1
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
2
|
Feng S, Qi K, Guo Y, Wang J, Gu G, Liu P, Ma J, Qu L, Zhang S. A novel synthesis of 2-((2-oxopropyl)selanyl) benzamide derivatives by cascade selenenylation-acylation reaction and in vitro cytotoxicity evaluation. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 2020; 156:107-112. [PMID: 32598985 PMCID: PMC7319625 DOI: 10.1016/j.freeradbiomed.2020.06.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Michael J Parnham
- Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt, Frankfurt am Main, Germany; Pharmacology Consultant, Bad Soden am Taunus, Germany.
| |
Collapse
|
4
|
Sands KN, Back TG. Key steps and intermediates in the catalytic mechanism for the reduction of peroxides by the antioxidant ebselen. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Progress does not just come in giant leaps: adapting techniques for the study of inflammation to novel applications. Inflamm Res 2016; 66:1-12. [PMID: 27682578 DOI: 10.1007/s00011-016-0988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Discussion of the relevance of suitable experimental models for the effective translation of drug effects to clinical inflammatory diseases has a long history. Much emphasis is placed these days on genetically transformed mice, which may have developmental drawbacks. But are established models redundant? FINDINGS Drawn from personal experience, examples are provided of the success of tinkering with technology in the context of inflammation. These include the use of specific dietary deficiency conditions, the development of new applications for established drugs and the introduction of a variety of readouts to assess outcome in studies on established disease models. Such approaches have been used to demonstrate inflammation-modulating effects of prostaglandin E, in the development of ebselen, for the introduction of immunomodulatory macrolide drugs and in new approaches to the therapy of multiple sclerosis. CONCLUSION Fine tuning of experimental approaches and evaluation technologies can often still provide innovative, clinically relevant insights into the potential beneficial effects of drugs and pharmacological agents.
Collapse
|
6
|
Hanavan PD, Borges CR, Katchman BA, Faigel DO, Ho TH, Ma CT, Sergienko EA, Meurice N, Petit JL, Lake DF. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines. Oncotarget 2016; 6:18418-28. [PMID: 26158899 PMCID: PMC4621900 DOI: 10.18632/oncotarget.4099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy.
Collapse
Affiliation(s)
- Paul D Hanavan
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, AZ, USA
| | - Chad R Borges
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Benjamin A Katchman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Thai H Ho
- Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chen-Ting Ma
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Eduard A Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | - Douglas F Lake
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, AZ, USA
| |
Collapse
|
7
|
Synthesis and antiproliferative evaluation of novel 1,2,4-triazole derivatives incorporating benzisoselenazolone scaffold. Bioorg Med Chem Lett 2016; 26:1279-81. [DOI: 10.1016/j.bmcl.2016.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
|
8
|
Rusetskaya NY, Borodulin VB. Biological activity of organoselenium compounds in heavy metal intoxication. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rusetskaya N, Borodulin V. Biological activity of selenorganic compounds at heavy metal salts intoxication. ACTA ACUST UNITED AC 2015; 61:449-61. [DOI: 10.18097/pbmc20156104449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication
Collapse
Affiliation(s)
- N.Y. Rusetskaya
- Razumovskiy Saratov State Medical University, Saratov, Russia
| | - V.B. Borodulin
- Razumovskiy Saratov State Medical University, Saratov, Russia
| |
Collapse
|
10
|
Jing F, Fu X, Li S, Li B, Zhao J, Wang X, Liu Y, Chen B. Synthesis and in Vitro Antiproliferative Evaluation of Novel Hybrids from 1,3,4-Thiadiazole and Benzisoselenazolone. Chem Pharm Bull (Tokyo) 2015; 63:431-7. [DOI: 10.1248/cpb.c15-00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fen Jing
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Xiaoyun Fu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Sha Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Baolin Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Jijun Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Xuefeng Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Yuming Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Baoquan Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| |
Collapse
|
11
|
Victoria FN, Anversa R, Penteado F, Castro M, Lenardão EJ, Savegnago L. Antioxidant and antidepressant-like activities of semi-synthetic α-phenylseleno citronellal. Eur J Pharmacol 2014; 742:131-8. [DOI: 10.1016/j.ejphar.2014.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022]
|
12
|
Zhao J, Xuan L, Zhao H, Cheng J, Fu X, Li S, Jing F, Liu Y, Chen B. Synthesis and antitumor activities of 1,3,4-thiadiazole derivatives possessing benzisoselenazolone scaffold. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4080-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Synthesis and in vitro antiproliferative activity of novel benzisoselenazolone derivatives. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1149-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Smith SME, Min J, Ganesh T, Diebold B, Kawahara T, Zhu Y, McCoy J, Sun A, Snyder JP, Fu H, Du Y, Lewis I, Lambeth JD. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. ACTA ACUST UNITED AC 2014; 19:752-63. [PMID: 22726689 DOI: 10.1016/j.chembiol.2012.04.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline-rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits.
