1
|
Reducing effect of the novel positive allosteric modulator of the GABA B receptor, COR659, on binge-like alcohol drinking in male mice and rats. Psychopharmacology (Berl) 2022; 239:201-213. [PMID: 34812900 DOI: 10.1007/s00213-021-06022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
RATIONALE Binge drinking (BD) is a widespread drinkingpattern that may contribute to promote the development of alcohol use disorder (AUD). The comprehension of its neurobiological basis and the identification of molecules that may prevent BD are critical. Preclinical studies demonstrated that positive allosteric modulators (PAMs) of the GABAB receptor effectively reduced, and occasionally suppressed, the reinforcing and motivational properties of alcohol in rodents, suggesting their potential use as pharmacotherapy for AUD, including BD. Recently, we demonstrated that COR659, a novel GABAB PAM, effectively reduced (i) alcohol drinking under the 2-bottle choice regimen, (ii) alcohol self-administration under both fixed and progressive ratio schedules of reinforcement, and (iii) cue-induced reinstatement of alcohol-seeking behavior in Sardinian alcohol-preferring (sP) rats. OBJECTIVES The present study investigated whether the "anti-alcohol" properties of COR659 extend to binge-like drinking in rodents. METHODS COR659 was tested on the "drinking in the dark" (DID) paradigm in C57BL/6J mice and the 4-bottle "alcohol [10%, 20%, 30% (v/v)] versus water" choice regimen with limited and unpredictable access to alcohol in sP rats. RESULTS Acute administration of non-sedative doses of COR659 (10, 20, and 40 mg/kg; i.p.) effectively and selectively suppressed the intake of intoxicating amounts of alcohol (> 2 g/kg) consumed by C57BL/6J mice and sP rats exposed to these binge-like drinking experimental procedures. CONCLUSIONS The present data demonstrate the ability of COR659 to suppress binge-like drinking in rodents and strengthen the hypothesis that GABAB PAMs may represent a potentially effective pharmacotherapy for alcohol misuse.
Collapse
|
2
|
Abstract
Preclinical research over the past several decades has demonstrated a role for the γ-aminobutyric acidB (GABAB) receptor in alcohol use disorder (AUD). This chapter offers an examination of preclinical evidence on the role of the GABAB receptor on alcohol-related behaviors with a particular focus on the GABAB receptor agonist baclofen, for which effects have been most extensively studied, and positive allosteric modulators (PAMs) of the GABAB receptor. Studies employing rodent and non-human primate models have shown that activation of the GABAB receptor can reduce (1) stimulating and rewarding effects of alcohol; (2) signs of alcohol withdrawal in rats made physically dependent on alcohol; (3) acquisition and maintenance of alcohol drinking under a two-bottle alcohol versus water choice procedure; (4) alcohol intake under oral operant self-administration procedures; (5) motivational properties of alcohol measured using extinction and progressive ratio procedures; (6) the increase in alcohol intake after a period of alcohol abstinence (the alcohol deprivation effect or ADE); and (7) the ability of alcohol cues and stress to reinstate alcohol seeking when alcohol is no longer available. Baclofen and GABAB PAMs reduce the abovementioned behaviors across different preclinical models, which provides strong evidence for a significant role of the GABAB receptor in alcohol-related behaviors and supports development of medications targeting GABAB receptors for the treatment of AUD. This chapter highlights the value of examining mechanisms of alcohol-related behaviors across multiple animal models to increase the confidence in identification of new therapeutic targets.
Collapse
Affiliation(s)
- August F Holtyn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Elise M Weerts
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Augier E. Recent Advances in the Potential of Positive Allosteric Modulators of the GABAB Receptor to Treat Alcohol Use Disorder. Alcohol Alcohol 2021; 56:139-148. [PMID: 33561865 PMCID: PMC7906877 DOI: 10.1093/alcalc/agab003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims The effects of alcohol on gamma-aminobutyric acid (GABA) transmission are key for the development and maintenance of alcohol use disorder (AUD). Previous research consistently indicates that GABAB receptor agonists such as baclofen can attenuate addiction-related behaviors in preclinical models of AUD. More importantly, baclofen has also shown promise in clinical studies, particularly in severely alcohol-dependent patients. However, despite this promise, other clinical studies have not confirmed its efficacy and chiefly, larger clinical trials have not been conducted. Therefore, with the exception of France, baclofen is not approved for the treatment of AUD in any other country. Furthermore, it is also important to keep in mind that some patients treated with baclofen may experience important side-effects, including sedation, drowsiness and sleepiness. Methods This short review will first discuss the history of baclofen for AUD treatment. We will then summarize preclinical behavioral results that have investigated the efficacy of GABAB PAMs for addiction treatment, with a special focus on our recent work that investigated the effects of ADX71441, a novel GABAB PAM, on several alcohol-related behaviors in rats that model important aspects of human AUD. Finally, in light of the recent criticism about the translational value of animal models of addiction, the specific translational potential of our work and of other preclinical studies that have unanimously reported the efficacy of GABAB PAMs to attenuate multiple alcohol-related behaviors will be discussed. Results Positive allosteric modulators (PAMs) of the GABAB receptor offer an attractive alternative approach to baclofen and have the potential to achieve mechanistic and therapeutic effects similar to GABAB agonists, while avoiding the tolerance and toxicity issues associated with baclofen. To date, all preclinical behavioral results have invariably shown the efficacy of GABAB PAMs for addiction treatment. Conclusions Preclinical studies indicate that GABAB PAMs have a higher therapeutic index than orthosteric agonists, at least in terms of mitigating the sedative effects of GABAB agonism. This predicts that GABAB PAMs have a high translational potential in humans and merit being tested clinically, in particular in patients with severe AUD.
