1
|
Kasparyan G, Hub JS. Molecular Simulations Reveal the Free Energy Landscape and Transition State of Membrane Electroporation. PHYSICAL REVIEW LETTERS 2024; 132:148401. [PMID: 38640376 DOI: 10.1103/physrevlett.132.148401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/29/2024] [Indexed: 04/21/2024]
Abstract
The formation of pores over lipid membranes by the application of electric fields, termed membrane electroporation, is widely used in biotechnology and medicine to deliver drugs, vaccines, or genes into living cells. Continuum models for describing the free energy landscape of membrane electroporation were proposed decades ago, but they have never been tested against spatially detailed atomistic models. Using molecular dynamics (MD) simulations with a recently proposed reaction coordinate, we computed potentials of mean force of pore nucleation and pore expansion in lipid membranes at various transmembrane potentials. Whereas the free energies of pore expansion are compatible with previous continuum models, the experimentally important free energy barrier of pore nucleation is at variance with established models. The discrepancy originates from different geometries of the transition state; previous continuum models assumed the presence of a membrane-spanning defect throughout the process, whereas, according to the MD simulations, the transition state of pore nucleation is typically passed before a transmembrane defect has formed. A modified continuum model is presented that qualitatively agrees with the MD simulations. Using kinetics of pore opening together with transition state theory, our free energies of pore nucleation are in excellent agreement with previous experimental data.
Collapse
Affiliation(s)
- Gari Kasparyan
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Westerhoff HV. On paradoxes between optimal growth, metabolic control analysis, and flux balance analysis. Biosystems 2023; 233:104998. [PMID: 37591451 DOI: 10.1016/j.biosystems.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
In Microbiology it is often assumed that growth rate is maximal. This may be taken to suggest that the dependence of the growth rate on every enzyme activity is at the top of an inverse-parabolic function, i.e. that all flux control coefficients should equal zero. This might seem to imply that the sum of these flux control coefficients equals zero. According to the summation law of Metabolic Control Analysis (MCA) the sum of flux control coefficients should equal 1 however. And in Flux Balance Analysis (FBA) catabolism is often limited by a hard bound, causing catabolism to fully control the fluxes, again in apparent contrast with a flux control coefficient of zero. Here we resolve these paradoxes (apparent contradictions) in an analysis that uses the 'Edinburgh pathway', the 'Amsterdam pathway', as well as a generic metabolic network providing the building blocks or Gibbs energy for microbial growth. We review and show that (i) optimization depends on so-called enzyme control coefficients rather than the 'catalytic control coefficients' of MCA's summation law, (ii) when optimization occurs at fixed total protein, the former differ from the latter to the extent that they may all become equal to zero in the optimum state, (iii) in more realistic scenarios of optimization where catalytically inert biomass is compensating or maintenance metabolism is taken into consideration, the optimum enzyme concentrations should not be expected to equal those that maximize the specific growth rate, (iv) optimization may be in terms of yield rather than specific growth rate, which resolves the paradox because the sum of catalytic control coefficients on yield equals 0, (v) FBA effectively maximizes growth yield, and for yield the summation law states 0 rather than 1, thereby removing the paradox, (vi) furthermore, FBA then comes more often to a 'hard optimum' defined by a maximum catabolic flux and a catabolic-enzyme control coefficient of 1. The trade-off between maintenance metabolism and growth is highlighted as worthy of further analysis.
Collapse
Affiliation(s)
- Hans V Westerhoff
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, A-Life, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands; School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
3
|
Kasparyan G, Hub JS. Equivalence of Charge Imbalance and External Electric Fields during Free Energy Calculations of Membrane Electroporation. J Chem Theory Comput 2023; 19:2676-2683. [PMID: 37052575 DOI: 10.1021/acs.jctc.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Electric fields across lipid membranes play important roles in physiology, medicine, and biotechnology, rationalizing the wide interest in modeling transmembrane potentials in molecular dynamics simulations. Transmembrane potentials have been implemented with external electric fields or by imposing charge imbalance between the two water compartments of a stacked double-membrane system. We compare the two methods in the context of membrane electroporation, which involves a large change of membrane structure and capacitance. We show that, given that Ewald electrostatics are defined with tinfoil boundary conditions, the two methods lead to (i) identical potentials of mean force (PMFs) of pore formation and expansion at various potentials, demonstrating that the two methods impose equivalent driving forces for large-scale transitions at membranes, and (ii) to identical polarization of water within thin water wires or open pores, suggesting that the two methods furthermore impose equivalent local electric fields. Without tinfoil boundary conditions, effects from external fields on pore formation are spuriously suppressed or even removed. Together, our study shows that both methods, external fields and charge imbalance, are well suitable for studying large-scale transitions of lipid membranes that involve changes of membrane capacitance. However, using charge imbalance is technically more challenging for maintaining a constant transmembrane potential since it requires updating of the charge imbalance as the membrane capacitance changes.
Collapse
Affiliation(s)
- Gari Kasparyan
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
6
|
Kurata K, Naito H, Takamatsu H. Feasibility of Concentric Electrodes in Contact Irreversible Electroporation for Superficial Lesion Treatment. IEEE Trans Biomed Eng 2022; 69:2480-2487. [PMID: 35226598 DOI: 10.1109/tbme.2022.3154788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
<i>Objective:</i> Contact irreversible electroporation (IRE) is a method for ablating cells by applying electric pulses via surface electrodes in contact with a target tissue. To facilitate the application of the contact IRE to superficial lesion treatment, this study further extended the ablation depth, which had been limited to a 400-m depth in our previous study, by using concentric electrodes. <i>Methods:</i> A prototype device of concentric electrodes was manufactured using a Teflon-coated copper wire inserted in a copper tube. The ablation area was experimentally determined using a tissue phantom comprising 3D cultured fibroblasts and compared with the electric field distribution obtained using numerical analyses. </i>Results:</i> Experiments showed that cells 540 m from the surface of the tissue phantom were necrotized by the application of 150 pulses at 100 V. The outline of the ablation area agreed well with the contour line of 0.4 kV/cm acquired by the analyses. The ablation depth predicted for the concentric electrode using this critical electric field was 1.4 times deeper than that for the parallel electrode. For the actual application of treatment, a multiple-electrode device that bundles several pairs of concentric electrodes was developed, and confirmed that to be effective for treating wide areas with a single treatment. <i>Conclusion:</i> The electric field estimated by the analyses with the experimentally determined threshold confirmed that concentric electrodes could attain a deeper ablation than parallel electrodes. <i>Significance:</i> Using the concentric electrodes, we were able to localize ablation to specific target cells with much less damage to neighboring cells.
