1
|
Wang X, Geng X, Bi X, Li R, Chen Y, Lu C. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. PLANT CELL REPORTS 2022; 41:2321-2339. [PMID: 36063182 DOI: 10.1007/s00299-022-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Five PeAOX genes from Moso bamboo genome were identified. PeAOX1b_2-OE improved tolerance to drought and salinity stress in Arabidopsis, indicating it is involved in positive regulation of abiotic stress response. Mitochondrial alternative oxidase (AOX), the important respiratory terminal oxidase in organisms, catalyzes the energy wasteful cyanide (CN)-resistant respiration, which can improve abiotic stresses tolerance and is considered as one of the functional markers for plant resistance breeding. Here, a total of five putative AOX genes (PeAOXs) were identified and characterized in a monocotyledonous woody grass Moso bamboo (Phyllostachys edulis). Phylogenetic analysis revealed that PeAOXs belonged to AOX1 subfamily, and were named PeAOX1a_1, PeAOX1a_2, PeAOX1b_1, PeAOX1b_2 and PeAOX1c, respectively. Evolutionary and divergence patterns analysis revealed that the PeAOX, OsAOX, and BdAOX families experienced positive purifying selection and may have undergone a large-scale duplication event roughly 1.35-155.90 million years ago. Additionally, the organ-specific expression analysis showed that 80% of PeAOX members were mainly expressed in leaf. Promoter sequence analysis of PeAOXs revealed cis-acting regulatory elements (CAREs) responding to abiotic stress. Most PeAOX genes were significantly upregulated after methyl jasmonate (MeJA) and abscisic acid (ABA) treatment. Moreover, under salinity and drought stresses, the ectopic overexpression of PeAOX1b_2 in Arabidopsis enhanced seed germination and seedling establishment, increased the total respiratory rate and the proportion of AOX respiratory pathway in leaf, and enhanced antioxidant ability, suggesting that PeAOX1b_2 is crucial for abiotic stress resistance in Moso bamboo.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xin Geng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaorui Bi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Rongchen Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuzhen Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Fang H, Liu R, Yu Z, Shao Y, Wu G, Pei Y. Gasotransmitter H 2S accelerates seed germination via activating AOX mediated cyanide-resistant respiration pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:193-202. [PMID: 36126464 DOI: 10.1016/j.plaphy.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) has been witnessed as a crucial gasotransmitter involving in various physiological processes in plants. H2S signaling has been reported to involve in regulating seed germination, but the underlying mechanism remains poorly understood. Here, we found that endogenous H2S production was activated in germinating Arabidopsis seeds, correlating with upregulated both the transcription and the activity of L-cysteine desulfhydrase (EC 4.4.1.28, LCD and DES1) responsible for H2S production. Moreover, seed germination could be significantly accelerated by exogenous NaHS (the H2S donor) fumigation and over-expressing DES1, while H2S-generation defective (lcd/des1) seeds exhibited decreased germination speed. We also confirmed that the alternative oxidase (AOX), a cyanide-insensitive terminal oxidase, can be stimulated by imbibition. Furthermore, exogenous H2S fumigation and over-expressing DES1 could significantly reinforced imbibition induced increase of both the AOX1A expression and AOX protein abundance, while this increase could be obviously weakened in lcd/des1. Additionally, exogenous H2S fumigation mediated post-translational modification to keep AOX in its reduced and active state, which might involve H2S induced improvement of the reduced GSH content and the cell reducing power. The promotive effect of H2S on germination was clearly impaired by inducing aox1a mutation, indicating that AOX acts downstream of H2S signaling to accelerate seed germination. Consequently, H2S signaling was activated during germination then acted as a trigger to induce AOX mediated cyanide-resistant respiration to accelerate seed germination. Our study correlates H2S signaling to cyanide-resistant respiration, providing evidence for more extensive studies of H2S signaling.
Collapse
Affiliation(s)
- Huihui Fang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China.
| | - Ruihan Liu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Zhenyuan Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Yuke Shao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Gang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Yanxi Pei
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
3
|
El-Khoury R, Rak M, Bénit P, Jacobs HT, Rustin P. Cyanide resistant respiration and the alternative oxidase pathway: A journey from plants to mammals. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148567. [PMID: 35500614 DOI: 10.1016/j.bbabio.2022.148567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
In a large number of organisms covering all phyla, the mitochondrial respiratory chain harbors, in addition to the conventional elements, auxiliary proteins that confer adaptive metabolic plasticity. The alternative oxidase (AOX) represents one of the most studied auxiliary proteins, initially identified in plants. In contrast to the standard respiratory chain, the AOX mediates a thermogenic cyanide-resistant respiration; a phenomenon that has been of great interest for over 2 centuries in that energy is not conserved when electrons flow through it. Here we summarize centuries of studies starting from the early observations of thermogenicity in plants and the identification of cyanide resistant respiration, to the fascinating discovery of the AOX and its current applications in animals under normal and pathological conditions.
Collapse
Affiliation(s)
- Riyad El-Khoury
- American University of Beirut Medical Center, Pathology and Laboratory Medicine Department, Cairo Street, Hamra, Beirut, Lebanon
| | - Malgorzata Rak
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
4
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
5
|
Total and Mitochondrial Transcriptomic and Proteomic Insights into Regulation of Bioenergetic Processes for Shoot Fast-Growth Initiation in Moso Bamboo. Cells 2022; 11:cells11071240. [PMID: 35406802 PMCID: PMC8997719 DOI: 10.3390/cells11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
As a fast-growing, woody grass plant, Moso bamboo (Phyllostachys edulis) can supply edible shoots, building materials, fibrous raw material, raw materials for crafts and furniture and so on within a relatively short time. Rapid growth of Moso bamboo occurs after the young bamboo shoots are covered with a shell and emerge from the ground. However, the molecular reactions of bioenergetic processes essential for fast growth remain undefined. Herein, total and mitochondrial transcriptomes and proteomes were compared between spring and winter shoots. Numerous key genes and proteins responsible for energy metabolism were significantly upregulated in spring shoots, including those involved in starch and sucrose catabolism, glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, significant decreases in starch and soluble sugar, higher ATP content and higher rates of respiration and glycolysis were identified in spring shoots. Further, the upregulated genes and proteins related to mitochondrial fission significantly increased the number of mitochondria, indirectly promoting intracellular energy metabolism. Moreover, enhanced alternate-oxidase and uncoupled-protein pathways in winter shoots showed that an efficient energy-dissipating system was important for winter shoots to adapt to the low-temperature environment. Heterologous expression of PeAOX1b in Arabidopsis significantly affected seedling growth and enhanced cold-stress tolerance. Overall, this study highlights the power of comparing total and mitochondrial omics and integrating physiochemical data to understand how bamboo initiates fast growth through modulating bioenergetic processes.
