 responded to carbachol with a transient increase in intracellular calcium concentration ([Ca2+]i), with an apparent EC50 of approximately 3 microM. In a first type of signaling pattern, [Ca2+]i returned to basal or near basal values within 3-5 min. In a second type, observed in cells with enlarged vacuoles characteristic of crypt cell morphology, the initial transient increase was followed by rhythmic oscillations. Human duodenocytes responded with a more sustained increase in [Ca2+]i, and oscillations were not observed. Rat as well as human duodenocytes also responded to CCK-octapeptide but not to vasoactive intestinal polypeptide. Equimolar concentrations (100 nM) of the subtype-independent muscarinic antagonist atropine and the M3 antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide prevented the response to 10 microM carbachol, whereas the M1 antagonist pirenzepine and the M2 antagonists methoctramine and AF-DX 116BS had no effect at similar concentrations. Responses in rat and human duodenocytes were similar. A new agonist-sensitive primary culture model for rat and human duodenocytes has thus been established and the presence of enterocyte CCK and muscarinic M3 receptors demonstrated.
Collapse
Affiliation(s)
- C S Chew
- Department of Physiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
24
|
Sandvik AK, Mårvik R, Dimaline R, Waldum HL. Carbachol stimulation of gastric acid secretion and its effects on the parietal cell. Br J Pharmacol 1998; 124:69-74. [PMID: 9630345 PMCID: PMC1565362 DOI: 10.1038/sj.bjp.0701802] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The acid secretagogue effect of gastrin is mainly mediated by the release of enterochromaffin-like (ECL) cell histamine, but the mechanism of muscarinic stimulation of acid secretion remains unclear. The results of studying aminopyrine uptake in isolated parietal cells, and histamine release in isolated ECL cells suggest that muscarinic agents may act both directly on the parietal cell and indirectly via histamine release from ECL cells. 2. We examined parietal and ECL cell responses to the muscarinic agent carbamylcholine (carbachol) in conscious rats and in rat isolated vascularly perfused stomachs. 3. Intravenous carbachol stimulated acid secretion in conscious gastric fistula rats and increased H+K+ ATPase mRNA abundance, indicating activation of parietal cells. In these experiments there was no increase in portal venous histamine, or in oxyntic mucosal histidine decarboxylase (HDC) enzyme activity and HDC mRNA abundance. 4. In rat isolated stomachs stimulated with carbachol in the dose range 10 nM(-1) mM only the 1 microM concentration increased venous histamine significantly. 5. We concluded that the muscarinic agent carbachol stimulates acid secretion and H+K+ ATPase mRNA in vivo by a direct effect on the parietal cell, that does not depend on the release of ECL cell histamine.
Collapse
Affiliation(s)
- A K Sandvik
- Department of Physiology and Biomedical Engineering, University of Trondheim, Norway
| | | | | | | |
Collapse
|
25
|
Higashide S, Chu KU, Gomez G, Greeley GH, Thompson JC, Townsend CM. Caloric restriction causes secretagogue specific changes of gastric acid secretion in rats. REGULATORY PEPTIDES 1997; 68:205-10. [PMID: 9100288 DOI: 10.1016/s0167-0115(96)02124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to examine the effects of short-term caloric restriction (CR) for 4, 8 and 16 weeks on gastric acid secretion in rats. CR rats fed 60% of normal food intake for 4, 8 or 16 weeks and then prepared with gastric fistulas. Histamine- and carbachol-stimulated gastric acid secretion were significantly (P < 0.05) decreased after more than 4 weeks and 8 weeks of caloric restriction, respectively. In contrast, gastrin-stimulated acid secretion was unaffected by CR. The 1-h-integrated acid output to a submaximal dose of gastrin (40 micrograms.kg-1) was significantly higher than that of histamine (5 mg.kg-1) after 8 weeks of CR (63 +/- 13 and 27 +/- 4 microEq.h-1, respectively). Gastrin treatment (5 micrograms.kg-1.h-1) of CR rats restored the gastric acid responses to both histamine and carbachol. These results suggest that CR can selectively decrease the gastric acid responses to both histamine and carbachol by depletion of the endogenous tissue stores of gastrin. More importantly, these results indicate that under an in vivo gastrin-diminished condition, histamine is not the final secretagogue for gastric acid secretion.