Collapse
Affiliation(s)
- Susan M E Smith
- Department of Pathology, Emory School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Karki R, Igwe OJ. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress. PLoS One 2013; 8:e73840. [PMID: 24058497 PMCID: PMC3776800 DOI: 10.1371/journal.pone.0073840] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| | - Orisa J. Igwe
- Division of Pharmacology and Toxicology, University of Missouri-Kansas City, Missouri, United States of America
| |
Collapse
|
16
|
Esrefoglu M. Experimental and clinical evidence of antioxidant therapy in acute pancreatitis. World J Gastroenterol 2012; 18:5533-41. [PMID: 23112545 PMCID: PMC3482639 DOI: 10.3748/wjg.v18.i39.5533] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been shown to play an important role in the pathogenesis of acute pancreatitis (AP). Antioxidants, alone or in combination with conventional therapy, should improve oxidative-stress-induced organ damage and therefore accelerate the rate of recovery. In recent years, substantial amounts of data about the efficiency of antioxidants against oxidative damage have been obtained from experiments with rodents. Some of these antioxidants have been found beneficial in the treatment of AP in humans; however, at present there is insufficient clinical data to support the benefits of antioxidants, alone or in combination with conventional therapy, in the management of AP in humans. Conflicting results obtained from experimental animals and humans may represent distinct pathophysiological mechanisms mediating tissue injury in different species. Further detailed studies should be done to clarify the exact mechanisms of tissue injury in human AP. Herein I tried to review the existing experimental and clinical studies on AP in order to determine the efficiency of antioxidants. The use of antioxidant enriched nutrition is a potential direction of clinical research in AP given the lack of clues about the efficiency and safety of antioxidant usage in patients with AP.
Collapse
|
17
|
Zhao J, Chen BQ, Shi YP, Liu YM, Zhao HC, Cheng J. Synthesis and in vitro antitumor activity of 1,3,4-thiadiazole derivatives based on benzisoselenazolone. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Synthesis and antitumor-evaluation of 1,3,4-thiadiazole-containing benzisoselenazolone derivatives. Bioorg Med Chem Lett 2012; 22:3191-3. [DOI: 10.1016/j.bmcl.2012.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 01/23/2023]
|
19
|
Luo ZH, He SY, Chen BQ, Shi YP, Liu YM, Li CW, Wang QS. Synthesis and in Vitro Antitumor Activity of 1,3,4-Oxadiazole Derivatives Based on Benzisoselenazolone. Chem Pharm Bull (Tokyo) 2012; 60:887-91. [DOI: 10.1248/cpb.c12-00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhen-Hua Luo
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Shuang-Yan He
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Bao-Quan Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Yan-Ping Shi
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Yu-Ming Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Cai-Wen Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| | - Qiu-Sheng Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology
| |
Collapse
|
20
|
Parnham MJ. Section Review Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: The pharmaceutical potential of seleno-organic compounds. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.7.861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Maxwell SR. Anti-oxidant therapy: does it have a role in the treatment of human disease? Expert Opin Investig Drugs 2005; 6:211-36. [PMID: 15989625 DOI: 10.1517/13543784.6.3.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Free radical oxidative stress has been implicated in the pathogenesis of a variety of human diseases. Natural anti-oxidant defences have also been found to be defective in many of the same diseases. Many researchers have concluded that, if the imbalance between the oxidative stresses and anti-oxidant defence can be corrected by supplementing natural anti-oxidant defences, it may be possible to prevent or retard disease progression. Potential anti-oxidant therapies include natural anti-oxidant enzymes and vitamins or synthetic agents with anti-oxidant activity. Diseases where anti-oxidant therapy may be beneficial can be divided into those involving acute intervention, such as reperfusion injury or inflammation, and those involving chronic preventative therapy, such as atherosclerosis, carcinogenesis and diabetic vascular disease. The pharmaceutical considerations are different in each case. The principles guiding the development, use and assessment of anti-oxidant therapies are discussed in this review.