Collapse
|
6
|
Molecular characterization and gene expression modulation of the alternative oxidase in a scuticociliate parasite by hypoxia and mitochondrial respiration inhibitors. Sci Rep 2020; 10:11880. [PMID: 32681023 PMCID: PMC7367826 DOI: 10.1038/s41598-020-68791-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
Philasterides dicentrarchi is a marine benthic microaerophilic scuticociliate and an opportunistic endoparasite that can infect and cause high mortalities in cultured turbot (Scophthalmus maximus). In addition to a cytochrome pathway (CP), the ciliate can use a cyanide-insensitive respiratory pathway, which indicates the existence of an alternative oxidase (AOX) in the mitochondrion. Although AOX activity has been described in P. dicentrarchi, based on functional assay results, genetic evidence of the presence of AOX in the ciliate has not previously been reported. In this study, we conducted genomic and transcriptomic analysis of the ciliate and identified the AOX gene and its corresponding mRNA. The AOX gene (size 1,106 bp) contains four exons and three introns that generate an open reading frame of 915 bp and a protein with a predicted molecular weight of 35.6 kDa. The amino acid (aa) sequence of the AOX includes an import signal peptide targeting the mitochondria and the protein is associated with the inner membrane of the mitochondria. Bioinformatic analysis predicted that the peptide is a homodimeric glycoprotein, although monomeric forms may also appear under native conditions, with EXXH motifs associated with the diiron active centers. The aa sequences of the AOX of different P. dicentrarchi isolates are highly conserved and phylogenetically closely related to AOXs of other ciliate species, especially scuticociliates. AOX expression increased significantly during infection in the host and after the addition of CP inhibitors. This confirms the important physiological roles of AOX in respiration under conditions of low levels of O2 and in protecting against oxidative stress generated during infection in the host.
Collapse
|
7
|
Brzezowski P, Ksas B, Havaux M, Grimm B, Chazaux M, Peltier G, Johnson X, Alric J. The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Commun Biol 2019; 2:159. [PMID: 31069268 PMCID: PMC6499784 DOI: 10.1038/s42003-019-0395-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Pawel Brzezowski
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Brigitte Ksas
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Marie Chazaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Jean Alric
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
8
|
Kaye Y, Huang W, Clowez S, Saroussi S, Idoine A, Sanz-Luque E, Grossman AR. The mitochondrial alternative oxidase from Chlamydomonas reinhardtii enables survival in high light. J Biol Chem 2018; 294:1380-1395. [PMID: 30510139 DOI: 10.1074/jbc.ra118.004667] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
Photosynthetic organisms often experience extreme light conditions that can cause hyper-reduction of the chloroplast electron transport chain, resulting in oxidative damage. Accumulating evidence suggests that mitochondrial respiration and chloroplast photosynthesis are coupled when cells are absorbing high levels of excitation energy. This coupling helps protect the cells from hyper-reduction of photosynthetic electron carriers and diminishes the production of reactive oxygen species (ROS). To examine this cooperative protection, here we characterized Chlamydomonas reinhardtii mutants lacking the mitochondrial alternative terminal respiratory oxidases, CrAOX1 and CrAOX2. Using fluorescent fusion proteins, we experimentally demonstrated that both enzymes localize to mitochondria. We also observed that the mutant strains were more sensitive than WT cells to high light under mixotrophic and photoautotrophic conditions, with the aox1 strain being more sensitive than aox2 Additionally, the lack of CrAOX1 increased ROS accumulation, especially in very high light, and damaged the photosynthetic machinery, ultimately resulting in cell death. These findings indicate that the Chlamydomonas AOX proteins can participate in acclimation of C. reinhardtii cells to excess absorbed light energy. They suggest that when photosynthetic electron carriers are highly reduced, a chloroplast-mitochondria coupling allows safe dissipation of photosynthetically derived electrons via the reduction of O2 through AOX (especially AOX1)-dependent mitochondrial respiration.
Collapse
Affiliation(s)
- Yuval Kaye
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305.
| | - Weichao Huang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Adam Idoine
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
9
|
Broxton CN, Culotta VC. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase. PLoS One 2016; 11:e0168400. [PMID: 28033429 PMCID: PMC5198983 DOI: 10.1371/journal.pone.0168400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/30/2016] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, the Cu/Zn superoxide dismutase (SOD1) is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS) to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX) form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX) form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.
Collapse
Affiliation(s)
- Chynna N. Broxton
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P, Polticelli F. Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach. J Mol Evol 2016; 82:207-18. [PMID: 27090422 DOI: 10.1007/s00239-016-9738-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Alternative oxidases (AOXs) are mitochondrial cyanide-resistant membrane-bound metallo-proteins catalyzing the oxidation of ubiquinol and the reduction of oxygen to water bypassing two sites of proton pumping, thus dissipating a major part of redox energy into heat. Here, the structure of Arabidopsis thaliana AOX 1A has been modeled using the crystal structure of Trypanosoma brucei AOX as a template. Analysis of this model and multiple sequence alignment of members of the AOX family from all kingdoms of Life indicate that AOXs display a high degree of conservation of the catalytic core, which is formed by a four-α-helix bundle, hosting the di-iron catalytic site, and is flanked by two additional α-helices anchoring the protein to the membrane. Plant AOXs display a peculiar covalent dimerization mode due to the conservation in the N-terminal region of a Cys residue forming the inter-monomer disulfide bond. The multiple sequence alignment has also been used to infer a phylogenetic tree of AOXs whose analysis shows a polyphyletic origin for the AOXs found in Fungi and a monophyletic origin of the AOXs of Eubacteria, Mycetozoa, Euglenozoa, Metazoa, and Land Plants. This suggests that AOXs evolved from a common ancestral protein in each of these kingdoms. Within the Plant AOX clade, the AOXs of monocotyledon plants form two distinct clades which have unresolved relationships relative to the monophyletic clade of the AOXs of dicotyledonous plants. This reflects the sequence divergence of the N-terminal region, probably due to a low selective pressure for sequence conservation linked to the covalent homo-dimerization mode.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Daniele Salvi
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Riccardo Angelini
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy. .,National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy.
| |
Collapse
|
12
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
13
|
Naydenov N, Takumi S, Sugie A, Ogihara Y, Atanassov A, Nakamura C. Structural Diversity of the Wheat Nuclear GeneWaox1aEncoding Mitochondrial Alternative Oxidase, A Single Unique Enzyme In The Cyanide-Resistant Alternative Pathway. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Unraveling the heater: new insights into the structure of the alternative oxidase. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:637-63. [PMID: 23638828 DOI: 10.1146/annurev-arplant-042811-105432] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Chien LF, Wu YC, Chen HP. Mitochondrial energy metabolism in young bamboo rhizomes from Bambusa oldhamii and Phyllostachys edulis during shooting stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:449-457. [PMID: 21334908 DOI: 10.1016/j.plaphy.2011.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
The energy metabolism of mitochondria in young rhizomes of the bamboo species Bambusa oldhamii, which favors shooting during the summer, and Phyllostachys edulis, which favors shooting during the winter, was characterized. The mitochondrial energy-converting system was clarified in terms of respiratory activity and structural organization. The respiration rates were measured at 15, 28, and 42 °C by NADH, succinate, and malate oxidation. NADH was shown to act as an efficient substrate regardless of the temperature. The structural organization of functional mitochondrial respiratory supercomplexes was studied using blue native PAGE and in-gel activity staining. In both species, almost 90% of the total complex I was assembled into supercomplexes, and P. edulis contained a greater amount of complex-I-comprising supercomplexes than B. oldhamii. Approximately 50% of complex III and 75% of complex V were included in supercomplexes, whereas P. edulis mitochondria possessed a greater amount of complex-V-comprising supercomplexes. The alternative oxidase (AOX), plant mitochondrial uncoupling protein (PUCP), plant mitochondrial potassium channel (PmitoK(ATP)), rotenone-insensitive external/internal NADH:ubiquinone oxidoreductase [NDH(e/i)], and superoxide dismutase (SOD) activities of the energy-dissipating systems were investigated. P. edulis mitochondria had higher levels of the PUCP1 and AOX1 proteins than B. oldhamii mitochondria. The activity of PmitoK(ATP) in P. edulis was higher than that in B. oldhamii. However, P. edulis mitochondria possessed lower NDH(e/i) and SOD activities than B. oldhamii mitochondria. The results suggest that the adaptation of P. edulis to a cooler environment may correlate with its greater abundance of functional mitochondrial supercomplexes and the higher energy-dissipating capacity of its AOX, PUCP and PmitoK(ATP) relative to B. oldhamii.