Collapse
Affiliation(s)
- S Higashide
- Department of Surgery, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | |
Collapse
|
26
|
Distribution of muscarinic receptor mRNAs in the stomachs of normal or immobilized rats. Inflammopharmacology 1996. [DOI: 10.1007/bf02755792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Helander KG, Bamberg K, Sachs G, Melle D, Helander HF. Localization of mRNA for the muscarinic M1 receptor in rat stomach. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1312:158-62. [PMID: 8672539 DOI: 10.1016/0167-4889(96)00021-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholinergic stimulation of receptors in the oxyntic mucosa results in secretion of mucus, pepsinogen and hydrochloric acid. There has been speculation as to the cellular localization of these receptors in the mucosa and as to which subtype is present in the different cell types. In the present study, utilizing radioactive riboprobes for the M1 muscarinic receptor subtype, we carried out in situ hybridization to determine which cells of the gastric corpus transcribe mRNA for this receptor. The antisense M1 probe hybridized strongly on the zymogen cells and, to a lesser extent, on the surface mucous cells and the muscle layers. Control sections from brain also displayed specific hybridization.
Collapse
Affiliation(s)
- K G Helander
- Laboratory of Membrane Biology, Wadsworth VAMC/UCLA, USA
| | | | | | | | | |
Collapse
|
28
|
Wilkes JM, Peregrine AS, Zilberstein D. The accumulation and compartmentalization of isometamidium chloride in Trypanosoma congolense, monitored by its intrinsic fluorescence. Biochem J 1995; 312 ( Pt 1):319-27. [PMID: 7492332 PMCID: PMC1136262 DOI: 10.1042/bj3120319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interaction of the trypanocide isometamidium chloride with components of Trypanosoma congolense results in characteristic shifts in the intrinsic fluorescence of the drug. The specificity of this interaction was investigated by analysing the effects of various physicochemical manipulations on its fluorescence properties. The characteristic shifts involved a preferential increase in the intensity of one emission peak over the other, resulting in a systematic increase in the ratio of fluorescence intensities. These effects were apparently due to constraints on fluorophore free rotation in the solution (that is, viscosity). Purified DNA produced similar effects in a saturable manner displaying high affinity for the drug, indicating that the constraint involves binding of the drug to high-affinity binding sites within the DNA. Such binding sites were demonstrated in lysates derived from trypanosomal cells. The binding sites were associated with macromolecular species (M(r) > 12000), and were partly disrupted by thermal denaturation and proteolysis. Treatment with DNase 1 produced high levels of disruption of the binding sites (> 85%), indicating an involvement of DNA in the binding. BSA demonstrated weak non-specific binding of the drug. Entry of drug into live trypanosomal cells (monitored by 14C-labelled drug uptake) was paralleled by fluorescence shifts observed under comparable conditions of drug concentration and buffer conditions. Both systems (fluorescence shifts and accumulation of labelled drug) indicated the presence of a saturable membrane transporter with high affinity for the drug. We conclude that monitoring the fluorescence shifts of isometamidium constitutes a sensitive and highly specific probe for entry of the drug into trypanosomal cells, thereby enabling resolution of the transport events involved.
