1
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
2
|
Rossio V, Liu X, Paulo JA. Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742. Proteomes 2023; 11:30. [PMID: 37873872 PMCID: PMC10594481 DOI: 10.3390/proteomes11040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of S. cerevisiae are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
3
|
Du H, Fu Y, Deng N, Xu Y. Transcriptional Profiling Reveals Adaptive Response and Tolerance to Lactic Acid Stress in Pichia kudriavzevii. Foods 2022; 11:foods11182725. [PMID: 36140854 PMCID: PMC9498142 DOI: 10.3390/foods11182725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pichia kudriavzevii plays an important role in fermented foods and beverages. In the long domestication process of traditional fermentation, the mechanism of response to lactic acid, a common metabolite and growth inhibitor, is currently unclear in P. kudriavzevii. In this study, the tolerance to lactic acid of P. kudriavzevii C-16, isolated from fermented grains, was compared with its type strain ATCC 24210. Under lactic acid stress, P. kudriavzevii C-16 showed increased biomass yields and lactic acid consumption rates. Then, mRNA sequencing was used to analyze the response to lactic acid in P. kudriavzevii C-16. Results showed that 92 and 96 genes were significantly upregulated, 52 and 58 genes were significantly downregulated, respectively, in P. kudriavzevii C-16 cultured for 12 h and 24 h. The genes, which involved in pyruvate metabolic pathway, ABC transporter proteins, glutamate metabolic pathway, and the biosynthetic pathway of leucine and valine, were observed to be differentially expressed between the P. kudriavzevii C-16 and its type strain ATCC 24210. By analyzing the production of higher alcohols, the concentrations of isobutyl alcohol and isoamyl alcohol produced by P. kudriavzevii C-16 increased significantly. It was consistent with the up-regulation of genes that biosynthesized related amino acids.
Collapse
Affiliation(s)
| | | | | | - Yan Xu
- Correspondence: ; Tel.: +86-510-85964112
| |
Collapse
|
4
|
Tandem Mass Tags Quantitative Proteome Identification and Function Analysis of ABC Transporters in Neofusicoccum parvum. Int J Mol Sci 2022; 23:ijms23179908. [PMID: 36077305 PMCID: PMC9456026 DOI: 10.3390/ijms23179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum can cause twig blight of the walnut (Juglans spp.), resulting in great economic losses and ecological damage. We performed proteomic tandem mass tags (TMT) quantification of two Neofusicoccum parvum strains with different substrates, BH01 in walnut substrate (SW) and sterile water (SK), and BH03 in walnut substrate (WW) and sterile water (WK), in order to identify differentially expressed proteins. We identified 998, 95, and 489 differentially expressed proteins (DEPs) between the SK vs. WK, SW vs. SK, and WW vs. WK comparison groups, respectively. A phylogenetic analysis was performed to classify the ABC transporter proteins annotated in the TMT protein quantification into eight groups. Physicochemical and structural analyses of the 24 ATP-binding cassette (ABC) transporter proteins revealed that 14 of them had transmembrane structures. To elucidate the functions of these transmembrane proteins, we determined the relative expression levels of ABC transporter genes in strains cultured in sodium chloride, hydrogen peroxide, copper sulfate, and carbendazim mediums, in comparison with pure medium; analysis revealed differential upregulation. To verify the expression results, we knocked out the NpABC2 gene and compared the wild-type and knockout mutant strains. The knockout mutant strains exhibited a higher sensitivity to antifungal drugs. Furthermore, the virulence of the knockout mutant strains was significantly lower than the wild-type strains, thus implying that NpABC2 plays a role in the drug resistance of N. parvum and affects its virulence.
Collapse
|
5
|
Raschka SL, Harris A, Luisi BF, Schmitt L. Flipping and other astonishing transporter dance moves in fungal drug resistance. Bioessays 2022; 44:e2200035. [PMID: 35451123 DOI: 10.1002/bies.202200035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
In all domains of life, transmembrane proteins from the ATP-binding cassette (ABC) transporter family drive the translocation of diverse substances across lipid bilayers. In pathogenic fungi, the ABC transporters of the pleiotropic drug resistance (PDR) subfamily confer antibiotic resistance and so are of interest as therapeutic targets. They also drive the quest for understanding how ABC transporters can generally accommodate such a wide range of substrates. The Pdr5 transporter from baker's yeast is representative of the PDR group and, ever since its discovery more than 30 years ago, has been the subject of extensive functional analyses. A new perspective of these studies has been recently provided in the framework of the first electron cryo-microscopy structures of Pdr5, as well as emergent applications of machine learning in the field. Taken together, the old and the new developments have been used to propose a mechanism for the transport process in PDR proteins. This mechanism involves a "flippase" step that moves the substrates from one leaflet of the bilayer to the other, as a central element of cellular efflux.
Collapse
Affiliation(s)
- Stefanie L Raschka
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Nikolov VN, Malavia D, Kubota T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes. Nat Commun 2022; 13:1968. [PMID: 35413952 PMCID: PMC9005695 DOI: 10.1038/s41467-022-29591-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
The Pleiotropic Drug Resistance (PDR) network is central to the drug response in fungi, and its overactivation is associated with drug resistance. However, gene regulation of the PDR network is not well understood. Here, we show that the histone chaperone Rtt106 and the chromatin remodeller SWI/SNF control expression of the PDR network genes and confer drug resistance. In Saccharomyces cerevisiae, Rtt106 specifically localises to PDR network gene promoters dependent on transcription factor Pdr3, but not Pdr1, and is essential for Pdr3-mediated basal expression of the PDR network genes, while SWI/SNF is essential for both basal and drug-induced expression. Also in the pathogenic fungus Candida glabrata, Rtt106 and SWI/SNF regulate drug-induced PDR gene expression. Consistently, loss of Rtt106 or SWI/SNF sensitises drug-resistant S. cerevisiae mutants and C. glabrata to antifungal drugs. Since they cooperatively drive PDR network gene expression, Rtt106 and SWI/SNF represent potential therapeutic targets to combat antifungal resistance.