Collapse
Affiliation(s)
- Lee-Feng Chien
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | | | | |
Collapse
|
17
|
Martins VP, Dinamarco TM, Soriani FM, Tudella VG, Oliveira SC, Goldman GH, Curti C, Uyemura SA. Involvement of an alternative oxidase in oxidative stress and mycelium-to-yeast differentiation in Paracoccidioides brasiliensis. EUKARYOTIC CELL 2011; 10:237-48. [PMID: 21183691 PMCID: PMC3067407 DOI: 10.1128/ec.00194-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022]
Abstract
Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis.
Collapse
Affiliation(s)
| | | | | | | | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), São Paulo, Brazil
| | - Carlos Curti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
18
|
Albury MS, Elliott C, Moore AL. Ubiquinol-binding site in the alternative oxidase: Mutagenesis reveals features important for substrate binding and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1933-9. [DOI: 10.1016/j.bbabio.2010.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022]
|
19
|
Albury MS, Elliott C, Moore AL. Towards a structural elucidation of the alternative oxidase in plants. PHYSIOLOGIA PLANTARUM 2009; 137:316-27. [PMID: 19719482 DOI: 10.1111/j.1399-3054.2009.01270.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to the conventional cytochrome c oxidase, mitochondria of all plants studied to date contain a second cyanide-resistant terminal oxidase or alternative oxidase (AOX). The AOX is located in the inner mitochondrial membrane and branches from the cytochrome pathway at the level of the quinone pool. It is non-protonmotive and couples the oxidation of ubiquinone to the reduction of oxygen to water. For many years, the AOX was considered to be confined to plants, fungi and a small number of protists. Recently, it has become apparent that the AOX occurs in wide range of organisms including prokaryotes and a moderate number of animal species. In this paper, we provide an overview of general features and current knowledge available about the AOX with emphasis on structure, the active site and quinone-binding site. Characterisation of the AOX has advanced considerably over recent years with information emerging about the role of the protein, regulatory regions and functional sites. The large number of sequences available is now enabling us to obtain a clearer picture of evolutionary origins and diversity.
Collapse
Affiliation(s)
- Mary S Albury
- Division of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN19QG, UK
| | | | | |
Collapse
|
20
|
McDonald AE. Alternative oxidase: what information can protein sequence comparisons give us? PHYSIOLOGIA PLANTARUM 2009; 137:328-341. [PMID: 19493309 DOI: 10.1111/j.1399-3054.2009.01242.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The finding that alternative oxidase (AOX) is present in most kingdoms of life has resulted in a large number of AOX sequences that are available for analyses. Multiple sequence alignments of AOX proteins from evolutionarily divergent organisms represent a valuable tool and can be used to identify amino acids and domains that may play a role in catalysis, membrane association and post-translational regulation, especially when these data are coupled with the structural model for the enzyme. I validate the use of this approach by demonstrating that it detects the conserved glutamate and histidine residues in AOX that initially led to its identification as a di-iron carboxylate protein and the generation of a structural model for the protein. A comparative analysis using a larger dataset identified 35 additional amino acids that are conserved in all AOXs examined, 30 of which have not been investigated to date. I hypothesize that these residues will be involved in the quinol terminal oxidase activity or membrane association of AOX. Major differences in AOX protein sequences between kingdoms are revealed, and it is hypothesized that two angiosperm-specific domains may be responsible for the non-covalent dimerization of AOX, whereas two indels in the aplastidic AOXs may play a role in their post-translational regulation. A scheme for predicting whether a particular AOX protein will be recognized by the alternative oxidase monoclonal antibody generated against the AOX of Sauromatum guttatum (Voodoo lily) is presented. The number of functional sites in AOX is greater than expected, and determining the structure of AOX will prove extremely valuable to future research.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A5B7, Canada.
| |
Collapse
|
21
|
Fu A, Aluru M, Rodermel SR. Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. J Biol Chem 2009; 284:22625-32. [PMID: 19542226 PMCID: PMC2755669 DOI: 10.1074/jbc.m109.017905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/16/2009] [Indexed: 11/06/2022] Open
Abstract
The plastid terminal oxidase (PTOX) is distantly related to the mitochondrial alternative oxidase (AOX). Both are members of the diiron carboxylate quinol oxidase (DOX) class of proteins. PTOX and AOX contain 20 highly conserved amino acids, six of which are Fe-binding ligands. We have previously used in vitro and in planta activity assays to examine the functional importance of the Fe-binding sites. In this report, we conduct alanine-scanning mutagenesis on the 14 other conserved sites using our in vitro and in planta assay procedures. We found that the 14 sites fall into three classes: (i) Ala-139, Pro-142, Glu-171, Asn-174, Leu-179, Pro-216, Ala-230, Asp-287, and Arg-293 are dispensable for activity; (ii) Tyr-234 and Asp-295 are essential for activity; and (iii) Leu-135, His-151, and Tyr-212 are important but not essential for activity. Our data are consistent with the proposed role of some of these residues in active site conformation, substrate binding, and/or catalysis. Titration experiments showed that down-regulation of PTOX to approximately 3% of wild-type levels did not compromise plant growth, at least under ambient growth conditions. This suggests that PTOX is normally in excess, especially early in thylakoid membrane biogenesis.
