1
|
A Critical Evaluation of Behavioral Rodent Models of Motor Impairment Used for Screening of Antiparkinsonian Activity: The Case of Adenosine A2A Receptor Antagonists. Neurotox Res 2013; 25:392-401. [DOI: 10.1007/s12640-013-9446-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
2
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Synergism of theophylline and anticholinergics to inhibit haloperidol-induced catalepsy: a potential treatment for extrapyramidal syndromes. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1465-71. [PMID: 20713114 DOI: 10.1016/j.pnpbp.2010.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/20/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022]
Abstract
Extrapyramidal syndromes (EPS) impose a heavy burden on patients receiving antipsychotic therapy. Anticholinergics are the drugs of choice for preventing EPS, but they also produce many adverse reactions. Using the EPS model of haloperidol-induced catalepsy we evaluated the potential therapeutic value of a mixture of low doses of the non-selective adenosine antagonist theophylline (0.93 and 1.86 mg/kg), and the muscarinic antagonists benztropine (0.134 and 0.268 mg/kg) and ethopropazine (0.116 and 0.232 mg/kg). In rats pretreated with vehicle (distilled water), the cumulative catalepsy time over 5 h was 4199±228 s, and the mean latency was 67.5±7.8 min. Applied separately, neither of the drugs at the doses used caused significant changes of catalepsy intensity vs. control rats. However, the combination of the larger doses of theophylline and benztropine caused a significant reduction of catalepsy intensity (-41±10%) compared with the effects of the vehicle, vs. the lower dose of benztropine, and vs. both doses of theophylline alone. The mixture of the larger doses of theophylline and benztropine also delayed catalepsy onset (156±21 min) as compared with the lower doses of these same drugs applied alone. In the case of theophylline plus ethopropazine, only the association of the larger doses showed a non-significant tendency to inhibit catalepsy (-21±8%) and to prolong its latency (108±13 min). Further, neither catalepsy intensity nor its latency was affected by a combination of the selective A(1)R antagonist DPCPX (1 mg/kg), with the larger doses of both anticholinergics. In contrast, the anticholinergics showed synergism with a subthreshold dose of the selective A(2A)R antagonist ZM 241395 (0.5 mg/kg), causing a significant reduction of catalepsy intensity (ethopropazine, -27±5%; benztropine, -35±9%) and prolonging its latency (ethopropazine, 65±9 min; benztropine, 78±11 min), compared with the effect of their respective vehicle (DMSO plus mineral oil: catalepsy time, 5100±196 s; latency, 17.5±2.5 min). These findings suggest that neuroleptic-induced EPS could be effectively controlled by a combination of lower doses of theophylline and anticholinergics, with the advantage of maximizing their efficacy and minimizing their adverse reactions.
Collapse
|
4
|
Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 2007; 83:293-309. [PMID: 17826884 DOI: 10.1016/j.pneurobio.2007.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/18/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Adenosine A2A receptors have a unique cellular and regional distribution in the basal ganglia, being particularly concentrated in areas richly innervated by dopamine such as the caudate-putamen and the globus pallidus. Adenosine A2A receptors are selectively located on striatopallidal neurons and are capable of forming functional heteromeric complexes with dopamine D2 and metabotropic glutamate mGlu5 receptors. Based on the unique cellular and regional distribution of this receptor and in line with data showing that A2A receptor antagonists improve motor symptoms in animal models of Parkinson's disease (PD) and in initial clinical trials, A2A receptor antagonists have emerged as an attractive non-dopaminergic target to improve the motor deficits that characterize PD. Experimental data have also shown that A2A receptor antagonists do not induce neuroplasticity phenomena that complicate long-term dopaminergic treatments. The present review provides an updated summary of results reported in the literature concerning the biochemical characteristics and basal ganglia distribution of A2A receptors. We subsequently aim to examine the effects of adenosine A2A antagonists in rodent and primate models of PD and of l-DOPA-induced dyskinesia. Finally, concluding remarks are made on post-mortem human brains and on the translation of adenosine A2A receptor antagonists in the treatment of PD.
Collapse
Affiliation(s)
- Micaela Morelli
- University of Cagliari, Department of Toxicology, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Pinna A, Wardas J, Simola N, Morelli M. New therapies for the treatment of Parkinson's disease: Adenosine A2A receptor antagonists. Life Sci 2005; 77:3259-67. [PMID: 15979104 DOI: 10.1016/j.lfs.2005.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/23/2005] [Indexed: 11/24/2022]
Abstract
The development of non-dopaminergic therapies for the treatment of Parkinson's disease (PD) has attracted much interest in recent years. Among new different classes of drugs, adenosine A2A receptor antagonists have emerged as best candidates. The present review will provide an updated summary of the results reported in literature concerning the effects of adenosine A2A antagonists in rodent and primate models of PD. These results show that A2A receptor antagonists improve motor deficits without inducing dyskinesia and counteract parkinsonian tremor. In progress clinical trials have shown that a low dose of L-DOPA plus KW-6002 produced symptomatic relief no different from that produced by an optimal dose of L-DOPA alone, whereas dyskinesias were reduced rendering this class of compounds particularly attractive.
Collapse
|
7
|
Núñez-Taltavull JF, Prat G, Rubio A, Robledo P, Casas M. Biphasic effects of oxotremorine-M on turning behavior induced by caffeine in 6-OHDA-lesioned rats. Eur J Pharmacol 2004; 506:71-4. [PMID: 15588626 DOI: 10.1016/j.ejphar.2004.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 10/06/2004] [Indexed: 11/29/2022]
Abstract
This work studied the interactions between cholinergic and adenosine systems in the denervated striatum. For that purpose, we evaluated the effects of an intrastriatal administration of the muscarincic receptor agonist, oxotremorine-M on turning behavior induced by systemic caffeine in unilaterally 6-hydroxydopamine-lesioned rats. Low doses of oxotremorine-M (0.1 ng/microl) enhanced, whereas high doses (100 ng/microl) attenuated contralateral turning induced by caffeine. These results support a functional link between muscarinic and adenosinergic systems in the denervated striatum and suggest opposite actions of muscarinic M2 and M1 receptors on caffeine-induced turning behavior.
