1
|
Reshetnyak VI, Maev IV. Bile acid therapy for primary biliary cholangitis: Pathogenetic validation. World J Exp Med 2025; 15:101771. [DOI: 10.5493/wjem.v15.i1.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/26/2024] Open
Abstract
Knowledge of the etiological and pathogenetic mechanisms of the development of any disease is essential for its treatment. Because the cause of primary biliary cholangitis (PBC), a chronic, slowly progressive cholestatic liver disease, is still unknown, treatment remains symptomatic. Knowledge of the physicochemical properties of various bile acids and the adaptive responses of cholangiocytes and hepatocytes to them has provided an important basis for the development of relatively effective drugs based on hydrophilic bile acids that can potentially slow the progression of the disease. Advances in the use of hydrophilic bile acids for the treatment of PBC are also associated with the discovery of pathogenetic mechanisms of the development of cholangiocyte damage and the appearance of the first signs of this disease. For 35 years, ursodeoxycholic acid (UDCA) has been the unique drug of choice for the treatment of patients with PBC. In recent years, the list of hydrophilic bile acids used to treat cholestatic liver diseases, including PBC, has expanded. In addition to UDCA, the use of obeticholic acid, tauroursodeoxycholic acid and norursodeoxycholic acid as drugs is discussed. The pathogenetic rationale for treatment of PBC with various bile acid drugs is discussed in this review. Emphasis is made on the mechanisms explaining the beneficial therapeutic effects and potential of each of the bile acid as a drug, based on the understanding of the pathogenesis of the initial stages of PBC.
Collapse
Affiliation(s)
- Vasiliy I Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| | - Igor V Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| |
Collapse
|
2
|
Sun Z, He W, Meng H, Li P, Qu J. Endoplasmic reticulum stress in acute lung injury and pulmonary fibrosis. FASEB J 2024; 38:e70232. [PMID: 39651914 DOI: 10.1096/fj.202401849rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive and irreversible lung disease that leads to diminished lung function, respiratory failure, and ultimately death and typically has a poor prognosis, with an average survival time of 2 to 5 years. Related articles suggested that endoplasmic reticulum (ER) stress played a critical role in the occurrence and progression of PF. The ER is responsible for maintaining protein homeostasis. However, factors such as aging, hypoxia, oxidative stress, or inflammation can disrupt this balance, promoting the accumulation of misfolded proteins in the ER and triggering ER stress. To cope with this situation, cells activate the unfolded protein response (UPR). Since acute lung injury (ALI) is one of the key onset events of PF, in this review, we will discuss the role of ER stress in ALI and PF by activating multiple signaling pathways and molecular mechanisms that affect the function and behavior of different cell types, with a focus on epithelial cells, fibroblasts, and macrophages. Linking ER stress to these cell types may broaden our understanding of the mechanisms underlying lung fibrosis and help us target these cells through these mechanisms. The relationship between ER stress and PF is still evolving, and future research will explore new strategies to regulate UPR pathways, providing novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Peizhi Li
- Department of Anesthesiology, Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China
| |
Collapse
|
3
|
Li FJ, Abudureyimu M, Zhang ZH, Tao J, Ceylan AF, Lin J, Yu W, Reiter RJ, Ashrafizadeh M, Guo J, Ren J. Inhibition of ER stress using tauroursodeoxycholic acid rescues obesity-evoked cardiac remodeling and contractile anomalies through regulation of ferroptosis. Chem Biol Interact 2024; 398:111104. [PMID: 38906502 DOI: 10.1016/j.cbi.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Interrupted ER homeostasis contributes to the etiology of obesity cardiomyopathy although it remains elusive how ER stress evokes cardiac anomalies in obesity. Our study evaluated the impact of ER stress inhibition on cardiac anomalies in obesity. Lean and ob/ob obese mice received chemical ER chaperone tauroursodeoxycholic acid (TUDCA, 50 mg/kg/d, p.o.) for 35 days prior to evaluation of glucose sensitivity, echocardiographic, myocardial geometric, cardiomyocyte mechanical and subcellular Ca2+ property, mitochondrial integrity, oxidative stress, apoptosis, and ferroptosis. Intracellular Ca2+ governing domains including sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) were monitored by45Ca2+uptake and immunoblotting. Our results noted that TUDCA alleviated myocardial remodeling (fibrosis, hypertrophy, enlarged LVESD), echocardiographic anomalies (compromised fractional shortening and ejection fraction), cardiomyocyte contractile dysfunction (amplitude and velocity of cell shortening, relengthening time) and intracellular Ca2+ anomalies (compromised subcellular Ca2+ release, clearance and SERCA function), mitochondrial damage (collapsed membrane potential, downregulated mitochondrial elements and ultrastructural alteration), ER stress (GRP78, eIF2α and ATF4), oxidative stress, apoptosis and ferroptosis [downregulated SLC7A11, GPx4 and upregulated transferrin receptor (TFRC)] without affecting global glucose sensitivity and serum Fe2+ in obese mice. Obesity-evoked change in HSP90, phospholamban and Na+-Ca2+ exchanger was spared by the chemical ER chaperone. Moreover, in vitro results noted that TUDCA, PERK inhibitor GSK2606414, TFRC neutralizing antibody and ferroptosis inhibitor LIP1 mitigated palmitic acid-elicited changes in lipid peroxidation and mechanical function. Our findings favored a role for ferroptosis in obesity cardiomyopathy downstream of ER stress.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China
| | - Zeng-Hui Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Asli F Ceylan
- Ankara Yildirim Beyazit University, Faculty of Medicine, Department of Medical Pharmacology, Bilkent, Ankara, Turkey
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Milad Ashrafizadeh
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lee K, Na Y, Kim M, Lee D, Choi J, Kim G, Kim M. Ursodeoxycholic acid may protect from severe acute respiratory syndrome coronavirus 2 Omicron variant by reducing angiotensin-converting enzyme 2. Pharmacol Res Perspect 2024; 12:e1194. [PMID: 38573021 PMCID: PMC10993777 DOI: 10.1002/prp2.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
The SARS-CoV-2 caused COVID-19 pandemic has posed a global health hazard. While some vaccines have been developed, protection against viral infection is not perfect because of the urgent approval process and the emergence of mutant SARS-CoV-2 variants. Here, we employed UDCA as an FXR antagonist to regulate ACE2 expression, which is one of the key pathways activated by SARS-CoV-2 Delta variant infection. UDCA is a well-known reagent of liver health supplements and the only clinically approved bile acid. In this paper, we investigated the protective efficacy of UDCA on Omicron variation, since it has previously been verified for protection against Delta variant. When co-housing with an Omicron variant-infected hamster group resulted in spontaneous airborne transmission, the UDCA pre-supplied group was protected from weight loss relative to the non-treated group at 4 days post-infection by more than 5%-10%. Furthermore, UDCA-treated groups had a 3-fold decrease in ACE2 expression in nasal cavities, as well as reduced viral expressing genes in the respiratory tract. Here, the data show that the UDCA serves an alternative option for preventive drug, providing SARS-CoV-2 protection against not only Delta but also Omicron variant. Our results of this study will help to propose drug-repositioning of UDCA from liver health supplement to preventive drug of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kyungmin Lee
- Pharmaceutical Technology CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
- College of Pharmacy, Pusan National UniversityBusanRepublic of Korea
| | - Yujeong Na
- Pharmaceutical Technology CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
| | - Minjin Kim
- Drug Discovery CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
| | - Dongjin Lee
- Pharmaceutical Technology CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
| | - Jongseo Choi
- Pharmaceutical Technology CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
| | - Gwanyoung Kim
- Pharmaceutical Technology CenterDaewoong Pharmaceutical Co., LtdYongin‐siGyeonggi‐doRepublic of Korea
| | - Min‐Soo Kim
- College of Pharmacy, Pusan National UniversityBusanRepublic of Korea
| |
Collapse
|
5
|
Sun Y, Li X, Bedlack R. An evaluation of the combination of sodium phenylbutyrate and taurursodiol for the treatment of amyotrophic lateral sclerosis. Expert Rev Neurother 2023; 23:1-7. [PMID: 36705941 DOI: 10.1080/14737175.2023.2174018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative motor neuron disease. Despite the overwhelming need for effective therapeutics for ALS, riluzole and edaravone were the only two FDA-approved disease-modifying therapies prior to 2022. The randomized, double-blind, multicenter, placebo-controlled CENTAUR trial demonstrated the safety and efficacy of sodium phenylbutyrate-taurursodiol (PB-TURSO) in persons with ALS (PALS), leading to its conditional approval in Canada in June 2022 and full approval in the USA in September 2022. AREAS COVERED Herein, the authors provide a review of the pharmacology and clinical trials evaluating sodium phenylbutyrate and/or taurursodiol in PALS. EXPERT OPINION The safety and tolerability of both PB and TURSO were previously demonstrated in small PALS trials. The phase 2 CENTAUR study and its open-label extension demonstrated the safety and efficacy of AMX0035 (a sachet containing a fixed co-formulation of 3 g of PB and 1 g of TURSO given twice daily) in PALS. A phase 3 PHOENIX trial (NCT05021536) will offer more insight into safety and efficacy of AMX0035. AMX0035 currently costs $ 158,000 annually in the US, which may become a financial barrier for PALS to receive the medication.
