1
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
3
|
Dcf1 deficiency induces hypomyelination by activating Wnt signaling. Exp Neurol 2020; 335:113486. [PMID: 32991932 DOI: 10.1016/j.expneurol.2020.113486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/01/2023]
Abstract
Myelination is extremely important in achieving neural function. Hypomyelination causes a variety of neurological diseases. However, little is known about how hypomyelination occurs. Here we investigated the effect of dendritic cell factor 1(Dcf1) on myelination, using in vitro and in vivo models and found that Dcf1 is essential for normal myelination, motor coordination and balance. Lack of Dcf1 downregulated myelin-associated proteins, such as myelin basic protein (MBP), myelin associated glycoprotein (MAG), and 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampus and corpus callosum of Dcf1-null mice, as a result, the myelin sheath of these mice became thinner. Transmission electron microscopy revealed hypomyelination in Dcf1-deficient mice. Motor coordination and balance tests confirmed impaired neurological function in Dcf1-null mice. Gain-of-function analysis via In utero electroporation showed that hypomyelination could be rescued by re-expression of Dcf1 in Dcf1-null mouse brain. Dcf1-null mice exhibited a phenotype similar to that of cuprizone-induced demyelinated mice, thereby supporting the finding of hypomyelination caused by Dcf1 knockout. Mechanistically, we further revealed that insufficient Dcf1 leads to hyperactivation of the Wnt/β-catenin signaling pathway. Our work describes the role of Dcf1 in maintaining normal myelination, and this could help improve the current understanding of hypomyelination and its pathogenesis.
Collapse
|
4
|
Erbaba B, Burhan ÖP, Şerifoğlu N, Muratoğlu B, Kahveci F, Adams MM, Arslan-Ergül A. Zebrafish brain RNA sequencing reveals that cell adhesion molecules are critical in brain aging. Neurobiol Aging 2020; 94:164-175. [PMID: 32629311 DOI: 10.1016/j.neurobiolaging.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Brain aging is a complex process, which involves multiple pathways including various components from cellular to molecular. This study aimed to investigate the gene expression changes in zebrafish brains through young-adult to adult, and adult to old age. RNA sequencing was performed on isolated neuronal cells from zebrafish brains. The cells were enriched in progenitor cell markers, which are known to diminish throughout the aging process. We found 176 statistically significant, differentially expressed genes among the groups, and identified a group of genes based on gene ontology descriptions, which were classified as cell adhesion molecules. The relevance of these genes was further tested in another set of zebrafish brains, human healthy, and Alzheimer's disease brain samples, as well as in Allen Brain Atlas data. We observed that the expression change of 2 genes, GJC2 and ALCAM, during the aging process was consistent in all experimental sets. Our findings provide a new set of markers for healthy brain aging and suggest new targets for therapeutic approaches to neurodegenerative diseases.
Collapse
Affiliation(s)
- Begün Erbaba
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Özge Pelin Burhan
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Naz Şerifoğlu
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Bihter Muratoğlu
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Fatma Kahveci
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; UMRAM, National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Malheiro AR, Correia B, Ferreira da Silva T, Bessa-Neto D, Van Veldhoven PP, Brites P. Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1-myristyl ether treatment. Brain Pathol 2019; 29:622-639. [PMID: 30667116 DOI: 10.1111/bpa.12710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmalogens are the most abundant form of ether phospholipids in myelin and their deficiency causes Rhizomelic Chondrodysplasia Punctata (RCDP), a severe developmental disorder. Using the Gnpat-knockout (KO) mouse as a model of RCDP, we determined the consequences of a plasmalogen deficiency during myelination and myelin homeostasis in the central nervous system (CNS). We unraveled that the lack of plasmalogens causes a generalized hypomyelination in several CNS regions including the optic nerve, corpus callosum and spinal cord. The defect in myelin content evolved to a progressive demyelination concomitant with generalized astrocytosis and white matter-selective microgliosis. Oligodendrocyte precursor cells (OPC) and mature oligodendrocytes were abundant in the CNS of Gnpat KO mice during the active period of demyelination. Axonal loss was minimal in plasmalogen-deficient mice, although axonal damage was observed in spinal cords from aged Gnpat KO mice. Characterization of the plasmalogen-deficient myelin identified myelin basic protein and septin 7 as early markers of dysmyelination, whereas myelin-associated glycoprotein was associated with the active demyelination phase. Using in vitro myelination assays, we unraveled that the intrinsic capacity of oligodendrocytes to ensheath and initiate membrane wrapping requires plasmalogens. The defect in plasmalogens was rescued with glyceryl 1-myristyl ether [1-O-tetradecyl glycerol (1-O-TDG)], a novel alternative precursor in the plasmalogen biosynthesis pathway. 1-O-TDG treatment rescued myelination in plasmalogen-deficient oligodendrocytes and in mutant mice. Our results demonstrate the importance of plasmalogens for oligodendrocyte function and myelin assembly, and identified a novel strategy to promote myelination in nervous tissue.