Collapse
Affiliation(s)
- Juan Francisco Núñez-Taltavull
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Departaments de Psiquiatria i de Farmacología, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Villanueva-Toledo J, Moo-Puc RE, Góngora-Alfaro JL. Selective A2A, but not A1 adenosine antagonists enhance the anticataleptic action of trihexyphenidyl in rats. Neurosci Lett 2003; 346:1-4. [PMID: 12850533 DOI: 10.1016/s0304-3940(03)00337-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In rats made cataleptic with haloperidol (5.32 micromol/kg), the bar test was used to assess the possible synergism between the muscarinic antagonist trihexyphenidyl (THP) and selective adenosine A(1) and A(2A) receptor antagonists. Neither catalepsy intensity nor latency were affected by a subthreshold dose of THP (0.33 micromol/kg). The selective adenosine A(1) antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX) (5.15 micromol/kg) caused a small, but significant reduction of catalepsy intensity that remained unchanged when combined with THP. DPCPX had no effect on catalepsy latency, either alone or combined with THP. In contrast, an equimolar dose of the selective adenosine A(2A) antagonist 4-(2-[7-amino-2-(2-furyl)1,2,4-triazolo[2,3-a]-[1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) (5.15 micromol/kg) produced a significant reduction of catalepsy intensity and increased catalepsy latency. Both effects were potentiated when ZM 241385 was combined with THP. The synergism was more evident when rats were pretreated with a subthreshold dose of ZM 241385 (1.55 micromol/kg) that was unable to modify catalepsy parameters when applied alone, but produced a significant reduction in catalepsy intensity and an increase in catalepsy latency when administered with THP. Catalepsy was unaffected by a combination of equimolar, subthreshold doses of DPCPX (1.55 micromol/kg) and ZM 241385 (1.55 micromol/kg). These findings indicate that the anticataleptic effect of anticholinergics is enhanced only by the selective blockade of adenosine A(2A) receptors.
Collapse
Affiliation(s)
- Jairo Villanueva-Toledo
- Laboratorio de Neurofisiología, Centro de Investigaciones Regionales, "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Avenida Itzáes No 490, Yucatán, Mérida CP 97000, Mexico
| | | | | |
Collapse
|
9
|
Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M. Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 2002; 446:75-82. [PMID: 12098587 DOI: 10.1016/s0014-2999(02)01818-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine A(2A) receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. To explore the possibility that dopamine denervation may produce modifications in adenosine A(2A) transmission, we measured the extracellular concentration of adenosine and adenosine A(2A) receptor mRNA in the striatum of rats infused unilaterally with 6-hydroxydopamine in the medial forebrain bundle. Fifteen days after 6-hydroxydopamine infusion, extracellular adenosine levels, measured by in vivo microdialysis, were significantly lower (-35%) in the dopamine-denervated striatum. At the time of the decrease in adenosine levels, an increase in striatal adenosine A(2A) receptor mRNA levels (+20%), measured by in situ hybridization, was observed. Modifications in adenosine A(2A) transmission, following nigrostriatal dopamine neuron degeneration, establish a potential neural basis for the effectiveness of adenosine A(2A) receptor antagonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Annalisa Pinna
- CNR Center for Neuropharmacology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Huang X, Lawler CP, Lewis MM, Nichols DE, Mailman RB. D1 dopamine receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:65-139. [PMID: 11526741 DOI: 10.1016/s0074-7742(01)48014-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- X Huang
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
11
|
Morelli M, Wardas J. Adenosine A(2a) receptor antagonists: potential therapeutic and neuroprotective effects in Parkinson's disease. Neurotox Res 2001; 3:545-56. [PMID: 15111244 DOI: 10.1007/bf03033210] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most effective treatment of Parkinson's disease (PD) is, at present, the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA), however a number of disadvantages such as a loss of drug efficacy and severe side-effects (psychoses, dyskinesias and on-off phenomena) limit long-term effective utilisation of this drug. Recent experimental studies in which selective antagonists of adenosine A(2A) receptors were used, have shown an improvement in motor disabilities in animal models of PD. The A(2A) antagonist [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine] (SCH 58261) potentiated the contralateral turning behavior induced by a threshold dose of L-DOPA or direct dopamine receptor agonists in unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, an effect accompanied by an increase in Fos-like-immunoreactivity in neurons of the lesioned striatum. Likewise, other A(2A) receptor antagonists such as (3,7-dimethyl-1-propargylxanthine) (DMPX), [E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine] (KF 17837) and [E-1,3-diethyl-8(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6-dione] (KW 6002) antagonized catalepsy induced by haloperidol or reserpine in the rat, whereas in non-human primate models of PD, KW 6002 reduced the rigidity and improved the disability score of MPTP-treated marmosets and cynomolgus monkeys. Moreover, in contrast to L-DOPA, selective A(2A) receptor antagonists administered chronically did not produce dyskinesias and did not evoke tolerance in 6-OHDA and MPTP models of PD. An additional therapeutic potential of adenosine A(2A) antagonists emerged from studies showing neuroprotective properties of these compounds in animal models of cerebral ischemia and excitotoxicity, as well as in the MPTP model of PD. Adenosine A(2A) receptor antagonists by reversing motor impairments in animal models of PD and by contrasting cell degeneration are some of the most promising compounds for the treatment of PD.