Collapse
Affiliation(s)
- Yuyao Sun
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | |
Collapse
|
6
|
Li H, Perino A, Huang Q, Von Alvensleben GVG, Banaei-Esfahani A, Velazquez-Villegas LA, Gariani K, Korbelius M, Bou Sleiman M, Imbach J, Sun Y, Li X, Bachmann A, Goeminne LJE, Gallart-Ayala H, Williams EG, Ivanisevic J, Auwerx J, Schoonjans K. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metab 2022; 34:1594-1610.e4. [PMID: 36099916 PMCID: PMC9534359 DOI: 10.1016/j.cmet.2022.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amir Banaei-Esfahani
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura A Velazquez-Villegas
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Korbelius
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jéromine Imbach
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yu Sun
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
A Novel NADP(H)-Dependent 7alpha-HSDH: Discovery and Construction of Substrate Selectivity Mutant by C-Terminal Truncation. Catalysts 2022. [DOI: 10.3390/catal12070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the biosynthesis of tauroursodeoxycholic acid (TUDCA) using complex substrate chicken bile powder as raw material. However, chicken bile powder contains 4.74% taurocholic acid (TCA), and a new by-product tauroursocholic acid (TUCA) will be produced, having the risk of causing colorectal cancer. Here, we obtained a novel NADP(H)-dependent 7α-HSDH with good thermostability from Ursus thibetanus gut microbiota (named St-2-2). St-2-2 could catalyze taurochenodeoxycholic acid (TCDCA) and TCA with the catalytic activity of 128.13 and 269.39 U/mg, respectively. Interestingly, by a structure-based C-terminal truncation strategy, St-2-2△C10 only remained catalytic activity on TCDCA (14.19 U/mg) and had no activity on TCA. As a result, it can selectively catalyze TCDCA in waste chicken bile powder. MD simulation and structural analysis indicated that enhanced surface hydrophilicity and improved C-terminal rigidity affected the entry and exit of substrates. Hydrogen bond interactions between different subunits and interaction changes in Phe249 of the C-terminal loop inverted the substrate catalytic activity. This is the first report on substrate selectivity of 7α-HSDH by C-terminal truncation strategy and it can be extended to other 7α-HSDHs (J-1-1, S1-a-1).
Collapse
|
8
|
Shahini E, Pasculli G, Mastropietro A, Stolfi P, Tieri P, Vergni D, Cozzolongo R, Pesce F, Giannelli G. Network Proximity-Based Drug Repurposing Strategy for Early and Late Stages of Primary Biliary Cholangitis. Biomedicines 2022; 10:1694. [PMID: 35884999 PMCID: PMC9312896 DOI: 10.3390/biomedicines10071694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, cholestatic, immune-mediated, and progressive liver disorder. Treatment to preventing the disease from advancing into later and irreversible stages is still an unmet clinical need. Accordingly, we set up a drug repurposing framework to find potential therapeutic agents targeting relevant pathways derived from an expanded pool of genes involved in different stages of PBC. Starting with updated human protein-protein interaction data and genes specifically involved in the early and late stages of PBC, a network medicine approach was used to provide a PBC "proximity" or "involvement" gene ranking using network diffusion algorithms and machine learning models. The top genes in the proximity ranking, when combined with the original PBC-related genes, resulted in a final dataset of the genes most involved in PBC disease. Finally, a drug repurposing strategy was implemented by mining and utilizing dedicated drug-gene interaction and druggable genome information knowledge bases (e.g., the DrugBank repository). We identified several potential drug candidates interacting with PBC pathways after performing an over-representation analysis on our initial 1121-seed gene list and the resulting disease-associated (algorithm-obtained) genes. The mechanism and potential therapeutic applications of such drugs were then thoroughly discussed, with a particular emphasis on different stages of PBC disease. We found that interleukin/EGFR/TNF-alpha inhibitors, branched-chain amino acids, geldanamycin, tauroursodeoxycholic acid, genistein, antioestrogens, curcumin, antineovascularisation agents, enzyme/protease inhibitors, and antirheumatic agents are promising drugs targeting distinct stages of PBC. We developed robust and transparent selection mechanisms for prioritizing already approved medicinal products or investigational products for repurposing based on recognized unmet medical needs in PBC, as well as solid preliminary data to achieve this goal.
Collapse
Affiliation(s)
- Endrit Shahini
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| | - Giuseppe Pasculli
- Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (A.M.)
| | - Andrea Mastropietro
- Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (A.M.)
| | - Paola Stolfi
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Paolo Tieri
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Davide Vergni
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Raffaele Cozzolongo
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari “A. Moro”, 70121 Bari, Italy;
| | - Gianluigi Giannelli
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| |
Collapse
|
9
|
Favale N, Costa S, Scapoli C, Carrieri A, Sabbioni S, Tamburini E, Benazzo A, Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. J Appl Microbiol 2022; 133:1506-1519. [PMID: 35686660 PMCID: PMC9540589 DOI: 10.1111/jam.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
AIMS The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 2022; 11:33. [PMID: 35659112 PMCID: PMC9166453 DOI: 10.1186/s40035-022-00307-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023] Open
Abstract
Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.
Collapse
|
11
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
12
|
Laccase Did It again: A Scalable and Clean Regeneration System for NAD+ and Its Application in the Synthesis of 12-oxo-Hydroxysteroids. Catalysts 2020. [DOI: 10.3390/catal10060677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The specific oxidation of 12α-OH group of hydroxysteroids is required for the preparation of cheno- and ursodeoxycholic acid (CDCA and UDCA, respectively). The C12 oxidation of hydroxysteroids into their 12-oxo derivatives can selectively be performed by employing 12α-hydroxysteroid dehydrogenases. These enzymes use NAD(P)+ as an electron acceptor, which has to be re-oxidized in a so-called “regeneration system”. Recently, the enzyme NAD(P)H oxidase (NOX) was applied for the regeneration of NAD+ in the enzymatic preparation of 12-oxo-CDCA from cholic acid (CA), which allows air to be used as an oxidant. However, the NOX system suffers from low activity and low stability. Moreover, the substrate loading is limited to 10 mM. In this study, the laccase/mediator system was investigated as a possible alternative to NOX, employing air as an oxidant. The laccase/mediator system shows higher productivity and scalability than the NOX system. This was proven with a preparative biotransformation of 20 g of CA into 12-oxo-CDCA (92% isolated yield) by employing a substrate loading of 120 mM (corresponding to 50 g/L). Additionally, the performance of the laccase/mediator system was compared with a classical ADH/acetone regeneration system and with other regeneration systems reported in literature.
Collapse
|
13
|
Hamczyk MR, Villa-Bellosta R, Quesada V, Gonzalo P, Vidak S, Nevado RM, Andrés-Manzano MJ, Misteli T, López-Otín C, Andrés V. Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Mol Med 2020; 11:emmm.201809736. [PMID: 30862662 PMCID: PMC6460349 DOI: 10.15252/emmm.201809736] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin‐driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E‐deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC‐specific progerin expression. This stress pathway was also activated in HGPS patient‐derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC‐specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging‐dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ricardo Villa-Bellosta
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Fundación Instituto de Investigación Sanitaria Fundación Jiménez Díaz (FIIS-FJD), Madrid, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sandra Vidak
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
14
|
Guilbert SM, Cardoso D, Lévy N, Muchir A, Nissan X. Hutchinson-Gilford progeria syndrome: Rejuvenating old drugs to fight accelerated ageing. Methods 2020; 190:3-12. [PMID: 32278808 DOI: 10.1016/j.ymeth.2020.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.