Collapse
Affiliation(s)
- Vladislav N Nikolov
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dhara Malavia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
7
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
8
|
Yang R, Chen X, Huang Q, Chen C, Rengasamy KRR, Chen J, Wan C(C. Mining RNA-Seq Data to Depict How Penicillium digitatum Shapes Its Transcriptome in Response to Nanoemulsion. Front Nutr 2021; 8:724419. [PMID: 34595200 PMCID: PMC8476847 DOI: 10.3389/fnut.2021.724419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.
Collapse
Affiliation(s)
- Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Xiu Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
9
|
Holič R, Šťastný D, Griač P. Sec14 family of lipid transfer proteins in yeasts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158990. [PMID: 34118432 DOI: 10.1016/j.bbalip.2021.158990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The hydrophobicity of lipids prevents their free movement across the cytoplasm. To achieve highly heterogeneous and precisely regulated lipid distribution in different cellular membranes, lipids are transported by lipid transfer proteins (LTPs) in addition to their transport by vesicles. Sec14 family is one of the most extensively studied groups of LTPs. Here we provide an overview of Sec14 family of LTPs in the most studied yeast Saccharomyces cerevisiae as well as in other selected non-Saccharomyces yeasts-Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, Candida glabrata, Cryptococcus neoformans, and Yarrowia lipolytica. Discussed are specificities of Sec14-domain LTPs in various yeasts, their mode of action, subcellular localization, and physiological function. In addition, quite few Sec14 family LTPs are target of antifungal drugs, serve as modifiers of drug resistance or influence virulence of pathologic yeasts. Thus, they represent an important object of study from the perspective of human health.
Collapse
Affiliation(s)
- Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominik Šťastný
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
10
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
11
|
Swagatika S, Tomar RS. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2021; 553:141-147. [PMID: 33770579 DOI: 10.1016/j.bbrc.2021.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023]
Abstract
Cantharidin is a potent anti-cancer drug and is known to exert its cytotoxic effects in several cancer cell lines. Although we have ample knowledge about its mode of action, we still know a little about cantharidin associated drug resistance mechanisms which dictates the efficacy and cytotoxic potential of this drug. In this direction, in the present study we employed Sacharomyces cerevisiae as a model organism and screened mutants of pleiotropic drug resistance network of genes for their susceptibility to cantharidin. We show that growth of pdr1Δ and pdr1Δpdr3Δ was severely reduced in presence of cantharidin whereas that of pdr3Δ remain unaffected when compared to wildtype. Loss of one of the PDR1 target genes PDR5, encoding an ABC membrane efflux pump, rendered the cells hypersensitive whereas overexpression of it conferred resistance. Additionally, cantharidin induced the upregulation of both PDR1 and PDR5 genes. Interestingly, pdr1Δpdr5Δ double deletion mutants were hypersensitive to cantharidin showing a synergistic effect in its cellular detoxification. Furthermore, transcriptional activation of PDR5 post cantharidin treatment was majorly dependent on the presence of Pdr1 and less significantly of Pdr3 transcription factors. Altogether our findings suggest that Pdr1 acts to increase cantharidin resistance by elevating the level of Pdr5 which serves as a major detoxification safeguard under CAN stress.
Collapse
Affiliation(s)
- Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India.
| |
Collapse
|
12
|
Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158815. [PMID: 32942047 PMCID: PMC7695621 DOI: 10.1016/j.bbalip.2020.158815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Independent studies from our group and others have provided evidence that sphingolipids (SLs) influence the antimycotic susceptibility of Candida species. We analyzed the molecular SL signatures of drug-resistant clinical isolates of Candida auris, which have emerged as a global threat over the last decade. This included Indian hospital isolates of C. auris, which were either resistant to fluconazole (FLCR) or amphotericin B (AmBR) or both drugs. Relative to Candida glabrata and Candida albicans strains, these C. auris isolates were susceptible to SL pathway inhibitors such as myriocin and aureobasidin A, suggesting that SL content may influence azole and AmB susceptibilities. Our analysis of SLs confirmed the presence of 140 SL species within nine major SL classes, namely the sphingoid bases, Cer, αOH-Cer, dhCer, PCer, αOH-PCer, αOH-GlcCer, GlcCer, and IPC. Other than for αOH-GlcCer, most of the SLs were found at higher concentrations in FLCR isolates as compared to the AmBR isolates. SLs were at intermediate levels in FLCR + AmBR isolates. The observed diversity of molecular species of SL classes based on fatty acyl composition was further reflected in their distinct specific imprint, suggesting their influence in drug resistance. Together, the presented data improves our understanding of the dynamics of SL structures, their synthesis, and link to the drug resistance in C. auris. Candida auris isolates are susceptible to sphingolipid inhibitors myriocin and aureobasidin A. The distribution of sphingolipid species is distinct among C. auris isolates resistant to different antifungals. Phytoceramides are the most abundant class of sphingolipid. Cer(d18:1/18:1) is the major of ceramide species in C. auris. d19:2 glucosylceramide backbone is typically in abundance in AmB resistant C. auris isolates.