Collapse
Affiliation(s)
- Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
4
|
Colombo G, Gessa GL. Suppressing Effect of Baclofen on Multiple Alcohol-Related Behaviors in Laboratory Animals. Front Psychiatry 2018; 9:475. [PMID: 30323777 PMCID: PMC6172300 DOI: 10.3389/fpsyt.2018.00475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
This paper summarizes the several lines of experimental evidence demonstrating the ability of the prototypic GABAB receptor agonist, baclofen, to suppress multiple alcohol-related behaviors in laboratory rodents and non-human primates exposed to validated experimental models of alcohol use disorder (AUD). Specifically, treatment with baclofen has repeatedly been reported to suppress alcohol-induced locomotor stimulation, alcohol drinking (including binge- and relapse-like drinking), operant oral alcohol self-administration, alcohol seeking, and reinstatement of alcohol seeking in rats and mice. Treatment with baclofen also reduced operant oral alcohol self-administration in baboons. Several of these effects appear to be mediated by GABAB receptors located in the ventral tegmental area. The often observed co-occurrence of "desired" pharmacological effects and "unwanted" sedative effects represents the major drawback of the preclinical, anti-alcohol profile of baclofen. Collectively, these data underline the role of the GABAB receptor in the mediation of several alcohol-related behaviors. These data possess remarkable translational value, as most of the above effects of baclofen have ultimately been reproduced in AUD patients.
Collapse
Affiliation(s)
- Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
5
|
Agabio R, Colombo G. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci 2014; 8:140. [PMID: 24936171 PMCID: PMC4047789 DOI: 10.3389/fnins.2014.00140] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/20/2014] [Indexed: 12/20/2022] Open
Abstract
The present paper summarizes the preclinical and clinical studies conducted to define the "anti-alcohol" pharmacological profile of the prototypic GABAB receptor agonist, baclofen, and its therapeutic potential for treatment of alcohol use disorder (AUD). Numerous studies have reported baclofen-induced suppression of alcohol drinking (including relapse- and binge-like drinking) and alcohol reinforcing, motivational, stimulating, and rewarding properties in rodents and monkeys. The majority of clinical surveys conducted to date-including case reports, retrospective chart reviews, and randomized placebo-controlled studies-suggest the ability of baclofen to suppress alcohol consumption, craving for alcohol, and alcohol withdrawal symptomatology in alcohol-dependent patients. The recent identification of a positive allosteric modulatory binding site, together with the synthesis of in vivo effective ligands, represents a novel, and likely more favorable, option for pharmacological manipulations of the GABAB receptor. Accordingly, data collected to date suggest that positive allosteric modulators of the GABAB receptor reproduce several "anti-alcohol" effects of baclofen and display a higher therapeutic index (with larger separation-in terms of doses-between "anti-alcohol" effects and sedation).
Collapse
Affiliation(s)
- Roberta Agabio
- Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Giancarlo Colombo
- Section of Cagliari, Neuroscience Institute, National Research Council of ItalyMonserrato, Italy
| |
Collapse
|
6
|
Li C, McCall NM, Lopez AJ, Kash TL. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 2013; 47:279-87. [PMID: 23597415 DOI: 10.1016/j.alcohol.2013.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-aminobutyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH-eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function.
Collapse
Affiliation(s)
- Chia Li
- Curriculum in Neurobiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
7
|
Hull LC, Gabra BH, Bailey CP, Henderson G, Dewey WL. Reversal of morphine analgesic tolerance by ethanol in the mouse. J Pharmacol Exp Ther 2013; 345:512-9. [PMID: 23528610 DOI: 10.1124/jpet.112.202184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)(B) receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABA(A) antagonist bicuculline but not by the GABA(B) antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment.
Collapse
Affiliation(s)
- L C Hull
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | | | | | |
Collapse
|
8
|
Holstein SE, Li N, Eshleman AJ, Phillips TJ. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behav Brain Res 2013; 237:49-58. [PMID: 22982185 PMCID: PMC3500454 DOI: 10.1016/j.bbr.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022]
Abstract
Neural processes influenced by γ-aminobutyric acid B (GABA(B)) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABA(B) receptor function, since the lines differ in sensitivity to the GABA(B) receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABA(B) receptor function (measured by baclofen-stimulated [(35)S]GTPγS binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABA(B) receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABA(B) receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens.
Collapse
Affiliation(s)
- Sarah E. Holstein
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Na Li
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Amy J. Eshleman
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Dept of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| |
Collapse
|
9
|
Kruse LC, Linsenbardt DN, Boehm SL. Positive allosteric modulation of the GABA(B) receptor by GS39783 attenuates the locomotor stimulant actions of ethanol and potentiates the induction of locomotor sensitization. Alcohol 2012; 46:455-62. [PMID: 22560291 DOI: 10.1016/j.alcohol.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Acute ethanol-induced locomotor stimulation and ethanol-induced locomotor sensitization are two behavioral assays thought to model the rewarding effects of ethanol. Recent evidence suggests that GS39783, a GABA(B) positive allosteric modulator, may be effective at reducing both the rewarding and reinforcing effects of several drugs of abuse, including ethanol. The goal of this study was to determine if GS39783 was capable of altering acute ethanol-induced stimulation, and the induction and expression of ethanol-induced locomotor sensitization, without effecting basal locomotion levels. Several doses of GS39783 (ranging from 0 to 100 mg/kg, depending on experiment) were tested on adult male DBA/2J mice in four experiments using 3-day basal locomotion and acute ethanol stimulation paradigms, and 14-day induction and expression of ethanol sensitization paradigms. The results of experiment 1 are in agreement with current literature, suggesting that 30 mg/kg doses of GS39783 and lower do not alter basal locomotor activity. In experiment 2, we found that GS39783 significantly decreased acute ethanol stimulation, but only at the 30 mg/kg dose, supporting our hypothesis and other publications suggesting that GABA(B) receptors modulate acute ethanol stimulation. Contrary to our hypothesis, GS39783 did not alter the expression of locomotor sensitization. Additionally, repeated administration of GS39783 in conjunction with ethanol unexpectedly potentiated ethanol-induced locomotor sensitization. Further study of GS39783 is warranted as it may be a more tolerable treatment for alcoholism than full agonists, due to its behavioral efficacy at doses that lack sedative side effects. Our results add to current literature suggesting that the GABA(B) receptor system is indeed involved in the modulation of ethanol-induced locomotor stimulation and sensitization.