Collapse
Affiliation(s)
- Aigen Fu
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Maneesha Aluru
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Steven R. Rodermel
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
22
|
Jezek P, Zácková M, Kosarová J, Rodrigues ET, Madeira VM, Vicente JA. Occurrence of plant-uncoupling mitochondrial protein (PUMP) in diverse organs and tissues of several plants. J Bioenerg Biomembr 2009; 32:549-61. [PMID: 15254369 DOI: 10.1023/a:1005648226431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presence of plant-uncoupling mitochondrial protein (PUMP), previously described by Vercesi et al. (1995), was screened in mitochondria of various organs or tissues of several plant species. This was done functionally, by monitoring purine nucleotide-sensitive linoleic acid-induced uncoupling, or by Western blots. The following findings were established: (1) PUMP was found in most of the higher plants tested; (2) since ATP inhibition of linoleic acid-induced membrane potential decrease varied, PUMP content might differ in different plant tissues, as observed with mitochondria from maize roots, maize seeds, spinach leaves, wheat shoots, carrot roots, cauliflower, broccoli, maize shoots, turnip root, and potato calli. Western blots also indicated PUMP presence in oat shoots, carnation petals, onion bulbs, red beet root, green cabbage, and Sedum leaves. (3) PUMP was not detected in mushrooms. We conclude that PUMP is likely present in the mitochondria of organs and tissues of all higher plants.
Collapse
Affiliation(s)
- P Jezek
- Department of Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans 2008; 36:1022-6. [PMID: 18793182 DOI: 10.1042/bst0361022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AOX (alternative oxidase) is a non-protonmotive ubiquinol-oxygen oxidoreductase that couples the oxidation of ubiquinol with the complete reduction of water. Although it has long been recognized that it is ubiquitous among the plant kingdom, it has only recently become apparent that it is also widely found in other organisms including some human parasites. In this paper, we review experimental studies that have contributed to our current understanding of its structure, with particular reference to the catalytic site. Furthermore, we propose a model for the ubiquinol-binding site which identifies a hydrophobic pocket, between helices II and III, leading from a proposed membrane-binding domain to the catalytic domain.
Collapse
|
24
|
Scheckhuber CQ, Osiewacz HD. Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 2008; 280:365-74. [PMID: 18797929 DOI: 10.1007/s00438-008-0378-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/29/2008] [Indexed: 12/18/2022]
Abstract
The filamentous ascomycete Podospora anserina has been extensively studied as an experimental ageing model for more than 50 years. As a result, a huge body of data has been accumulated and various molecular pathways have been identified as part of a molecular network involved in the control of ageing and life span. The aim of this review is to summarize data on P. anserina ageing, including aspects like respiration, cellular copper homeostasis, mitochondrial DNA (mtDNA) stability/instability, mitochondrial dynamics, apoptosis, translation efficiency and pathways directed against oxidative stress. It becomes clear that manipulation of several of these pathways bears the potential to extend the healthy period of time, the health span, within the life time of the fungus. Here we put special attention on recent work aimed to identify and characterize this type of long-lived P. anserina mutants. The study of the molecular pathways which are modified in these mutants can be expected to provide important clues for the elucidation of the mechanistic basis of this type of 'healthy ageing' at the organism level.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Cluster of Excellence Macromolecular Complexes and Faculty for Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | |
Collapse
|
25
|
McDonald AE. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed 'cyanide-resistant' terminal oxidase. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:535-552. [PMID: 32688810 DOI: 10.1071/fp08025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 07/11/2008] [Indexed: 06/11/2023]
Abstract
Alternative oxidase (AOX) is a terminal quinol oxidase located in the respiratory electron transport chain that catalyses the oxidation of quinol and the reduction of oxygen to water. However, unlike the cytochrome c oxidase respiratory pathway, the AOX pathway moves fewer protons across the inner mitochondrial membrane to generate a proton motive force that can be used to synthesise ATP. The energy passed to AOX is dissipated as heat. This appears to be very wasteful from an energetic perspective and it is likely that AOX fulfils some physiological function(s) that makes up for its apparent energetic shortcomings. An examination of the known taxonomic distribution of AOX and the specific organisms in which AOX has been studied has been used to explore themes pertaining to AOX function and regulation. A comparative approach was used to examine AOX function as it relates to the biochemical function of the enzyme as a quinol oxidase and associated topics, such as enzyme structure, catalysis and transcriptional expression and post-translational regulation. Hypotheses that have been put forward about the physiological function(s) of AOX were explored in light of some recent discoveries made with regard to species that contain AOX. Fruitful areas of research for the AOX community in the future have been highlighted.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada. Email
| |
Collapse
|
26
|
Magnani T, Soriani FM, Martins VP, Nascimento AM, Tudella VG, Curti C, Uyemura SA. Cloning and functional expression of the mitochondrial alternative oxidase ofAspergillus fumigatusand its induction by oxidative stress. FEMS Microbiol Lett 2007; 271:230-8. [PMID: 17425662 DOI: 10.1111/j.1574-6968.2007.00716.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aspergillus fumigatus possesses a branched mitochondrial electron transport chain, with both cyanide-sensitive and -insensitive oxygen-consumption activities. Mitochondrial reactive oxygen species mediate signaling for alternative oxidase (AOX) expression. A 1173 bp-long Afaox gene encoding a 40 kDa protein has been cloned and identified. Recombinant constructs containing the Afaox ORF were transformed into Escherichia coli and Saccharomyces cerevisiae for heterologous expression. In A. fumigatus, AOX activity and mRNA expression were both induced with menadione or paraquat, suggesting an important role of AOX under oxidative stress. Therefore, positive transformants showed a cyanide-resistant and salicylhydroxamic acid-sensitive respiration, whereas in control cells the oxygen uptake was completely inhibited after KCN addition.
Collapse
Affiliation(s)
- T Magnani
- Dep Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Osiewacz HD, Scheckhuber CQ. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic Res 2007; 40:1350-8. [PMID: 17090424 DOI: 10.1080/10715760600921153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To provide a foundation for the development of effective interventions to counteract various age-related diseases in humans, ageing processes have been extensively studied in various model organisms and systems. However, the mechanisms underlying ageing are still not unravelled in detail in any system including rather simple organisms. In this article, we review some of the molecular mechanisms that were found to affect ageing in two fungal models, the unicellular ascomycete Saccharomyces cerevisiae and the filamentous ascomycete Podospora anserina. A selection of issues like retrograde response, genomic instability, caloric restriction, mtDNA reorganisation and apoptosis is presented and discussed with special emphasis on the role reactive oxygen species (ROS) play in these diverse molecular pathways.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
28
|
Vercesi AE, Borecký J, Maia IDG, Arruda P, Cuccovia IM, Chaimovich H. Plant uncoupling mitochondrial proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:383-404. [PMID: 16669767 DOI: 10.1146/annurev.arplant.57.032905.105335] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.
Collapse
Affiliation(s)
- Aníbal Eugênio Vercesi
- Laboratório de Bioenergética, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
29
|
Fu A, Park S, Rodermel S. Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to Exon 8. J Biol Chem 2005; 280:42489-96. [PMID: 16249174 DOI: 10.1074/jbc.m508940200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thylakoid membranes of most photosynthetic organisms contain a terminal oxidase (PTOX, the product of the Arabidopsis IMMUTANS gene) that functions in the oxidation of the plastoquinone pool. PTOX and AOX are diiron carboxylate proteins, and based on crystal structures of other members of this protein class, a structural model of PTOX has been proposed in which the ligation sphere of the diiron center is composed of six conserved histidine and glutamate residues. We tested the functional significance of these residues by site-directed mutagenesis of PTOX in vitro and in planta, taking advantage null immutans alleles for the latter studies. These experiments showed that the six iron-binding sites do not tolerate change, even conservative ones. We also examined the significance of a conserved sequence in (or near) the PTOX active site that corresponds precisely to Exon 8 of the IM gene. In vitro and in planta mutagenesis revealed that conserved amino acids within this domain can be altered but that deletion of all or part of the domain abolishes activity. Because protein accumulates normally in the deletion mutants, the data suggest that the conformation of the Exon 8 sequence is important for PTOX activity. An allele of immutans (designated 3639) was identified that lacks the Exon 8 sequence; it does not accumulate PTOX protein. Chloroplast import assays revealed that mutant enzymes lacking Exon 8 have enhanced turnover. We conclude that the Exon 8 domain is required not only for PTOX activity but also for its stability.