Collapse
|
13
|
Briz-Cid N, Pose-Juan E, Nicoletti M, Simal-Gándara J, Fasoli E, Rial-Otero R. Influence of tetraconazole on the proteome profile of Saccharomyces cerevisiae Lalvin T73™ strain. J Proteomics 2020; 227:103915. [PMID: 32711165 DOI: 10.1016/j.jprot.2020.103915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022]
Abstract
This work aimed to evaluate the modifications on the proteome profile of Saccharomyces cerevisiae T73™ strain as a consequence of its adaptive response to the presence of tetraconazole molecules in the fermentation medium. Pasteurised grape juices were separately supplemented with tetraconazole or a commercial formulation containing 12.5% w/v of tetraconazole at two concentration levels. In addition, experiments without fungicides were developed for comparative purposes. Proteome profiles of yeasts cultured in the presence or absence of fungicide molecules were different. Independently of the fungicide treatment applied, the highest variations concerning the control sample were observed for those proteins involved in metabolic processes, especially in the metabolism of nitrogen compounds. Tetraconazole molecules altered the abundance of several enzymes involved in the biosynthesis of amino acids, purines, and ergosterol. Moreover, differences in the abundance of several enzymes of the TCA cycle were found. Changes observed were different between the active substance and the commercial formulation. SIGNIFICANCE: The presence of fungicide residues in grape juice has direct implications on the development of the aromatic profile of the wine. These alterations could be related to changes in the secondary metabolism of yeasts. However, the molecular mechanisms involved in the response of yeasts to fungicide residues remains quite unexplored. Through this exhaustive proteomic study, alterations in the amino acids biosynthesis pathways due to the presence of the tetraconazole molecules were observed. Amino acids are precursors of some important higher alcohols and ethyl acetates (such as methionol, 2-phenylethanol, isoamyl alcohol or 2-phenylacetate). Besides, the effect of tetraconazole on the ergosterol biosynthesis pathway could be related to a higher production of medium-chain fatty acids and their corresponding ethyl acetates.
Collapse
Affiliation(s)
- Noelia Briz-Cid
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Eva Pose-Juan
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20131, Italy.
| | - Raquel Rial-Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain.
| |
Collapse
|
14
|
Grechko V, Podolsky D, Cheshchevik V. Identification new potential multidrug resistance proteins of Saccharomyces cerevisiae. J Microbiol Methods 2020; 176:106029. [DOI: 10.1016/j.mimet.2020.106029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
15
|
Shahi G, Kumar M, Kumari S, Rudramurthy SM, Chakrabarti A, Gaur NA, Singh A, Prasad R. A detailed lipidomic study of human pathogenic fungi Candida auris. FEMS Yeast Res 2020; 20:foaa045. [PMID: 32756963 PMCID: PMC8189018 DOI: 10.1093/femsyr/foaa045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
The present study is an attempt to determine the lipid composition of Candida auris and to highlight if the changes in lipids can be correlated to high drug resistance encountered in C. auris. For this, the comparative lipidomics landscape between drug-susceptible (CBS10913T) and a resistant hospital isolate (NCCPF_470033) of C. auris was determined by employing high throughput mass spectrometry. All major groups of phosphoglycerides (PGL), sphingolipids, sterols, diacylglycerols (DAG) and triacylglycerols (TAG), were quantitated along with their molecular lipid species. Our analyses highlighted several key changes where the NCCPF_470033 showed an increase in PGL content, specifically phosphatidylcholine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine; odd chain containing lipids and accumulation of 16:1-DAG and 16:0-DAG; depletion of 18:1-TAG and 18:0-TAG. The landscape of molecular species displayed a distinct imprint between isolates. For example, the levels of unsaturated PGLs, contributed by both odd and even-chain fatty acyls were higher in resistant NCCPF_470033 isolate, resulting in a higher unsaturation index. Notwithstanding, several commonalities of lipid compositional changes between resistant C. auris and other Candida spp., the study could also identify distinguishable changes in specific lipid species in C. auris. Together, the data highlights the modulation of membrane lipid homeostasis associated with drug-resistant phenotype of C. auris.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurugram,, Haryana, 122413, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurugram,, Haryana, 122413, India
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research,, Chandigarh, 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research,, Chandigarh, 160012, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurugram,, Haryana, 122413, India
| |
Collapse
|
16
|
Keniya MV, Monk BC. Attenuated apoptotic BAX expression as a xenobiotic reporter in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 19:5530756. [PMID: 31291458 DOI: 10.1093/femsyr/foz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/07/2019] [Indexed: 11/12/2022] Open
Abstract
Fungal infections are a major challenge to medicine and agriculture. Repeated and prophylactic use of antifungals can lead to pathogen cross-resistance to different classes of drugs. The early development of multidrug resistance in pathogenic fungi includes drug tolerance mediated by drug-dependent activation of drug efflux. In Saccharomyces cerevisiae and the fungal pathogen Candida glabrata, xenobiotic sensing motifs in transcription factors upregulate expression of several ATP-binding cassette (ABC) drug efflux pumps. We have therefore considered how drug candidates that trigger or prevent drug resistance could be identified and evaluated during drug discovery. We report a robust and sensitive, S. cerevisiae-based xenobiotic sensing system using the Pdr1 protein as a sensor and an attenuated version of the apoptotic murine BCL2-associated X (BAX) gene as a reporter. A molecular mechanism of attenuation that involves frameshift reversal may be associated with translation coupling and requires further investigation.
Collapse
Affiliation(s)
- Mikhail V Keniya
- The Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Brian C Monk
- The Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
17
|
Spisak W, Chlebicki A, Kaszczyszyn M, Szar M, Kozak J, Olma A. Three-electrode galvanic microcells as a new antimicrobial tool. Sci Rep 2020; 10:7341. [PMID: 32355301 PMCID: PMC7192930 DOI: 10.1038/s41598-020-64410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
This study presents the first research related to fungal and bacterial growth within electromagnetic fields generated by three-electrode galvanic cells, with PDA growth medium as an electrolyte. We used galvanic microcells constructed with copper, bismuth and zinc metal bars. The configuration of these electrodes was a fundamental agent in the creation of a maximum inhibition zone and in bismuth ion movement. Fungal strains, such as Aspergillus tubingensis and Rhodotorula mucilaginosa, and the bacterium Micrococcus luteus were used as model organisms.