Collapse
Affiliation(s)
- M Morelli
- Department of Toxicology, University of Cagliari, Palazzo delle Scienze, Via Ospedale 72, 09124, Cagliari, Italy
| | | |
Collapse
|
12
|
Wardas J, Konieczny J, Lorenc-Koci E. SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 2001; 41:160-71. [PMID: 11400182 DOI: 10.1002/syn.1070] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to find out whether blockade of adenosine A(2A) receptors by a selective antagonist, SCH 58261, influenced parkinsonian-like muscle rigidity. Muscle tone was examined using a combined mechano- and electromyographic method which simultaneously measured muscle resistance (MMG) of a rat hindfoot to passive extension and flexion in the ankle joint and electromyographic activity (EMG) of the antagonistic muscles of that joint: gastrocnemius and tibialis anterior. Muscle rigidity produced by reserpine (5 mg/kg + alpha-methyl-p-tyrosine, 250 mg/kg) was antagonized by SCH 58261 (0.1-5 mg/kg). SCH 58261 (5 mg/kg) also reduced reserpine-enhanced tonic and reflex EMG activities in both the gastrocnemius and the tibialis muscles. Moreover, SCH 58261 in doses of 1 and 5 mg/kg abolished muscle resistance induced by haloperidol (0.5 mg/kg). However, only the highest dose of SCH 58261 (5 mg/kg) decreased tonic EMG activity enhanced by haloperidol. Administration of L-DOPA (75 and 100 mg/kg) dose-dependently decreased the muscle resistance as well as tonic EMG activity evoked by haloperidol. Combined administration of SCH 58261 (0.1 mg/kg) and L-DOPA (50 mg/kg) in doses which did not affect the haloperidol-induced muscle rigidity produced a pronounced synergistic effect. The ability of SCH 58261 to diminish the parkinsonian-like muscle rigidity and to potentiate the effect of L-DOPA in this model seems to indicate a therapeutic value of this compound in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- J Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, PL-31-343 Kraków, Poland.
| | | | | |
Collapse
|
13
|
Morelli M, Pinna A. Modulation by adenosine A2A receptors of dopamine-mediated motor behavior as a basis for antiparkinson?s disease drugs. Drug Dev Res 2001. [DOI: 10.1002/ddr.1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P. Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 2000; 162:321-7. [PMID: 10739638 DOI: 10.1006/exnr.2000.7350] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel selective adenosine A(2A) receptor antagonist KW-6002 improves motor disability in MPTP-treated parkinsonian marmosets without provoking dyskinesia. In this study we have investigated whether KW-6002 in combination with l-DOPA or selective D1 or D2 dopamine receptor agonists enhances antiparkinsonian activity in MPTP-treated common marmosets. Combination of KW-6002 with the selective dopamine D2 receptor agonist quinpirole or the D1 receptor agonist SKF80723 produced an additive improvement in motor disability. Coadministration of KW-6002 with a low dose of L-DOPA also produced an additive improvement in motor disability, and increased locomotor activity. The ability of KW-6002 to enhance antiparkinsonian activity was more marked with L-DOPA and quinpirole than with the D1 agonist. However, despite producing an enhanced antiparkinsonian response KW-6002 did not exacerbate L-DOPA-induced dyskinesia in MPTP-treated common marmosets previously primed to exhibit dyskinesia by prior exposure to L-DOPA. Selective adenosine A(2A) receptor antagonists, such as KW-6002, may be one means of reducing the dosage of L-DOPA used in treating Parkinson's disease and are potentially a novel approach to treating the illness both as monotherapy and in combination with dopaminergic drugs.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Administration, Oral
- Animals
- Callithrix
- Carbidopa/administration & dosage
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Dyskinesia, Drug-Induced/therapy
- Female
- Injections, Intraperitoneal
- Levodopa/administration & dosage
- Levodopa/adverse effects
- Male
- Motor Activity/drug effects
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/physiopathology
- Purinergic P1 Receptor Antagonists
- Purines/administration & dosage
- Quinpirole/administration & dosage
- Receptor, Adenosine A2A
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D2/agonists
Collapse
Affiliation(s)
- T Kanda
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Demet EM, Chicz-Demet A, Fallon JH, Sokolski KN. Sleep deprivation therapy in depressive illness and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:753-84. [PMID: 10509373 DOI: 10.1016/s0278-5846(99)00039-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Sleep deprivation is commonly associated with feelings of fatigue and cognitive impairment. 2. Patients with depressive illness, however, often experience mood improvements under these same conditions. 3. Other studies now show that tremor and rigidity, in patients with Parkinson's disease, are also improved by sleep depression therapy. 4. The neural substrates which underlie these effects are unclear. Some recent evidence, however, suggests that sleep deprivation may activate mechanisms which are otherwise typical of conditions of metabolic stress. 5. A common feature of these mechanisms is the suppression of cholinergic activity which is thought to be excessive, in relation to monoamine transmission, in both depression and Parkinson's disease.
Collapse
Affiliation(s)
- E M Demet
- Mental Health Care Group, VA Medical Center, Long Beach, CA, USA
| | | | | | | |
Collapse
|
16
|
Ribeiro JA. Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. Eur J Pharmacol 1999; 375:101-13. [PMID: 10443568 DOI: 10.1016/s0014-2999(99)00230-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adenosine, by activating adenosine A2A receptors, seems to have a crucial function in regulating the activation of multiple receptors that affect neurotransmitter release and/or synaptic transmission, in particular receptors for neuropeptides (calcitonin gene related peptide (CGRP) and vasoactive intestinal peptide (VIP)), and NMDA receptors, metabotropic glutamate receptors, nicotinic autofacilitatory receptors, dopamine receptors and adenosine A1 receptors. The manner in which these A2A receptors are involved in interactions with the receptors for other neurotransmitters and or neuromodulators opens novel avenues for the action of this 'omnipresent' nucleoside. Either by direct receptor-receptor modulation or by post-receptor mechanisms, adenosine, in its 'obsession' to protect cells from insults, uses as many receptor systems as possible to synchronize synaptic transmission, in order to exert what seems to be the 'destiny' of this nucleoside--protection of the nervous system.