Collapse
Affiliation(s)
- Aigen Fu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
30
|
Ohtsu K, Hirano HY, Tsutsumi N, Hirai A, Nakazono M. Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution. Mol Genet Genomics 2005; 274:606-15. [PMID: 16208489 DOI: 10.1007/s00438-005-0053-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
A new type of transposon, named Anaconda (Anac) has been found in rice (Oryza sativa). In this paper, we demonstrate that Anaconda elements have diversified by acquisition of host cellular genes, amplification of the elements, and substitution and deletion of short segments. We identified four Anaconda elements in studies of rice alternative oxidase (AOX) genes, and subsequently isolated an additional 23 elements based on the identity of their terminal inverted repeats (TIRs). The Anaconda elements have long TIRs (114-458 bp). They also have direct repeats of 9 or 10 bp in their flanking regions that are thought to have been generated upon transposition. These structural features reveal that the Anaconda elements belong to the Mu superfamily. The most prominent feature of the Anaconda elements is the high frequency with which they have acquired host cellular genes. Of the 27 elements found here, 19 appear to have sequences presumably derived from rice genes, for example, the genes for AOX1c (four elements), cytochrome P450 (five elements), L: -asparaginase (five elements), and PCF8 (two elements). Four elements, AnacA1-A4, have both the AOX1c and P450 genes. One element, AnacB14, involves a gene similar to mudrA of maize MuDR. Database analyses revealed that the loci of 26 of the 27 Anaconda elements in the subspecies japonica are the same as those in the subspecies indica. This suggests that these elements were incorporated before the divergence of these two subspecies.
Collapse
Affiliation(s)
- Kazuhiro Ohtsu
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Borecký J, Vercesi AE. Plant Uncoupling Mitochondrial Protein and Alternative Oxidase: Energy Metabolism and Stress. Biosci Rep 2005; 25:271-86. [PMID: 16283557 DOI: 10.1007/s10540-005-2889-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Energy-dissipation in plant mitochondria can be mediated by inner membrane proteins via two processes: redox potential-dissipation or proton electrochemical potential-dissipation. Alternative oxidases (AOx) and the plant uncoupling mitochondrial proteins (PUMP) perform a type of intrinsic and extrinsic regulation of the coupling between respiration and phosphorylation, respectively. Expression analyses and functional studies on AOx and PUMP under normal and stress conditions suggest that the physiological role of both systems lies most likely in tuning up the mitochondrial energy metabolism in response of cells to stress situations. Indeed, the expression and function of these proteins in non-thermogenic tissues suggest that their primary functions are not related to heat production.
Collapse
Affiliation(s)
- Jirí Borecký
- Departamento de Patologia Clínica (NMCE), FCM, Universidade Estadual de Campinas (UNICAMP), CP 6111, 13083-970 Campinas, SP, Brazil
| | | |
Collapse
|
32
|
Finnegan PM, Soole KL, Umbach AL. Alternative Mitochondrial Electron Transport Proteins in Higher Plants. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Shi NQ, Cruz J, Sherman F, Jeffries TW. SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 2003; 19:1203-20. [PMID: 12271457 DOI: 10.1002/yea.915] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SHAM-sensitive (STO) alternative respiration is present in the xylose-metabolizing, Crabtree-negative yeast, Pichia stipitis, but its pathway components and physiological roles during xylose metabolism are poorly understood. We cloned PsSTO1, which encodes the SHAM-sensitive terminal oxidase (PsSto1p), by genome walking from wild-type CBS 6054 and subsequently deleted PsSTO1 by targeted gene disruption. The resulting sto1-delta deletion mutant, FPL-Shi31, did not contain other isoforms of Sto protein that were detectable by Western blot analysis using an alternative oxidase monoclonal antibody raised against the Sto protein from Sauromatum guttatum. Levels of cytochromes b, c, c(1) and a.a(3) did not change in the sto1-delta mutant, which indicated that deleting PsSto1p did not alter the cytochrome pool. Interestingly, the sto1-delta deletion mutant stopped growing earlier than the parent and produced 20% more ethanol from xylose. Heterologous expression of PsSTO1 in Saccharomyces cerevisiae increased its total oxygen consumption rate and imparted cyanide-resistant oxygen uptake but did not enable growth on ethanol, indicating that PsSto1p is not coupled to ATP synthesis. We present evidence that the mitochondrial NADH dehydrogenase complex (Complex I) was present in wild-type CBS 6054 but was bypassed in the cells during xylose metabolism. Unexpectedly, deleting PsSto1p led to the use of Complex I in the mutant cells when xylose was the carbon source. We propose that the non-proton-translocating NAD(P)H dehydrogenases are linked to PsSto1p in xylose-metabolizing cells and that this non-ATP-generating route serves a regulatory function in the complex redox network of P. stipitis.
Collapse
Affiliation(s)
- Nian-Qing Shi
- The Microbiology Doctoral Training Program, Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
34
|
Jarmuszkiewicz W, Sluse FE, Hryniewiecka L, Sluse-Goffart CM. Interactions between the cytochrome pathway and the alternative oxidase in isolated Acanthamoeba castellanii mitochondria. J Bioenerg Biomembr 2002; 34:31-40. [PMID: 11860178 DOI: 10.1023/a:1013866603094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The steady-state activity of the two quinol-oxidizing pathways of Acanthamoeba castellanii mitochondria, the phosphorylating cytochrome pathway (i.e. the benzohydroxamate(BHAM)-resistant respiration in state 3) and the alternative oxidase (i.e. the KCN-resistant respiration), is shown to be fixed by ubiquinone (Q) pool redox state independently of the reducing substrate (succinate or exogenous reduced nicotinamide adenine dinucleotide (NADH)), indicating that the active Q pool is homogenous. For both pathways, activity increases with the Q reduction level (up to 80%). However, the cytochrome pathway respiration partially inhibited (about 50%) by myxothiazol decreases when the Q reduction level increases above 80%. The decrease can be explained by the Q cycle mechanism of complex III. It is also shown that BHAM has an influence on the relationship between the rate of ADP phosphorylation and the Q reduction level when alternative oxidase is active, and that KCN has an influence on the relationship between the alternative oxidase activity and the Q reduction level. These unexpected effects of BHAM and KCN observed at a given Q reduction level are likely due to functional connections between the two pathways activities or to protein-protein interaction.