Collapse
Affiliation(s)
- Lauren C Kruse
- Department of Psychology, Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | | |
Collapse
|
10
|
Pastor R, Kamens HM, McKinnon CS, Ford MM, Phillips TJ. Repeated ethanol administration modifies the temporal structure of sucrose intake patterns in mice: effects associated with behavioral sensitization. Addict Biol 2010; 15:324-35. [PMID: 20624153 DOI: 10.1111/j.1369-1600.2010.00229.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroadaptations supporting behavioral sensitization to abused drugs are suggested to underlie pathological, excessive motivation toward drugs and drug-associated stimuli. Drug-induced sensitization has also been linked to increased appetitive responses for non-drug, natural reinforcers. The present research investigated whether ethanol (EtOH)-induced neural changes, inferred from psychomotor sensitization, can modify consumption and intake dynamics for the natural reinforcer, sucrose. The effects of EtOH-induced sensitization in mice on the temporal structure of sucrose intake patterns were measured using a lickometer system. After sensitization, sucrose intake dynamics were measured for 1 hour daily for 7 days and indicated more rapid initial approach and consumption of sucrose in EtOH-sensitized groups; animals showed a shorter latency to the first intake bout and an increased number of sucrose bottle licks during the initial 15 minutes of the 1-hour sessions. This effect was associated with increased frequency and size of bouts. For the total 1-hour session, sucrose intake and bout dynamics were not different between groups, indicating a change in patterns of sucrose intake but not total consumption. When sensitization was prevented by the gamma-aminobutyric acid B receptor agonist, baclofen, the increased rate of approach and consumption of sucrose were also prevented. Thus, EtOH-induced sensitization, and not the mere exposure to EtOH, was associated with changes in sucrose intake patterns. These data are consistent with current literature suggesting an enhancing effect of drug-induced sensitization on motivational processes involved in reinforcement.
Collapse
Affiliation(s)
- Raúl Pastor
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | |
Collapse
|
11
|
Marazioti A, Spyraki C, Thermos K. GABA antagonists reverse the somatostatin dependent attenuation of rat locomotor activity. Neuropeptides 2009; 43:207-12. [PMID: 19414189 DOI: 10.1016/j.npep.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
Somatostatin infusion in rat ventral pallidum (VP) led to the attenuation of locomotor activity (Marazioti, A., Kastellakis, A., Antoniou, K., Papasava, D., Thermos, K., 2005. Somatostatin receptors in the ventral pallidum/substantia innominata modulate rat locomotor activity. Psychopharmacology 181, 319-326). In the present study, we investigated the putative circuitry involved in somatostatin's actions by examining the involvement of GABAergic neurotransmission in locomotor activity subsequent to somatostatin's infusion into the VP. Male Sprague-Dawley rats, 300-350 g, were used for all experiments. Saline or somatostatin (240 ng/0.5 microl/side) in the absence or presence of bicuculline (GABA-A antagonist; 5 mg/kg/ml, i.p.; 120 ng/side nucleus accumbens (NAc)) or phaclofen (GABA-B antagonist; 10 mg/kg/ml, i.p.; 120 ng/side NAc) were infused bilaterally, and the locomotor activity measured for 60 min using a rectangular activity cage. Somatostatin infused in the VP decreased the locomotor activity of the rat in a statistically significant manner. Bicuculline (i.p., and in the NAc) and phaclofen (only i.p.) reversed SRIF's actions, when administered prior to somatostatin's infusion in the VP. The present study provides further information on somatostatin's involvement in the VP-NAc circuitry, and implicates the GABAergic system in somatostatin's actions in the VP.
Collapse
Affiliation(s)
- A Marazioti
- Department of Basic Sciences, Laboratory of Pharmacology, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| | | | | |
Collapse
|
12
|
Abstract
Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area (VTA) exhibit long-term potentiation (LTP(GABA)) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory GABA(A) receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent (PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTP(GABA). Activation of PKG was required for NO-cGMP signaling and was also essential for the induction of synaptically elicited LTP(GABA), but not for its maintenance. Synapses containing GABA(A) receptors were potentiated by NO-cGMP signaling, whereas synapses containing GABA(B) receptors on the same cells were not potentiated. Moreover, although the cAMP-PKA system potentiated GABA(A) synapses, synaptically induced LTP(GABA) was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses, precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve the presynaptic cAMP-PKA cascade. Taken together, our data suggest a synapse-specific role for NO-cGMP-PKG signaling pathway in opioid-induced plasticity of VTA GABA(A) synapses.
Collapse
|
13
|
Holstein SE, Dobbs L, Phillips TJ. Attenuation of the stimulant response to ethanol is associated with enhanced ataxia for a GABA, but not a GABA, receptor agonist. Alcohol Clin Exp Res 2008; 33:108-20. [PMID: 18945218 DOI: 10.1111/j.1530-0277.2008.00817.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The gamma-aminobutyric acid (GABA) system is implicated in the neurobiological actions of ethanol, and pharmacological agents that increase the activity of this system have been proposed as potential treatments for alcohol use disorders. As ethanol has its own GABA mimetic properties, it is critical to determine the mechanism by which GABAergic drugs may reduce the response to ethanol (i.e., via an inhibition or an accentuation of the neurobiological effects of ethanol). METHODS In this study, we examined the ability of 3 different types of GABAergic compounds, the GABA reuptake inhibitor NO-711, the GABA(A) receptor agonist muscimol, and the GABA(B) receptor agonist baclofen, to attenuate the locomotor stimulant response to ethanol in FAST mice, which were selectively bred for extreme sensitivity to ethanol-induced locomotor stimulation. To determine whether these compounds produced a specific reduction in stimulation, their effects on ethanol-induced motor incoordination were also examined. RESULTS NO-711, muscimol, and baclofen were all found to potently attenuate the locomotor stimulant response to ethanol in FAST mice. However, both NO-711 and muscimol markedly increased ethanol-induced ataxia, whereas baclofen did not accentuate this response. CONCLUSIONS These results suggest that pharmacological agents that increase extracellular concentrations of GABA and GABA(A) receptor activity may attenuate the stimulant effects of ethanol by accentuating its intoxicating and sedative properties. However, selective activation of the GABA(B) receptor appears to produce a specific attenuation of ethanol-induced stimulation, suggesting that GABA(B) receptor agonists may hold greater promise as potential pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Sarah E Holstein
- Portland Alcohol Research Center and the Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
14
|
Holstein SE, Phillips TJ. GABAB receptor stimulation accentuates the locomotor effects of morphine in mice bred for extreme sensitivity to the stimulant effects of ethanol. Pharmacol Biochem Behav 2006; 85:697-704. [PMID: 17161860 PMCID: PMC1805633 DOI: 10.1016/j.pbb.2006.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/15/2022]
Abstract
Mice selectively bred for divergent sensitivity to the locomotor stimulant effects of ethanol (FAST and SLOW) also differ in their locomotor response to morphine. The GABA(B) receptor has been implicated in the mediation of locomotor stimulation to both ethanol and morphine, and a reduction in ethanol-induced stimulation has been found with the GABA(B) receptor agonist baclofen in FAST mice. We hypothesized that GABA(B) receptor activation would also attenuate the locomotor stimulant responses to morphine in these mice. In order to test this hypothesis, baclofen was administered to FAST-1 and FAST-2 mice 15 min prior to morphine, and activity was recorded for 30 min. Baclofen attenuated stimulation to 32 mg/kg morphine in FAST-1 mice, but only at a dose that also reduced saline activity. There was no stimulant response to 32 mg/kg morphine in FAST-2 mice, or to 16 mg/kg or 48 mg/kg morphine in FAST-1 mice, but the combination of baclofen with these morphine doses accentuated locomotor activity. Therefore, it appears that GABA(B) receptor activation is not a common mechanism for the locomotor stimulant responses to ethanol and morphine in FAST mice; however, these data suggest that GABA(B) receptor activation may instead enhance some of the behavioral effects of morphine.