Collapse
Affiliation(s)
- J A Ribeiro
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|
17
|
Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F. Scopolamine prevents tolerance to the effects of caffeine on rotational behavior in 6-hydroxydopamine-denervated rats. Eur J Pharmacol 1999; 366:1-11. [PMID: 10064145 DOI: 10.1016/s0014-2999(98)00911-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Continuous administration of caffeine has been shown to induce tolerance to its psychostimulant effects. In this study, using unilateral 6-hydroxydopamine nigrostriatal denervated rats, we tested the hypothesis that the muscarinic receptor antagonist, scopolamine, would prevent the tolerance to caffeine-induced contralateral rotational behavior. For that purpose we administered either caffeine (40 mg/kg) plus saline or scopolamine (5, 10 and 20 mg/kg) plus saline, as well as caffeine in combination with the various doses of scopolamine for 7 consecutive days, and measured ipsilateral and contralateral rotational behavior. The results showed that acute injections of scopolamine plus saline produced similar levels of both ipsilateral and contralateral turning, while caffeine produced more contralateral than ipsilateral turning. Tolerance to caffeine-induced contralateral turning was observed as of the second administration, while scopolamine plus saline injections did not produce significant changes in rotational behavior with repeated treatment. Scopolamine co-administered with caffeine significantly attenuated the increased contralateral turning produced by acute injections of caffeine plus saline, but significantly prevented the tolerance effects with repeated administration. These findings strongly suggest that muscarinic cholinergic processes may be involved in tolerance to caffeine-induced contralateral turning. The results are interpreted in terms of the possible interactions between dopamine, adenosine and acetylcholine neurotransmitter systems within the basal ganglia circuitry involved in motor behavior.
Collapse
Affiliation(s)
- M Casas
- Institut de Recerca Sant Pau, Departament de Psiquiatria, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Hauber W, Nagel J, Sauer R, Müller CE. Motor effects induced by a blockade of adenosine A2A receptors in the caudate-putamen. Neuroreport 1998; 9:1803-6. [PMID: 9665604 DOI: 10.1097/00001756-199806010-00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motor effects mediated through adenosine A2A receptors within the caudate-putamen were investigated in rats using bilateral microinfusions of MSX-3 (9 microg in 1 microl per side), a water-soluble phosphate prodrug of the selective A2A receptor antagonist MSX-2. Blockade of striatal A2A receptors produced a significant motor stimulation measured by an enhanced sniffing activity. Furthermore, catalepsy induced by systemic dopamine D1 (0.75 mg/kg SCH23390, i.p.) or dopamine D2 receptor blockade (1.5 mg/kg raclopride, i.p.) was potently reversed. These findings suggest that A2A receptors within the caudate-putamen are tonically activated by endogenous adenosine and that a striatal A2A receptor blockade produces motor stimulant effects, in particular in animals with dopamine hypofunction. The present results support the view that A2A receptor antagonists may be potentially useful therapeutics for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Germany
| | | | | | | |
Collapse
|
19
|
Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:258-73. [PMID: 9651540 DOI: 10.1016/s0165-0173(97)00049-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An analysis at the network and membrane level has provided evidence that antagonistic interactions between adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptors in the ventral and dorsal striatum are at least in part responsible for the motor stimulant effects of adenosine receptor antagonists like caffeine and for the motor depressant actions of adenosine receptor agonists. The results obtained in stably cotransfected cells also underline the hypothesis that the intramembrane A2A/D2 and A1/D1 receptor interactions represent functionally important mechanisms that may be the major mechanism for the demonstrated antagonistic A2A/D2 and A1/D1 receptor interactions found in vivo in behavioural studies and in studies on in vivo microdialysis of the striopallidal and strioentopeduncular GABAergic pathways. A major mechanism for the direct intramembrane A2A/D2 and A1/D1 receptor interactions may involve formation of A2A/D2 and A1/D1 heterodimers leading to allosteric changes that will alter the affinity as well as the G protein coupling and thus the efficacy to control the target proteins in the membranes. This is the first molecular network to cellular integration in the nerve cell membrane and may be well suited for a number of integrated tasks and can be performed in a short-time scale, in comparison with the very long-time scale observed when receptor heteroregulation involves phosphorylation or receptor resynthesis. Multiple receptor-receptor interactions within the membranes through formation of receptor clusters may lead to the storage of information within the membranes. Such molecular circuits can represent hidden layers within the membranes that substantially increase the computational potential of neuronal networks. These molecular circuits are biased and may therefore represent part of the molecular mechanism for the storage of memory traces (engrams) in the membranes.
Collapse
Affiliation(s)
- K Fuxe
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
20
|
Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998; 43:507-13. [PMID: 9546333 DOI: 10.1002/ana.410430415] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment of Parkinson's disease with L-dopa therapy leads to long-term complications, including loss of drug efficacy and the onset of dyskinesia. Adenosine A2A receptors in striatum are selectively localized to GABAergic output neurons of the striato-pallidal pathway and may avoid such problems. The novel adenosine A2A receptor antagonist KW-6002 has been examined for antiparkinsonian activity in MPTP-treated primates. Oral administration of KW-6002 reversed motor disability in MPTP-treated common marmosets in a dose-dependent manner. However, KW-6002 only modestly increased overall locomotor activity and did not cause abnormal movement, such as stereotypy. The ability of KW-6002 to reverse motor disability was maintained on repeated daily administration for 21 days, and no tolerance was observed. KW-6002 induced little or no dyskinesia in MPTP-treated primates previously primed to exhibit dyskinesia by prior exposure to L-dopa. These results suggest that selective adenosine A2A receptor antagonists represent a new class of antiparkinsonian agents that improve disability without producing hyperactivity and without inducing dyskinesia.