Collapse
Affiliation(s)
- J M Wilkes
- International Livestock Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
29
|
Yamamoto M, Yano S, Watanabe K. Comparison of effects of famotidine on vagally and field-electrically stimulated acid secretion in the isolated mouse whole stomach. JAPANESE JOURNAL OF PHARMACOLOGY 1995; 69:259-68. [PMID: 8699634 DOI: 10.1254/jjp.69.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Effects of famotidine on neuronally evoked acid secretion were investigated by means of vagal (at the lower esophagus level) and field-electrical stimulation (around the stomach) in the isolated mouse whole stomach preparation. Each of the electrical stimulations caused a frequency-dependent (1 to 20 Hz) increase in acid output, and the secretory response was abolished by tetrodotoxin or atropine. In the case of field stimulation, the acid secretion was not completely inhibited by hexamethonium. When 10 Hz frequency was applied with either vagal or field-electrical stimulation, the acid secretion was only partly inhibited by famotidine at doses of up to 30 microM. In contrast, the acid response to 2 Hz stimulation was almost completely inhibited by 1 microM famotidine. In the presence of neostigmine (30 nM), the 2 Hz vagally stimulated acid secretion became partly resistant to the effect of famotidine (10 microM). These results suggest that both vagally and field-electrically stimulated acid secretions have essentially the same characteristics and that the secretory mechanism through histamine release is exclusively dominant with weak stimulation, while the cholinergic mechanism on parietal cells is sufficient for reaching the maximal secretory response with strong stimulation.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Drug Evaluation and Toxicological Sciences, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
30
|
Geibel J, Abraham R, Modlin I, Sachs G. Gastrin-stimulated changes in Ca2+ concentration in parietal cells depends on adenosine 3',5'-cyclic monophosphate levels. Gastroenterology 1995; 109:1060-7. [PMID: 7557070 DOI: 10.1016/0016-5085(95)90563-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS The parietal cell has secretory receptors for histamine and acetylcholine, whereas the functional nature of the gastrin/cholecystokinin B receptor is controversial. This study in isolated gastric glands investigates the cholecystokinin B receptor-induced intracellular calcium concentration ([Ca]i) response in enterochromaffin-like (ECL) and parietal cells as a function of adenosine 3',5'-cyclic monophosphate pathways. METHODS The responses of [Ca]i in ECL and parietal cells of perfused rabbit or rat calcium orange-loaded gastric glands were determined using confocal microscopy. ECL cells were identified by position, size, and autofluorescence and parietal cells by position and size. RESULTS Gastrin (1 mumol/L) produced an elevation of [Ca]i levels in both ECL and parietal cells. In the presence of 100 mumol/L cimetidine, the ECL cell response to gastrin was not affected but the [Ca]i response of the parietal cell was abolished. With dibutyryl adenosine 3',5' phosphate in addition to cimetidine, the response of the parietal cell [Ca]i to gastrin was restored in both the rat and rabbit. CONCLUSIONS The [Ca]i response of the parietal but not the ECL cell to the addition of gastrin seems to depend on the presence of normal or elevated intracellular adenosine 3',5'-cyclic monophosphate levels. Therefore, H2 receptor activity may be permissive for the effect of gastrin on parietal cell function.
Collapse
Affiliation(s)
- J Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
31
|
Hirschowitz BI, Keeling D, Lewin M, Okabe S, Parsons M, Sewing K, Wallmark B, Sachs G. Pharmacological aspects of acid secretion. Dig Dis Sci 1995; 40:3S-23S. [PMID: 7859583 DOI: 10.1007/bf02214869] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The secretion of gastric acid is regulated both centrally and peripherally. The finding that H2-receptor antagonists are able to reduce or abolish acid secretion due to vagal, gastrinergic, and histaminergic stimulation shows that histamine plays a pivotal role in stimulation of the parietal cell. In the rat, the fundic histamine is released from the ECL cell, in response to gastrin, acetylcholine, or epinephrine, and histamine release is inhibited by somatostatin or by the H3-receptor ligand, R-alpha-methyl histamine. The parietal cell has a muscarinic, M3, receptor responsible for [Ca]i regulation. Blockade of muscarinic receptors by atropine can be as effective as H2-receptor blockade in controlling acid secretion. However, general effects on muscarinic receptors elsewhere produce significant side effects. The different receptor pathways converge to stimulate the gastric H+,K(+)-ATPase, the pump responsible for acid secretion by the stomach. This enzyme is an alpha,beta heterodimer, present in cytoplasmic membrane vesicles of the resting cell and in the canaliculus of the stimulated cell. It has been shown that acid secretion by the pump depends on provision of K+Cl- efflux pathway becoming associated with the pump. As secretion occurs only in the canaliculus, this K+Cl- pathway is activated only when the pump inserts into the canalicular membrane. Transport by the enzyme involves reciprocal conformational changes in the cytoplasmic and extracytoplasmic domain. These result in changes in sidedness and affinity for H3O+ and K+, enabling active H+ for K+ exchange. The acid pump inhibitors of the substituted benzimidazole class, such as omeprazole, are concentrated in the canaliculus of the secreting parietal cell and are activated there to form sulfenamides. The omeprazole sulfenamide, for example, reacts covalently with two cysteines in the extracytoplasmic loops between the fifth and sixth transmembrane and the seventh and eighth transmembrane segments of the alpha subunit of the H+,K(+)-ATPase, forming disulfide derivatives. This inhibits ATP hydrolysis and H+ transport, resulting in effective, long-lasting regulation of acid secretion. Therefore, this class of acid pump inhibitor is significantly more effective and faster acting than the H2 receptor antagonists. K+ competitive antagonists bind to the M1 and M2 transmembrane segments of the alpha subunit of the acid pump and also abolish ATPase activity. These drugs should also be able to reduce acid secretion more effectively than receptor antagonists and provide shorter acting but complete inhibition of acid secretion.