Collapse
Affiliation(s)
- Wojciech Spisak
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| | - Andrzej Chlebicki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Cracow, Poland
| | | | - Mateusz Szar
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland.
| | - Jarosław Kozak
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| | - Arletta Olma
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| |
Collapse
|
18
|
Hamza A, Driessen MRM, Tammpere E, O'Neil NJ, Hieter P. Cross-Species Complementation of Nonessential Yeast Genes Establishes Platforms for Testing Inhibitors of Human Proteins. Genetics 2020; 214:735-747. [PMID: 31937519 PMCID: PMC7054014 DOI: 10.1534/genetics.119.302971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Cross-species complementation can be used to generate humanized yeast, which is a valuable resource with which to model and study human biology. Humanized yeast can be used as an in vivo platform to screen for chemical inhibition of human protein drug targets. To this end, we report the systematic complementation of nonessential yeast genes implicated in chromosome instability (CIN) with their human homologs. We identified 20 human-yeast complementation pairs that are replaceable in 44 assays that test rescue of chemical sensitivity and/or CIN defects. We selected a human-yeast pair (hFEN1/yRAD27), which is frequently overexpressed in cancer and is an anticancer therapeutic target, to perform in vivo inhibitor assays using a humanized yeast cell-based platform. In agreement with published in vitro assays, we demonstrate that HU-based PTPD is a species-specific hFEN1 inhibitor. In contrast, another reported hFEN1 inhibitor, the arylstibonic acid derivative NSC-13755, was determined to have off-target effects resulting in a synthetic lethal phenotype with yRAD27-deficient strains. Our study expands the list of human-yeast complementation pairs to nonessential genes by defining novel cell-based assays that can be utilized as a broad resource to study human drug targets.
Collapse
Affiliation(s)
- Akil Hamza
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Maureen R M Driessen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Erik Tammpere
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
19
|
Kawanishi M, Mori K, Yamada R, Ito-Harashima S, Yagi T. Improvement of reporter gene assay for highly sensitive dioxin detection using protoplastic yeast with inactivation of CWP and PDR genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9227-9235. [PMID: 31916168 DOI: 10.1007/s11356-019-07484-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
A yeast reporter gene assay system with improved performance for dioxin detection was established. Since yeast reporter gene assays are relatively simple, easy to handle, and inexpensive, they have been used for various assessments of environmental contaminants. We previously constructed a yeast assay strain expressing the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) carrying the lacZ reporter gene, for detection of dioxins. In the present study, genes encoding cell wall mannoproteins and ATP-binding cassette transporters in the yeast assay strains were deleted in order to increase the substance influx and prevent its efflux. We also established an assay procedure for protoplasts of these yeasts. These modifications improved the detection limit 40-fold and reduced the duration of the assay by 40%. By combining the yeast protoplast and a rapid sample preparation technique using disposal multilayer solid-phase extraction columns to remove unintended aryl hydrocarbons, this yeast reporter gene assay system detected the ligand activities of dioxins and related compounds in 1 g of forest soil containing dioxins at a concentration 10 times lower than the Japanese environmental standard for dioxins in soil.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| | - Kentaro Mori
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Rina Yamada
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Sayoko Ito-Harashima
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Takashi Yagi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
20
|
J B, Das A. An edible fungi Pleurotus ostreatus inhibits adipogenesis via suppressing expression of PPAR γ and C/EBP α in 3T3-L1 cells: In vitro validation of gene knock out of RNAs in PPAR γ using CRISPR spcas9. Biomed Pharmacother 2019; 116:109030. [PMID: 31152927 DOI: 10.1016/j.biopha.2019.109030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Obesity is now well recognized as a disorder, one that is essentially preventable through changes in lifestyle. Obesity is also a main concern associated with expanded morbidity and mortality from many noncommunicable illnesses (NCDs). The study aimed to determine the antiobesity effect of Pleurotus ostreatus (PO) and its bioactive anthraquinone (AQ). The overall promoter genes CEBPα (CCAAT enhancer binding protein α) and PPARγ (Peroxisome proliferator activated receptor γ) in controlling the homeostasis of glucose was analysed using 3T3-L1 cell line. Finally, an insilico study was carried out using CRISPR software to identify the RNA's involved in adipogenesis especially of the control gene PPARγ. MATERIALS AND METHODS Preliminary screening of the edible fungi and their bio actives led to the marvellous discovery of side effect free agonists for treating obesity (adipogenesis). An edible fungi Pleurotus ostreatus (PO) were analysed in a screening platform with different series of tests for adipocyte differentiation, triglyceride analysis, lipolysis determination, glucose uptake assay, cytotoxicity assay and lipase activity followed by specific gene expression analysis. The gene knockout mechanism was also elucidated by CRISPR spcas 9 tool. RESULTS The antiadipogenic (antiobesity) activity of DMSO extract of PO were found to stimulate the insulin dependent uptake of glucose. The extract also decreased the levels of triglycerides and glycerol accumulation in differentiated adipocyte cells. The binding FABP4 (Fatty acid binding protein) and transport protein FATP1 (Fatty acid transport protein) along with the fat breaking LPL (lipoprotein lipase) was found to be inhibited after the PO treatment at varying concentration (0-300 μg/ml). CRISPR spcas9 genome editing software was used as an insilico approach in validating the efficiency of mouse embryonic and human adipogenic cell line (3T3-L1). These tool analysed and found 4 RNAs gene knock out possibilities in PPARγ and their efficiency for further treating obesity. CONCLUSION These novel finding contribute to the confirmation that edible fungi PO and it's bioactive AQ is an adequate supplement for constraining the lipid and triglycerides in differentiated mature adipocytes by reversing the fat deposition. Thereby, forbidding the enzymes linked with fat absorption. Besides, the CRISPR tool identified gene knock out possibilities of control gene PPARγ, will pave a way in further research for treating obesity.