Collapse
Affiliation(s)
- T Kanda
- Neurodegenerative Disease Research Centre, Biomedical Sciences Division, King's College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The continuing lack of effective long-term therapies for Parkinson's disease and other disorders in which a primary symptom is involuntary tremor is leading to a search for alternative pharmacological strategies. Adenosine is a major modulator of neuronal activity and neurotransmitter release in the central nervous system, with A1 receptors inhibiting transmitter release and A2 receptors generally enhancing release of several transmitter systems relevant to the control of movement. The A2a subtype of receptor is especially concentrated in the neostriatum and is co-localised with D2 receptors for dopamine, the affinity of which are reduced by activation of the A2a population. Antagonists of adenosine, such as theophylline, have been reported to improve the tremor in cases of Parkinson's disease and essential tremor, and the development of better and more selective A2a receptor antagonists may prove of value in these disabling disorders.
Collapse
Affiliation(s)
- J Mally
- Department of Neurology, St. George Hospital, Szekesfehervar, Hungary
| | | |
Collapse
|
22
|
Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997; 20:482-7. [PMID: 9347617 DOI: 10.1016/s0166-2236(97)01096-5] [Citation(s) in RCA: 596] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by interacting adenosine A2A and dopamine D2 receptors. On the other hand, the GABAergic striatonigral and striatoentopeduncular neurons seem to be regulated by interacting adenosine A1 and dopamine D1 receptors. Furthermore, behavioural studies have revealed interactions between adenosine A2A and dopamine D1 receptors that occur at the network level. These adenosine-dopamine receptor-receptor interactions might offer new therapeutic leads for basal ganglia disorders.
Collapse
Affiliation(s)
- S Ferré
- Dept of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Richardson PJ, Kase H, Jenner PG. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. Trends Pharmacol Sci 1997; 18:338-44. [PMID: 9345853 DOI: 10.1016/s0165-6147(97)01096-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is now good reason to believe that blockade of the adenosine A2A receptor could be of value in the treatment of Parkinson's disease. Peter J. Richardson, Hiroshi Kase and Peter G. Jenner review the actions of this receptor in the striatum, emphasizing its ability to modulate the neuronal activity of striatal GABA-releasing output neurones, and showing that recently developed A2A receptor antagonists are capable of reducing the disabling effects of nigral cell degeneration in primates. They conclude that such antagonists may be useful as novel therapeutic agents for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- P J Richardson
- Pharmaceutical Development Centre, Kyowa Hakko Kogyo, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Richardson PJ, Kase H, Jenner PG. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90660-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Mandhane SN, Chopde CT, Ghosh AK. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats. Eur J Pharmacol 1997; 328:135-41. [PMID: 9218695 DOI: 10.1016/s0014-2999(97)83039-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- S N Mandhane
- Department of Pharmaceutical Sciences, Nagpur University Campus, Maharashtra, India
| | | | | |
Collapse
|
26
|
Pinna A, Wardas J, Cristalli G, Morelli M. Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Res 1997; 759:41-9. [PMID: 9219861 DOI: 10.1016/s0006-8993(97)00214-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of the early-gene c-fos is an useful method for studying potential sites of action of drugs active in the CNS. Stimulation of adenosine A2A receptors by CGS 21680 (5 mg/kg) induced an increase in Fos-like immunoreactivity in the rat nucleus accumbens shell, while in the rostral pole and core CGS 21680 induced Fos-like immunoreactivity only after a high dose. CGS 21680 (5 mg/kg) stimulated c-fos expression also in the lateral septal nucleus and dorso-medial striatum, but not in the dorso-lateral striatum. A similar pattern of Fos-like immunoreactivity was obtained after administration of the A2A agonist HENECA (5 mg/kg) which displays higher selectivity for A2A receptors than CGS 21680. Administration of the selective A2A antagonist SCH 58261 counteracted CGS 21680-induced Fos-like immunoreactivity. Lesions of the dopaminergic mesostriatal projection by 6-hydroxydopamine and stimulation of dopamine D2/D3 receptors by quinpirole, prevented CGS 21680-induced Fos-like immunoreactivity in the nucleus accumbens shell. The present results show that stimulation of A2A receptors induces a profile of c-fos expression similar to that of atypical neuroleptics. A2A receptor stimulation has been reported to have dopamine antagonistic actions, it is therefore suggested that A2A agonists might have antipsychotic activity without producing extrapyramidal side effects.
Collapse
Affiliation(s)
- A Pinna
- Department of Toxicology, University of Cagliari, Italy
| | | | | | | |
Collapse
|
27
|
Hauber W, Koch M. Adenosine A2a receptors in the nucleus accumbens modulate prepulse inhibition of the startle response. Neuroreport 1997; 8:1515-8. [PMID: 9172165 DOI: 10.1097/00001756-199704140-00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prepulse inhibition (PPI) of the acoustic startle response (ASR) was disrupted by systemic administration of apomorphine (APO) (2 mg/kg, i.p.). Microinfusion of the selective adenosine A2a-recceptor agonist CGS21680 (0.05 microgram in 1.0 microliter per side) into the nucleus accumbens (NAc), had no significant effect in animals with systemic vehicle pretreatment, but significantly reversed the disruption of PPI in rats pretreated with APO. Adenosine is, therefore, involved in the control of PPI through its actions on A2a receptors in the NAc. APO-induced disruption of PPI is considered to represent an animal model useful for screening both typical and atypical antipsychotic agents. The present results add further support to the view that A2a-receptor agonists may be potentially useful antipsychotic agents.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany
| | | |
Collapse
|
28
|
Hauber W, Münkle M. Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur J Pharmacol 1997; 323:127-31. [PMID: 9128830 DOI: 10.1016/s0014-2999(97)00040-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We compared hypolocomotion and catalepsy mediated by striatal dopamine D2 and adenosine A2A receptors using microinfusions of the adenosine A2A receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS21680) and the dopamine D2 receptor antagonist raclopride into the nucleus accumbens and the caudate-putamen. The effective doses (ED25/50) of CGS21680 and raclopride which produced equivalent reductions of spontaneous locomotion after microinfusion into the nucleus accumbens were found to induce similar degrees of catalepsy after microinfusion into the caudate-putamen. This comparable, little separation of the effective doses of a dopamine D2 receptor antagonist and an adenosine A2A receptor agonist to produce locomotor inhibition and catalepsy support the idea that adenosine A2A receptor agonists as potential antipsychotic agents may have a similar therapeutic profile as dopamine D2 receptor antagonists.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany.