Collapse
Affiliation(s)
- S R Maxwell
- Division of Clinical Pharmacology, Clinical Sciences Buildings, Liecester Royal Infirmity, Leicester, LE2 7LX, UK.
| |
Collapse
|
22
|
Nogueira CW, Zeni G, Rocha JBT. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem Rev 2004; 104:6255-85. [PMID: 15584701 DOI: 10.1021/cr0406559] [Citation(s) in RCA: 1429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliacão Farmacológica e Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, CEP 97105-900 Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
23
|
Cui K, Luo X, Xu K, Ven Murthy MR. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:771-99. [PMID: 15363603 DOI: 10.1016/j.pnpbp.2004.05.023] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 01/31/2023]
Abstract
Reactive oxygen species (ROS) are produced in the course of normal metabolism and they serve important physiological functions. However, because of their high reactivity, accumulation of ROS beyond the immediate needs of the cell may affect cellular structure and functional integrity, by bringing about oxidative degradation of critical molecules, such as the DNA, proteins, and lipids. Although cells possess an intricate network of defense mechanisms to neutralize excess ROS and reduce oxidative stress, some tissues, especially the brain, are much more vulnerable to oxidative stress because of their elevated consumption of oxygen and the consequent generation of large amounts of ROS. For the same reason, the mitochondrial DNA (mtDNA) of brain cells is highly susceptible to structural alterations resulting in mitochondrial dysfunction. Several lines of evidence strongly suggest that these effects of ROS may be etiologically related to a number of neurodegenerative disorders. Nutraceutical antioxidants are dietary supplements that can exert positive pharmacological effects on specific human diseases by neutralizing the negative effects of ROS. The present communication concentrates on a review of recent concepts and methodological developments, some of them based on the results of work from our own laboratory, on the following aspects: (1) the complex interactions and complementary interrelationships between oxidative stress, mitochondrial dysfunction, and various forms of neural degeneration; (2) fractionation and isolation of substances with antioxidant properties from plant materials, which are extensively used in the human diet and, therefore, can be expected to be less toxic in any pharmacological intervention; (3) recent developments in methodologies that can be used for the assay of oxidative stress and determination of biological activities of exogenous and endogenous antioxidants; and (4) presentation of simple procedures based on polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of the resulting amplicon for investigations of structural alterations in mtDNA.
Collapse
Affiliation(s)
- Ke Cui
- Department of Medical Biology, Faculty of Medicine, Laval University, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
24
|
Blasiak J, Gloc E, Drzewoski J, Wozniak K, Zadrozny M, Skórski T, Pertynski T. Free radical scavengers can differentially modulate the genotoxicity of amsacrine in normal and cancer cells. Mutat Res 2003; 535:25-34. [PMID: 12547280 DOI: 10.1016/s1383-5718(02)00289-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Amsacrine is an acridine derivative drug applied in haematological malignancies. It targets topoisomerase II enhancing the formation of a cleavable DNA-enzyme complex and leading to DNA fragmentation in dividing cancer cells. Little is known about other modes of the interaction of amsacrine with DNA, by which it could affect also normal cells. Using the alkaline comet assay, we showed that amsacrine at concentrations from the range 0.01 to 10 microM induced DNA damage in normal human lymphocytes, human promyelocytic leukemia HL-60 cells lacking the p53 gene and murine pro-B lymphoid cells BaF3 expressing BCR/ABL oncogene measured as the increase in percentage tail DNA. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Amifostine at 14 mM decreased the level of DNA damage in normal lymphocytes, had no effect on the HL-60 cells and potentiated the DNA-damaging effect of the drug in BCR/ABL-transformed cells. Vitamin C at 10 and 50 microM diminished the extent of DNA damage in normal lymphocytes, but had no effect in cancer cells. Pre-treatment of the cells with the nitrone spin trap, N-tert-butyl-alpha-phenylnitrone or ebselen, which mimics glutathione peroxidase, reduced the extent of DNA damage evoked by amsacrine in all types of cells. The cells exposed to amsacrine and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results obtained suggest that free radicals may be involved in the formation of DNA lesions induced by amsacrine. The drug can also methylate DNA bases. Our results indicate that the induction of secondary malignancies should be taken into account as diverse side effects of amsacrine. Amifostine may potentate DNA-damage effect of amsacrine in cancer cells and decrease this effect in normal cells and Vitamin C can be considered as a protective agent against DNA damage in normal cells.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ren X, Yang L, Liu J, Su D, You D, Liu C, Zhang K, Luo G, Mu Y, Yan G, Shen J. A Novel Glutathione Peroxidase Mimic with Antioxidant Activity. Arch Biochem Biophys 2001; 387:250-6. [PMID: 11370848 DOI: 10.1006/abbi.2000.2238] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many diseases are associated with the overproduction of hydroperoxides that inflict cell damage. A novel cyclodextrin derivative, 6A,6B-diseleninic acid-6A',6B'-selenium bridged beta-cyclodextrin (6-diSeCD), was synthesized to be a functional mimic of glutathione peroxidase (GPX) that normally removes these hydroperoxides. The mimic had high catalytic GPX activity of 13.5 U/micromol, which is 13.6-fold higher than ebselen (PZ51), and was chemically and biologically stable in vitro. Antioxidant activity was studied by ferrous sulfate/ascorbate-induced mitochondria damage model system. These data show that the mimic has great antioxidant activity. Such mimics may result in better clinical therapies for diseases mediated by hydroperoxides.
Collapse
Affiliation(s)
- X Ren
- Key Laboratory of Molecular Enzymology and Engineering, Jilin University, Changchan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ren X, Liu J, Luo G, Zhang Y, Luo Y, Yan G, Shen J. A novel selenocystine-beta-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjug Chem 2000; 11:682-7. [PMID: 10995212 DOI: 10.1021/bc0000076] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel artificial glutathione peroxidase mimic consisting of a selenocystine-di-beta-cyclodextrin conjugate (selenium-bridged-6, 6'-amino-selenocystine-6,6'-deoxy-di-beta-cyclodextrin), in which selenocystine is bound to the primary side of beta-cyclodextrin through the two amino nitrogen groups of selenocystine, was synthesized. The glutathione peroxidase activities of the mimic-catalyzed reduction of H(2)O(2), tert-butylhydroperoxide, and cumene hydroperoxide by glutathione are 4.1, 2.11, and 5.82 units/micromol, respectively. The first activity was 82 and 4.2 times as much as that of selenocysteine and ebselen, respectively. Studies on the effect of substrate binding on the glutathione peroxidase activity suggest that it is important to consider substrate binding in designing glutathione peroxidase mimics. The detailed steady-state kinetic studies showed that the mimic-catalyzed reduction of H(2)O(2) by glutathione followed a ping-pong mechanism, which was similar to that of the native glutathione peroxidase.