Collapse
Affiliation(s)
- Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Institute of Molecular Biology and Biotechnology, Poznan, Poland
| | | | | | | |
Collapse
|
35
|
Saika H, Ohtsu K, Hamanaka S, Nakazono M, Tsutsumi N, Hirai A. AOX1c, a novel rice gene for alternative oxidase; comparison with rice AOX1a and AOX1b. Genes Genet Syst 2002; 77:31-8. [PMID: 12036102 DOI: 10.1266/ggs.77.31] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel gene for alternative oxidase (AOX) was isolated from rice (Oryza sativa L.) and characterized. The deduced amino acid sequence of the novel AOX gene contains features that are conserved among other AOXs. This AOX gene was designated AOX1c based on a phylogenetic analysis of the AOX genes. Northern hybridization analyses revealed that AOX1c and AOX1a/AOX1b transcripts accumulated differently in various rice organs and rice seedlings under low temperature conditions. AOX1c mRNA was mainly present in young leaves under constant light, mature leaves and panicles after heading, but it was not detected in young etiolated leaves and young roots of seedlings or young panicles. On the other hand, the mRNAs of the rice AOX1a and AOX1b genes were mainly present in young roots and mature leaves. Under low temperature conditions, the steady-state mRNA levels of the rice AOX1a and AOX1b genes clearly increased with time but the rice AOX1c gene was apparently not responsive to low temperature. The rice AOX gene family and differences in their regulation are discussed.
Collapse
Affiliation(s)
- Hiroaki Saika
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Affourtit C, Albury MS, Crichton PG, Moore AL. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett 2002; 510:121-6. [PMID: 11801238 DOI: 10.1016/s0014-5793(01)03261-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plant mitochondria contain a non-protonmotive alternative oxidase (AOX) that couples the oxidation of ubiquinol to the complete reduction of oxygen to water. In this paper we review theoretical and experimental studies that have contributed to our current structural and mechanistic understanding of the oxidase and to the clarification of the molecular nature of post-translational regulatory phenomena. Furthermore, we suggest a catalytic cycle for AOX that involves at least one transient protein-derived radical. The model is based on the reviewed information and on recent insights into the mechanisms of cytochrome c oxidase and the hydroxylase component of methane monooxygenase.
Collapse
Affiliation(s)
- Charles Affourtit
- Department of Biochemistry, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | | | |
Collapse
|
37
|
Albury MS, Affourtit C, Crichton PG, Moore AL. Structure of the plant alternative oxidase. Site-directed mutagenesis provides new information on the active site and membrane topology. J Biol Chem 2002; 277:1190-4. [PMID: 11698414 DOI: 10.1074/jbc.m109853200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All higher plants and many fungi contain an alternative oxidase (AOX), which branches from the cytochrome pathway at the level of the quinone pool. In an attempt, first, to distinguish between two proposed structural models of this di-iron protein, and, second, to examine the roles of two highly conserved tyrosine residues, we have expressed an array of site-specific mutants in Schizosaccharomyces pombe. Mitochondrial respiratory analysis reveals that S. pombe cells expressing AOX proteins in which Glu-217 or Glu-270 were mutated, no longer exhibit antimycin-resistant oxygen uptake, indicating that these residues are essential for AOX activity. Although such data corroborate a model that describes the AOX as an interfacial membrane protein, they are not in full agreement with the most recently proposed ligation sphere of its di-iron center. We furthermore show that upon mutation of Tyr-253 and Tyr-275 to phenylalanines, AOX activity is fully maintained or abolished, respectively. These data are discussed in reference to the importance of both residues in the catalytic cycle of the AOX.
Collapse
Affiliation(s)
- Mary S Albury
- Biochemistry Department, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Steven Rodermel
- Department of Genetics, Development and Cell Biology, 353 Bessey Hall, Iowa State University, Ames, IA 50014, Tel: 515 294-8890, fax: 294-1337,
| |
Collapse
|
39
|
Gomes CM, Le Gall J, Xavier AV, Teixeira M. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase? Chembiochem 2001; 2:583-7. [PMID: 11828492 DOI: 10.1002/1439-7633(20010803)2:7/8<583::aid-cbic583>3.0.co;2-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C M Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, Apt 127, 2780-156 Oeiras, Portugal.
| | | | | | | |
Collapse
|
40
|
Berthold DA, Andersson ME, Nordlund P. New insight into the structure and function of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:241-54. [PMID: 11106766 DOI: 10.1016/s0005-2728(00)00149-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alternative oxidase is a ubiquinol oxidase found in plant mitochondria, as well as in the mitochondria of some fungi and protists. It catalyzes a cyanide-resistant reduction of oxygen to water without translocation of protons across the inner mitochondrial membrane, and thus functions as a non-energy-conserving member of the respiratory electron transfer chain. The active site of the alternative oxidase has been modelled as a diiron center within a four-helix bundle by Siedow et al. (FEBS Lett. 362 (1995) 10-14) and more recently by Andersson and Nordlund (FEBS Lett. 449 (1999) 17-22). The cloning of the Arabidopsis thaliana IMMUTANS (Im) gene, which encodes a plastid enzyme distantly related to the mitochondrial alternative oxidases (Wu et al. Plant Cell 11 (1999) 43-55; Carol et al. Plant Cell 11 (1999) 57-68), has now narrowed the range of possible ligands to the diiron center of the alternative oxidase. The Im protein sequence suggests a minor modification to the recent model of the active site of the alternative oxidase. This change moves an invariant tyrosine into a conserved hydrophobic pocket in the vicinity of the active site, in a position analogous to the long-lived tyrosine radical at the diiron center of ribonucleotide reductase, and similar to the tyrosines near the diiron center of bacterioferritin and rubrerythrin. The Im sequence and modified structural model yield a compelling picture of the alternative oxidase as a diiron carboxylate protein. The current status of the relationship of structure to function in the alternative oxidase is reviewed.
Collapse
Affiliation(s)
- D A Berthold
- Department of Biochemistry, Stockholm University, Svante Arrhenius vag 16, S-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Siedow JN, Umbach AL. The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:432-9. [PMID: 11004460 DOI: 10.1016/s0005-2728(00)00181-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria from all plants, many fungi and some protozoa contain a cyanide-resistant, alternative oxidase that functions in parallel with cytochrome c oxidase as the terminal oxidase on the electron transfer chain. Characterization of the structural and potential regulatory features of the alternative oxidase has advanced considerably in recent years. The active site is proposed to contain a di-iron center belonging to the ribonucleotide reductase R2 family and modeling of a four-helix bundle to accommodate this active site within the C-terminal two-thirds of the protein has been carried out. The structural features of this active site are conserved among all known alternative oxidases. The post-translational regulatory features of the alternative oxidase are more variable among organisms. The plant oxidase is dimeric and can be stimulated by either alpha-keto acids or succinate, depending upon the presence or absence, respectively, of a critical cysteine residue found in a conserved block of amino acids in the N-terminal region of the plant protein. The fungal and protozoan alternative oxidases generally exist as monomers and are not subject to organic acid stimulation but can be stimulated by purine nucleotides. The origins of these diverse regulatory features remain unknown but are correlated with sequence differences in the N-terminal third of the protein.