| | | |
Collapse
|
29
|
Fenu S, Pinna A, Ongini E, Morelli M. Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1997; 321:143-7. [PMID: 9063681 DOI: 10.1016/s0014-2999(96)00944-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to investigate the role of adenosine A2A receptor blockade on dopamine-mediated motor responses, contralateral turning behaviour and expression of the early-gene c-fos was evaluated in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway. SCH 58261, (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1 , 5-c]pyrimidine) a potent and selective antagonist of adenosine A2A receptors (5 mg/kg i.p.), induced a 70-fold increase in the contralateral turning behaviour induced by a low dose (2 mg/kg i.p.) of the dopamine precursor L-DOPA (L-3, 4-dihydroxyphenylalanine). Expression of c-fos as measured by Fos-like immunoreactivity after SCH 58261 plus L-DOPA was also potentiated as compared with L-DOPA alone, both in striatum and globus pallidus of the 6-hydroxydopamine-lesioned side of the brain. SCH 58261 induced a less marked potentiation (7-fold) of turning behaviour induced by dopamine D2 receptor stimulation with quinpirole, while Fos-like immunoreactivity in the striatum and globus pallidus was not affected. Previous studies have shown that SCH 58261 strongly potentiated dopamine D1 receptor-mediated responses. The results of the present study therefore indicate that the positive interaction between SCH 58261 and L-DOPA, in 6-hydroxydopamine-lesioned rats, is mainly due to an interaction with dopamine D1 receptors. The data also suggest that adenosine A2A receptor antagonists might be useful for potentiating the effects of L-DOPA in Parkinson's disease.
Collapse
Affiliation(s)
- S Fenu
- Department of Toxicology, University of Cagliari, Italy
| | | | | | | |
Collapse
|
30
|
Pinna A, di Chiara G, Wardas J, Morelli M. Blockade of A2a adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D1 agonists in dopamine-denervated rats. Eur J Neurosci 1996; 8:1176-81. [PMID: 8752587 DOI: 10.1111/j.1460-9568.1996.tb01285.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In rats with unilateral 6-hydroxydopamine lesions of the dopaminergic nigrostriatal pathway, administration of the A2a adenosine antagonist SCH 58261 alone did not induce any motor asymmetry but strongly potentiated the contralateral turning behaviour induced by the dopamine D1 agonist SKF 38393. SCH 58261 also increased the number of Fos-like positive nuclei induced by SKF 38393 in the 6-hydroxydopamine-lesioned striatum. Intense potentiation of D1-dependent turning behaviour and c-Fos expression was also observed after administration of the A2a/A1 antagonist CGS 15943. Administration of the A1 adenosine receptor antagonist DPCPX induced a small potentiation of D1-mediated contralateral turning while c-Fos expression induced by SKF 38393 was not modified. The results suggest that endogenous adenosine acting on A2a receptors can exert an inhibitory influence on the functional expression of D1-mediated responses in dopamine-denervated rats, and propose new possible therapeutic approaches in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- A Pinna
- Department of Toxicology, University of Cagliari, viale A. Diaz 182, 09100 Cagliari, Italy
| | | | | | | |
Collapse
|
31
|
Dayne Mayfield R, Larson G, Orona RA, Zahniser NR. Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse 1996; 22:132-8. [PMID: 8787129 DOI: 10.1002/(sici)1098-2396(199602)22:2<132::aid-syn6>3.0.co;2-e] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is increasing evidence that adenosine (ADO) and dopamine (DA) interact directly in the basal ganglia via actions at ADO A2a and DA D2 receptors, respectively. The purpose of this study was to determine 1) the extent to which these receptors modulate endogenous GABA release in discrete regions of the rat basal ganglia and 2) whether GABA release is modulated by a direct and opposing interaction between ADO A2a and DA D2 receptors. Tissue slices of striatum (STR) containing globus pallidus (GP; STR/GP) and micropunches of STR, GP, and substantia nigra pars reticulata (SNr) were studied. Radioligand binding demonstrated that ADO A1, ADO A2a, and DA D2 receptors were present in each of the tissue preparations with the exception of SNr, in which ADO A2a receptors were not detected. Stimulation of ADO A2a receptors with CGS 21680 (1-10 nM) increased electrically stimulated GABA release in STR/GP slices and GP micropunches. Consistent with the lack of A2a receptors in SNr, CGS 21680 had no effect on GABA release from this region. In contrast, stimulation of DA D2 receptors with N-0437 (1-100 nM) inhibited evoked GABA release from STR/GP slices and both GP and SNr micropunches. The D2-mediated inhibition of GABA release in GP was abolished in the presence of CGS 21680 (10 nM). These experiments demonstrate that stimulation of ADO A2a and DA D2 receptors has opposing effects on endogenous GABA release in STR and GP. These opposing actions may explain the antagonistic interactions between ADO and DA that have been observed in behavioral studies and support the hypothesis that the striatopallidal efferent system is an important anatomical substrate for the A2a/D2 receptor interaction.