Collapse
Affiliation(s)
- X Ren
- Key Laboratory of Molecular Enzymology and Engineering, Jilin University, Changchun 130023, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Gladilin S, Bidmon HJ, Divanach A, Arteel GE, Witte OW, Zilles K, Sies H. Ebselen lowers plasma interleukin-6 levels and glial heme oxygenase-1 expression after focal photothrombotic brain ischemia. Arch Biochem Biophys 2000; 380:237-42. [PMID: 10933877 DOI: 10.1006/abbi.2000.1943] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme oxygenase-1, an inducible heat shock protein, is upregulated by oxidative stress, and its expression is modulated by proinflammatory cytokines such as IL-1 and IL-6. In the present study, we investigated the effects of postlesional, orally applied ebselen, a neuroprotective antioxidant, on serum levels of IL-6 and cerebral heme oxygenase-1 expression following focal ischemia induced by photothrombosis. Ebselen (50 mg/kg body weight) was given 30 min postlesion to male Wistar rats. Animals were divided into four groups: sham-operated vehicle control (n = 9), sham-operated ebselen control (n = 8), lesioned vehicle control (n = 14), and lesioned ebselen-treated (n = 17). Ebselen treatment resulted in a significant lowering of IL-6 plasma levels (26 +/- 5 pg/ml) as compared with that seen in lesioned vehicle controls (48 +/- 9 pg/ml) at 24 h postlesion. In sham-operated rats IL-6 was not detectable. Heme oxygenase-1-positive glial cells were quantitated within topographically determined perilesional brain regions. Within the 0.5-mm-wide rim region directly associated with the lesion core, no differences in the amount of heme oxygenase-1-positive glial cells were found. However, in the more remote ipsilateral perilesional cortex, significantly fewer heme oxygenase-1-positive glial cells were present within the supragranular cortical layers of lesioned ebselen-treated rats compared to lesioned vehicle controls (P < 0.001). In sham-operated rats, no glial heme oxygenase-1 induction occurred. The results indicate that postlesional ebselen treatment lowered plasma IL-6 levels subsequent to a photothrombotic lesion concomitant with a lowering of the heme oxygenase-1 response in glial cells.
Collapse
Affiliation(s)
- S Gladilin
- Department of Physiological Chemistry I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Tiano L, Fedeli D, Santroni AM, Villarini M, Engman L, Falcioni G. Effect of three diaryl tellurides, and an organoselenium compound in trout erythrocytes exposed to oxidative stress in vitro. Mutat Res 2000; 464:269-77. [PMID: 10648914 DOI: 10.1016/s1383-5718(99)00204-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous literature reports have demonstrated that nucleated trout erythrocytes in conditions of oxidative stress are subjected to DNA and membrane damage, and inactivation of glutathione peroxidase. The present study was undertaken to evaluate the ability of three diaryl tellurides and the organoselenium compound ebselen to protect trout (Salmo irideus) erythrocytes against oxidative stress, induced thermally and by a variation of pH. The antioxidant ability of these molecules was evaluated through chemiluminescence. Impairment of DNA was assessed using the comet assay, a rapid and sensitive single cell gel electrophoresis technique, used to detect primary DNA damage in individual cells. At low concentrations (<10 microM), all the compounds used presented a protective effect on DNA damage without altering the hemolysis rate. In higher concentrations, they accelerated the hemolysis rate and two of the diaryl tellurides were strongly genotoxic.
Collapse
Affiliation(s)
- L Tiano
- Dipartimento di Biologia Molecolare, Cellulare e Animale, Università degli Studi di Camerino, Via Camerini 2, I-62032, Camerino, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Yang CF, Shen HM, Ong CN. Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem Pharmacol 1999; 57:273-9. [PMID: 9890554 DOI: 10.1016/s0006-2952(98)00299-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protective effect of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a selenoorganic compound, against hydrogen peroxide (H2O2)-induced cytotoxicity and DNA damage was investigated in a human hepatoma cell line, HepG2. The inhibitory effect of H2O2 on cell growth was determined using the tetrazolium dye colorimetric test (MTT test), and the cytotoxicity and lipid peroxidation were estimated by lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) formation, respectively. DNA damage was detected using single cell gel electrophoresis (comet assay), and intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA). The results showed that H2O2 suppressed the growth of HepG2 cells and the addition of ebselen significantly reduced the suppression. Furthermore, ebselen also displayed a dose-dependent reduction of LDH leakage and MDA formation in H2O2-treated cells. The results also demonstrate that ebselen was able to reduce the ROS formation and DNA damaging effect caused by H2O2 in a dose-dependent manner. These findings suggest that ebselen has a strong protective ability against the cytotoxicity and DNA damaging effect caused by reactive oxygen species.