Collapse
Affiliation(s)
- J N Siedow
- DCMB/Biology, Box 91000, Duke University, Durham, NC 27708-1000, USA.
| | | |
Collapse
|
42
|
Umbach AL, Siedow JN. The cyanide-resistant alternative oxidases from the fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch Biochem Biophys 2000; 378:234-45. [PMID: 10860541 DOI: 10.1006/abbi.2000.1834] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both plant and fungal mitochondria have cyanide-resistant alternative oxidases that use reductant from the mitochondrial ubiquinone pool to reduce oxygen to water in a reaction that conserves no energy for ATP synthesis. The dimeric plant alternative oxidase is relatively inactive when its subunits are linked by a disulfide bond. When this bond is reduced, the enzyme can then be stimulated by its activators, alpha-keto acids. A Cys in the N-terminal section of the protein is responsible for both of these features. We examined the alternative oxidases in mitochondria isolated from two fungi Neurospora crassa and Pichia stipitis for dimeric structure, ability to form an intermolecular disulfide, and sensitivity to alpha-keto acids. Neither of the two fungal alternative oxidases could be covalently linked by diamide, which induces disulfide bond formation between nearby Cys residues, nor could they be cross-linked by a Lys-specific reagent or glutaraldehyde at concentrations which cross-link the plant alternative oxidase dimer completely. Alternative oxidase activity in fungal mitochondria was not stimulated by the alpha-keto acids pyruvate and glyoxylate. Pyruvate did stimulate activity when succinate was the respiratory substrate, but this was not a direct effect on the alternative oxidase. In contrast, added GMP was a strong activator of fungal alternative oxidase activity. Analysis of plant and fungal alternative oxidase protein sequences revealed a unique domain of about 40 amino acids surrounding the regulatory Cys in the plant sequences that is not present in the fungal sequences. This domain may be where dimerization of the plant enzymes occurs. In contrast to plant enzymes, the fungal alternative oxidases studied here are monomeric and their activities are independent of alpha-keto acids.
Collapse
Affiliation(s)
- A L Umbach
- DCMB Group/Botany Department, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
43
|
Abstract
Many of the membrane-bound protein complexes of respiratory and photosynthetic systems are reactive with quinones. To date, no clear structural relationship between sites that bind quinone has been defined, apart from that in the homologous family of "type II" photosynthetic reaction centres. We show here that a structural element containing a weak sequence motif is common to the Q(A) and Q(B) sites of bacterial reaction centres and the Q(i) site of the mitochondrial bc(1) complex. Analyses of sequence databases indicate that this element may also be present in the PsaA/B subunits of photosystem I, in the ND4 and ND5 subunits of complex I and, possibly, in the mitochondrial alternative quinol oxidase. This represents a first step in the structural classification of quinone binding sites.
Collapse
Affiliation(s)
- N Fisher
- Department of Biology, University College London, Glynn Laboratory of Bioenergetics, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
44
|
Fukai Y, Amino H, Hirawake H, Yabu Y, Ohta N, Minagawa N, Sakajo S, Yoshimoto A, Nagai K, Takamiya S, Kojima S, Kita K. Functional expression of the ascofuranone-sensitive Trypanosoma brucei brucei alternative oxidase in the cytoplasmic membrane of Escherichia coli. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 124:141-8. [PMID: 10622429 DOI: 10.1016/s0742-8413(99)00040-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms (LS forms) of African trypanosoma, which causes sleeping sickness in human and nagana in cattle. TAO is a cytochrome-independent, cyanide-insensitive quinol oxidase and these properties are quite different from those of the bacterial quinol oxidase which belongs to the heme-copper terminal oxidase superfamily. Only little information concerning the molecular structure and enzymatic features of TAO have been available, whereas the bacterial enzyme has been well characterized. In this study, a cDNA encoding TAO from Trypanosoma brucei brucei was cloned into the expression vector pET15b (pTAO) and recombinant TAO was expressed in Escherichia coli. The growth of the transformant carrying pTAO was cyanide-resistant. A peptide with a molecular mass of 37 kDa was found in the cytoplasmic membrane of E. coli, and was recognized by antibodies against plant-type alternative oxidases from Sauromatum guttatum and Hansenula anomala. Both the ubiquinol oxidase and succinate oxidase activities found in the membrane of the transformant were insensitive to cyanide, while those of the control strain, which contained vector alone, were inhibited. This cyanide-insensitive growth of the E. coli carrying pTAO was inhibited by the addition of ascofuranone, a potent and specific inhibitor of TAO ubiquinol oxidase. The ubiquinol oxidase activity of the membrane from the transformant was sensitive to ascofuranone. These results clearly show the functional expression of TAO in E. coli and indicate that ubiquinol-8 in the E. coli membrane is able to serve as an electron donor to the recombinant enzyme and confer cyanide-resistant and ascofuranone-sensitive growth to E. coli. This system will facilitate the biochemical characterization of the novel terminal oxidase, TAO, and the understanding on the mechanism of the trypanocidal effect of ascofuranone.
Collapse
Affiliation(s)
- Y Fukai
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M. The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:1-13. [PMID: 10524259 DOI: 10.1016/s0005-2728(99)00073-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains a novel complex III and a high potential iron-sulfur protein (HiPIP) as the main electron shuttle (Pereira et al., Biochemistry 38 (1999) 1268-1275 and 1276-1283). In this paper, one of the terminal oxidases expressed in this bacterium is extensively characterised. It is a caa3-type oxidase, isolated with four subunits (apparent molecular masses of 42, 19 and 15 kDa and a C-haem containing subunit of 35 kDa), which has haems of the A(s) type. This oxidase is capable of using TMPD and horse heart cytochrome c as substrates, but has a higher turnover with HiPIP, being the first example of a HiPIP:oxygen oxidoreductase. The oxidase has unusually low reduction potentials of 260 (haem C), 255 (haem A) and 180 mV (haem A3). Subunit I of R. marinus caa3 oxidase has an overall significant homology with the subunits I of the COX type oxidases, namely the metal binding sites and most residues considered to be functionally important for proton uptake and pumping (K- and D-channels). However, a major difference is present: the putative essential glutamate (E278 in Paraccocus denitrificans) of the D-channel is missing in the R. marinus oxidase. Homology modelling of the R. marinus oxidase shows that the phenol group of a tyrosine residue may occupy a similar spatial position as the glutamate carboxyl, in relation to the binuclear centre. Moreover, sequence comparisons reveal that several enzymes lacking that glutamate have a conserved substitution pattern in helix VI: -YSHPXV- instead of -XGHPEV-. These observations are discussed in terms of the mechanisms for proton uptake and it is suggested that, in these enzymes, tyrosine may play the role of the glutamate in the proton channel.