Collapse
Affiliation(s)
- R Dayne Mayfield
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
32
|
The Role of Adenosine A2a Receptors in Regulating Gabaergic Synaptic Transmission in Striatal Medium Spiny Neurons. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-1-4899-0194-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995; 67:631-47. [PMID: 7675192 DOI: 10.1016/0306-4522(95)00066-r] [Citation(s) in RCA: 326] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Animal models with partial lesions of the dopaminergic nigrostriatal pathway may be useful for developing neuroprotective and neurotrophic therapies for Parkinson's disease. To develop such a model, different doses of 6-hydroxydopamine (0.0, 0.625, 1.25, 2.5 and 5.0 micrograms/microliters in 3.5 microliters of saline) were unilaterally injected into the striatum of rats. Animals that received 1.25 to 5.0 micrograms/microliters 6-hydroxydopamine displayed dose-dependent amphetamine and apomorphine-induced circling. 6-Hydroxydopamine also caused dose-dependent reductions in [3H]mazindol-labeled dopamine uptake sites in the lesioned striatum and ipsilateral substantia nigra pars compacta (up to 93% versus contralateral binding), with smaller losses in the nucleus accumbens, olfactory tubercle and ventral tegmental area. In the substantia nigra pars compacta and the ventral tegmental area, the number of Nissl-stained neurons decreases in parallel with the reduction in [3H]mazindol binding. The reduction in [3H]mazindol binding in the striatum and the nucleus accumbens, and the reduction in [3H]mazindol binding and in the number of Nissl-stained neurons in the substantia nigra pars compacta and the ventral tegmental area is stable for up to 12 weeks after the lesion. Macroscopically, forebrain coronal sections showed normal morphology, except for rats receiving 5.0 micrograms/microliters 6-hydroxydopamine in which striatal cross-sectional area was reduced, suggesting that this high dose non-specifically damages intrinsic striatal neurons. Nissl-stained sections revealed an area of neuronal loss and intense gliosis centered around the needle track, which increased in size with the dose of neurotoxin. Striatal [3H]sulpiride binding was increased by 2.5 micrograms/microliters and 5.0 micrograms/microliters 6-hydroxydopamine, suggesting up-regulation of dopamine D2 receptors. Striatal binding of [3H]CGS 21680-labeled adenosine A2a receptors, but not of [3H]SCH 23390-labeled dopamine D1 receptors, was reduced at the highest dose, suggesting preservation of the striatal intrinsic neurons with the lower doses. This study indicates that intrastriatal injection of different doses of 6-hydroxydopamine can be used to cause increasing amounts of dopamine denervation, which could model Parkinson's disease of varying degrees of severity. Injecting 3.5 microliters of 2.5 micrograms/microliters 6-hydroxydopamine appears to be particularly useful as a general model of early Parkinson's disease, since it induces a lesion characterized by robust drug-induced rotation, changes in binding consistent with approximately 70% dopamine denervation, approximately 19% dopamine D22 receptor up-regulation, negligible intrinsic striatal damage and stability for at least 12 weeks. This study outlines a technique for inducing partial lesions of the nigrostriatal dopamine pathway in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Przedborski
- Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Morelli M, Pinna A, Wardas J, Di Chiara G. Adenosine A2 receptors stimulate c-fos expression in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience 1995; 67:49-55. [PMID: 7477908 DOI: 10.1016/0306-4522(94)00602-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The induction of the early-gene c-fos after administration of the adenosine A2a receptor agonist CGS 21680, was studied in the striatum of normal rats or in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal neurons. CGS 21680 (2.25 mg/kg) induces c-fos expression in the 6-hydroxydopamine-lesioned striatum, while up to 40 mg/kg fails to induce c-fos in the intact striatum or in the striatum of normal rats. Blockade of muscarine receptors by scopolamine (5 mg/kg) partially prevents, and stimulation of dopamine D2 receptors by quinpirole (0.5 mg/kg) completely reverses, CGS 21680-induced c-fos expression in the 6-hydroxydopamine-lesioned striatum. In turn, CGS 21680 partially reverses c-fos expression induced by quinpirole in the lesioned globus pallidus. CGS 21680, in addition, dose-dependently reduces the turning behavior induced by quinpirole (0.5 mg/kg) in 6-hydroxydopamine-lesioned rats. The results suggest that CGS 21680 induces c-fos expression in the striatum through direct and indirect mechanisms related to the ability of A2a receptors to stimulate cyclic AMP formation or acetylcholine release which in turn would activate c-fos through muscarinic receptors.
Collapse
Affiliation(s)
- M Morelli
- Department of Toxicology, University of Calgliari, Italy
| | | | | | | |
Collapse
|
35
|
Vermeulen RJ, Drukarch B, Sahadat MC, Goosen C, Schoffelmeer AN, Wolters EC, Stoof JC. Morphine and naltrexone modulate D2 but not D1 receptor induced motor behavior in MPTP-lesioned monkeys. Psychopharmacology (Berl) 1995; 118:451-9. [PMID: 7568632 DOI: 10.1007/bf02245946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interactions at the behavioral level between dopamine (DA) and opioid receptors in the mammalian brain have been amply demonstrated. Considering the pivotal role for DA receptors in the pharmacotherapy of Parkinson's disease (PD), these interactions might be clinically relevant. Therefore, in the present study the effects of the opioid antagonist naltrexone and agonist morphine on D1 and D2 receptor induced stimulation of motor behavior in the unilateral MPTP monkey model (n = 5) of PD were investigated. The results show that both naltrexone and morphine [0.1-1.0 mg/kg; intramuscular injection (IM)] inhibited D2 receptor stimulated contralateral rotational behavior and hand use induced by administration of quinpirole (LY 171555; 0.01 mg/kg, IM) in a dose-related way. However, no effects of these opioid drugs were observed on D1 receptor stimulated contralateral rotational behavior and hand use induced by administration of SKF 81297 (0.3 mg/kg, IM). Interestingly, the action of the alleged preferential mu-receptor antagonist naltrexone was mimicked by the selective delta-opioid antagonist naltrindole (0.5 mg/kg, IM). From this study it is concluded that in a non-human primate model of PD, alteration of opioid tonus leads to modulation of D2 receptor but not D1 receptor controlled motor behavior. The possible underlying mechanisms and clinical relevance of these findings are discussed.