Collapse
|
7
|
Hu Q, Joshi RP. Continuum analysis to assess field enhancements for tailoring electroporation driven by monopolar or bipolar pulsing based on nonuniformly distributed nanoparticles. Phys Rev E 2021; 103:022402. [PMID: 33736030 DOI: 10.1103/physreve.103.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 11/07/2022]
Abstract
Recent reports indicate that nanoparticle (NP) clusters near cell membranes could enhance local electric fields, leading to heightened electroporation. This aspect is quantitatively analyzed through numerical simulations whereby time dependent transmembrane potentials are first obtained on the basis of a distributed circuit mode, and the results then used to calculate pore distributions from continuum Smoluchowski theory. For completeness, both monopolar and bipolar nanosecond-range pulse responses are presented and discussed. Our results show strong increases in TMP with the presence of multiple NP clusters and demonstrate that enhanced poration could be possible even over sites far away from the poles at the short pulsing regime. Furthermore, our results demonstrate that nonuniform distributions would work to enable poration at regions far away from the poles. The NP clusters could thus act as distributed electrodes. Our results were roughly in line with recent experimental observations.
Collapse
Affiliation(s)
- Q Hu
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
8
|
Mironova GD, Pavlov EV. Mitochondrial Cyclosporine A-Independent Palmitate/Ca 2+-Induced Permeability Transition Pore (PA-mPT Pore) and Its Role in Mitochondrial Function and Protection against Calcium Overload and Glutamate Toxicity. Cells 2021; 10:cells10010125. [PMID: 33440765 PMCID: PMC7827677 DOI: 10.3390/cells10010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
A sharp increase in the permeability of the mitochondrial inner membrane known as mitochondrial permeability transition (or mPT) occurs in mitochondria under the conditions of Ca2+ and ROS stress. Permeability transition can proceed through several mechanisms. The most common mechanism of mPT is based on the opening of a cyclosporine A (CSA)-sensitive protein channel in the inner membrane. In addition to the CSA-sensitive pathway, mPT can occur through the transient opening of lipid pores, emerging in the process of formation of palmitate/Ca2+ complexes. This pathway is independent of CSA and likely plays a protective role against Ca2+ and ROS toxicity. The review considers molecular mechanisms of formation and regulation of the palmitate/Ca2+-induced pores, which we designate as PA-mPT to distinguish it from the classical CSA-sensitive mPT. In the paper, we discuss conditions of its opening in the biological membranes, as well as its role in the physiological and pathophysiological processes. Additionally, we summarize data that indicate the involvement of PA-mPT in the protection of mitochondria against calcium overload and glutamate-induced degradation in neurons.
Collapse
Affiliation(s)
- Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA;
| |
Collapse
|
9
|
2-ns Electrostimulation of Ca 2+ Influx into Chromaffin Cells: Rapid Modulation by Field Reversal. Biophys J 2020; 120:556-567. [PMID: 33359835 PMCID: PMC7895993 DOI: 10.1016/j.bpj.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular effects of nanosecond-pulsed electric field exposures can be attenuated by an electric field reversal, a phenomenon called bipolar pulse cancellation. Our investigations of this phenomenon in neuroendocrine adrenal chromaffin cells show that a single 2-ns, 16 MV/m unipolar pulse elicited a rapid, transient rise in intracellular Ca2+ levels due to Ca2+ influx through voltage-gated calcium channels. The response was eliminated by a 2-ns bipolar pulse with positive and negative phases of equal duration and amplitude and fully restored (unipolar-equivalent response) when the delay between each phase of the bipolar pulse was 30 ns. Longer interphase intervals evoked Ca2+ responses that were greater in magnitude than those evoked by a unipolar pulse (stimulation). Cancellation was also observed when the amplitude of the second (negative) phase of the bipolar pulse was half that of the first (positive) phase but progressively lost as the amplitude of the second phase was incrementally increased above that of the first phase. When the amplitude of the second phase was twice that of the first phase, there was stimulation. By comparing the experimental results for each manipulation of the bipolar pulse waveform with analytical calculations of capacitive membrane charging/discharging, also known as accelerated membrane discharge mechanism, we show that the transition from cancellation to unipolar-equivalent stimulation broadly agrees with this model. Taken as a whole, our results demonstrate that electrostimulation of adrenal chromaffin cells with ultrashort pulses can be modulated with interphase intervals of tens of nanoseconds, a prediction of the accelerated membrane discharge mechanism not previously observed in other bipolar pulse cancellation studies. Such modulation of Ca2+ responses in a neural-type cell is promising for the potential use of nanosecond bipolar pulse technologies for remote electrostimulation applications for neuromodulation.