Collapse
Affiliation(s)
- Sarah E. Holstein
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, MC L-470, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, MC L-470, Portland, OR 97239, USA
- Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, R&D 32, Portland, OR 97239, USA
| |
Collapse
|
15
|
Gremel CM, Gabriel KI, Cunningham CL. Topiramate does not affect the acquisition or expression of ethanol conditioned place preference in DBA/2J or C57BL/6J mice. Alcohol Clin Exp Res 2006; 30:783-90. [PMID: 16634846 DOI: 10.1111/j.1530-0277.2006.00091.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Topiramate, an anticonvulsant, has been reported to increase the number of abstinent days and decrease craving in alcohol-dependent individuals. However, the neurobiological basis for topiramate's effect is unknown. To assess topiramate's effect on ethanol's rewarding and conditioning rewarding effects, the present experiments examined the effects of topiramate on the acquisition and expression of ethanol-induced conditioned place preference (CPP) in DBA/2J and C57BL/6J mice. METHODS A biased apparatus and subject assignment were used. Mice received ethanol (2 g/kg) or saline paired with an initially nonpreferred floor (CS+) and saline paired with an initially preferred floor (CS-) for 5-minute conditioning trials. During the acquisition experiments, mice received a pretreatment of topiramate (0, 5, 10, 20, 50, or 100 mg/kg) 1 hour before the CS+ trials. On intervening CS- trials, mice received a pretreatment of saline. For the preference test, all mice received saline injections and were placed on a split floor for a 30-minute test. During the expression experiments, mice received no drug pretreatment on conditioning trials, but were pretreated with topiramate (0, 10, 50, or 100 mg/kg) 1 hour before the test session. RESULTS Ethanol-induced CPP was observed in both strains, but topiramate did not affect the acquisition or expression of ethanol-induced CPP in either strain. Despite its failure to alter CPP, topiramate produced dose-dependent locomotor activating effects in both strains. These effects were observed both in the presence and in the absence of ethanol. CONCLUSIONS These findings indicate that topiramate has no effect on ethanol's rewarding or conditioned rewarding effects as indexed by the place conditioning procedure. Thus, these studies raise the possibility that topiramate's efficacy in the treatment of alcoholism results from its impact on brain areas other than those that mediate ethanol's rewarding or conditioned rewarding effects. One alternative possibility is that topiramate decreases withdrawal-induced negative affective states that normally contribute to relapse.
Collapse
Affiliation(s)
- Christina M Gremel
- Department of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, Portland 97239-3098, USA.
| | | | | |
Collapse
|
16
|
Liang JH, Chen F, Krstew E, Cowen MS, Carroll FY, Crawford D, Beart PM, Lawrence AJ. The GABAB receptor allosteric modulator CGP7930, like baclofen, reduces operant self-administration of ethanol in alcohol-preferring rats. Neuropharmacology 2006; 50:632-9. [PMID: 16406445 DOI: 10.1016/j.neuropharm.2005.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/30/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
GABA systems have been implicated as targets for ethanol at the cellular, molecular and behavioural level. The present study was designed to further examine the potential of the GABA(B) receptor as a target for regulating operant alcohol responding. Given that the prototypic agonist, baclofen, reduces the self-administration of alcohol, we hypothesized that the GABA(B) receptor allosteric modulator, CGP7930, might have similar actions but a reduced side-effect profile. In this context, inbred alcohol-preferring (iP) rats were trained to respond for 10% v/v ethanol in a fixed ratio paradigm; all drug testing was performed under an FR3 schedule. Both baclofen and CGP7930 independently reduced voluntary responding for 10% ethanol in a dose-related manner. Neither drug impacted upon responding for water. A combination of subthreshold doses of baclofen and CGP7930 was also able to reduce operant responding for ethanol, suggesting that CGP7930 is indeed acting to facilitate GABA(B) receptor-mediated signalling in this paradigm. These data demonstrate the potential of positive allosteric modulators of metabotropic GABA(B) receptors to regulate alcohol responding.