Collapse
Affiliation(s)
- Bindhu J
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India
| | - Arunava Das
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India.
| |
Collapse
|
21
|
Ngo M, Wechter N, Tsai E, Shun TY, Gough A, Schurdak ME, Schwacha A, Vogt A. A High-Throughput Assay for DNA Replication Inhibitors Based upon Multivariate Analysis of Yeast Growth Kinetics. SLAS DISCOVERY 2019; 24:669-681. [PMID: 30802412 DOI: 10.1177/2472555219829740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.
Collapse
Affiliation(s)
- Marilyn Ngo
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Nick Wechter
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Tsai
- 3 Apollo Medical Optics, Ltd., Taipei City, Taiwan (R.O.C.)
| | - Tong Ying Shun
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Albert Gough
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony Schwacha
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreas Vogt
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Abstract
Metformin elicits pleiotropic effects that are beneficial for treating diabetes, as well as particular cancers and aging. In spite of its importance, a convincing and unifying mechanism to explain how metformin operates is lacking. Here we describe investigations into the mechanism of metformin action through heme and hemoprotein(s). Metformin suppresses heme production by 50% in yeast, and this suppression requires mitochondria function, which is necessary for heme synthesis. At high concentrations comparable to those in the clinic, metformin also suppresses heme production in human erythrocytes, erythropoietic cells and hepatocytes by 30–50%; the heme-targeting drug artemisinin operates at a greater potency. Significantly, metformin prevents oxidation of heme in three protein scaffolds, cytochrome c, myoglobin and hemoglobin, with Kd values < 3 mM suggesting a dual oxidation and reduction role in the regulation of heme redox transition. Since heme- and porphyrin-like groups operate in diverse enzymes that control important metabolic processes, we suggest that metformin acts, at least in part, through stabilizing appropriate redox states in heme and other porphyrin-containing groups to control cellular metabolism.
Collapse
|
23
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
24
|
Jing W, Camellato B, Roney IJ, Kaern M, Godin M. Measuring Single-Cell Phenotypic Growth Heterogeneity Using a Microfluidic Cell Volume Sensor. Sci Rep 2018; 8:17809. [PMID: 30546021 PMCID: PMC6293012 DOI: 10.1038/s41598-018-36000-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
An imaging-integrated microfluidic cell volume sensor was used to evaluate the volumetric growth rate of single cells from a Saccharomyces cerevisiae population exhibiting two phenotypic expression states of the PDR5 gene. This gene grants multidrug resistance by transcribing a membrane transporter capable of pumping out cytotoxic compounds from the cell. Utilizing fluorescent markers, single cells were isolated and trapped, then their growth rates were measured in two on-chip environments: rich media and media dosed with the antibiotic cycloheximide. Approximating growth rates to first-order, we assessed the fitness of individual cells and found that those with low PDR5 expression had higher fitness in rich media whereas cells with high PDR5 expression had higher fitness in the presence of the drug. Moreover, the drug dramatically reduced the fitness of cells with low PDR5 expression but had comparatively minimal impact on the fitness of cells with high PDR5 expression. Our experiments show the utility of this imaging-integrated microfluidic cell volume sensor for high-resolution, single-cell analysis, as well as its potential application for studies that characterize and compare the fitness and morphology of individual cells from heterogeneous populations under different growth conditions.
Collapse
Affiliation(s)
- Wenyang Jing
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan Camellato
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ian J Roney
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mads Kaern
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michel Godin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Godinho CP, Dias PJ, Ponçot E, Sá-Correia I. The Paralogous Genes PDR18 and SNQ2, Encoding Multidrug Resistance ABC Transporters, Derive From a Recent Duplication Event, PDR18 Being Specific to the Saccharomyces Genus. Front Genet 2018; 9:476. [PMID: 30374366 PMCID: PMC6196229 DOI: 10.3389/fgene.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Saccharomyces cerevisiae Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. PDR18 is a paralog of SNQ2, first described as a determinant of resistance to the chemical mutagen 4-NQO. The phylogenetic and neighborhood analysis performed in this work to reconstruct the evolutionary history of ScPDR18 gene in Saccharomycetaceae yeasts was focused on the 214 Pdr18/Snq2 homologs from the genomes of 117 strains belonging to 29 yeast species across that family. Results support the idea that a single duplication event occurring in the common ancestor of the Saccharomyces genus yeasts was at the origin of PDR18 and SNQ2, and that by chromosome translocation PDR18 gained a subtelomeric region location in chromosome XIV. The multidrug/multixenobiotic phenotypic profiles of S. cerevisiae pdr18Δ and snq2Δ deletion mutants were compared, as well as the susceptibility profile for Candida glabrata snq2Δ deletion mutant, given that this yeast species has diverged previously to the duplication event on the origin of PDR18 and SNQ2 genes and encode only one Pdr18/Snq2 homolog. Results show a significant overlap between ScSnq2 and CgSnq2 roles in multidrug/multixenobiotic resistance (MDR/MXR) as well as some overlap in azole resistance between ScPdr18 and CgSnq2. The fact that ScSnq2 and ScPdr18 confer resistance to different sets of chemical compounds with little overlapping is consistent with the subfunctionalization and neofunctionalization of these gene copies. The elucidation of the real biological role of ScSNQ2 will enlighten this issue. Remarkably, PDR18 is only found in Saccharomyces genus genomes and is present in almost all the recently available 1,000 deep coverage genomes of natural S. cerevisiae isolates, consistent with the relevant encoded physiological function.