Collapse
|
32
|
Lazrak A, Peres A, Giovannardi S, Peracchia C. Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane. Biophys J 1994; 67:1052-9. [PMID: 7811915 PMCID: PMC1225457 DOI: 10.1016/s0006-3495(94)80570-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only.
Collapse
Affiliation(s)
- A Lazrak
- Department of Physiology, University of Rochester, New York 14642
| | | | | | | |
Collapse
|
33
|
Edelman JL, Kajimura M, Woldemussie E, Sachs G. Differential effects of carbachol on calcium entry and release in CHO cells expressing the m3 muscarinic receptor. Cell Calcium 1994; 16:181-93. [PMID: 7828172 DOI: 10.1016/0143-4160(94)90021-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calcium signalling was examined in CHO-k1 cells that stably express the m3 subtype of the muscarinic receptor. The calcium indicator Fura-2 was retained in these cells only in the presence of probenecid (1 mM), suggesting that Fura-2 efflux was mediated by an organic anion transporter. The addition of carbachol (CCh) to Fura-2 loaded cells in suspension caused a rapid transient increase in intracellular calcium [Ca]i followed by a smaller sustained plateau phase. The transient rise in [Ca]i was dose-dependent with a threshold response of 89 +/- 18 nM above baseline with 10 nM CCh and a maximum stimulation of 734 +/- 46 nM with 10 microM CCh. This phase was accompanied by a similar dose-dependent stimulation of total inositol phosphate production and was assumed to be generated by release from intracellular stores of the endoplasmic reticulum (ER). The sustained increase in [Ca]i was generated by entry from the extracellular bath since it was blocked by pretreatment with La3+ (1 microM) and was absent when bath calcium was chelated with EGTA. This phase was not dependent on CCh dose, and a stimulation of [Ca]i of approximately 90 nM above baseline was observed with CCh concentrations between 50 nM and 10 microM. With this dose range, the rate of Mn2+ quenching of Fura-2 at the Ca-insensitive excitation wavelength of 360 nm was likewise maximally stimulated. At lower CCh concentrations (10-50 nM), it was clear that the activation of Ca entry could not be dissociated from a threshold release of Ca from intracellular stores. The phorbol ester PMA, which uncouples the muscarinic receptor from phospholipase C, reduced the transient rise in [Ca]i by approximately 50% with little or no effect on Ca entry at higher CCh levels (> or = 1 microM). At lower CCh concentrations (< or = 100 nM) however, pretreatment with PMA completely blocked all Ca mobilization and supports the contention that Ca entry is coupled to Ca release from stores or to store depletion. The emptying of inositol trisphosphate-sensitive stores with thapsigargin (10 nM) stimulated Ca entry and also the rate of Mn2+ quenching. Store depletion by incubation in Ca-free media likewise stimulated Mn2+ uptake without a rise in [Ca]i. Our data are therefore consistent with a 'capacitative' coupling model, whereby the activation of the plasma membrane receptor leads to an InsP3-induced change in the degree of filling of the ER Ca pool.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Edelman
- Department of Medicine, Wadsworth Veterans Administration Hospital, Irvine, California
| | | | | | | |
Collapse
|
34
|