Collapse
Affiliation(s)
- Jian-Hui Liang
- Department of Neuropharmacology, National Institute of Drug Dependence, University of Peking, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Araujo NP, Andersen ML, Abílio VC, Gomes DC, Carvalho RC, Silva RH, Ribeiro RDA, Tufik S, Frussa-Filho R. Sleep deprivation abolishes the locomotor stimulant effect of ethanol in mice. Brain Res Bull 2006; 69:332-7. [PMID: 16564430 DOI: 10.1016/j.brainresbull.2006.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 11/29/2022]
Abstract
The present study aimed to investigate the effects of sleep deprivation (SD) on the dose-dependent stimulant effect of ethanol (ETOH) on the open-field behavior of female and male mice. Sleep-deprived (48 h, multiple platforms method) or home-cage control female mice were treated with saline (SAL) or 1.4, 1.8 or 2.2g/kg ETOH 5 min before behavioral testing. ETOH produced a dose-dependent increase in open-field locomotor behavior. This locomotor stimulant effect did not reflect a general stimulation in motor activity, since it was accompanied by a simultaneous decrease in rearing frequency as well as by no modification in immobility duration. The effects of ETOH on these three behavioral parameters were specifically modified by SD: the locomotor stimulant effect was abolished, the rearing inhibitory effect was potentiated and the lack of effect on immobility was changed to increase in immobility. Similar results were obtained for male mice although the effects of SD had a lower magnitude. The present findings demonstrate that the acute effect of ETOH on mice's motor activity are behaviorally complex and can be specifically modulated by SD.
Collapse
Affiliation(s)
- Nilza P Araujo
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cook CD, Biddlestone L, Coop A, Beardsley PM. Effects of combining ethanol (EtOH) with gamma-hydroxybutyrate (GHB) on the discriminative stimulus, locomotor, and motor-impairing functions of GHB in mice. Psychopharmacology (Berl) 2006; 185:112-22. [PMID: 16453156 DOI: 10.1007/s00213-005-0276-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 10/01/2005] [Indexed: 12/01/2022]
Abstract
RATIONALE Gamma-hydroxybutyrate (GHB) is a drug of abuse that is often coabused with ethanol (EtOH) and has been implicated as a date rape agent in conjunction with EtOH. Much information is lacking regarding the manner in which GHB interacts with EtOH. OBJECTIVE This study was designed to further characterize the behavioral effects of GHB alone and in combination with EtOH in male Swiss-Webster mice. METHODS The effects of GHB (0.1-1.0 g/kg) and EtOH (2.0-5.0 g/kg) alone, as well as the effects of GHB in combination with EtOH, were examined using an automated locomotor activity procedure, a functional observational battery (FOB) and a GHB drug discrimination procedure. RESULTS GHB decreased, whereas EtOH had little effect on locomotor activity. In the FOB, EtOH dose-dependently decreased activity in combination with 0.3 g/kg GHB. Alone, each drug had little effect on the righting reflex, but combining ineffective doses of GHB and EtOH significantly impaired righting. GHB and EtOH decreased forelimb grip strength. Combinations of ineffective doses of GHB and EtOH decreased forelimb grip strength when given together. GHB and EtOH impaired inverted screen performance, and EtOH increased the impairing effects of low, but not high, doses of GHB. GHB and EtOH increased hind limb splay, and EtOH increased the effects of 0.1 and 0.3 g/kg GHB on splay. GHB and EtOH decreased body temperature, and EtOH augmented the temperature-decreasing effects of GHB. EtOH produced less than 50% GHB-like discriminative stimulus effects, and GHB failed to alter the GHB-like discriminative stimulus effects of EtOH. CONCLUSIONS Overall, EtOH increased the effects of GHB on several gross measures of behavior and only partially occasioned the discriminative stimulus properties of GHB.
Collapse
Affiliation(s)
- Charles D Cook
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 North 12th Street, Smith Building, P.O. Box 980613, Richmond, VA 23298-0613, USA
| | | | | | | |
Collapse
|
19
|
Rout UK. Alcohol, GABA receptors, and neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:217-37. [PMID: 16512353 DOI: 10.1016/s0074-7742(05)71010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ujjwal K Rout
- Department of Surgery, Division of Pediatric Surgery, Research Laboratories University of Mississippi Medical Center, Jackson 39216, USA
| |
Collapse
|
20
|
Escher T, Mittleman G. Effects of ethanol and GABAB drugs on working memory in C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 2004; 176:166-74. [PMID: 15064920 DOI: 10.1007/s00213-004-1875-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 03/08/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE It has been suggested that GABA(B) receptors may be part of a neural substrate mediating some of the effects of ethanol. OBJECTIVE The purpose of this experiment was to investigate, in mice, the effects of ethanol on working memory in a delayed matching-to position (DMTP) task, and additionally to determine if these effects were modulated by GABA(B) receptors. METHODS Female C57BL/6J and DBA/2J mice were trained in the DMTP task, and after asymptotic levels of performance accuracy were achieved, injections (IP) of ethanol, baclofen, or phaclofen were administered. Baclofen or phaclofen were then co-administered with ethanol. Each test was repeated twice. RESULTS Ethanol caused deficits in working memory at 2.0 g/kg and higher. The highest dose (2.5 g/kg) produced additional non-specific effects, indicative of sedation. Baclofen increased performance accuracy (2.5 mg/kg), while decreasing the total number of trials completed. When combined with ethanol (1.5 g/kg), baclofen increased memory deficits at the highest dose (7.5 mg/kg). Phaclofen increased performance accuracy at 10 and 30 mg/kg but had no effect on the total number of trials completed. When combined with ethanol (2.5 g/kg), phaclofen did not significantly alter ethanol-induced deficits in performance. CONCLUSIONS Analyses of performance accuracy, total trials completed and variables indexing bias and motor impairment indicated that GABA(B) drugs modulate working memory in a behaviorally specific manner. Overall, these receptors may be part of a neural substrate that modulates some of the effects of ethanol.