Collapse
Affiliation(s)
- R J Vermeulen
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Department of Neurology, Medical Faculty, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Kurokawa M, Kirk IP, Kirkpatrick KA, Kase H, Richardson PJ. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. Br J Pharmacol 1994; 113:43-8. [PMID: 7812630 PMCID: PMC1510043 DOI: 10.1111/j.1476-5381.1994.tb16171.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The effect of the A2A adenosine receptor agonist, 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680) on the potassium evoked release of [3H]-gamma-aminobutyric acid ([3H]-GABA) from nerve terminals derived from the caudate-putamen and the globus pallidus of the rat was compared. In both preparations CGS 21680 (1 nM) inhibited the [3H]-GABA release evoked by 15 mM KCl but had no effect on that evoked by 30 mM KCl. 2. The ability of CGS 21680 (1 nM) to inhibit the release of [3H]-GABA from striatal nerve terminals was unaffected by the presence of the GABA receptor antagonists, bicuculline (10 microM), phaclofen (100 microM) and 2-hydroxysaclofen (100 microM). Similarly the opioid receptor antagonist, naloxone (10 microM), the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 40 nM), and the cholinoceptor antagonists, mecamylamine (10 microM) and atropine (100 nM) had no effect on this inhibition. 3. The ability of CGS 21680 (0.1 nM) to stimulate the release of [3H]-acetylcholine ([3H]-ACh) from striatal nerve terminals was unaffected by the presence of bicuculline (10 microM), 2-hydroxysaclofen (100 microM), phaclofen (100 microM), naloxone (10 microM) and DPCPX (4 nM). 4. The novel A2A receptor antagonist, (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF 17837), blocked the CGS 21680 (1 nM)-induced inhibition of [3H]-GABA efflux with an EC50 of approximately 30 nM and also antagonized the CGS 21680 (0.1 nM)-induced stimulation of [3H]-ACh release with an EC50 of approximately 0.3 nM. 5. It is concluded that the A2A adenosine receptor is present on both GABAergic and cholinergic nerve terminals of the rat striatum and that in both the caudate-putamen and the globus pallidus this receptor inhibits [3H]-GABA release. No evidence was seen for a difference in the ligand binding sites of this receptor in the two groups of nerve terminals.
Collapse
Affiliation(s)
- M Kurokawa
- Department of Pharmacology, University of Cambridge
| | | | | | | | | |
Collapse
|
37
|
Abstract
Adenosine is known to inhibit the release of dopamine from central synaptic terminals. The present open trial was therefore conducted to determine whether the adenosine receptor-antagonist theophylline would be of value in Parkinson's disease. Fifteen parkinsonian patients were treated for up to 12 weeks with a slow release oral theophylline preparation (150 mg day-1), yielding serum theophylline levels of 4.44 mg L-1 after one week. The patients exhibited significant improvements in mean objective disability scores and 11 reported moderate or marked subjective improvement. It is suggested that theophylline might be a useful adjunct to the routine therapy of parkinsonian patients.
Collapse
Affiliation(s)
- J Mally
- Department of Neurology, Central Hospital Fejer, Hungary
| | | |
Collapse
|
38
|
Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J. KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 1994; 256:263-8. [PMID: 8045270 DOI: 10.1016/0014-2999(94)90551-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
KF17837 is a novel selective adenosine A2A receptor antagonist. Oral administration of KF17837 (2.5, 10.0 and 30.0 mg/kg) significantly ameliorated the cataleptic responses induced by intracerebroventricular administration of an adenosine A2A receptor agonist, CGS 21680 (10 micrograms), in a dose-dependent manner. KF17837 also reduced the catalepsy induced by haloperidol (1 mg/kg i.p.) and by reserpine (5 mg/kg i.p.). These anticataleptic effects were exhibited dose dependently at doses from 0.625 and 2.5 mg/kg p.o., respectively. Moreover, KF17837 (0.625 mg/kg p.o.) potentiated the anticataleptic effects of a subthreshold dose of L-3,4-dihydroxyphenylalanine (L-DOPA; 25 mg/kg i.p.) plus benserazide (6.25 mg/kg i.p.). These results suggested that KF17837 is a centrally active adenosine A2A receptor antagonist and that the dopaminergic function of the nigrostriatal pathway is potentiated by adenosine A2A receptor antagonists. Furthermore, KF17837 may be a useful drug in the treatment of parkinsonism.
Collapse
Affiliation(s)
- T Kanda
- Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., Shizuoka, Japan
| | | | | | | | | |
Collapse
|
39
|
Kirkpatrick KA, Richardson PJ. Adenosine receptor-mediated modulation of acetylcholine release from rat striatal synaptosomes. Br J Pharmacol 1993; 110:949-54. [PMID: 8298819 PMCID: PMC2175826 DOI: 10.1111/j.1476-5381.1993.tb13905.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The effects of A1 and A2a adenosine receptor agonists on the veratridine-evoked release of [3H]-acetylcholine ([3H]-ACh) from rat striatal synaptosomes was investigated by use of the A1-selective agonist, R-PIA and the 185 fold selective A2a agonist, CGS 21680. The effects of NECA, which is equipotent at both receptor subtypes, were also studied. 2. The evoked release of [3H]-ACh was significantly enhanced by the A2a agonist CGS 21680 but decreased by the A1 agonist, R-PIA. The effects of NECA were dependent on the concentration used, with high concentrations inhibiting and low concentrations enhancing the evoked release of [3H]-ACh. In the absence of any antagonists, the rank order of potency for these three drugs on increasing [3H]-ACh release was CGS 21680 > NECA > R-PIA. 3. The stimulatory effects of CGS 21680 and low NECA concentrations on evoked [3H]-ACh release were antagonized by the A2a receptor antagonists, CP66,713 (300 nM) and CGS 15943A (50 nM) whilst the inhibitory effects of R-PIA were reversed by the selective A1 antagonist, DPCPX (4 nM). In the presence of DPCPX, NECA greatly enhanced the evoked release of [3H]-ACh at all concentrations studied when, during such A1 receptor blockade, the rank order of potency was NECA >> CGS 21680 > R-PIA. 4. These results demonstrate that both A1 and A2a adenosine receptors modulate the veratridine-evoked release of [3H]-ACh from rat striatal synaptosomes.
Collapse
|