Collapse
Affiliation(s)
- Cláudia P Godinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J Dias
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Elise Ponçot
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Balzi E, Moye-Rowley WS. Unveiling the transcriptional control of pleiotropic drug resistance in Saccharomyces cerevisiae: Contributions of André Goffeau and his group. Yeast 2018; 36:195-200. [PMID: 30194700 DOI: 10.1002/yea.3354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
Studies in the yeast Saccharomyces cerevisiae have provided much of the basic detail underlying the organization and regulation of multiple or pleiotropic drug resistance gene network in eukaryotic microbes. As with many aspects of yeast biology, the initial observations that drove the eventual molecular characterization of multidrug resistance gene were provided by genetics. This review focuses on contributions from the laboratory of Dr. André Goffeau that uncovered key aspects of the transcriptional regulation of these multidrug resistance genes. André's group made many seminal discoveries that helped lead to the current picture we have of how eukaryotic microbes respond to and deal with a variety of antifungal agents. The importance of the transcriptional contribution to antifungal drugs is illustrated by the large number of drug resistant mutants found in several yeast species that lead to increased activity of transcriptional regulators. The characterization of the Saccharomyces cerevisiae PDR1 gene by the Goffeau group provided the first molecular basis explaining the link between this hyperactive transcription factor and drug resistance.
Collapse
Affiliation(s)
- Elisabetta Balzi
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
Yamawaki C, Oyama M, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast. Lett Appl Microbiol 2018; 68:17-23. [PMID: 30276838 DOI: 10.1111/lam.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/01/2022]
Abstract
Drug resistance commonly occurs when treating immunocompromised patients who have fungal infections. Curcumin, is a compound isolated from Curcuma longa, has been reported to inhibit drug efflux in several human cell lines and nonpathogenic budding yeast Saccharomyces cerevisiae cells that overexpresses the ATP-binding cassette (ABC) transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. The aim of this study was to examine the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. The antifungal activity of dodecanol alone was temporary against S. cerevisiae; however, restoration of cell viability was completely inhibited when the cells were co-treated with dodecanol and curcumin. Furthermore, restriction of rhodamine 6G (R6G) efflux from the cells and intracellular accumulation of R6G were observed with curcumin treatment. Reverse transcription-polymerase chain reaction analysis revealed that curcumin reduced the dodecanol-induced overexpression of the ABC transporter-related genes PDR1, PDR3 and PDR5 to their control levels in untreated cells. Curcumin can directly restrict the glucose-induced drug efflux and inhibits the expression of the ABC transporter gene PDR5, and can thereby inhibit the efflux of dodecanol from S. cerevisiae cells. Curcumin is effective in potentiating the efficacy of antifungal drugs via its effects on ABC transporters. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is common in immunocompromised patients with fungal infections. Curcumin, isolated from Curcuma longa, inhibits drug efflux in nonpathogenic budding yeast Saccharomyces cerevisiae cells overexpressing ABC transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. We examined the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. Curcumin directly inhibited drug efflux and also suppressed the PDR5 expression, thereby enhancing the antifungal effects. Thus, curcumin potentially promotes the efficacy of antifungals via its effects on ABC transporters in wild-type fungal strains.
Collapse
Affiliation(s)
- C Yamawaki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - M Oyama
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Yamaguchi
- Graduate School of Science, Osaka City University, Osaka, Japan.,Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - A Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - T Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - K-I Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
28
|
Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 2018; 8:7860. [PMID: 29777118 PMCID: PMC5959924 DOI: 10.1038/s41598-018-26128-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae has the ability to become less sensitive to a broad range of chemically and functionally unrelated cytotoxic compounds. Among multistress resistance mechanisms is the one mediated by plasma membrane efflux pump proteins belonging to the ABC superfamily, questionably proposed to enhance the kinetics of extrusion of all these compounds. This study provides new insights into the biological role and impact in yeast response to acetic acid stress of the multistress resistance determinant Pdr18 proposed to mediate ergosterol incorporation in plasma membrane. The described coordinated activation of the transcription of PDR18 and of several ergosterol biosynthetic genes (ERG2-4, ERG6, ERG24) during the period of adaptation to acetic acid inhibited growth provides further support to the involvement of Pdr18 in yeast response to maintain plasma membrane ergosterol content in stressed cells. Pdr18 role in ergosterol homeostasis helps the cell to counteract acetic acid-induced decrease of plasma membrane lipid order, increase of the non-specific membrane permeability and decrease of transmembrane electrochemical potential. Collectively, our results support the notion that Pdr18-mediated multistress resistance is closely linked to the status of plasma membrane lipid environment related with ergosterol content and the associated plasma membrane properties.
Collapse
Affiliation(s)
- Cláudia P Godinho
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Catarina S Prata
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Sandra N Pinto
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV, IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisbon, Portugal
| | - Fábio Fernandes
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
29
|
Charlebois DA, Diao J, Nevozhay D, Balázsi G. Negative Regulation Gene Circuits for Efflux Pump Control. Methods Mol Biol 2018; 1772:25-43. [PMID: 29754221 DOI: 10.1007/978-1-4939-7795-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Synthetic biologists aim to design biological systems for a variety of industrial and medical applications, ranging from biofuel to drug production. Synthetic gene circuits regulating efflux pump protein expression can achieve this by driving desired substrates such as biofuels, pharmaceuticals, or other chemicals out of the cell in a precisely controlled manner. However, efflux pumps may introduce implicit negative feedback by pumping out intracellular inducer molecules that control gene circuits, which then can alter gene circuit function. Therefore, synthetic gene circuits must be carefully designed and constructed for precise efflux control. Here, we provide protocols for quantitatively modeling and building synthetic gene constructs for efflux pump regulation.