Collapse
|
10
|
Sözer EB, Haldar S, Blank PS, Castellani F, Vernier PT, Zimmerberg J. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics. Biophys J 2020; 119:1724-1734. [PMID: 33096018 DOI: 10.1016/j.bpj.2020.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Although transport of molecules into cells via electroporation is a common biomedical procedure, its protocols are often based on trial and error. Despite a long history of theoretical effort, the underlying mechanisms of cell membrane electroporation are not sufficiently elucidated, in part, because of the number of independent fitting parameters needed to link theory to experiment. Here, we ask if the electroporation behavior of a reduced cell membrane is consistent with time-resolved, atomistic, molecular dynamics (MD) simulations of phospholipid bilayers responding to electric fields. To avoid solvent and tension effects, giant unilamellar vesicles (GUVs) were used, and transport kinetics were measured by the entry of the impermeant fluorescent dye calcein. Because the timescale of electrical pulses needed to restructure bilayers into pores is much shorter than the time resolution of current techniques for membrane transport kinetics measurements, the lifetimes of lipid bilayer electropores were measured using systematic variation of the initial MD simulation conditions, whereas GUV transport kinetics were detected in response to a nanosecond timescale variation in the applied electric pulse lifetimes and interpulse intervals. Molecular transport after GUV permeabilization induced by multiple pulses is additive for interpulse intervals as short as 50 ns but not 5-ns intervals, consistent with the 10-50-ns lifetimes of electropores in MD simulations. Although the results were mostly consistent between GUV and MD simulations, the kinetics of ultrashort, electric-field-induced permeabilization of GUVs were significantly different from published results in cells exposed to ultrashort (6 and 2 ns) electric fields, suggesting that cellular electroporation involves additional structures and processes.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Sourav Haldar
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Federica Castellani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; Biomedical Engineering Institute, Frank Batten College of Engineering and Technology, Old Dominion University, Norfolk, Virginia
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|
11
|
Raven JA. Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. THE NEW PHYTOLOGIST 2020; 227:334-342. [PMID: 32170958 DOI: 10.1111/nph.16541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cl- has long been known as a micronutrient for oxygenic photosynthetic resulting from its role an essential cofactor for photosystem II (PSII). Evidence on the in vivo Cl- distribution in Spinacia oleracea leaves and chloroplasts shows that sufficient Cl- is present for the involvement in PSII function, as indicated by in vitro studies on, among other organisms, S. oleracea PsII. There is also sufficient Cl- to function, with K+ , in parsing the H+ electrochemical potential difference (proton motive force) across the illuminated thylakoid membrane into electrical potential difference and pH difference components. However, recent in vitro work on PSII from S. oleracea shows that oxygen evolving complex (OEC) synthesis, and resynthesis after photodamage, requires significantly higher Cl- concentrations than would satisfy the function of assembled PSII O2 evolution of the synthesised PSII with the OEC. The low Cl- affinity of OEC (re-)assembly could be a component limiting the rate of OEC (re-)assembly.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
12
|
Vaiwala R, Jadhav S, Thaokar R. Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics. J Chem Theory Comput 2019; 15:5737-5749. [PMID: 31430431 DOI: 10.1021/acs.jctc.9b00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With an exclusive aim to looking into a mechanism of membrane electroporation on mesoscopic length and time scales, we report the dissipative particle dynamics (DPD) simulation results for systems with and without electrolytes. A polarizable DPD model of water is employed for accurate modeling of long-range electrostatics near the water-lipid interfaces. A great deal of discussion on field induced change in dipole moments of water and lipids together with the special variation of electric field is made in order to understand the dielectrophoretic movement of water, initiating a pore formation via an intrusion through the bilayer core. The presence of salt alters the dipolar arrangement of lipids and water, and thereby it reduces the external field required to create a pore in the membrane. The species fluxes through the pore, distributions for bead density, electrostatic potential, stresses across the membrane, etc. are used to answer some of the key questions pertaining to mechanism of electroporation. The findings are compared with the molecular dynamics simulation results found in the literature, and the comparison successfully establishes an electrostatics paradigm for biomembrane studies using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Sameer Jadhav
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Rochish Thaokar
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| |
Collapse
|
13
|
Modulation of biological responses to 2 ns electrical stimuli by field reversal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1228-1239. [DOI: 10.1016/j.bbamem.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
|
14
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
15
|
Vaiwala R, Jadhav S, Thaokar R. Electroporation Using Dissipative Particle Dynamics with a Novel Protocol for Applying Electric Field. J Chem Theory Comput 2019; 15:603-612. [PMID: 30525589 DOI: 10.1021/acs.jctc.8b00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In molecular dynamics simulations of membrane electroporation, the bilayer is subjected to an electric field E either by direct addition of a force f = qE on the charge-bearing species or by imposing an ion imbalance in the salt solutions on the two sides of the bilayer. The former is believed to mimic electroporation with high fields over nanosecond pulse period, during which the membrane is almost uncharged, especially in the low salt limit. Conversely, the ion imbalance method elucidates a low electric field-induced poration over a longer period of micro- to milliseconds with a fully charged membrane. Both these methods of applying electric field have disadvantages while investigating electroporation using dissipative particle dynamics (DPD) simulations. The method involving direct addition of force fails to address the presence of a nonuniform dielectric background for ions embedded in nonpolarizable DPD water and those found in the core of the bilayer. The ion imbalance method in DPD simulations suffers from its unavoidable use of a wall potential to prevent the movement of ions across the periodic boundaries. To address the above issues, we propose a simple method for imposing a desired transmembrane potential (TMV) by placing oppositely but uniformly charged plates on either side of the bilayer. Our DPD simulations demonstrate that the profiles for bead density, mechanical stress, electrical potential, as well as the transient responses in the dipole moment and species fluxes obtained from the proposed method utilizing charged plates are quite similar to those obtained using the ion imbalance method. The proposed protocol is free from the aforementioned drawbacks of the direct force addition and ion imbalance methods.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Sameer Jadhav
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Rochish Thaokar
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| |
Collapse
|
16
|
Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization. Drug Deliv Transl Res 2018; 8:1152-1161. [PMID: 29752690 DOI: 10.1007/s13346-018-0533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.
Collapse
|
17
|
Atomistic Simulations of Electroporation of Model Cell Membranes. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 227:1-15. [PMID: 28980037 DOI: 10.1007/978-3-319-56895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.