Collapse
Affiliation(s)
- Solenn M Guilbert
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Déborah Cardoso
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMRS910: Génétique médicale et Génomique fonctionnelle, Faculté de médecine Timone, Marseille, France
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Xavier Nissan
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
15
|
Tonin F, Otten LG, Arends IWCE. NAD + -Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. CHEMSUSCHEM 2019; 12:3192-3203. [PMID: 30265441 PMCID: PMC6681466 DOI: 10.1002/cssc.201801862] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Indexed: 05/12/2023]
Abstract
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α-OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β-OH). With a view to developing robust and active biocatalysts, novel NADH-active 7β-HSDH species are necessary to enable a solely NAD+ -dependent redox-neutral cascade for UDCA production. A wild-type NADH-dependent 7β-HSDH from Lactobacillus spicheri (Ls7β-HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD+ -dependent 7β-HSDH enzyme in combination with 7α-HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD+ , resulting in high yields (>90 %) of UCA and UDCA.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Linda G. Otten
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Isabel W. C. E. Arends
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
- Present address: Faculty of ScienceUtrecht UniversityBudapestlaan 63584 CDUtrechtThe Netherlands
| |
Collapse
|
16
|
Tao Y, Dong X, Lu X, Qu Y, Wang C, Peng G, Zhang J. Subcutaneous delivery of tauroursodeoxycholic acid rescues the cone photoreceptors in degenerative retina: A promising therapeutic molecule for retinopathy. Biomed Pharmacother 2019; 117:109021. [PMID: 31387173 DOI: 10.1016/j.biopha.2019.109021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Inherited retinal degeneration (RD) comprises a heterogeneous group of retinopathies that rank among the main causes of blindness. Tauroursodeoxycholic acid (TUDCA) is taurine conjugate hydrophilic bile acid that demonstrates profound protective effects against a series of neurodegenerative diseases related to oxidative stress. This study sought to evaluate the TUDCA induced effects of on a pharmacologically induced RD animal model by electroretinogram (ERG) examination, behavior tests, morphological analysis and immunochemistry assay. Massive photoreceptor degeneration in mice retina was induced by an intraperitoneal administration of N-methyl-N-nitrosourea(MNU). Subcutaneous delivery of TUDCA inhibits effectively the photoreceptor loss and visual impairments in the MNU administered mice. In the retinal flat-mounts of TUDCA treated mice, the cone photoreceptors were efficiently preserved. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. TUDCA therapy could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of ON-OFF signal pathway in degenerative retinas. Our MEA assay provided an example to evaluate the potency of pharmacological compounds on retinal plasticity. TUDCA affords these protective effects by modulating apoptosis and alleviating oxidative stress in the degenerative retina. In conclusion, TUDCA therapy can ameliorate the photoreceptor degeneration and rectify the abnormities in visual signal transmission. These findings suggest that TUDCA might act as a potential medication for these retinopathies with progressive photoreceptor degeneration.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Dong
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xin Lu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxin Qu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunhui Wang
- Department of Pediatric, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Guanghua Peng
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianbin Zhang
- Department of Occupational & Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Tonin F, Alvarenga N, Ye JZ, Arends IWCE, Hanefeld U. Clean Enzymatic Oxidation of 12α‐Hydroxysteroids to 12‐Oxo‐Derivatives Catalyzed by Hydroxysteroid Dehydrogenase. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fabio Tonin
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft, The Netherlands
| | - Natália Alvarenga
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft, The Netherlands
| | - Jia Zheng Ye
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft, The Netherlands
| | - Isabel W. C. E. Arends
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft, The Netherlands
- Present address: Faculty of Science Utrecht University Budapestlaan 6 3584 CD Utrecht, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Lee S, Yoon S, Chung H, Ji SC, Yoon SH, Yu K, Cho J, Chung J. Pharmacokinetics of Ursodeoxycholic Acid in Elderly Volunteers Compared With Younger Adults in a Korean Population. J Clin Pharmacol 2019; 59:1085-1092. [DOI: 10.1002/jcph.1409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Soyoung Lee
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Hospital Seoul Republic of Korea
| | - Seonghae Yoon
- Clinical Trials CenterSeoul National University Bundang Hospital Seongnam Republic of Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and ToxicologyKorea University Guro HospitalSeoul Republic of Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Hospital Seoul Republic of Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Hospital Seoul Republic of Korea
| | - Kyung‐Sang Yu
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Hospital Seoul Republic of Korea
| | - Joo‐Youn Cho
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Hospital Seoul Republic of Korea
| | - Jae‐Yong Chung
- Clinical Trials CenterSeoul National University Bundang Hospital Seongnam Republic of Korea
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Bundang Hospital Seongnam Republic of Korea
| |
Collapse
|
19
|
Feng R, Li J, Chen J, Duan L, Liu X, Di D, Deng Y, Song Y. Preparation and toxicity evaluation of a novel nattokinase-tauroursodeoxycholate complex. Asian J Pharm Sci 2018; 13:173-182. [PMID: 32104390 PMCID: PMC7032186 DOI: 10.1016/j.ajps.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/28/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Nattokinase (NK), which has been identified as a potent fibrinolytic protease, has remarkable potential in treatment of thrombolysis, and even has the ability to ameliorate chronic vein thrombosis. To reduce the hemorrhagic risk from an intravenous injection of NK, nattokinase-tauroursodeoxycholate (NK-TUDCA) complex was prepared at different pH values and with different ratios of NK and TUDCA. When assessing survival time, survival state, tail injury, and the body weight of mice, it was found that the NK-TUDCA complex (NK: 10 kIU/ml; TUDCA: 10 mg/ml; pH 5.0) had a lower toxicity when administered at an NK dosage of 130 kIU/kg in the acute toxicity test and 13 kIU/kg in the repeated low-dose challenge. From the results of the in vitro thrombolytic test and characterization of NK-TUDCA, we speculated that the delayed release of NK-TUDCA might be the main cause of toxicity reduction by the complex. This study described the preparation of an NK complex with low toxicity following intravenous administration, which could be utilized for further clinical study of NK.