Waisbren SJ, Geibel J, Boron WF, Modlin IM. Luminal perfusion of isolated gastric glands. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1013-27. [PMID: 8178950 DOI: 10.1152/ajpcell.1994.266.4.c1013] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have extended to rabbit gastric glands the technique for perfusing single isolated renal tubules. We isolated glands by hand dissection and used concentric glass pipettes to hold them and perfuse their lumina. Parietal cells (PCs), which tended to be located toward the gland opening, were identified by their pyramidal shape, large size, and autofluorescence. Chief cells (CCs) were identified by their round shape and smaller size. In some experiments, we perfused the lumen with hydroxypyrenetrisulfonate, a pH-sensitive fluorophore, at pH 7.4 and used digital image processing to monitor luminal pH (pH1). Solutions were buffered with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid to pH 7.4 at 37 degrees C. With fast perfusion, we found no evidence of decreased pH1, even with stimulation by 10 microM carbachol. With slow perfusion, pH1 often fell below the dye's sensitive range (pH < 5), especially at low perfusate buffering power. In other experiments, we loaded cells with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and monitored intracellular pH (pHi) in multiple individual PCs and CCs in a single gland. Mean pHi was 7.21 +/- 0.02 (n = 136 cells) for PCs and 7.27 +/- 0.03 (n = 103) for CCs. To examine the response to decreased pH1 and basolateral pH (pHb), we lowered pHb to 6.4 or lowered pH1 to 3.4 or 1.4. Lowering pHb to 6.4 for approximately 1 min caused pHi to fall reversibly by 0.39 +/- 0.05 (n = 53) in PCs and 0.58 +/- 0.03 (n = 50) in CCs. Lowering pH1 to 3.4 or 1.4 caused no significant pHi changes in PCs (n = 38 and 82) or in CCs (n = 44 and 77). Carbachol did not affect the response to changes in pH1 or pHb. We conclude that the apical surfaces of PCs and CCs are unusually resistant to extreme pH gradients.
Collapse
Affiliation(s)
- S J Waisbren
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
35
|
|
36
|
Prinz C, Kajimura M, Scott DR, Mercier F, Helander HF, Sachs G. Histamine secretion from rat enterochromaffinlike cells. Gastroenterology 1993; 105:449-61. [PMID: 7687574 DOI: 10.1016/0016-5085(93)90719-s] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND In vivo studies have suggested an important role for gastric enterochromaffinlike (ECL) cells in mediating acid secretion. Direct evidence for this function is lacking and requires a preparation of highly purified ECL cells. This work investigates the possible role and mechanism of histamine release from the ECL cell in the peripheral regulation of acid secretion, using purified ECL cells from rat fundic mucosa. METHODS A combination of elutriation and density-gradient centrifugation was used to purify rat fundic ECL cells. Enrichment was determined by the presence of acidic vacuoles containing a V type adenosine triphosphatase, electron microscopy, immunostaining, and histamine content and release. RESULTS ECL cells were enriched at least 65-fold with respect to the fundic epithelium. Gastrin (EC50 0.2 nmol/L) and cholecystokinin octapeptide (nonsulfated, EC50 0.04 nmol/L) stimulated histamine release in a time- and dose-dependent manner, suggesting a CCK-B receptor subtype, confirmed by the inhibition of gastrin/CCK stimulation with the CCK-B antagonist L365,260. Somatostatin also inhibited gastrin-mediated histamine release. Single cell imaging showed that gastrin elevated intracellular cytosolic calcium concentration biphasically. Carbachol and the C kinase activator 120-tetradecanoylphorbol-13-acetate also stimulated histamine release. Epinephrine (blocked by propranolol), forskolin, and dibutyryl-5'-cyclic adenosine monophosphate were also effective, implicating a beta-adrenergic pathway. The H3 agonist R-alpha-methyl-histamine inhibited, whereas the H3-antagonist thioperamide potentiated gastrin/CCK stimulated histamine release. CONCLUSIONS These in vitro results support a central role for the ECL cell in the peripheral regulation of gastric acid secretion.