Collapse
Affiliation(s)
- T Escher
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
21
|
Boehm SL, Piercy MM, Bergstrom HC, Phillips TJ. Ventral tegmental area region governs GABA(B) receptor modulation of ethanol-stimulated activity in mice. Neuroscience 2003; 115:185-200. [PMID: 12401333 DOI: 10.1016/s0306-4522(02)00378-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Locomotor stimulation in response to ethanol in mice may model human ethanol-induced euphoria. The associated neural substrates, possibly relevant to alcoholism, have not been fully elucidated. Systemic injection of baclofen, a GABA(B) receptor agonist, attenuates ethanol's stimulant effects. GABA(B) receptors on dopamine cell bodies in the ventral tegmental area (VTA) may modulate ethanol-induced dopamine release, a postulated mechanism for ethanol's stimulant effects. However, baclofen's attenuating effects could be associated with peripheral receptor actions. Baclofen was injected i.c.v. or into the VTA of FAST mice, bred for extreme sensitivity to ethanol-induced locomotor stimulation, to test the hypotheses that (1) central GABA(B) receptors influence baclofen's effects on ethanol-stimulated activity, and (2) VTA GABA(B) receptors specifically modulate ethanol's stimulant effects. I.c.v. baclofen dose-dependently attenuated ethanol stimulation, supporting a central locus for baclofen's effects. Anterior VTA baclofen also attenuated ethanol stimulation. However, more posterior VTA infusions unexpectedly potentiated ethanol stimulation. In SLOW mice, bred for resistance to ethanol stimulation, posterior intra-VTA baclofen did not alter EtOH response. However, anterior VTA baclofen alone produced a locomotor depressant effect in SLOW mice, not seen in FAST mice. GABA(B) receptor autoradiography using [(3)H]CGP 54626, a potent GABA(B) receptor antagonist, did not reveal line differences in binding density in the VTA, or in the substantia nigra pars compacta, a nearby brain structure associated with motor control. These results suggest that anterior VTA GABA(B) receptors play a role in baclofen's attenuation of ethanol's stimulant effects, and that posterior VTA GABA(B) receptors serve an opposite role that is normally masked. Selection for differential ethanol stimulant sensitivity has altered VTA GABA(B) systems that influence locomotor behavior. However, differences in GABA(B) receptor densities in the VTA or substantia nigra pars compacta cannot explain the selected line difference.
Collapse
Affiliation(s)
- S L Boehm
- Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The effect of baclofen, a GABA(B) agonist, has been studied in the hot plate test in mice, to analyze the possible involvement of the GABAergic system in baclofen analgesia. Baclofen (1-3 mg kg(-1) intraperitoneal (i.p.)) was found to elicit a dose-dependent antinociceptive effect. The antinociceptive effect of baclofen cannot be due to motor incoordination or sedation as the doses of baclofen which produce analgesia did not induce these effects during the rota-rod test. The antinociceptive effect of baclofen was reversed by 2-hydroxysaclofen, a GABA(B) antagonist by both systemic (3 mg kg(-1)) and intra cisterna magna (intracisternal (i.c.)) (0.3 mg kg(-1)) administration. The antagonist dose administered via i.c. produced a complete blockade and was 10-fold lower than the dose employed in i.p. administration. The data suggest that the antinociceptive effect of baclofen is GABA(B) receptor-mediated and reveal a central location of the analgesic effect of baclofen.
Collapse
Affiliation(s)
- Graciela N Balerio
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica (Universidad de Buenos Aires), Buenos Aires, Argentina.
| | | |
Collapse
|
23
|
Colombo G, Agabio R, Carai MA, Lobina C, Pani M, Reali R, Addolorato G, Gessa GL. Ability of baclofen in reducing alcohol intake and withdrawal severity: I--Preclinical evidence. Alcohol Clin Exp Res 2000. [PMID: 10656194 DOI: 10.1111/j.1530-0277.2000.tb04554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The similarities between the pharmacological effects of the gamma-aminobutyric acid receptor agonist, baclofen, and the alcohol-substituting agent, gamma-hydroxybutyric acid, led us to investigate whether baclofen was capable of reducing (a) ethanol withdrawal syndrome in ethanol-dependent rats and (b) voluntary ethanol intake in ethanol-preferring rats. METHODS In experiment 1, Wistar rats were rendered physically dependent on ethanol by the repeated administration of intoxicating doses of ethanol for 6 consecutive days. Baclofen was acutely administered intraperitoneally at doses of 10, 20, and 40 mg/kg. In experiment 2, baclofen (0, 2.5, 5, and 10 mg/kg, intraperitoneally) was administered once a day for 14 consecutive days to ethanol-preferring sP rats that had continuous access to ethanol (10%, v/v) and water under the two-bottle free choice regimen. RESULTS In experiment 1, baclofen dose-dependently decreased the intensity of ethanol withdrawal signs; furthermore, 20 mg/kg of baclofen protected from audiogenic seizures in ethanol-withdrawn rats. In experiment 2, baclofen selectively and dose-dependently reduced voluntary ethanol intake; a compensatory increase in water intake left total fluid intake virtually unchanged. CONCLUSIONS These results are in close agreement with those of a preliminary clinical study and suggest that baclofen may constitute a novel therapeutic agent for alcoholism.
Collapse
Affiliation(s)
- G Colombo
- CNR Center for Neuropharmacology, Bernard B. Brodie Department of Neuroscience, University of Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Colombo G, Agabio R, Carai MAM, Lobina C, Pani M, Reali R, Addolorato G, Gessa GL. Ability of Baclofen in Reducing Alcohol Intake and Withdrawal Severity: I???Preclinical Evidence. Alcohol Clin Exp Res 2000. [DOI: 10.1097/00000374-200001000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Chester JA, Cunningham CL. Baclofen alters ethanol-stimulated activity but not conditioned place preference or taste aversion in mice. Pharmacol Biochem Behav 1999; 63:325-31. [PMID: 10371663 DOI: 10.1016/s0091-3057(98)00253-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present experiments examined the effects of the GABA(B) receptor agonist, baclofen, on the acquisition of ethanol-induced conditioned place preference (CPP) and conditioned taste aversion (CTA) in male DBA/2J mice. Mice in the CPP experiment received four pairings of ethanol (2g/kg) with a distinctive floor stimulus for a 5-min conditioning session (CS+ sessions). On intervening days (CS- sessions), mice received saline injections paired with a different floor type. On CS+ days, mice also received one of four doses of baclofen (0.0. 2.5, 5.0, or 7.5 mg/kg) 15 min before an injection of ethanol. For the preference test, all mice received saline injections, and were placed on a half-grid and half-hole floor for a 60-min session. Baclofen dose dependently reduced ethanol-stimulated activity, but did not alter the magnitude of ethanol-induced CPP at any dose. For the CTA experiment, mice were adapted to a 2-h per day water restriction regimen followed by five conditioning trials every 48 h. During conditioning trials, subjects received an injection of saline or baclofen (2.0 and 6.0 mg/kg) 15 min before injection of 2 g/kg ethanol or saline following 1-h access to a saccharin solution. Baclofen did not alter the magnitude of ethanol-induced CTA at any dose. In addition, baclofen alone did not produce a CTA. Overall, these studies show that activation of GABA(B) receptors with baclofen reduces ethanol-induced locomotor activation, but does not alter ethanol's rewarding or aversive effects in the CPP and CTA paradigms in DBA/2J mice.