Collapse
Affiliation(s)
- Rui Feng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Lili Duan
- Sungen Biotech Co., Ltd., Shantou 515000, China
| | - XinRong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Donghua Di
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
20
|
Tonin F, Arends IWCE. Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 2018; 14:470-483. [PMID: 29520309 PMCID: PMC5827811 DOI: 10.3762/bjoc.14.33] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a pharmaceutical ingredient widely used in clinics. As bile acid it solubilizes cholesterol gallstones and improves the liver function in case of cholestatic diseases. UDCA can be obtained from cholic acid (CA), which is the most abundant and least expensive bile acid available. The now available chemical routes for the obtainment of UDCA yield about 30% of final product. For these syntheses several protection and deprotection steps requiring toxic and dangerous reagents have to be performed, leading to the production of a series of waste products. In many cases the cholic acid itself first needs to be prepared from its taurinated and glycilated derivatives in the bile, thus adding to the complexity and multitude of steps involved of the synthetic process. For these reasons, several studies have been performed towards the development of microbial transformations or chemoenzymatic procedures for the synthesis of UDCA starting from CA or chenodeoxycholic acid (CDCA). This promising approach led several research groups to focus their attention on the development of biotransformations with non-pathogenic, easy-to-manage microorganisms, and their enzymes. In particular, the enzymatic reactions involved are selective hydrolysis, epimerization of the hydroxy functions (by oxidation and subsequent reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each production step. Particular attention is placed on the precursors availability as well as the substrate loading in the process. Potential new routes and recent developments are discussed, in particular on the employment of flow-reactors. The latter technology allows to develop processes with shorter reaction times and lower costs for the chemical and enzymatic reactions involved.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Isabel W C E Arends
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Saffioti F, Gurusamy KS, Eusebi LH, Tsochatzis E, Davidson BR, Thorburn D. Pharmacological interventions for primary biliary cholangitis: an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3:CD011648. [PMID: 28350426 PMCID: PMC6464661 DOI: 10.1002/14651858.cd011648.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Primary biliary cholangitis (previously primary biliary cirrhosis) is a chronic liver disease caused by the destruction of small intra-hepatic bile ducts resulting in stasis of bile (cholestasis), liver fibrosis, and liver cirrhosis. The optimal pharmacological treatment of primary biliary cholangitis remains uncertain. OBJECTIVES To assess the comparative benefits and harms of different pharmacological interventions in the treatment of primary biliary cholangitis through a network meta-analysis and to generate rankings of the available pharmacological interventions according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis, and instead, assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and randomised controlled trials registers to February 2017 to identify randomised clinical trials on pharmacological interventions for primary biliary cholangitis. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with primary biliary cholangitis. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on available-participant analysis with Review Manager 5. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS We identified 74 trials including 5902 participants that met the inclusion criteria of this review. A total of 46 trials (4274 participants) provided information for one or more outcomes. All the trials were at high risk of bias in one or more domains. Overall, all the evidence was low or very low quality. The proportion of participants with symptoms varied from 19.9% to 100% in the trials that reported this information. The proportion of participants who were antimitochondrial antibody (AMA) positive ranged from 80.8% to 100% in the trials that reported this information. It appeared that most trials included participants who had not received previous treatments or included participants regardless of the previous treatments received. The follow-up in the trials ranged from 1 to 96 months.The proportion of people with mortality (maximal follow-up) was higher in the methotrexate group versus the no intervention group (OR 8.83, 95% CI 1.01 to 76.96; 60 participants; 1 trial; low quality evidence). The proportion of people with mortality (maximal follow-up) was lower in the azathioprine group versus the no intervention group (OR 0.56, 95% CI 0.32 to 0.98; 224 participants; 2 trials; I2 = 0%; low quality evidence). However, it has to be noted that a large proportion of participants (25%) was excluded from the trial that contributed most participants to this analysis and the results were not reliable. There was no evidence of a difference in any of the remaining comparisons. The proportion of people with serious adverse events was higher in the D-penicillamine versus no intervention group (OR 28.77, 95% CI 1.57 to 526.67; 52 participants; 1 trial; low quality evidence). The proportion of people with serious adverse events was higher in the obeticholic acid plus ursodeoxycholic acid (UDCA) group versus the UDCA group (OR 3.58, 95% CI 1.02 to 12.51; 216 participants; 1 trial; low quality evidence). There was no evidence of a difference in any of the remaining comparisons for serious adverse events (proportion) or serious adverse events (number of events). None of the trials reported health-related quality of life at any time point. FUNDING nine trials had no special funding or were funded by hospital or charities; 31 trials were funded by pharmaceutical companies; and 34 trials provided no information on source of funding. AUTHORS' CONCLUSIONS Based on very low quality evidence, there is currently no evidence that any intervention is beneficial for primary biliary cholangitis. However, the follow-up periods in the trials were short and there is significant uncertainty in this issue. Further well-designed randomised clinical trials are necessary. Future randomised clinical trials ought to be adequately powered; performed in people who are generally seen in the clinic rather than in highly selected participants; employ blinding; avoid post-randomisation dropouts or planned cross-overs; should have sufficient follow-up period (e.g. five or 10 years or more); and use clinically important outcomes such as mortality, health-related quality of life, cirrhosis, decompensated cirrhosis, and liver transplantation. Alternatively, very large groups of participants should be randomised to facilitate shorter trial duration.
Collapse
Affiliation(s)
- Francesca Saffioti
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
- University of MessinaDepartment of Clinical and Experimental Medicine, Division of Clinical and Molecular HepatologyVia Consolare Valeria, 1MessinaMessinaItaly98125
| | - Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryRoyal Free HospitalRowland Hill StreetLondonUKNW3 2PF
| | - Leonardo Henry Eusebi
- Royal Free Hampstead NHS Foundation Trust and UCL Institute of Liver and Digestive HealthThe Royal Free Sheila Sherlock Liver CentreLondonUK
- University of BolognaDepartment of Medical and Surgical Sciences (DIMEC)BolognaItaly
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryRoyal Free HospitalRowland Hill StreetLondonUKNW3 2PF
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
| | | |
Collapse
|
22
|
Gronbeck KR, Rodrigues CMP, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA. Application of Tauroursodeoxycholic Acid for Treatment of Neurological and Non-neurological Diseases: Is There a Potential for Treating Traumatic Brain Injury? Neurocrit Care 2016; 25:153-66. [DOI: 10.1007/s12028-015-0225-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Peng P, Ma Q, Wang L, Zhang O, Han H, Liu X, Zhou Y, Zhao Y. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress. Angiology 2015; 66:941-9. [DOI: 10.1177/0003319715575965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 ( P = .005), ATF4 ( P = .01), and caspase 12 ( P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups ( P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS.
Collapse
Affiliation(s)
- Pingan Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Le Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Ou Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Xiaoli Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Sharkey LM, Davies SE, Kaser A, Woodward JM. Endoplasmic Reticulum Stress Is Implicated in Intestinal Failure-Associated Liver Disease. JPEN J Parenter Enteral Nutr 2015; 40:431-6. [PMID: 25666021 DOI: 10.1177/0148607115571014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Intestinal failure-associated liver disease (IFALD) is the most serious consequence of long-term parenteral nutrition for intestinal failure. Little is known about the pathogenesis of IFALD, although many of the risk factors are also linked to endoplasmic reticulum stress (ERS). We propose that ERS may have a role in the development of IFALD. METHODS Archived liver tissue from patients with early and late IFALD, as well as from normal controls, was used for RNA extraction and immunohistochemistry to demonstrate the presence of ERS markers. RESULTS Mean relative RNA levels of glucose regulatory protein 78 in normal liver (n = 3), early IFALD (n = 15), and late IFALD (n = 5) were 0.5, 37.86, and 212.11, respectively. Mean relative expression of ERDj4 (ER DnaJ homologue 4, a downstream ERS effector) in normal liver, early IFALD, and late IFALD was 5.51, 216.68, and 213.22, respectively. The degree of splicing of X-box binding protein 1 in IFALD compared with normal liver was significantly higher (mean, 0.0779 normal, 0.102 early IFALD, 0.2063 late IFALD). CONCLUSIONS This is the first description of ERS in IFALD. This information may open up new therapeutic possibilities in the form of chemical chaperones known to ameliorate ERS.
Collapse
Affiliation(s)
- Lisa M Sharkey
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, UK
| | - Jeremy M Woodward
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
25
|
Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, La Bella V, Tedeschi G, Albanese A. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol 2015; 23:45-52. [PMID: 25664595 PMCID: PMC5024041 DOI: 10.1111/ene.12664] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
Background and purpose Tauroursodeoxycholic acid (TUDCA) is a hydrophilic bile acid that is produced in the liver and used for treatment of chronic cholestatic liver diseases. Experimental studies suggest that TUDCA may have cytoprotective and anti‐apoptotic action, with potential neuroprotective activity. A proof of principle approach was adopted to provide preliminary data regarding the efficacy and tolerability of TUDCA in a series of patients with amyotrophic lateral sclerosis (ALS). Methods As a proof of principle, using a double‐blind placebo controlled design, 34 ALS patients under treatment with riluzole who were randomized to placebo or TUDCA (1 g twice daily for 54 weeks) were evaluated after a lead‐in period of 3 months. The patients were examined every 6 weeks. The primary outcome was the proportion of responders [those subjects with improvement of at least 15% in the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS‐R) slope during the treatment period compared to the lead‐in phase]. Secondary outcomes included between‐treatment comparison of ALSFRS‐R at study end, comparison of the linear regression slopes for ALSFFRS‐R mean scores and the occurrence of adverse events. Results Tauroursodeoxycholic acid was well tolerated; there were no between‐group differences for adverse events. The proportion of responders was higher under TUDCA (87%) than under placebo (P = 0.021; 43%). At study end baseline‐adjusted ALSFRS‐R was significantly higher (P = 0.007) in TUDCA than in placebo groups. Comparison of the slopes of regression analysis showed slower progression in the TUDCA than in the placebo group (P < 0.01). Conclusions This pilot study provides preliminary clinical data indicating that TUDCA is safe and may be effective in ALS. Click here to view the accompanying paper in this issue.