Collapse
Affiliation(s)
- C F Yang
- Department of Community, Occupational and Family Medicine, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
30
|
Knollema S, Elting J, Dijkhuizen R, Nicolay K, Korf J, Ter Horst G. Ebselen (PZ-51) protects the caudate putamen against hypoxia/ischemia induced neuronal damage. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1520-6769(199607)19:1<47::aid-nrc162>3.0.co;2-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
|
32
|
Aruoma OI. Scavenging of hypochlorous acid by carvedilol and ebselen in vitro. GENERAL PHARMACOLOGY 1997; 28:269-72. [PMID: 9013206 DOI: 10.1016/s0306-3623(96)00232-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The antihypertensive drug carvedilol and the antiinflammatory selenoorganic compound ebselen were tested for their ability to react with the reactive oxygen species hypochlorous acid (HOCl) in vitro. 2. Carvedilol scavenges HOCl at a rate sufficient to protect a model molecule catalase against inactivation by HOCl. 3. Ebselen was resistant to HOCl when its glutathione-peroxidase mimetic property was compared with that of glutathione peroxidase.
Collapse
Affiliation(s)
- O I Aruoma
- Pharmacology Group, University Of London King's College, UK
| |
Collapse
|
33
|
Ullrich V, Weber P, Meisch F, von Appen F. Ebselen-binding equilibria between plasma and target proteins. Biochem Pharmacol 1996; 52:15-9. [PMID: 8678900 DOI: 10.1016/0006-2952(96)00109-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The antiinflammatory drug ebselen (2-phenyl-1,2-benzisoselenazo-3(2H)-one) is known to bind covalently to thiols to form seleno disulfides that, directly or indirectly, are responsible for its pharmacological effects. Due to its reactive thiol group and high plasma concentration, albumin is a preferred target of ebselen, which it binds covalently. Ebselen should not, then, be available for intracellular actions at other target proteins. We have addressed this question, and show by difference spectroscopy that the interaction of ebselen with albumin occurs stoichiometrically under ring opening, but is readily reversible in the presence of glutathione. With intact human polymorphonuclear leukocytes (PMN), a similar stoichiometric reaction with distinct spectral features was observed with ebselen that was completely abolished by pretreatment of PMN with N-ethylmaleimide, but not by selective depletion of cellular glutathione. Human platelets, again, exhibited different spectral changes upon addition of ebselen. In agreement with results reported in the literature, we show that 14C-ebselen is in dynamic equilibrium with all accessible thiol groups and, hence, despite mostly being bound covalently to albumin, it will exchange rapidly with other target proteins in PMN or platelets.
Collapse
Affiliation(s)
- V Ullrich
- Department of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
34
|
Ramakrishnan N, Kalinich JF, McClain DE. Ebselen inhibition of apoptosis by reduction of peroxides. Biochem Pharmacol 1996; 51:1443-51. [PMID: 8630085 DOI: 10.1016/0006-2952(96)00084-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We investigated the capacity of ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], a glutathione peroxidase mimic, to protect cells from radiation-induced apoptosis. Incubating mouse thymocytes with 25 microM ebselen immediately after 60Co gamma-radiation exposure (5 Gy) inhibited morphological changes associated with apoptosis. Treatment of thymocytes with ebselen before, during, or after irradiation completely blocked internucleosomal DNA fragmentation, a biochemical marker for apoptosis. We measured peroxides formed in cells during and after irradiation, using the oxidation-sensitive fluorescent probe 2',7'-dichlorofluorescin diacetate. By 2 min postirradiation, levels of peroxides in irradiated thymocytes were approximately 10-11 times greater than those in the same cells before irradiation, and levels continued to increase with time. We also measured membrane lipid peroxidation using cis-parinaric acid, a naturally fluorescent polyunsaturated fatty acid that readily incorporates into cell membranes. The oxidation of cis-parinaric acid also began soon after irradiation and increased with time. Peroxide generation and membrane lipid peroxidation preceded both internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis. Treatment of cells with ebselen reduced peroxide levels and appeared to protect thymocytes from radiation-induced apoptosis by scavenging peroxides generated during and after irradiation. The results suggest that peroxide generation and membrane lipid peroxidation may be important signaling events that trigger apoptosis in irradiated cells.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Applied Cellular Radiobiology, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | | | |
Collapse
|
35
|
Abstract
1. Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a non-toxic seleno-organic drug with antiinflammatory, antiatherosclerotic and cytoprotective properties. 2. Ebselen and some of its metabolites are effective reductants of hydroperoxides including those arising in biomembranes and lipoproteins. 3. By reactions with hydroperoxides and thiols several interconversion cycles are formed which include ebselen metabolites with varying oxidation number of the selenium. 4. In the presence of thiols ebselen mimics the catalytic activities of phospholipid hydroperoxide glutathione peroxidase. 5. Ebselen inhibits at low concentrations a number of enzymes involved in inflammation such as lipoxygenases, NO synthases, NADPH, oxidase, protein kinase C and H+/K(+)-ATPase. The inhibitions are manifested on the cellular level and may contribute to the antiinflammatory potential of ebselen.