Collapse
|
18
|
Wojtaszczyk A, Caluori G, Pešl M, Melajova K, Stárek Z. Irreversible electroporation ablation for atrial fibrillation. J Cardiovasc Electrophysiol 2018; 29:643-651. [PMID: 29399927 DOI: 10.1111/jce.13454] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is one of the most important problems in modern cardiology. Thermal ablation therapies, especially radiofrequency ablation (RF), are currently "gold standard" to treat symptomatic AF by localized tissue necrosis. Despite the improvements in reestablishing sinus rhythm using available methods, both success rate and safety are limited by the thermal nature of procedures. Thus, while keeping the technique in clinical practice, safer and more versatile methods of removing abnormal tissue are being investigated. This review focuses on irreversible electroporation (IRE), a nonthermal ablation method, which is based on the unrecoverable permeabilization of cell membranes caused by short pulses of high voltage/current. While still in its preclinical steps for what concerns interventional cardiac electrophysiology, multiple studies have shown the efficacy of this method on animal models. The observed remodeling process shows this technique as tissue specific, triggering apoptosis rather than necrosis, and safer for the structures adjacent the myocardium. So far, proposed IRE methodologies are heterogeneous. The number of devices (both generators and applicators), techniques, and therapeutic goals impair the comparability of performed studies. More questions regarding systemic safety and optimal processes for AF treatment remain to be answered. This work provides an overview of the electroporation process, and presents different results obtained by cardiology-oriented research groups that employ IRE ablation, with focus of AF-related targets. This contribution on the topic aspires to be a practical guide to approach IRE ablation for cardiac arrhythmias, and to highlight controversial features and existing knowledge, to provide background for future improved experimentation with IRE in arrhythmology.
Collapse
Affiliation(s)
- Adam Wojtaszczyk
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Guido Caluori
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,CEITEC, Masaryk University, Brno, Czech Republic
| | - Martin Pešl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine/Cardioangiology, St. Anne´s Hospital, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katarina Melajova
- First Department of Internal Medicine/Cardioangiology, St. Anne´s Hospital, Masaryk University, Brno, Czech Republic
| | - Zdeněk Stárek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine/Cardioangiology, St. Anne´s Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Zhang Y, Li J, Li R, Sbircea DT, Giovannitti A, Xu J, Xu H, Zhou G, Bian L, McCulloch I, Zhao N. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38687-38694. [PMID: 29039186 DOI: 10.1021/acsami.7b09384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | | | - Dan-Tiberiu Sbircea
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | - Alexander Giovannitti
- Department of Chemistry and Centre for Plastic Electronics, Imperial College , London SW7 2AZ, U.K
| | | | | | | | | | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KSC , Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
20
|
Li X, Dunevall J, Ren L, Ewing AG. Mechanistic Aspects of Vesicle Opening during Analysis with Vesicle Impact Electrochemical Cytometry. Anal Chem 2017; 89:9416-9423. [PMID: 28776974 DOI: 10.1021/acs.analchem.7b02226] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vesicle impact electrochemical cytometry (VIEC) has been used to quantify the vesicular transmitter content in mammalian vesicles. In the present study, we studied the mechanism of VIEC by quantifying the catecholamine content in single vesicles isolated from pheochromocytoma (PC12) cells. These vesicles contain about one tenth of the catecholamine compared with adrenal chromaffin vesicles. The existence of a prespike foot for many events suggests the formation of an initial transiently stable pore at the beginning of vesicle rupture. Increasing the detection temperature from 6 to 30 °C increases the possibility of vesicle rupture on the electrode, implying that there is a temperature-dependent process that facilitates electroporation. Natively larger vesicles are shown to rupture earlier and more frequently than smaller ones in VIEC. Likewise, manipulating vesicle content and size with drugs leads to similar trends. These data support the hypothesis that electroporation is the primary force for pore opening in VIEC. We further hypothesize that a critical step for initiating vesicle opening by electroporation is diffusion of membrane proteins away from the membrane region of contact with the electrode to allow closer contact, increasing the lateral potential field and thus facilitating electroporation.
Collapse
Affiliation(s)
- Xianchan Li
- Department of Chemistry and Molecular Biology, University of Gothenburg , Kemivägen 10, 41296 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemical and Chemical Engineering, Chalmers University of Technology , Kemivägen 10, 41296 Gothenburg, Sweden
| | - Lin Ren
- Department of Chemical and Chemical Engineering, Chalmers University of Technology , Kemivägen 10, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg , Kemivägen 10, 41296 Gothenburg, Sweden.,Department of Chemical and Chemical Engineering, Chalmers University of Technology , Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
21
|
Ou QX, Nikolic-Jaric M, Gänzle M. Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields. Bioelectrochemistry 2016; 115:47-55. [PMID: 28063751 DOI: 10.1016/j.bioelechem.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
AIMS This study aimed to determine how electric field strength, pulse width and shape, and specific energy input relate to the effect of pulsed electric fields (PEF) on viability and membrane permeabilization in Candida humilis and Saccharomyces cerevisiae suspended in potassium phosphate buffer. METHODS AND RESULTS Cells were treated with a micro-scale system with parallel plate electrodes. Propidium iodide was added before or after treatments to differentiate between reversible and irreversible membrane permeabilization. Treatments of C. humilis with 71kV/cm and 48kJ/kg reduced cell counts by 3.9±0.6 log (cfu/mL). Pulse shape or width had only a small influence on the treatment lethality. Variation of electric field strength (17-71kV/cm), pulse width (0.086-4μs), and specific energy input (8-46kJ/kg) demonstrated that specific energy input correlated to the membrane permeabilization (r2=0.84), while other parameters were uncorrelated. A minimum energy input of 3 and 12kJ/kg was required to achieve reversible membrane permeabilization and a reduction of cell counts, respectively, of C. humilis. CONCLUSIONS Energy input was the parameter that best described the inactivation efficiency of PEF. SIGNIFICANCE AND IMPACT OF STUDY This study is an important step to identify key process parameters and to facilitate process design for improved cost-effectiveness of commercial PEF treatment.
Collapse
Affiliation(s)
- Qi-Xing Ou
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | | | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, School of Food and Pharmaceutical Engineering, Wuhan, China.
| |
Collapse
|
22
|
Chetty NK, Chonco L, Ijumba NM, Chetty L, Govender T, Parboosing R, Davidson IE. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge. IEEE Trans Nanobioscience 2016; 15:526-532. [PMID: 27824575 DOI: 10.1109/tnb.2016.2585624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.