Collapse
Affiliation(s)
- C Prinz
- Department of Physiology and Medicine, University of California, Los Angeles
| | | | | | | | | | | |
Collapse
|
37
|
Roche S, Bali JP, Magous R. Receptor-operated Ca2+ channels in gastric parietal cells: gastrin and carbachol induce Ca2+ influx in depleting intracellular Ca2+ stores. Biochem J 1993; 289 ( Pt 1):117-24. [PMID: 8380979 PMCID: PMC1132138 DOI: 10.1042/bj2890117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanism whereby gastrin-type receptor and muscarinic M3-type receptor regulate free intracellular Ca2+ concentration ([Ca2+]i) was studied in rabbit gastric parietal cells stimulated by either gastrin or carbachol. Both agonists induced a biphasic [Ca2+]i response: a transient [Ca2+]i rise, followed by a sustained steady state depending on extracellular Ca2+. Gastrin and carbachol also caused a rapid and transient increase in Mn2+ influx (a tracer for bivalent-cation entry). Pre-stimulation of cells with one agonist drastically decreased both [Ca2+]i increase and Mn2+ influx induced by the other. Neither diltiazem nor pertussistoxin treatment had any effect on agonist-stimulated Mn2+ entry. Thapsigargin, a Ca(2+)-pump inhibitor, induced a biphasic [Ca2+]i increase, and enhanced the rate of Mn2+ entry. Preincubation of cells with thapsigargin inhibits the [Ca2+]i increase as well as Mn2+ entry stimulated by gastrin or by carbachol. Thapsigargin induced a weak but significant increase in Ins(1,4,5)P3 content, but this agent had no effect on the agonist-evoked Ins(1,4,5)P3 response. In permeabilized parietal cells, Ins(1,4,5)P3 and caffeine caused an immediate Ca2+ release from intracellular pools, followed by a reloading of Ca2+ pools which can be prevented in the presence of thapsigargin. We conclude that (i) gastrin and carbachol mobilize common Ca2+ intracellular stores, (ii) Ca2+ permeability secondary to receptor activation involves neither a voltage-sensitive Ca2+ channel nor a GTP-binding protein from the G1 family, and (iii) agonists regulate common Ca2+ channels in depleting intracellular Ca2+ stores.
Collapse
Affiliation(s)
- S Roche
- Laboratoire de Biochimie des Membranes, INSERM CJF 92-07, Faculté de Pharmacie, Montepellier, France
| | | | | |
Collapse
|
38
|
Abstract
To investigate the nature of the muscarinic receptors present on parietal cell membranes, binding studies and polymerase chain reaction (PCR) amplification of parietal cell messenger (m) RNA were undertaken. Displacement of N-[3H]methylscopolamine by various muscarinic antagonists showed displacement with a single affinity. The apparent dissociation constant values were as follows: atropine (nonselective), 1.95 +/- 0.28 nmol/L; pirenzepine (M1), 169 +/- 24 nmol/L; AF-DX 116 (M2), 1542 +/- 33 nmol/L; and hexahydrosiladifenidol (M3), 29 +/- 3.4 nmol/L. These data confirmed the existence of only an M3 receptor linked to acid secretion as defined pharmacologically. PCR amplification of parietal cell mRNA with primers designed for detection of all known muscarinic receptor subtypes showed that only m3 fragments were produced from parietal cell mRNA, whereas m1 and m2 products could be detected in brain or cardiac mRNA. The m3 nature of the PCR product was confirmed by Southern blotting with 32P-labeled human m3 complementary DNA. Hence the two carbachol affinities and the separable cellular responses following muscarinic activation are caused by separate coupling pathways of the M3 receptor.
Collapse
Affiliation(s)
- M Kajimura
- Center for Ulcer Research and Education, Wadsworth Veterans Administration Hospital, Los Angeles, California
| | | | | |
Collapse
|