Collapse
Affiliation(s)
- A E Elia
- Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy
| | - S Lalli
- Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy
| | - M R Monsurrò
- Neurologia II, Seconda Università di Napoli, Napoli, Italy
| | - A Sagnelli
- Neurologia II, Seconda Università di Napoli, Napoli, Italy
| | - A C Taiello
- Dipartimento di Neurologia, Centro Regionale SLA, AOUP 'P Giaccone', Università di Palermo, Palermo, Italy
| | - B Reggiori
- Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy
| | - V La Bella
- Dipartimento di Neurologia, Centro Regionale SLA, AOUP 'P Giaccone', Università di Palermo, Palermo, Italy
| | - G Tedeschi
- Neurologia II, Seconda Università di Napoli, Napoli, Italy
| | - A Albanese
- Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy.,NeuroCenter, Istituto Clinico Humanitas, Milano; Istituto di Neurologia, Università Cattolica del Sacro Cuore, Milano, Italy
| |
Collapse
|
26
|
Wu D, Zhai Y, Yan J, Xu K, Wang Q, Li Y, Li H. Binding mechanism of tauroursodeoxycholic acid to human serum albumin: insights from NMR relaxation and docking simulations. RSC Adv 2015. [DOI: 10.1039/c4ra11422a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Binding patterns and structure–affinity relationship of tauroursodeoxycholic acid with human serum albumin were established by NMR methodology and docking simulations.
Collapse
Affiliation(s)
- Di Wu
- College of Chemical Engineering
- Sichuan University
- P. R. China
| | - Yuanming Zhai
- Analytical & Testing Center Sichuan University
- P. R. China
| | - Jin Yan
- College of Chemical Engineering
- Sichuan University
- P. R. China
| | - Kailin Xu
- College of Chemical Engineering
- Sichuan University
- P. R. China
| | - Qing Wang
- College of Chemical Engineering
- Sichuan University
- P. R. China
| | - Yuanzhi Li
- College of Chemical Engineering
- Sichuan University
- P. R. China
| | - Hui Li
- College of Chemical Engineering
- Sichuan University
- P. R. China
| |
Collapse
|
27
|
Efficacy and safety of tauroursodeoxycholic acid in the treatment of liver cirrhosis: a double-blind randomized controlled trial. ACTA ACUST UNITED AC 2013; 33:189-194. [PMID: 23592128 DOI: 10.1007/s11596-013-1095-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 12/11/2022]
Abstract
No direct comparison of tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) has yet been carried out in the treatment of liver cirrhosis in China. We designed a double-blind randomized trial to evaluate the potential therapeutic efficacy of TUDCA in liver cirrhosis, using UDCA as parallel control. The enrolled 23 patients with liver cirrhosis were randomly divided into TUDCA group (n=12) and UDCA group (n=11), and given TUDCA and UDCA respectively at the daily dose of 750 mg, in a randomly assigned sequence for a 6-month period. Clinical, biochemical and histological features, and liver ultrasonographic findings were evaluated before and after the study. According to the inclusion criteria, 18 patients were included in the final analysis, including 9 cases in both two groups. Serum ALT, AST and ALP levels in TUDCA group and AST levels in UDCA group were significantly reduced as compared with baseline (P<0.05). Serum albumin levels were significantly increased in both TUDCA and UDCA groups (P<0.05). Serum markers for liver fibrosis were slightly decreased with the difference being not significant in either group. Only one patient in TUDCA group had significantly histological relief. Both treatments were well tolerated and no patient complained of side effects. It is suggested that TUDCA therapy is safe and appears to be more effective than UDCA in the treatment of liver cirrhosis, particularly in the improvement of the biochemical expression. However, both drugs exert no effect on the serum markers for liver fibrosis during 6-month treatment.
Collapse
|
28
|
Gomez-Mendoza M, Marin ML, Miranda MA. Dansyl-Labeled Cholic Acid as a Tool To Build Speciation Diagrams for the Aggregation of Bile Acids. J Phys Chem B 2012. [DOI: 10.1021/jp308624h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel Gomez-Mendoza
- Instituto
Universitario Mixto de Tecnología
Química (UPV-CSIC), Universitat Politècnica de València,
Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - M. Luisa Marin
- Instituto
Universitario Mixto de Tecnología
Química (UPV-CSIC), Universitat Politècnica de València,
Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Miguel A. Miranda
- Instituto
Universitario Mixto de Tecnología
Química (UPV-CSIC), Universitat Politècnica de València,
Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
29
|
Rudic JS, Poropat G, Krstic MN, Bjelakovic G, Gluud C. Ursodeoxycholic acid for primary biliary cirrhosis. Cochrane Database Syst Rev 2012; 12:CD000551. [PMID: 23235576 PMCID: PMC7045744 DOI: 10.1002/14651858.cd000551.pub3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ursodeoxycholic acid is administered to patients with primary biliary cirrhosis, a chronic progressive inflammatory autoimmune-mediated liver disease with unknown aetiology. Despite its controversial effects, the U.S. Food and Drug Administration has approved its usage for primary biliary cirrhosis. OBJECTIVES To assess the beneficial and harmful effects of ursodeoxycholic acid in patients with primary biliary cirrhosis. SEARCH METHODS We searched for eligible randomised trials in The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS, Clinicaltrials.gov, and the WHO International Clinical Trials Registry Platform. The literature search was performed until January 2012. SELECTION CRITERIA Randomised clinical trials assessing the beneficial and harmful effects of ursodeoxycholic acid versus placebo or 'no intervention' in patients with primary biliary cirrhosis. DATA COLLECTION AND ANALYSIS Two authors independently extracted data. Continuous data were analysed using mean difference (MD) and standardised mean difference (SMD). Dichotomous data were analysed using risk ratio (RR). Meta-analyses were conducted using both a random-effects model and a fixed-effect model, with 95% confidence intervals (CI). Random-effects model meta-regression was used to assess the effects of covariates across the trials. Trial sequential analysis was used to assess risk of random errors (play of chance). Risks of bias (systematic error) in the included trials were assessed according to Cochrane methodology bias domains. MAIN RESULTS Sixteen randomised clinical trials with 1447 patients with primary biliary cirrhosis were included. One trial had low risk of bias, and the remaining fifteen had high risk of bias. Fourteen trials compared ursodeoxycholic acid with placebo and two trials compared ursodeoxycholic acid with 'no intervention'. The percentage of patients with advanced primary biliary cirrhosis at baseline varied from 15% to 83%, with a median of 51%. The duration of the trials varied from 3 to 92 months, with a median of 24 months. The results showed no significant difference in effect between ursodeoxycholic acid and placebo or 'no intervention' on all-cause mortality (45/699 (6.4%) versus 46/692 (6.6%); RR 0.97, 95% CI 0.67 to 1.42, I² = 0%; 14 trials); on all-cause mortality or liver transplantation (86/713 (12.1%) versus 89/706 (12.6%); RR 0.96, 95% CI 0.74 to 1.25, I² = 15%; 15 trials); on serious adverse events (94/695 (13.5%) versus 107/687 (15.6%); RR 0.87, 95% CI 0.68 to 1.12, I² = 23%; 14 trials); or on non-serious adverse events (27/643 (4.2%) versus 18/634 (2.8%); RR 1.46, 95% CI 0.83 to 2.56, I² = 0%; 12 trials). The random-effects model meta-regression showed that the risk of bias of the trials, disease severity of patients at entry, ursodeoxycholic acid dosage, and trial duration were not significantly associated with the intervention effects on all-cause mortality, or on all-cause mortality or liver transplantation. Ursodeoxycholic acid did not influence the number of patients with pruritus (168/321 (52.3%) versus 166/309 (53.7%); RR 0.96, 95% CI 0.84 to 1.09, I² = 0%; 6 trials) or with fatigue (170/252 (64.9%) versus 174/244 (71.3%); RR 0.90, 95% CI 0.81 to 1.00, I² = 62%; 4 trials). Two trials reported the number of patients with jaundice and showed a significant effect of ursodeoxycholic acid versus placebo or no intervention in a fixed-effect meta-analysis (5/99 (5.1%) versus 15/99 (15.2%); RR 0.35, 95% CI 0.14 to 0.90, I² = 51%; 2 trials). The result was not supported by the random-effects meta-analysis (RR 0.56, 95% CI 0.06 to 4.95). Portal pressure, varices, bleeding varices, ascites, and hepatic encephalopathy were not significantly affected by ursodeoxycholic acid. Ursodeoxycholic acid significantly decreased serum bilirubin concentration (MD -8.69 µmol/l, 95% CI -13.90 to -3.48, I² = 0%; 881 patients; 9 trials) and activity of serum alkaline phosphatases (MD -257.09 U/L, 95% CI -306.25 to -207.92, I² = 0%; 754 patients, 9 trials) compared with placebo or no intervention. These results were supported by trial sequential analysis. Ursodeoxycholic acid also seemed to improve serum levels of gamma-glutamyltransferase, aminotransferases, total cholesterol, and plasma immunoglobulin M concentration. Ursodeoxycholic acid seemed to have a beneficial effect on worsening of histological stage (random; 66/281 (23.5%) versus 103/270 (38.2%); RR 0.62, 95% CI 0.44 to 0.88, I² = 35%; 7 trials). AUTHORS' CONCLUSIONS This systematic review did not demonstrate any significant benefits of ursodeoxycholic acid on all-cause mortality, all-cause mortality or liver transplantation, pruritus, or fatigue in patients with primary biliary cirrhosis. Ursodeoxycholic acid seemed to have a beneficial effect on liver biochemistry measures and on histological progression compared with the control group. All but one of the included trials had high risk of bias, and there are risks of outcome reporting bias and risks of random errors as well. Randomised trials with low risk of bias and low risks of random errors examining the effects of ursodeoxycholic acid for primary biliary cirrhosis are needed.