Collapse
|
23
|
Sastry SK. Toward a Philosophy and Theory of Volumetric Nonthermal Processing. J Food Sci 2016; 81:E1431-46. [DOI: 10.1111/1750-3841.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Sudhir K. Sastry
- Dept. of Food; Agricultural and Biological Engineering, the Ohio State Univ; 590 Woody Hayes Drive Columbus OH 43210 U.S.A
| |
Collapse
|
24
|
Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2278-2289. [PMID: 27018309 DOI: 10.1016/j.bbamem.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
Abstract
The transport of chemical compounds across the plasma membrane into the cell is relevant for several biological and medical applications. One of the most efficient techniques to enhance this uptake is reversible electroporation. Nevertheless, the detailed molecular mechanism of transport of chemical species (dyes, drugs, genetic materials, …) following the application of electric pulses is not yet fully elucidated. In the past decade, molecular dynamics (MD) simulations have been conducted to model the effect of pulsed electric fields on membranes, describing several aspects of this phenomenon. Here, we first present a comprehensive review of the results obtained so far modeling the electroporation of lipid membranes, then we extend these findings to study the electrotransfer across lipid bilayers subject to microsecond pulsed electric fields of Tat11, a small hydrophilic charged peptide, and of siRNA. We use in particular a MD simulation protocol that allows to characterize the transport of charged species through stable pores. Unexpectedly, our results show that for an electroporated bilayer subject to transmembrane voltages in the order of 500mV, i.e. consistent with experimental conditions, both Tat11 and siRNA can translocate through nanoelectropores within tens of ns. We discuss these results in comparison to experiments in order to rationalize the mechanism of drug uptake by cells. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Maura Casciola
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Mounir Tarek
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; CNRS, UMR 7565, F-54506 Vandoeuvre les Nancy, France.
| |
Collapse
|
25
|
Macazo F, White RJ. Bioinspired Protein Channel-Based Scanning Ion Conductance Microscopy (Bio-SICM) for Simultaneous Conductance and Specific Molecular Imaging. J Am Chem Soc 2016; 138:2793-801. [PMID: 26848947 PMCID: PMC4778544 DOI: 10.1021/jacs.5b13252] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/24/2023]
Abstract
The utility of stochastic single-molecule detection using protein nanopores has found widespread application in bioanalytical sensing as a result of the inherent signal amplification of the resistive pulse method. Integration of protein nanopores with high-resolution scanning ion conductance microscopy (SICM) extends the utility of SICM by enabling selective chemical imaging of specific target molecules, while simultaneously providing topographical information about the net ion flux through a pore under a concentration gradient. In this study, we describe the development of a bioinspired scanning ion conductance microscopy (bio-SICM) approach that couples the imaging ability of SICM with the sensitivity and chemical selectivity of protein channels to perform simultaneous pore imaging and specific molecule mapping. To establish the framework of the bio-SICM platform, we utilize the well-studied protein channel α-hemolysin (αHL) to map the presence of β-cyclodextrin (βCD) at a substrate pore opening. We demonstrate concurrent pore and specific molecule imaging by raster scanning an αHL-based probe over a glass membrane containing a single 25-μm-diameter glass pore while recording the lateral positions of the probe and channel activity via ionic current. We use the average channel current to create a conductance image and the raw current-time traces to determine spatial localization of βCD. With further optimization, we believe that the bio-SICM platform will provide a powerful analytical methodology that is generalizable, and thus offers significant utility in a myriad of bioanalytical applications.
Collapse
Affiliation(s)
- Florika
C. Macazo
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Ryan J. White
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
26
|
Velikonja A, Kramar P, Miklavčič D, Maček Lebar A. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Bioelectrochemistry 2016; 112:132-7. [PMID: 26948707 DOI: 10.1016/j.bioelechem.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
The breakdown voltage and specific electrical capacitance of planar lipid bilayers formed from lipids isolated from the membrane of archaeon Aeropyrum pernix K1 as a function of temperature were studied and compared with data obtained previously in MD simulation studies. Temperature dependence of breakdown voltage and specific electrical capacitance was measured also for dipalmitoylphosphatidylcholine (DPPC) bilayers and bilayers formed from mixture of diphytanoylphosphocholine (DPhPC) and DPPC in ratio 80:20. The breakdown voltage of archaeal lipids planar lipid bilayers is more or less constant until 50°C, while at higher temperatures a considerable drop is observed, which is in line with the results from MD simulations. The breakdown voltage of DPPC planar lipid bilayer at melting temperature is considerably higher than in the gel phase. Specific electrical capacitance of planar lipid bilayers formed from archaeal lipids is approximately constant for temperatures up to 40°C and then gradually decreases. The difference with MD simulation predictions is discussed. Specific electrical capacitance of DPPC planar lipid bilayers in fluid phase is 1.75 times larger than that of the gel phase and it follows intermediated phases before phase transition. Increase in specific electrical capacitance while approaching melting point of DPPC is visible also for DPhPC:DPPC mixture.
Collapse
Affiliation(s)
- Aljaž Velikonja
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Peter Kramar
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | | |
Collapse
|
27
|
Casciola M, Kasimova MA, Rems L, Zullino S, Apollonio F, Tarek M. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance. Bioelectrochemistry 2016; 109:108-16. [PMID: 26883056 DOI: 10.1016/j.bioelechem.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
Molecular dynamics (MD) simulations have become a powerful tool to study electroporation (EP) in atomic detail. In the last decade, numerous MD studies have been conducted to model the effect of pulsed electric fields on membranes, providing molecular models of the EP process of lipid bilayers. Here we extend these investigations by modeling for the first time conditions comparable to experiments using long (μs-ms) low intensity (~kV/cm) pulses, by studying the characteristics of pores formed in lipid bilayers maintained at a constant surface tension and subject to constant charge imbalance. This enables the evaluation of structural (size) and electrical (conductance) properties of the pores formed, providing information hardly accessible directly by experiments. Extensive simulations of EP of simple phosphatidylcholine bilayers in 1M NaCl show that hydrophilic pores with stable radii (1-2.5 nm) form under transmembrane voltages between 420 and 630 mV, allowing for ionic conductance in the range of 6.4-29.5 nS. We discuss in particular these findings and characterize both convergence and size effects in the MD simulations. We further extend these studies in a follow-up paper (Rems et al., Bioelectrochemistry, Submitted), by proposing an improved continuum model of pore conductance consistent with the results from the MD simulations.