Collapse
Affiliation(s)
- Daniel A Charlebois
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Junchen Diao
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
30
|
Zhu X, Zou S, Li Y, Liang Y. Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Res Microbiol 2017; 168:626-635. [DOI: 10.1016/j.resmic.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023]
|
31
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95:32-42. [DOI: 10.1016/j.micpath.2016.02.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/07/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
33
|
Wride DA, Pourmand N, Bray WM, Kosarchuk JJ, Nisam SC, Quan TK, Berkeley RF, Katzman S, Hartzog GA, Dobkin CE, Scott Lokey R. Confirmation of the cellular targets of benomyl and rapamycin using next-generation sequencing of resistant mutants in S. cerevisiae. MOLECULAR BIOSYSTEMS 2015; 10:3179-87. [PMID: 25257345 DOI: 10.1039/c4mb00146j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Investigating the mechanisms of action (MOAs) of bioactive compounds and the deconvolution of their cellular targets is an important and challenging undertaking. Drug resistance in model organisms such as S. cerevisiae has long been a means for discovering drug targets and MOAs. Strains are selected for resistance to a drug of interest, and the resistance mutations can often be mapped to the drug's molecular target using classical genetic techniques. Here we demonstrate the use of next generation sequencing (NGS) to identify mutations that confer resistance to two well-characterized drugs, benomyl and rapamycin. Applying NGS to pools of drug-resistant mutants, we develop a simple system for ranking single nucleotide polymorphisms (SNPs) based on their prevalence in the pool, and for ranking genes based on the number of SNPs that they contain. We clearly identified the known targets of benomyl (TUB2) and rapamycin (FPR1) as the highest-ranking genes under this system. The highest-ranking SNPs corresponded to specific amino acid changes that are known to confer resistance to these drugs. We also found that by screening in a pdr1Δ null background strain that lacks a transcription factor regulating the expression of drug efflux pumps, and by pre-screening mutants in a panel of unrelated anti-fungal agents, we were able to mitigate against the selection of multi-drug resistance (MDR) mutants. We call our approach "Mutagenesis to Uncover Targets by deep Sequencing", or "MUTseq", and show through this proof-of-concept study its potential utility in characterizing MOAs and targets of novel compounds.
Collapse
Affiliation(s)
- Dustin A Wride
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ito-Harashima S, Shiizaki K, Kawanishi M, Kakiuchi K, Onishi K, Yamaji R, Yagi T. Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. J Pharmacol Toxicol Methods 2015; 74:41-52. [DOI: 10.1016/j.vascn.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|
35
|
New examples of membrane protein expression and purification using the yeast based Pdr1-3 expression strategy. J Biotechnol 2014; 191:158-64. [DOI: 10.1016/j.jbiotec.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/27/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022]
|
36
|
Torrente MP, Castellano LM, Shorter J. Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS One 2014; 9:e110115. [PMID: 25299406 PMCID: PMC4192545 DOI: 10.1371/journal.pone.0110115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.
Collapse
Affiliation(s)
- Mariana P. Torrente
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Castellano
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Charlebois DA, Balázsi G, Kærn M. Coherent feedforward transcriptional regulatory motifs enhance drug resistance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052708. [PMID: 25353830 PMCID: PMC5749921 DOI: 10.1103/physreve.89.052708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 05/25/2023]
Abstract
Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.
Collapse
Affiliation(s)
- Daniel A Charlebois
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Gábor Balázsi
- Department of Systems Biology-Unit 950, University of Texas MD Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77054, USA
| | - Mads Kærn
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
38
|
Paul S, Moye-Rowley WS. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 2014; 5:143. [PMID: 24795641 PMCID: PMC3997011 DOI: 10.3389/fphys.2014.00143] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
39
|
Voth WP, Takahata S, Nishikawa JL, Metcalfe BM, Näär AM, Stillman DJ. A role for FACT in repopulation of nucleosomes at inducible genes. PLoS One 2014; 9:e84092. [PMID: 24392107 PMCID: PMC3879260 DOI: 10.1371/journal.pone.0084092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR) genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs) before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30–40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly.
Collapse
Affiliation(s)
- Warren P. Voth
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Joy L. Nishikawa
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin M. Metcalfe
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
40
|
Yibmantasiri P, Bircham PW, Maass DR, Bellows DS, Atkinson PH. Networks of genes modulating the pleiotropic drug response in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2014; 10:128-37. [DOI: 10.1039/c3mb70351g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Abstract
Most currently available small molecule inhibitors of DNA replication lack enzymatic specificity, resulting in deleterious side effects during use in cancer chemotherapy and limited experimental usefulness as mechanistic tools to study DNA replication. Towards development of targeted replication inhibitors, we have focused on Mcm2-7 (minichromosome maintenance protein 2-7), a highly conserved helicase and key regulatory component of eukaryotic DNA replication. Unexpectedly we found that the fluoroquinolone antibiotic ciprofloxacin preferentially inhibits Mcm2-7. Ciprofloxacin blocks the DNA helicase activity of Mcm2-7 at concentrations that have little effect on other tested helicases and prevents the proliferation of both yeast and human cells at concentrations similar to those that inhibit DNA unwinding. Moreover, a previously characterized mcm mutant (mcm4chaos3) exhibits increased ciprofloxacin resistance. To identify more potent Mcm2-7 inhibitors, we screened molecules that are structurally related to ciprofloxacin and identified several that compromise the Mcm2-7 helicase activity at lower concentrations. Our results indicate that ciprofloxacin targets Mcm2-7 in vitro, and support the feasibility of developing specific quinolone-based inhibitors of Mcm2-7 for therapeutic and experimental applications.