Collapse
Affiliation(s)
- J A Chester
- Department of Behavioral Neuroscience, and Portland Alcohol Research Center, Oregon Health Sciences University, 97201-3098, USA
| | | |
Collapse
|
26
|
Chiu J, Kalant H, Lê DA. Vasopressin opposes locomotor stimulation by ethanol, cocaine and amphetamine in mice. Eur J Pharmacol 1998; 355:11-7. [PMID: 9754933 DOI: 10.1016/s0014-2999(98)00465-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of arginine8-vasopressin on the stimulation of locomotor activity induced by ethanol, cocaine and amphetamine were examined in DBA/2N mice. Locomotor activity was measured by photocell beam interruption for a period of 45 min following ethanol, cocaine or amphetamine administration. Pretreatment with vasopressin alone in a dose of 2 (but not 1) microg/mouse s.c. reduced locomotor activity. The low dose of vasopressin did not modify the stimulation of locomotor activity induced by i.p. administration of ethanol in doses of either 1.5 or 2 g/kg. The high dose of vasopressin reduced locomotor activity induced by both doses of ethanol, in an apparently additive manner. Cocaine in doses of 15 and 20 mg/kg strongly stimulated locomotor activity, but this stimulation was completely antagonized by pretreatment with 1 microg of vasopressin. Similarly, the stimulation of locomotor activity induced by amphetamine (5 mg/kg) was also blocked by pretreatment with vasopressin. These findings raise the possibility that the effect of vasopressin varies with the extent and nature of dopaminergic involvement in the drug-induced stimulation of activity. For drugs like cocaine or amphetamine which stimulate locomotor activity primarily through the mesolimbic dopaminergic system, vasopressin can completely antagonize the stimulation. For ethanol, which stimulates locomotor activity through action on a number of other neurotransmitters as well as dopamine, vasopressin treatment only reduces its stimulation of locomotor activity in an additive manner. These results suggest a close interaction between vasopressin and dopamine action.
Collapse
Affiliation(s)
- J Chiu
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
27
|
Faingold CL, N'Gouemo P, Riaz A. Ethanol and neurotransmitter interactions--from molecular to integrative effects. Prog Neurobiol 1998; 55:509-35. [PMID: 9670216 DOI: 10.1016/s0301-0082(98)00027-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-1222, USA
| | | | | |
Collapse
|
28
|
Wrona MZ, Waskiewicz J, Han QP, Han J, Li H, Dryhurst G. Putative oxidative metabolites of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline of potential relevance to the addictive and neurodegenerative consequences of ethanol abuse. Alcohol 1997; 14:213-23. [PMID: 9160798 DOI: 10.1016/s0741-8329(96)00144-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ethanol is metabolized in the brain by catalase/H2O2 to yield acetaldehyde and by an ethanol-inducible form of cytochrome P450 (P450 IIE1) in a reaction that yields oxygen radicals. Within the cytoplasm of serotonergic axon terminals these metabolic pathways together provide conditions for the endogenous synthesis of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (1), by reaction of acetaldehyde with unbound 5-hydroxytryptamine (5-HT), and for the oxygen radical-mediated oxidation of this alkaloid. The major initial product of the hydroxyl radical (HO.)-mediated oxidation of 1 in the presence of free glutathione (GSH), a constituent of nerve terminals and axons, is 8-S-glutathionyl-1-methyl-1,2,3,4-tetrahydro-beta-carboline-5,6-dione (6). When administered into the brains of mice, 6 is a potent toxin (LD50 = 2.9 microg) and evokes episodes of hyperactivity and tremor. Compound 6 binds at the GABA(B) receptor and evokes elevated release and turnover of several neurotransmitters. Furthermore, the GABA(B) receptor antagonist phaclofen attenuates the behavioral response caused by intracerebral administration of 6. These observations suggest that 6 might be an inverse agonist at the GABA(B) receptor site. Accordingly, it is speculated that ethanol drinking might potentiate formation of 6 that contributes to elevated release of several neurotransmitters including dopamine (DA) and endogenous opioids in regions of the brain innervated by serotonergic axon terminals. Subsequent interactions of DA and opioids with their receptors might be related to the initial development of dependence on ethanol. Redox cycling of 6 (and of several putative secondary metabolites) in the presence of intraneuronal antioxidants and molecular oxygen to produce elevated fluxes of cytotoxic reduced oxygen species might contribute to the degeneration of serotonergic pathways. Low levels of 5-HT in certain brain regions of the rat predisposes these animals to drink or augments drinking. Accordingly, 6, formed as a result of ethanol metabolism in the cytoplasm of certain serotonergic axon terminals, might contribute to the initial development of dependence on ethanol, by mediating DA and opioid release, and long-term preference and addiction to the fluid as a result of the progressive degeneration of these neurons.
Collapse
Affiliation(s)
- M Z Wrona
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | | | | | |
Collapse
|
29
|
Phillips TJ, Shen EH. Neurochemical bases of locomotion and ethanol stimulant effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:243-82. [PMID: 8894850 DOI: 10.1016/s0074-7742(08)60669-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The locomotor stimulant effect produced by alcohol (ethanol) is one of a large number of measurable ethanol effects. Ethanol-induced euphoria in humans and locomotor stimulation in rodents, a potential animal model of human euphoria, have long been recognized and the latter has been extensively characterized. Since the euphoria produced by ethanol may influence the development of uncontrolled or excessive alcohol use, a solid understanding of the neurochemical substrates underlying such effects is important. Such an understanding for spontaneous locomotion and for ethanol's stimulant effects is beginning to emerge. Herein we review what is known about three neurochemical substrates of locomotion and of ethanol's locomotor stimulant effects. Several lines of research have implicated dopaminergic, GABAergic, and glutamatergic neurotransmitter systems in determining these behaviors. A large collection of work is cited, which strongly implicates the above-mentioned neurotransmitter substances in the control of spontaneous locomotion. A smaller, but persuasive, body of evidence suggests that central nervous system processes utilizing these transmitters are involved in determining the effects of ethanol on locomotion. Particular emphasis has been placed on the mesolimbic ventral tegmental area to nucleus accumbens dopaminergic pathway, and on the ventral pallidum/substantia innominata, where GABA and glutamate have been found to play a role in altering the activity of this dopaminergic pathway. Research on ethanol and drug locomotor sensitization, increased responsiveness to the substance with repeated administration, is also reviewed as a process that may be important in the development of drug addiction.