Collapse
Affiliation(s)
- Jelena S Rudic
- Department of Hepatology, Clinic of Gastroenterology, Clinical Centre of Serbia, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
30
|
Venturoni F, Gioiello A, Sardella R, Natalini B, Pellicciari R. Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts. Org Biomol Chem 2012; 10:4109-15. [DOI: 10.1039/c2ob25528f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Abstract
BACKGROUND Primary sclerosing cholangitis is a progressive chronic cholestatic liver disease that usually leads to the development of cirrhosis. Studies evaluating bile acids in the treatment of primary sclerosing cholangitis have shown a potential benefit of their use. However, no influence on patients survival and disease outcome has yet been proven. OBJECTIVES To assess the beneficial and harmful effects of bile acids for patients with primary sclerosing cholangitis. SEARCH STRATEGY We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded generally from inception through to October 2010. SELECTION CRITERIA Randomised clinical trials comparing any dose of bile acids or duration of treatment versus placebo, no intervention, or another intervention were included irrespective of blinding, language, or publication status. DATA COLLECTION AND ANALYSIS Two authors extracted data independently. We evaluated the risk of bias of the trials using prespecified domains. We performed the meta-analysis according to the intention-to-treat principle. We presented outcomes as relative risks (RR) or mean differences (MD), both with 95% confidence intervals (CI). MAIN RESULTS Eight trials evaluated ursodeoxycholic acid versus placebo or no intervention (592 patients). The eight randomised clinical trials have a high risk of bias. Patients were treated for three months to six years (median three years). The dosage of ursodeoxycholic acid used in the trials ranged from low (10 mg/kg body weight/day) to high (28 to 30 mg/kg body weight/day). Ursodeoxycholic acid did not significantly reduce the risk of death (RR 1.00; 95% CI 0.46 to 2.20); treatment failure including liver transplantation, varices, ascites, and encephalopathy (RR 1.22; 95% CI 0.91 to 1.64); liver histological deterioration (RR 0.89; 95% CI 0.45 to 1.74); or liver cholangiographic deterioration (RR 0.60; 95% CI 0.23 to 1.57). Ursodeoxycholic acid significantly improved serum bilirubin (MD -14.6 µmol/litre; 95% CI -18.7 to -10.6), alkaline phosphatases (MD -506 IU/litre; 95% CI -583 to -430), aspartate aminotransferase (MD -46 IU/litre; 95% CI -77 to -16), and gamma-glutamyltranspeptidase (MD -260 IU/litre; 95% CI -315 to -205), but not albumin (MD -0.20 g/litre; 95% CI -1.91 to 1.50). Ursodeoxycholic acid was safe and well tolerated by patients with primary sclerosing cholangitis. AUTHORS' CONCLUSIONS We did not find enough evidence to support or refute the use of bile acids in the treatment of primary sclerosing cholangitis. However, bile acids seem to lead to a significant improvement in liver biochemistry. Therefore, more randomised trials are needed before any of the bile acids can be recommended for this indication.
Collapse
Affiliation(s)
- Goran Poropat
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51000
| | - Vanja Giljaca
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51000
| | - Davor Stimac
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51000
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | | |
Collapse
|
32
|
Wang D, Yang L, Huang JM, Wang BY, Li L, Qian W, Ye J, Hou XH. Tauroursodeoxycholic acid inhibits carbon tetrachloride-induced liver fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:1979-1984. [DOI: 10.11569/wcjd.v18.i19.1979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the inhibitory effects of tauroursodeoxycholic acid (TUDCA) on carbon tetrachloride-induced liver fibrosis in rats.
METHODS: A total of 75 healthy Sprague-Dawley rats were randomly divided into five groups: normal control group, model group, low-dose TUDCA group, high-dose TUDCA group and pentoxifylline (PTX) group. Hepatic fibrosis was induced in rats by hypodermic injection of carbon tetrachloride (40%). The low- and high-dose TUDCA groups were orally administered TUDCA at doses of 50 and 100 mg/(kg•d), respectively. The PTX group was orally administered PTX at a dose of 16 mg/(kg•d). The treatment lasted 8 wk for all the groups. Hematoxylin and eosin staining and Masson's trichrome staining of liver tissue was performed for histopathological evaluation of liver fibrosis. Serum parameters of liver fibrosis were detected by enzyme-linked immunosorbent assay. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in liver tissue was detected by immunohistochemistry.
RESULTS: Compared with the model group, the levels of serum hyaluronic acid (HA), laminin (LN) and type IV collagen (IV-C) significantly decreased in the low- and high-dose TUDCA groups and the PTX group (HA: 146.33 ± 35.13, 162.2 ± 24.80 and 137.14 ± 22.24 vs 252.83 ± 51.94; LN: 77.20 ± 11.84, 66.80 ± 16.78 and 82.00 ± 10.74 vs 108.00 ± 30.00; IV-C: 14.14 ± 2.59, 12.60 ± 3.17 and 10.09 ± 2.22 vs 25.08 ± 5.93, all P < 0.05). Compared with the model group and normal control group, fibrous septa became thinner and even disappeared, and the number of diffuse cirrhotic nodules and the area of collagen fiber decreased in the TUDCA and PTX intervention groups (all P < 0.05). The expression intensity of TGF-β1 and α-SMA proteins was significantly lower in the TUDCA and PTX intervention groups than in the model group (all P < 0.05), but showed no significant difference between the TUDCA and PTX treatment groups.
CONCLUSION: TUDCA can prevent carbon tetrachloride-induced liver fibrosis in rats by reducing TGF-β1 synthesis, inhibiting hepatic stellate cell activation and decreasing extracellular matrix synthesis.
Collapse
|
33
|
Boatright JH, Nickerson JM, Moring AG, Pardue MT. Bile acids in treatment of ocular disease. J Ocul Biol Dis Infor 2009; 2:149-159. [PMID: 20046852 PMCID: PMC2798994 DOI: 10.1007/s12177-009-9030-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/31/2009] [Indexed: 01/27/2023] Open
Abstract
Bear bile has been included in Asian pharmacopeias for thousands of years in treatment of several diseases, ranging from sore throat to hemorrhoids. The hydrophilic bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) are the major bile acids of bear bile. Both of these are available as synthetic formulations and are approved by the health administrations of several countries for treatment of cirrhosis and gallstones. This review briefly covers the use of bear bile in Traditional Chinese Medicine, bile acid physiology, approved use of UDCA and TUDCA in Western medicine, and recent research exploring their neuroprotective properties, including in models of ocular disease.