Collapse
Affiliation(s)
- M M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The plant mitochondrial protein alternative oxidase catalyses dioxygen dependent ubiquinol oxidation to yield ubiquinone and water. A structure of this protein has previously been proposed based on an assumed structural homology to the di-iron carboxylate family of proteins. However, these authors suggested the protein has a very different topology than the known structures of di-iron carboxylate proteins. We have re-examined this model and based on comparison of recent sequences and structural data on di-iron carboxylate proteins we present a new model of the alternative oxidase which allows prediction of active site residues and a possible membrane binding motif.
Collapse
Affiliation(s)
- M E Andersson
- Department of Biochemistry, Stockholm University, Sweden
| | | |
Collapse
|
47
|
Affourtit C, Albury MS, Krab K, Moore AL. Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. J Biol Chem 1999; 274:6212-8. [PMID: 10037707 DOI: 10.1074/jbc.274.10.6212] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the extent to which functional expression of the plant alternative oxidase (from Sauromatum guttatum) in Schizosaccharomyces pombe affects yeast growth. When cells are cultured on glycerol, the maximum specific growth rate is decreased from 0.13 to 0.11 h-1 while growth yield is lowered by 20% (from 1. 14 x 10(8) to 9.12 x 10(7) cells ml-1). Kinetic studies suggest that the effect on growth is mitochondrial in origin. In isolated mitochondria we found that the alternative oxidase actively competes with the cytochrome pathway for reducing equivalents and contributes up to 24% to the overall respiratory activity. Metabolic control analysis reveals that the alternative oxidase exerts a considerable degree of control (22%) on total electron flux. Furthermore, the negative control exerted by the alternative oxidase on the flux ratio of electrons through the cytochrome and alternative pathways is comparable with the positive control exerted on this flux-ratio by the cytochrome pathway. To our knowledge, this is the first paper to report a phenotypic effect because of plant alternative oxidase expression. We suggest that the effect on growth is the result of high engagement of the non-protonmotive alternative oxidase in yeast respiration that, consequently, lowers the efficiency of energy conservation and hence growth.
Collapse
Affiliation(s)
- C Affourtit
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
48
|
Albury MS, Affourtit C, Moore AL. A highly conserved glutamate residue (Glu-270) is essential for plant alternative oxidase activity. J Biol Chem 1998; 273:30301-5. [PMID: 9804791 DOI: 10.1074/jbc.273.46.30301] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that expression of a Sauromatum guttatum alternative oxidase in Schizosaccharomyces pombe confers cyanide-resistant respiratory activity on these cells (Albury, M. S., Dudley, P., Watts, F. Z., and Moore, A. L. (1996) J. Biol. Chem. 271, 17062-17066). Using this functional expression system we have investigated the active site of the plant alternative oxidase, which has been postulated to comprise a non-heme binuclear iron center. Mutation of a conserved glutamate (Glu-270), previously postulated to be a bridging ligand within the active site, to asparagine abolishes catalytic activity because mitochondria containing the E270N mutant protein do not exhibit antimycin A-resistant respiration. Western blot analysis, using antibodies specific for the alternative oxidase, revealed that the E270N mutant protein was targeted to and processed by S. pombe mitochondria in a manner similar to that of the wild-type protein. It is possible that lack of antimycin A-insensitive respiration observed in mitochondria containing the E270N mutant protein is due to incorrect insertion of the mutant alternative oxidase into the inner mitochondrial membrane. However, Western blot analysis of subfractionated mitochondria shows that both wild-type and E270N alternative oxidase are specifically located in the inner mitochondrial membrane, suggesting that misfolding or lack of insertion is unlikely. These results provide the first experimental evidence to support the structural model in which the active site of the alternative oxidase contains a coupled binuclear iron center.
Collapse
Affiliation(s)
- M S Albury
- Biochemistry Department, School of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | |
Collapse
|
49
|
Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Rauch GS, Siedow JN. Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation. J Biol Chem 1998; 273:30750-6. [PMID: 9804851 DOI: 10.1074/jbc.273.46.30750] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyanide-resistant alternative oxidase of plant mitochondria is a homodimeric protein whose activity can be regulated by a redox-sensitive intersubunit sulfhydryl/disulfide system and by alpha-keto acids. After determining that the Arabidopsis alternative oxidase possesses the redox-sensitive sulfhydryl/disulfide system, site-directed mutagenesis of an Arabidopsis cDNA clone was used to individually change the two conserved Cys residues, Cys-128 and Cys-78, to Ala. Using diamide oxidation and chemical cross-linking of the protein expressed in Escherichia coli, Cys-78 was shown to be: 1) the Cys residue involved in the sulfhydryl/disulfide system; and 2) not required for subunit dimerization. The C128A mutant was stimulated by pyruvate, while the C78A mutant protein had little activity and displayed no stimulation by pyruvate. Mutating Cys-78 to Glu produced an active enzyme which was insensitive to pyruvate, consistent with alpha-keto acid activation occurring through a thiohemiacetal. These results indicate that Cys-78 serves as both the regulatory sulfhydryl/disulfide and the site of activation by alpha-keto acids. In light of these results, the previously observed effects of sulfhydryl reagents on the alternative oxidase of isolated soybean mitochondria were re-examined and were found to be in agreement with a single sulfhydryl residue being the site both of alpha-keto acid activation and of the regulatory sulfhydryl/disulfide system.
Collapse
Affiliation(s)
- D M Rhoads
- Developmental, Cell, and Molecular Biology/Botany Department, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | | | |
Collapse
|
50
|
Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:161-9. [PMID: 9804939 DOI: 10.1016/s0167-4781(98)00159-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternative oxidase (AOX) is dramatically induced when the fungus Magnaporthe grisea is incubated with the fungicide SSF-126, which interacts with the cytochrome bc1 complex in the electron transport system of mitochondria. A full-length cDNA for the alternative oxidase gene (AOX) was obtained, and the deduced amino acid sequence revealed marked similarity to other AOXs, but lacks two cysteine residues at corresponding sites which are conserved in plant AOXs and play essential roles in the post-translational regulation. Northern blot experiments showed that treatment of M. grisea cells with SSF-126 induces accumulation of AOX mRNA in a dose-dependent manner, and the level was correlated with the activity of alternative respiration. H2O2 also induced the accumulation of the transcript with a short half-life (<15 min). Nuclear run-on experiments showed that the AOX gene was transcribed constitutively in unstimulated cells. Cycloheximide did not change the basal level of transcription, but induced the accumulation of the transcript, indicating that active degradation of the transcript occurs by factor(s) sensitive to cycloheximide. On the other hand, SSF-126 enhanced the transcriptional activity of AOX gene threefold compared to that of control cells, and H2O2 was also potent for enhancement of the transcription. From these results, it is concluded that the respiratory inhibitor-dependent activation of the transcription is a primary determinant for the induction of alternative respiration in M. grisea. Because we have previously shown that SSF-126 treatment of M. grisea mitochondria induced the generation of superoxide, active oxygen species are thought to be signal mediators to activate AOX gene transcription in M. grisea.
Collapse
Affiliation(s)
- H Yukioka
- Aburahi Laboratories, Shionogi and Co., Ltd., 1405 Gotanda, Koka, Shiga 520-3423, Japan.
| | | | | | | | | | | | | |
Collapse
|