Collapse
Affiliation(s)
- T J Phillips
- Department of Veterans Affairs Medical Center, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
30
|
Saeed Dar M. Mouse cerebellar GABAB participation in the expression of acute ethanol-induced ataxia and in its modulation by the cerebellar adenosinergic A1 system. Brain Res Bull 1996. [DOI: 10.1016/0361-9230(96)00172-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Humeniuk RE, Ong J, Kerr DI, White JM. Characterization of GABAB ligands in vivo. GENERAL PHARMACOLOGY 1995; 26:417-24. [PMID: 7590097 DOI: 10.1016/0306-3623(94)00175-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. While GABAB antagonists have been examined in vitro, very few have been tested in vivo. A range of GABAB antagonists were tested against baclofen-induced muscle relaxation and hypothermia. 2. The GABAB antagonists exhibited a range of in vivo activity profiles. 3. CGP 35348 showed clear antagonist effects, while BPBA and 4-ABPA appeared to have agonist properties. 4. Phaclofen, 2-hydroxysaclofen, 3-APPA and 9G seemed to have little effect in this system at the doses tested. 5. Differences between in vivo and in vitro activity could be explained by differences in blood-brain barrier permeability, or possible differences in affinities for the sub-classes of GABAB receptors.
Collapse
Affiliation(s)
- R E Humeniuk
- Department of Clinical and Experimental Pharmacology, University of Adelaide, Australia
| | | | | | | |
Collapse
|
32
|
Abstract
GABAB receptors are a distinct subclass of receptors for the major inhibitory transmitter 4-aminobutanoic acid (GABA) that mediate depression of synaptic transmission and contribute to the inhibition controlling neuronal excitability. The development of specific agonists and antagonists for these receptors has led to a better understanding of their physiology and pharmacology, highlighting their diverse coupling to different intracellular effectors through Gi/G(o) proteins. This review emphasises our current knowledge of the neurophysiology and neurochemistry of GABAB receptors, including their heterogeneity, as well as the therapeutic potential of drugs acting at these sites.
Collapse
Affiliation(s)
- D I Kerr
- Department of Anaesthesia and Intensive Care, University of Adelaide, Australia
| | | |
Collapse
|
33
|
Abstract
Recent research suggests that the GABAB receptor may mediate some of the acute effects of alcohol, but little is known of its involvement in alcohol withdrawal. Mice made dependent on alcohol exhibited tremor and tail arch when consumption ceased. Diazepam dose-dependently attenuated both tremor and tail arch, whereas baclofen had no effect on either of these two withdrawal symptoms. However, baclofen dose-dependently induced convulsant behaviour in the withdrawing mice, and this was significantly attenuated by the GABAB antagonists phaclofen (50 mg/kg) and CGP 35348 (300 mg/kg), but not BPBA (50 mg/kg). Phaclofen, BPBA, and CGP 35348, when administered alone and in combination with a single dose of baclofen, did have an effect on tremor, although the magnitude was small in comparison to that seen with diazepam. It appears that the GABAB receptor may play a role in mediating convulsions during alcohol withdrawal, and that in this system baclofen is proconvulsant.
Collapse
Affiliation(s)
- R E Humeniuk
- Department of Clinical and Experimental Pharmacology, University of Adelaide, South Australia
| | | | | |
Collapse
|
34
|
Criswell HE, Overstreet DH, Rezvani AH, Johnson KB, Simson PE, Knapp DJ, Moy SS, Breese GR. Effects of ethanol, MK-801, and chlordiazepoxide on locomotor activity in different rat lines: dissociation of locomotor stimulation from ethanol preference. Alcohol Clin Exp Res 1994; 18:917-23. [PMID: 7978104 DOI: 10.1111/j.1530-0277.1994.tb00060.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several lines of research have suggested a link between the reward value of a drug and its ability to stimulate locomotion. One goal of the present study was to determine whether ethanol preferentially stimulates locomotor activity in lines of rat that show a preference for ethanol. A secondary goal was to determine the extent to which the benzodiazepine-like and NMDA antagonistic action of ethanol accounted for its effect on locomotor activity. To meet these goals, the effects of varying doses of ethanol (0.125-1.0 g/kg), MK-801 (0.1-0.3 mg/kg), and chlordiazepoxide (0.3-3 mg/kg) on locomotor activity were studied in several lines of rats that had been habituated to the testing procedure. The effect of low doses of ethanol on motor activity in the Alcohol-Preferring (P) and Fawn-Hooded rats, which show a strong ethanol preference, were similar to those of the alcohol-nonpreferring (NP), Flinders Sensitive Line, and Flinders Resistant Line rats. Only the Flinder Resistant Line rats showed a small, but significant increase in locomotor activity after the administration of ethanol. The highest dose of ethanol (1.0 g/kg) produced locomotor depression in all lines except the P and NP lines, which were not tested at this dose. These findings do not support a link between locomotor stimulation by ethanol and ethanol preference. In contrast, all lines exhibited locomotor stimulation after moderate (0.1-0.3 mg/kg) doses of MK-801, but did not exhibit increases in activity following any dose of chlordiazepoxide. These data indicate that the profiles of activity after MK-801 and chlordiazepoxide were distinct from that of ethanol in the various rat lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H E Criswell
- Brain and Development Research Center, University of North Carolina School of Medicine, Chapel Hill 27599-7250
| | | | | | | | | | | | | | | |
Collapse
|