Collapse
Affiliation(s)
- T Schewe
- Institute of Biochemistry, University Clinics Charité, Humboldt University of Berlin, Germany
| |
Collapse
|
36
|
Abstract
Free radical oxidative stress has been implicated in the pathogenesis of a variety of human diseases. Natural antioxidant defences have been found to be defective in many of the same diseases. This has led to suggestions that oxidative damage and therefore disease progression may be retarded by supplementing natural antioxidant defences. Potential antioxidant therapy includes natural antioxidant enzymes and vitamins or synthetic agents with antioxidant activity. Diseases where antioxidant therapy may be beneficial include diabetes mellitus, reperfusion injury, inflammatory diseases and the prevention of chronic processes such as atherosclerosis and carcinogenesis. Further well controlled prospective clinical trials of antioxidants are required to establish the efficacy and tolerability of antioxidant therapy in the treatment of human diseases.
Collapse
Affiliation(s)
- S R Maxwell
- Department of Medicine, Queen Elizabeth Hospital, Birmingham, England
| |
Collapse
|
37
|
Electrochemical behaviour of pharmacologically interesting seleno-organic compounds—part 3. Ortho methylseleno benzanilides. Electrochim Acta 1994. [DOI: 10.1016/0013-4686(94)80093-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Pascual C, Romay C. Effect of antioxidants on chemiluminescence produced by reactive oxygen species. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE 1992; 7:123-32. [PMID: 1317990 DOI: 10.1002/bio.1170070205] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 mumol/l ascorbic acid, 0.23 mumol/l (+)catechin, and 3 mumol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.
Collapse
Affiliation(s)
- C Pascual
- Centro Nacional de Investigaciones Cientificas, Playa, La Habana, Cuba
| | | |
Collapse
|
39
|
Abstract
A free radical is any species capable of independent existence that contains one or more unpaired electrons. Free radical reactions have been implicated in the pathology of more than 50 human diseases. Radicals and other reactive oxygen species are formed constantly in the human body, both by deliberate synthesis (e.g. by activated phagocytes) and by chemical side-reactions. They are removed by enzymic and nonenzymic antioxidant defence systems. Oxidative stress, occurring when antioxidant defences are inadequate, can damage lipids, proteins, carbohydrates and DNA. A few clinical conditions are caused by oxidative stress, but more often the stress results from the disease. Sometimes it then makes a significant contribution to the disease pathology, and sometimes it does not. Several antioxidants are available for therapeutic use. They include molecules naturally present in the body [superoxide dismutase (SOD), alpha-tocopherol, glutathione and its precursors, ascorbic acid, adenosine, lactoferrin and carotenoids] as well as synthetic antioxidants [such as thiols, ebselen (PZ51), xanthine oxidase inhibitors, inhibitors of phagocyte function, iron ion chelators and probucol]. The therapeutic efficacy of SOD, alpha-tocopherol and ascorbic acid in the treatment of human disease is generally unimpressive to date although dietary deficiencies of the last two molecules should certainly be avoided. Xanthine oxidase inhibitors may be of limited relevance as antioxidants for human use. Exciting preliminary results with probucol (antiatherosclerosis), ebselen (anti-inflammatory), and iron ion chelators (in thalassaemia, leukaemia, malaria, stroke, traumatic brain injury and haemorrhagic shock) need to be confirmed by controlled clinical trials. Clinical testing of N-acetylcysteine in HIV-1-positive subjects may also be merited. A few drugs already in clinical use may have some antioxidant properties, but this ability is not widespread and drug-derived radicals may occasionally cause significant damage.
Collapse
Affiliation(s)
- B Halliwell
- Pulmonary Medicine, UC Davis Medical Center, Sacramento
| |
Collapse
|