Collapse
Affiliation(s)
- Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, B5511 Emory Eye Center, 1365-B Clifton Road, Atlanta, GA 30322 USA
| | - John M. Nickerson
- Department of Ophthalmology, Emory University School of Medicine, B5511 Emory Eye Center, 1365-B Clifton Road, Atlanta, GA 30322 USA
| | - Anisha G. Moring
- Department of Ophthalmology, Emory University School of Medicine, B5511 Emory Eye Center, 1365-B Clifton Road, Atlanta, GA 30322 USA
| | - Machelle T. Pardue
- Department of Ophthalmology, Emory University School of Medicine, B5511 Emory Eye Center, 1365-B Clifton Road, Atlanta, GA 30322 USA
- Rehab R&D CoE, Atlanta VA Medical Center, Atlanta, GA USA
| |
Collapse
|
34
|
Abstract
BACKGROUND Primary biliary cirrhosis is an uncommon autoimmune liver disease with unknown aetiology. Ursodeoxycholic acid (UDCA) has been used for primary biliary cirrhosis, but the effects remain controversial. OBJECTIVES To evaluate the benefits and harms of UDCA on patients with primary biliary cirrhosis against placebo or no intervention. SEARCH STRATEGY We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Central Register of Controlled Trials on The Cochrane Library, MEDLINE, EMBASE, SCI-EXPANDED, The Chinese Biomedical CD Database, LILACS, and the references of identified studies. The last search was performed in January 2007. SELECTION CRITERIA Randomised clinical trials evaluating UDCA versus placebo or no intervention in patients with primary biliary cirrhosis. DATA COLLECTION AND ANALYSIS The primary outcomes were mortality and mortality or liver transplantation. Binary outcomes were reported as odds ratio (OR) or relative risk (RR) and continuous outcomes as weighted mean difference, all with 95% confidence intervals (CI). Meta-regression was used to investigate the associations between UDCA effects and quality of the trial, UDCA dose, trial duration, and patient's severity of primary biliary cirrhosis. We also used Bayesian meta-analytic approach to estimate the UDCA effect as sensitivity analysis. MAIN RESULTS Sixteen randomised clinical trials evaluating UDCA against placebo or no intervention were identified. Data from three trials have been updated. Nearly half of the trials had high risk of bias. The combined results demonstrated no significant effects favouring UDCA on mortality (OR 0.97, 95% CI 0.67 to 1.42) and mortality or liver transplantation (RR 0.92, 95% CI 0.71 to 1.21). The findings were supported by the Bayesian meta-analyses. UDCA did not improve pruritus, fatigue, autoimmune conditions, liver histology, or portal pressure. UDCA seemed to improve biochemical variables, like serum bilirubin, ascites, and jaundice, but the findings were based on few trials with sparse data. The use of UDCA is significantly associated with adverse events, mainly weight gain. AUTHORS' CONCLUSIONS This systematic review did not demonstrate any benefit of UDCA on mortality and mortality or liver transplantation of patients with primary biliary cirrhosis. The few beneficial effects could not be due to random errors or outcome reporting bias.
Collapse
Affiliation(s)
- Yan Gong
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen N, Denmark, 2200.
| | | | | | | |
Collapse
|
35
|
Phillips MJ, Walker TA, Choi HY, Faulkner AE, Kim MK, Sidney SS, Boyd AP, Nickerson JM, Boatright JH, Pardue MT. Tauroursodeoxycholic acid preservation of photoreceptor structure and function in the rd10 mouse through postnatal day 30. Invest Ophthalmol Vis Sci 2008; 49:2148-55. [PMID: 18436848 DOI: 10.1167/iovs.07-1012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. Although the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods and then by cones. Recently, the bile acid tauroursodeoxycholic acid (TUDCA) has been shown to have antiapoptotic properties in neurodegenerative diseases, including those of the retina. In this study the authors examined the efficacy of TUDCA on preserving rod and cone function and morphology at postnatal day 30 (P30) in the rd10 mouse, a model of RP. METHODS Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every 3 days from P6 to P30 and were compared with vehicle (0.15 M NaHCO(3)). At P30, retinal function was measured with electroretinography, and morphologic preservation of the rods and cones was assessed with immunohistochemistry. RESULTS Dark-adapted electroretinographic (ERG) responses were twofold greater in rd10 mice treated with TUDCA than with vehicle, likewise light-adapted responses were twofold larger in TUDCA-treated mice than in controls at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had fivefold more photoreceptors than vehicle-treated retinas. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. CONCLUSIONS TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved rod and cone function and greatly preserved overall photoreceptor numbers.
Collapse
Affiliation(s)
- M Joe Phillips
- Rehabilitation Research and Development Center, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rivard AL, Steer CJ, Kren BT, Rodrigues CMP, Castro RE, Bianco RW, Low WC. Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2007; 35:279-95. [PMID: 17436368 DOI: 10.1142/s0192415x07004813] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Black bear bile has been used in traditional Chinese medicine to treat liver and eye related illnesses for centuries. A major constituent of bile is ursodeoxycholic acid (UDCA). Recent analysis of the cellular effects of UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) have demonstrated their antiapoptotic properties through regulation of Bcl-2 family and survival signaling proteins (Bax, Bad, phosphatidylinositol-3-kinase). In this study, we tested the hypothesis that TUDCA administered to rats prior to a myocardial infarction (MI) would exhibit anti-apoptotic effects and improve cardiac function. Prior to ligation of the left anterior descending (LAD) coronary artery, TUDCA (50 mg/ml, 400 mg/kg, IV) or PBS was administered to rats. Animals were sacrificed 24 hours after ligation for terminal transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) and caspase-3 activity to assess apoptosis. Additional TUDCA or PBS treated rats underwent pre-operative,1 and 4 week transthoracic ultrasounds to assess heart function by quantification of shortening fraction (SF) and infarct area. TUNEL labeling of the cardiac tissue revealed a significant reduction in apoptotic cells in rats given TUDCA prior to ischemic injury (p = 0.05). In support of reducing apoptosis, caspase-3 activity in the TUDCA treated animals also decreased (p = 0.02). By 4 weeks, a significantly smaller infarct area was present in the TUDCA group compared to the PBS group (0.05 vs. 0.13 cm(2), p = NS) and there was also an improvement in SF. The results provide evidence for TUDCA as a viable treatment for reducing apoptosis in a model of myocardial infarction. Additional studies will distinguish the functional result of improved cell survival following infarction, suggesting the potential for clinical application of this anti-apoptotic drug in treatment of acute MI.
Collapse
Affiliation(s)
- Andrew L Rivard
- Department of Surgery, Experimental Surgical Services, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rost D, Rudolph G, Kloeters-Plachky P, Stiehl A. Effect of high-dose ursodeoxycholic acid on its biliary enrichment in primary sclerosing cholangitis. Hepatology 2004; 40:693-8. [PMID: 15349909 DOI: 10.1002/hep.20370] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ursodeoxycholic acid (UDCA) has beneficial effects in cholestatic liver diseases. In primary sclerosing cholangitis (PSC), there is evidence that high doses (+/- 20 mg/kg) of UDCA may be more effective than average doses. Biliary enrichment of UDCA at such high doses may represent the decisive factor for its beneficial effect. Up to now it is not clear how high-dose UDCA correlates with its biliary enrichment and whether bacterial degradation of large amounts of UDCA may lead to an increased bacterial formation of more toxic hydrophobic bile acids. We determined the biliary bile acid composition in 56 patients with PSC including 30 patients with repeat bile samples treated with various doses of UDCA. At a UDCA dose of 10-13 mg/kg/d (n = 18) biliary UDCA represented 43.1% + 0.3% (mean + SD) of total bile acids; at a UDCA dose of 14-17 mg/kg (n = 14), its biliary content increased to 46.9% + 0.3%, at 18-21 mg/kg (n = 34) to 55.9% + 0.2%, at 22-25 mg/kg (n = 12) to 58.6% + 2.3%, and at 26-32 mg/kg (n = 8) to 57.7% + 0.4%. During UDCA treatment, the biliary content of all other bile acids was unchanged or decreased. In conclusion, biliary enrichment of UDCA increases with increasing dose and reaches a plateau at 22-25 mg/kg. There was no increase of toxic hydrophobic bile acids. If biliary enrichment of UDCA represents the decisive factor for its clinical effect, it seems likely that UDCA doses of up to 22-25 mg/kg may be more effective than lower doses.