Collapse
Affiliation(s)
- Maura Casciola
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Marina A Kasimova
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Sara Zullino
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy
| | - Mounir Tarek
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; CNRS, UMR 7565, F-54506 Vandoeuvre les Nancy, France.
| |
Collapse
|
28
|
Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62:4-20. [PMID: 25389236 DOI: 10.1109/tbme.2014.2367543] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The use of irreversible electroporation (IRE) for cancer treatment has increased sharply over the past decade. As a nonthermal therapy, IRE offers several potential benefits over other focal therapies, which include 1) short treatment delivery time, 2) reduced collateral thermal injury, and 3) the ability to treat tumors adjacent to major blood vessels. These advantages have stimulated widespread interest in basic through clinical studies of IRE. For instance, many in vitro and in vivo studies now identify treatment planning protocols (IRE threshold, pulse parameters, etc.), electrode delivery (electrode design, placement, intraoperative imaging methods, etc.), injury evaluation (methods and timing), and treatment efficacy in different cancer models. Therefore, this study reviews the in vitro, translational, and clinical studies of IRE cancer therapy based on major experimental studies particularly within the past decade. Further, this study provides organized data and facts to assist further research, optimization, and clinical applications of IRE.
Collapse
|
29
|
Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol 2015; 33:480-8. [PMID: 26116227 DOI: 10.1016/j.tibtech.2015.06.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Sack
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Saša Haberl Meglič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Matjaž Peterka
- Instrumentation and Process Control, Centre of Excellence for Biosensors, Tovarniška cesta 26, 5270 Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
30
|
Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 2014; 100:11-7. [DOI: 10.1016/j.bioelechem.2014.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
|
31
|
Smith KC, Son RS, Gowrishankar T, Weaver JC. Emergence of a large pore subpopulation during electroporating pulses. Bioelectrochemistry 2014; 100:3-10. [DOI: 10.1016/j.bioelechem.2013.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/21/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022]
|
32
|
Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC. Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 2014; 247:1209-28. [PMID: 25048527 PMCID: PMC4224743 DOI: 10.1007/s00232-014-9699-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/07/2014] [Indexed: 12/23/2022]
Abstract
Science increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10 μm), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative "long" and "short" pulses. The long pulse--1.5 kV/cm, 100 μs--evolves two pore subpopulations with a valley at ~5 nm, which separates the subpopulations that have peaks at ~1.5 and ~12 nm radius. Such pulses are widely used in biological research, biotechnology, and medicine, including cancer therapy by drug delivery and nonthermal physical tumor ablation by causing necrosis. The short pulse--40 kV/cm, 10 ns--creates 80-fold more pores, all small (<3 nm; ~1 nm peak). These nanosecond pulses ablate tumors by apoptosis. We demonstrate the model's responses by illustrative electrical and poration behavior, and transport of calcein and propidium. We then identify extensions for expanding modeling capability. Structure-function results from MD can allow extrapolations that bring response specificity to cell membranes based on their lipid composition. After a pulse, changes in pore energy landscape can be included over seconds to minutes, by mechanisms such as cell swelling and pulse-induced chemical reactions that slowly alter pore behavior.
Collapse
Affiliation(s)
- Reuben S. Son
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| | - Kyle C. Smith
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
- />Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- />Center for Engineering in Medicine, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129 USA
| | - Thiruvallur R. Gowrishankar
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| | - P. Thomas Vernier
- />Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - James C. Weaver
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| |
Collapse
|
33
|
Leguèbe M, Silve A, Mir L, Poignard C. Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments. J Theor Biol 2014; 360:83-94. [DOI: 10.1016/j.jtbi.2014.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
|
34
|
Jiang C, Shao Q, Bischof J. Pulse Timing During Irreversible Electroporation Achieves Enhanced Destruction in a Hindlimb Model of Cancer. Ann Biomed Eng 2014; 43:887-95. [DOI: 10.1007/s10439-014-1133-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
|
35
|
Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W, Friedlander A, Chabot D, Reiner JE, Robertson JWF, Balijepalli A, Halverson KM, Kasianowicz JJ. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 2014; 139:065101. [PMID: 23947891 DOI: 10.1063/1.4816467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Collapse
Affiliation(s)
- Brian J Nablo
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Winterhalter M. Lipid membranes in external electric fields: kinetics of large pore formation causing rupture. Adv Colloid Interface Sci 2014; 208:121-8. [PMID: 24485595 DOI: 10.1016/j.cis.2014.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
About 40 years ago, Helfrich introduced an elastic model to explain shapes and shape transitions of cells (Z Naturforsch C, 1973; 28:693). This seminal article stimulated numerous theoretical as well as experimental investigations and created new research fields. In particular, the predictive power of his approach was demonstrated in a large variety of lipid model system. Here in this review, we focus on the development with respect to planar lipid membranes in external electric fields. Stimulated by the early work of Helfrich on electric field forces acting on liposomes, we extended his early approach to understand the kinetics of lipid membrane rupture. First, we revisit the main forces determining the kinetics of membrane rupture followed by an overview on various experiments. Knowledge on the kinetics of defect formation may help to design stable membranes or serve for novel mechanism for controlled release.
Collapse
|
37
|
Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:277-86. [PMID: 24781652 DOI: 10.1007/s00249-014-0961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Electrotransfer is a method by which molecules can be introduced into living cells via plasma membrane electropermeabilization. Here, we show that electropermeabilization affects the lateral mobility of Rae-1, a GPi anchored protein. Our results suggest that 10-20 % of the membrane surface is occupied by defects or pores and that these structures propagate rapidly (<1 min) over the cell surface. Electrotransfer of plasmid DNA (pDNA) also affects the lateral mobility of Rae-1. Furthermore, we clearly show that, once inserted into the plasma membrane, pDNA is completely immobile and excludes Rae-1; this indicates that the pDNA molecules are tightly packed together to form aggregates occupying at least the outer leaflet of the plasma membrane.