Collapse
|
42
|
Stevens SK, Strehle AP, Miller RL, Gammons SH, Hoffman KJ, McCarty JT, Miller ME, Stultz LK, Hanson PK. The anticancer ruthenium complex KP1019 induces DNA damage, leading to cell cycle delay and cell death in Saccharomyces cerevisiae. Mol Pharmacol 2012; 83:225-34. [PMID: 23090979 DOI: 10.1124/mol.112.079657] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The anticancer ruthenium complex trans-[tetrachlorobis(1H-indazole)ruthenate(III)], otherwise known as KP1019, has previously been shown to inhibit proliferation of ovarian tumor cells, induce DNA damage and apoptosis in colon carcinoma cells, and reduce tumor size in animal models. Notably, no dose-limiting toxicity was observed in a Phase I clinical trial. Despite these successes, KP1019's precise mechanism of action remains poorly understood. To determine whether Saccharomyces cerevisiae might serve as an effective model for characterizing the cellular response to KP1019, we first confirmed that this drug is internalized by yeast and induces mutations, cell cycle delay, and cell death. We next examined KP1019 sensitivity of strains defective in DNA repair, ultimately showing that rad1Δ, rev3Δ, and rad52Δ yeast are hypersensitive to KP1019, suggesting that nucleotide excision repair (NER), translesion synthesis (TLS), and recombination each play a role in drug tolerance. These data are consistent with published work showing that KP1019 causes interstrand cross-links and bulky DNA adducts in mammalian cell lines. Published research also showed that mammalian cell lines resistant to other chemotherapeutic agents exhibit only modest resistance, and sometimes hypersensitivity, to KP1019. Here we report similar findings for S. cerevisiae. Whereas gain-of-function mutations in the transcription activator-encoding gene PDR1 are known to increase expression of drug pumps, causing resistance to structurally diverse toxins, we now demonstrate that KP1019 retains its potency against yeast carrying the hypermorphic alleles PDR1-11 or PDR1-3. Combined, these data suggest that S. cerevisiae could serve as an effective model system for identifying evolutionarily conserved modulators of KP1019 sensitivity.
Collapse
Affiliation(s)
- Shannon K Stevens
- Department of Biology, Birmingham-Southern College, 900 Arkadelphia Rd. Birmingham, AL 35254, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Prasad R, Goffeau A. Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annu Rev Microbiol 2012; 66:39-63. [DOI: 10.1146/annurev-micro-092611-150111] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India;
| | - Andre Goffeau
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, 1349 Belgium;
| |
Collapse
|
44
|
Abstract
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 alpha-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.
Collapse
Affiliation(s)
- I Bosch
- Harvard Medical School, The Dana-Faber Cancer Institute, Boston, MA, U.S.A
| | | |
Collapse
|
45
|
Nakayama S, Tabata K, Oba T, Kusumoto K, Mitsuiki S, Kadokura T, Nakazato A. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J Biosci Bioeng 2012; 114:281-5. [DOI: 10.1016/j.jbiosc.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/09/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
46
|
Niimi K, Harding DRK, Holmes AR, Lamping E, Niimi M, Tyndall JDA, Cannon RD, Monk BC. Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a D-octapeptide derivative inhibitor. Mol Microbiol 2012; 85:747-67. [PMID: 22788839 DOI: 10.1111/j.1365-2958.2012.08140.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10(6) member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH(2) -FFKWQRRR-CONH(2) , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
Collapse
Affiliation(s)
- Kyoko Niimi
- The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field.
Collapse
|
48
|
Abstract
All fungal genomes harbour numerous ABC (ATP-binding cassette) proteins located in various cellular compartments such as the plasma membrane, vacuoles, peroxisomes and mitochondria. Most of them have initially been discovered through their ability to confer resistance to a multitude of drugs, a phenomenon called PDR (pleiotropic drug resistance) or MDR (multidrug resistance). Studying the mechanisms underlying PDR/MDR in yeast is of importance in two ways: first, ABC proteins can confer drug resistance on pathogenic fungi such as Candida spp., Aspergillus spp. or Cryptococcus neoformans; secondly, the well-established genetic, biochemical and cell biological tractability of Saccharomyces cerevisiae makes it an ideal tool to study basic mechanisms of drug transport by ABC proteins. In the past, knowledge from yeast has complemented work on human ABC transporters involved in anticancer drug resistance or genetic diseases. Interestingly, increasing evidence available from yeast and other organisms suggests that ABC proteins play a physiological role in membrane homoeostasis and lipid distribution, although this is being intensely debated in the literature.
Collapse
|
49
|
Gallo-Ebert C, McCourt PC, Donigan M, Villasmil ML, Chen W, Pandya D, Franco J, Romano D, Chadwick SG, Gygax SE, Nickels JT. Arv1 lipid transporter function is conserved between pathogenic and nonpathogenic fungi. Fungal Genet Biol 2011; 49:101-13. [PMID: 22142782 DOI: 10.1016/j.fgb.2011.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
Abstract
The lipid transporter Arv1 regulates sterol trafficking, and glycosylphosphatidylinositol and sphingolipid biosyntheses in Saccharomyces cerevisiae. ScArv1 contains an Arv1 homology domain (AHD) that is conserved at the amino acid level in the pathogenic fungal species, Candida albicans and Candida glabrata. Here we show S. cerevisiae cells lacking Arv1 are highly susceptible to antifungal drugs. In the presence of drug, Scarv1 cells are unable to induce ERG gene expression, have an altered pleiotrophic drug response, and are defective in multi-drug resistance efflux pump expression. All phenotypes are remediated by ectopic expression of CaARV1 or CgARV1. The AHDs of these pathogenic fungi are required for specific drug tolerance, demonstrating conservation of function. In order to understand how Arv1 regulates antifungal susceptibility, we examined sterol trafficking. CaARV1/CgARV1 expression suppressed the sterol trafficking defect of Scarv1 cells. Finally, we show that C. albicansarv1/arv1 cells are avirulent using a BALB/c disseminated mouse model. We suggest that overall cell survival in response to antifungal treatment requires the lipid transporter function of Arv1.
Collapse
|
50
|
Weber SS, Bovenberg RAL, Driessen AJM. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. Biotechnol J 2011; 7:225-36. [PMID: 22057844 DOI: 10.1002/biot.201100065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/08/2022]
Abstract
Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.
Collapse
Affiliation(s)
- Stefan S Weber
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Center for Genomics of Industrial Fermentation, AG Groningen, The Netherlands
| | | | | |
Collapse
|