Collapse
Affiliation(s)
- Daniel Rost
- Department of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
BACKGROUND Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear. OBJECTIVES To assess the beneficial and harmful effects of bile acids for patients with primary sclerosing cholangitis. SEARCH STRATEGY We searched The Cochrane Hepato-Biliary Group's Trials Register, The Cochrane Library, MEDLINE, EMBASE, and The Chinese Biomedical Database generally from inception through to May 2002. SELECTION CRITERIA Randomised clinical trials comparing any dose or duration of bile acids versus placebo, no intervention, or another intervention were included. Trials were included irrespective of blinding, language, or publication status. DATA COLLECTION AND ANALYSIS Two reviewers extracted the data. The methodological quality of the trials was evaluated with respect to the generation of the allocation sequence, allocation concealment, double blinding, and follow-up. The results were reported by intention-to-treat analysis. The outcomes were presented as relative risks (RR) or weighted mean differences (WMD), both with 95% confidence intervals (CI). MAIN RESULTS We identified six randomised clinical trials, all with low methodological quality. Patients were treated for three months to six years (median two years). Five trials (183 patients) compared ursodeoxycholic acid versus placebo, and one trial (40 patients) compared ursodeoxycholic acid versus no treatment. Ursodeoxycholic acid did not significantly reduce the risk of death (RR 0.86; 95% CI 0.27 to 2.73); treatment failure including liver transplantation, varices, ascites, and encephalopathy (RR 0.94; 95% CI 0.63 to 1.42); liver histological deterioration (RR 0.89; 95% CI 0.45 to 1.74); or liver cholangiographic deterioration (RR 0.43; 95% CI 0.18 to 1.02). Ursodeoxycholic acid significantly improved serum bilirubin (WMD -14.6 micro mol/litre; 95% CI -18.7 to -10.6), alkaline phosphatases (WMD -506 IU/litre; 95% CI -583 to -430), aspartate aminotransferase (WMD -46 IU/litre; 95% CI -77 to -16), and gamma-glutamyltranspeptidase (WMD -260 IU/litre; 95% CI -315 to -205), but not albumin (WMD -0.20 g/litre; 95% CI -1.91 to 1.50). Ursodeoxycholic acid was well tolerated. REVIEWER'S CONCLUSIONS Ursodeoxycholic acid leads to a significant improvement in liver biochemistry, but there is insufficient evidence to either support or refute its clinical effects in patients with primary sclerosing cholangitis. Large scale, high-quality randomised clinical trials are needed.
Collapse
Affiliation(s)
- W Chen
- The Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, H:S Rigshospitalet, Dept. 7102, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
39
|
Rudolph G, Kloeters-Plachky P, Sauer P, Stiehl A. Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate. Eur J Clin Invest 2002; 32:575-80. [PMID: 12190957 DOI: 10.1046/j.1365-2362.2002.01030.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) and its taurine conjugate (TUDCA) exert a protective effect in cholestatic liver diseases. A greater hepatoprotective effect of TUDCA has been suggested. Absorption appears to be a limiting factor and up to now has not been studied in man. METHODS We studied absorption and biliary bile acid secretion and composition after administration of UDCA and TUDCA in patients who had complete extrahepatic biliary obstruction caused by pancreatic carcinoma but had no intestinal or liver disease. After 5 days of intact enterohepatic circulation eight patients with a percutaneous biliary-duodenal drainage received, during two study periods, 1000 mg (1916.9 micromol; mean 29.6 micromol kg(-1)) TUDCA and 750 mg (1910.4 micromol; mean 29.5 micromol kg(-1)) UDCA in random order. Each patient served as his own control. RESULTS After UDCA and TUDCA administration the biliary UDCA content increased to 55.2% and 54.6% of total bile acids, respectively (not significant). Biliary secretion of cholic and chenodeoxycholic acids remained unchanged whereas that of lithocholic acid increased slightly. A total of 64.6% of the orally administered TUDCA and 55.1% of the UDCA was absorbed (not significant). After TUDCA administration, biliary UDCA was preferentially (95.4%) taurine-conjugated whereas after UDCA administration biliary UDCA was mainly (79.8%) glycine-conjugated. CONCLUSIONS After oral administration of TUDCA and UDCA, no significant differences in their absorption and in biliary bile acid secretion exist. Whether biliary enrichment with taurine conjugates of UDCA instead of glycine conjugates offers advantages in the treatment of cholestatic liver disease is unclear at present.
Collapse
Affiliation(s)
- G Rudolph
- Department of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Primary biliary cirrhosis is a rare autoimmune liver disease and an effective treatment has been difficult to establish. Some randomised clinical trials have found an effect of ursodeoxycholic acid for primary biliary cirrhosis. OBJECTIVES Evaluate the beneficial effects and adverse effects of peroral ursodeoxycholic acid for primary biliary cirrhosis versus placebo or no intervention. SEARCH STRATEGY The Controlled Trials Register of The Cochrane Hepato-Biliary Group, The Cochrane Library, MEDLINE, EMBASE and the full text of the identified studies were searched until April 2001. The electronic searches were done by entering the search terms 'ursodeoxycholic acid', 'UDCA', 'primary biliary cirrhosis', and 'PBC'. SELECTION CRITERIA Randomised clinical trials evaluating ursodeoxycholic acid administered perorally at any dose versus placebo or no intervention in patients with primary biliary cirrhosis diagnosed by any method. Only trials using an adequate method for randomisation were included, regardless of blinding and language. DATA COLLECTION AND ANALYSIS The methodologic quality of the randomised clinical trials was evaluated by components and the Jadad-score. The following outcomes were extracted: mortality, liver transplantation, pruritus, other clinical symptoms (jaundice, portal pressure, (bleeding) oesophageal varices, ascites, hepatic encephalopathy, hepato-renal syndrome, autoimmune conditions), liver biochemistry, liver function, liver biopsy findings, quality of life, and adverse events. All analyses were performed according to the intention-to-treat method. MAIN RESULTS A total of 16 randomised clinical trials evaluating ursodeoxycholic acid against placebo (n = 15) or no intervention (n = 1) in 1422 patients were identified. The median Jadad-score was 3 (range 1-5). A number of trials described as double blind had problems with the blinding. Neither mortality (odds ratio = 0.94; 95% confidence interval (CI) 0.60 to 1.48), liver transplantation (odds ratio = 0.83; 95% CI 0.52 to 1.32), mortality or liver transplantation (odds ratio = 0.90; 95% CI 0.65 to 1.26), pruritus, fatigue, autoimmune conditions, quality of life, liver histology, or portal pressure were significantly affected by ursodeoxycholic acid (given in doses of 8-15 mg/kg/day for three months to five years). However, ursodeoxycholic acid significantly (P < 0.05) reduced ascites, jaundice, and biochemical variables such as serum bilirubin and liver enzymes. Ursodeoxycholic acid was not significantly associated with adverse events. Including data after patients had been switched onto open label ursodeoxycholic acid confirmed the findings regarding the lack of a significant effect of ursodeoxycholic acid on mortality and mortality or liver transplantation. A significant (P = 0.04) effect was, however, observed on the incidence of liver transplantation (odds ratio = 0.68; 95% CI 0.48 to 0.98). REVIEWER'S CONCLUSIONS Ursodeoxycholic acid has a marginal therapeutic effect for primary biliary cirrhosis. On the positive side, ursodeoxycholic acid has few side effects. The general usage of ursodeoxycholic acid for primary biliary cirrhosis needs reevaluation.
Collapse
Affiliation(s)
- C Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, H:S Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | |
Collapse
|
41
|
Invernizzi P, Setchell KD, Crosignani A, Battezzati PM, Larghi A, O'Connell NC, Podda M. Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology 1999; 29:320-7. [PMID: 9918905 DOI: 10.1002/hep.510290220] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The clinical effectiveness of ursodeoxycholate in the treatment of liver disease may be limited by its poor absorption and extensive biotransformation. Because in vitro and in vivo studies suggest that the more hydrophilic bile acid tauroursodeoxycholate has greater beneficial effects than ursodeoxycholate, we have compared for the first time the absorption, metabolism, and clinical responses to these bile acids in patients with primary biliary cirrhosis (PBC). Twelve female patients with PBC were sequentially administered tauroursodeoxycholate and ursodeoxycholate (750 mg/d for 2 months) in a randomized, cross-over study. Bile acids were measured in serum, duodenal bile, urine, and feces by gas chromatography-mass spectrometry (GC-MS). Biliary ursodeoxycholate enrichment was higher during tauroursodeoxycholate administration (32.6% vs. 29.2% during ursodeoxycholate; P <.05). Lithocholic acid concentration was consistently higher in all biological fluids during ursodeoxycholate administration. Fecal bile acid excretion was the major route of elimination of both bile acids; ursodeoxycholate accounted for 8% and 23% of the total fecal bile acids during tauroursodeoxycholate and ursodeoxycholate administration, respectively (P <.05). Tauroursodeoxycholate was better absorbed than ursodeoxycholate, and, although it was partially deconjugated and reconjugated with glycine, it underwent reduced biotransformation to more hydrophobic metabolites. This comparative study suggests that tauroursodeoxycholate has significant advantages over ursodeoxycholate that may be of benefit for long-term therapy in PBC.
Collapse
Affiliation(s)
- P Invernizzi
- Division of Internal Medicine, Ospedale San Paolo School of Medicine, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|