Collapse
|
38
|
Mohanta D, Stava E, Yu M, Blick RH. Creation and regulation of ion channels across reconstituted phospholipid bilayers generated by streptavidin-linked magnetite nanoparticles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012707. [PMID: 24580257 DOI: 10.1103/physreve.89.012707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Indexed: 06/03/2023]
Abstract
In this work, we explore the nature of ion-channel-like conductance fluctuations across a reconstituted phospholipid bilayer due to insertion of ∼100 nm sized, streptavidin-linked magnetite nanoparticles under static magnetic fields (SMFs). For a fixed bias voltage, the frequency of current bursts increases with the application of SMFs. Apart from a closed conductance state G(0) (≤14 pS), we identify four major conductance states, with the lowest conductance level (G(1)) being ∼126 pS. The number of channel events at G(1) is found to be nearly doubled (as compared to G(0)) at a magnetic field of 70 G. The higher-order open states (e.g., 3G(1), 5G(1)) are generally observable at larger values of biasing voltage and magnetic field. When the SMF of 145 G is applied, the multiconductance states are resolved distinctly and are assigned to the simultaneous opening and closing of several independent states. The origin of the current bursts is due to the instantaneous mechanical actuation of streptavidin-linked MNP chains across the phospholipid bilayer. The voltage-controlled, magnetogated ion channels are promising for diagnoses and therapeutic applications of excitable membranes and other biological systems.
Collapse
Affiliation(s)
- Dambarudhar Mohanta
- Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO: Napaam, Tezpur 784028, Assam, India
| | - Eric Stava
- Laboratory for Molecular Scale Engineering, Department of Electrical and Computer Engineering, 1415 Engineering Dr., University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Minrui Yu
- Laboratory for Molecular Scale Engineering, Department of Electrical and Computer Engineering, 1415 Engineering Dr., University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Robert H Blick
- Laboratory for Molecular Scale Engineering, Department of Electrical and Computer Engineering, 1415 Engineering Dr., University of Wisconsin-Madison, Wisconsin 53706, USA
| |
Collapse
|
39
|
Naumowicz M, Figaszewski ZA. Pore formation in lipid bilayer membranes made of phosphatidylcholine and cholesterol followed by means of constant current. Cell Biochem Biophys 2013; 66:109-19. [PMID: 23104105 PMCID: PMC3627032 DOI: 10.1007/s12013-012-9459-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper describes the application of chronopotentiometry to lipid bilayer research. The experiments were performed on bilayer lipid membranes composed of phosphatidylcholine and cholesterol and formed using the painting technique. Chronopotentiometric (U = f(t)) measurements were used to determine the membrane capacitance, resistance, and breakdown voltage as well as pore conductance and diameter.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Bialystok, Poland.
| | | |
Collapse
|
40
|
Khan MS, Dosoky NS, Williams JD. Engineering lipid bilayer membranes for protein studies. Int J Mol Sci 2013; 14:21561-97. [PMID: 24185908 PMCID: PMC3856022 DOI: 10.3390/ijms141121561] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/13/2013] [Accepted: 10/21/2013] [Indexed: 01/05/2023] Open
Abstract
Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA; E-Mail:
| | - Noura Sayed Dosoky
- Biological Sciences Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA; E-Mail:
| | - John Dalton Williams
- Electrical and Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA; E-Mail:
| |
Collapse
|
41
|
Marjanovič I, Kotnik T. An experimental system for controlled exposure of biological samples to electrostatic discharges. Bioelectrochemistry 2013; 94:79-86. [PMID: 24076535 DOI: 10.1016/j.bioelechem.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 11/20/2022]
Abstract
Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry.
Collapse
Affiliation(s)
- Igor Marjanovič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
42
|
MORSHED BI, SHAMS M, MUSSIVAND T. DERIVING AN ELECTRIC CIRCUIT EQUIVALENT MODEL OF CELL MEMBRANE PORES IN ELECTROPORATION. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012500099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electroporation is the formation of reversible pores in cell membranes under a brief pulse of high electric field. Dynamics of pore formation during electroporation suggests that the transmembrane potential would settle approximately at the threshold transmembrane potential and the transmembrane resistance would decrease significantly from the state of relaxation. The current electric circuit equivalent models for electroporation containing time-invariant, static and passive components are unable to capture the pore dynamics. A biophysically-inspired electric circuit equivalent model containing dynamic components for membrane pores has been derived using biological parameters. The model contains a voltage-controlled resistor driven by a two-stage cascaded integrator that is activated through a voltage-gated switch. Simulation results with the derived model showed higher accuracy compared to a commonly used model, where the transmembrane resistance decreased million-fold at the onset of electroporation and the transmembrane potential settled at 99.5% of the critical transmembrane potential, thus enabling improved dynamic behavior modeling ability of the pores in electroporation. The derived model allows fast and reliable analysis of this biophysical phenomenon and potentially aids in optimization of various parameters involved in electroporation.
Collapse
Affiliation(s)
- B. I. MORSHED
- Department of Electrical and Computer Engineering, The University of Memphis, TN 38152, USA
| | - M. SHAMS
- Department of Electronics, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - T. MUSSIVAND
- Medical Devices Innovation Institute, The University of Ottawa, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
43
|
Long G, Bakos G, Shires PK, Gritter L, Crissman JW, Harris JL, Clymer JW. Histological and finite element analysis of cell death due to irreversible electroporation. Technol Cancer Res Treat 2013; 13:561-9. [PMID: 24000980 PMCID: PMC4527427 DOI: 10.7785/tcrtexpress.2013.600253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Irreversible electroporation (IRE) has been shown to be an effective method of killing cells locally. In contrast to radiofrequency ablation, the mechanism by which cells are thought to die via IRE is the creation of pores in cell membranes, without substantial increase in tissue temperature. To determine the degree to which cell death is non-thermal, we evaluated IRE in porcine hepatocytes in vivo. Using pulse widths of 10μs, bursts of 3 kV square-wave pulses were applied through a custom probe to the liver of an anesthetized pig. Affected tissue was evaluated histologically via stainings of hematoxylin & eosin (H&E), nitroblue tetrazolium (NBT) to monitor cell respiration and TUNEL to gauge apoptosis. Temperature was measured during the application of electroporation, and heat transfer was modeled via finite element analysis. Cell death was calculated via Arrhenius kinetics. Four distinct zones were observed within the ring return electrode; heat-fixed tissue, coagulation, necrotic, and viable. The Arrhenius damage integral estimated complete cell death only in the first zone, where the temperature exceeded 70°C, and partial or no cell death in the other zones, where maximum temperature was approximately 45°C. Except for a limited area near the electrode tip, cell death in IRE is predominantly due to a non-thermal mechanism.
Collapse
Affiliation(s)
- G Long
- Ethicon Endo-Surgery, Inc., 4545 Creek R, Cincinnati OH 45242.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kotnik T. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys Life Rev 2013; 10:351-70. [PMID: 23787374 DOI: 10.1016/j.plrev.2013.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/06/2013] [Indexed: 12/29/2022]
Abstract
Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
45
|
Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT. Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS One 2013; 8:e61111. [PMID: 23593404 PMCID: PMC3623848 DOI: 10.1371/journal.pone.0061111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/05/2013] [Indexed: 12/02/2022] Open
Abstract
Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that pore formation is driven by the reorganization of the interfacial water molecules. Our energetics analysis and comparisons of simulations with and without the lipid bilayer show that the process of poration is driven by field-induced reorganization of water dipoles at the water-lipid or water-vacuum interfaces into more energetically favorable configurations, with their molecular dipoles oriented in the external field. Although the contributing role of water in electroporation has been noted previously, here we propose that interfacial water molecules are the main players in the process, its initiators and drivers. The role of the lipid layer, to a first-order approximation, is then reduced to a relatively passive barrier. This new view of electroporation simplifies the study of the problem, and opens up new opportunities in both theoretical modeling of the process and experimental research to better control or to use it in new, innovative ways.
Collapse
Affiliation(s)
- Mayya Tokman
- School of Natural Sciences, University of California Merced, Merced, California, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Molecular Dynamics Simulations of Lipid Membrane Electroporation. J Membr Biol 2012; 245:531-43. [DOI: 10.1007/s00232-012-9434-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
47
|
Dumas C, El Zein R, Dallaporta H, Charrier AM. Autonomic self-healing lipid monolayer: a new class of ultrathin dielectric. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13643-7. [PMID: 21967619 DOI: 10.1021/la202333n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The electrical performance of stabilized lipid monolayers on H-terminated silicon is reported for the first time. We show that these 2.7 nm thick only ultrathin layers present extremely low current leakage at high electric field and high breakdown voltage that both compare favorably with the best data reported on organic thin film dielectrics. We demonstrate a very unique property of autonomic self-healing of the layer at room temperature with the total recovery of its performance after electrical breakdown. The mechanisms involved in breakdown and self-healing are described.
Collapse
Affiliation(s)
- Carine Dumas
- Centre Interdisciplinaire de Nanoscience de Marseille, CINaM, UPR CNRS 3118, Aix-Marseille Université, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
48
|
Wippel C, Förtsch C, Hupp S, Maier E, Benz R, Ma J, Mitchell TJ, Iliev AI. Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue. J Infect Dis 2011; 204:930-6. [PMID: 21849290 PMCID: PMC3156923 DOI: 10.1093/infdis/jir434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. METHODS Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. RESULTS The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. CONCLUSIONS Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis.
Collapse
Affiliation(s)
- Carolin Wippel
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Arena CB, Sano MB, Rylander MN, Davalos RV. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans Biomed Eng 2011; 58:1474-82. [PMID: 21189230 DOI: 10.1109/tbme.2010.2102021] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study introduces the use of high-frequency pulsed electric fields for tissue electroporation. Through the development of finite element models and the use of analytical techniques, electroporation with rectangular, bipolar pulses is investigated. The electric field and temperature distribution along with the associated transmembrane potential development are considered in a heterogeneous skin fold geometry. Results indicate that switching polarity on the nanosecond scale near the charging time of plasma membranes can greatly improve treatment outcomes in heterogeneous tissues. Specifically, high-frequency fields ranging from 500 kHz to 1 MHz are best suited to penetrate epithelial layers without inducing significant Joule heating, and cause electroporation in underlying cells.
Collapse
Affiliation(s)
- Christopher B Arena
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Bioelectromechanical Systems Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
50
|
Dynamics and control of the two-pulse protocol in electroporation: numerical exploration. Math Biosci 2011; 232:24-30. [PMID: 21447348 DOI: 10.1016/j.mbs.2011.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022]
Abstract
Externally applied voltages can create transient, non-selective pores in a cell's membrane, a phenomenon known as electroporation. Electroporation has reduced toxicity, is easy to perform, and does not induce the immune system. Therefore, the technique has a wide range of biological and medical applications. Previous experiments show that a two-pulse protocol, which consists of a fast, large-magnitude pulse and a slow, small-magnitude pulse, can increase the efficiency of drug delivery such as gene electrotransfer. In this work, we investigate the dynamics and control of the two-pulse protocol using a macroscopic model of electroporation. Numerical simulations show that there exists a range of pore radii that cannot be sustained using the conventional, open-loop, two-pulse protocol. As a result, one may need to use pores that are significantly larger than the sizes of the targeted molecules. Moreover, it is not possible to know the rate of delivery a priori. To ensure accurate drug delivery and avoid potential damage to the cell's membrane, we explore feedback mechanisms to eliminate the gap in sustainable pore radii and thus to precisely control the electroporation process. Numerical simulations show that a straightforward feedback algorithm can achieve robust control effects. Moreover, the control algorithm is effective without knowledge of the model and thus has the potential to be implemented in experiments.
Collapse
|