Collapse
Affiliation(s)
- Ana R Malheiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal.,ICBAS, Instituto Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Barbara Correia
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Tiago Ferreira da Silva
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Diogo Bessa-Neto
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Cui FZ, Tian WM, Fan YW, Hou SP, Xu QY, Lee IS. Cerebrum Repair with PHPMA Hydrogel Immobilized with Neurite-Promoting Peptides in Traumatic Brain Injury of Adult Rat Model. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911503040470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) hydrogel immobilized with the neurite-promoting peptide sequence of xIKVAVx was synthesized and its structure was characterized. The PHPMA-IKVAV hydrogel displayed an interconnected porous structure. The ability of the hydrogel to support axonal outgrowth in the injured adult rats cerebrum cavity and to promote tissue regeneration was evaluated. After implantation for 4, 6, 12 and 18 weeks, the brain sections were processed for histological staining. The observations of the sections showed that the polymer hydrogel provided a structural, three-dimensional continuity across the defect and favoured reorganization of local wound-repair cells, angiogenesis and axonal growth into the hydrogel scaffold. Compared with the unmodified PHPMA hydrogel, the PHPMA-IKVAV hydrogel displayed greater ability to repair tissue defects in the cerebrum nervous system.
Collapse
Affiliation(s)
| | | | - Y. W. Fan
- Biomaterials Laboratory Department of Materials Science & Engineering Tsinghua University Beijing, 100084, China
| | | | - Q. Y. Xu
- Beijing Institute of Neuroscience Capital University of Medical Sciences Beijing, 100054, China
| | - I.-S. Lee
- Atomic-scale Surface Science Research Center, Yonsei University, Seoul, 120-749 Korea
| |
Collapse
|
7
|
Affiliation(s)
- R Douglas Fields
- Laboratory of Developmental Neurobiology, National Institutes of Health, NICHD, Bethesda, Maryland
| |
Collapse
|
8
|
Al-Bashir N, Mellado W, Filbin MT. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG. Front Mol Neurosci 2016; 9:21. [PMID: 27065798 PMCID: PMC4817280 DOI: 10.3389/fnmol.2016.00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage.
Collapse
Affiliation(s)
- Najat Al-Bashir
- Biology Department, Hunter College, City University of New York New York, NY, USA
| | - Wilfredo Mellado
- Biology Department, Hunter College, City University of New YorkNew York, NY, USA; Burke-Cornell Medical Research Institute White Plains, NY, USA
| | - Marie T Filbin
- Biology Department, Hunter College, City University of New York New York, NY, USA
| |
Collapse
|
9
|
Ferreira LMR, Floriddia EM, Quadrato G, Di Giovanni S. Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems. Mol Neurobiol 2012; 46:227-41. [DOI: 10.1007/s12035-012-8290-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/07/2012] [Indexed: 12/22/2022]
|
10
|
Jitoku D, Hattori E, Iwayama Y, Yamada K, Toyota T, Kikuchi M, Maekawa M, Nishikawa T, Yoshikawa T. Association study of Nogo-related genes with schizophrenia in a Japanese case-control sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:581-92. [PMID: 21563301 DOI: 10.1002/ajmg.b.31199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
Abstract
Many studies have suggested that myelin dysfunction may be causally involved in the pathogenesis of schizophrenia. Nogo (RTN4), myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG) all bind to the common receptor, Nogo-66 receptor 1 (RTN4R). We examined 68 single nucleotide polymorphisms (SNPs) (51 with genotyping and 17 with imputation analysis) from these four genes for genetic association with schizophrenia, using a 2,120 case-control sample from the Japanese population. Allelic tests showed nominally significant association of two RTN4 SNPs (P = 0.047 and 0.037 for rs11894868 and rs2968804, respectively) and two MAG SNPs (P = 0.034 and 0.029 for rs7249617 and rs16970218, respectively) with schizophrenia. The MAG SNP rs7249617 also showed nominal significance in a genotypic test (P = 0.017). In haplotype analysis, the MAG haplotype block including rs7249617 and rs16970218 showed nominal significance (P = 0.008). These associations did not remain significant after correction for multiple testing, possibly due to their small genetic effect. In the imputation analysis of RTN4, the untyped SNP rs2972090 showed nominally significant association (P = 0.032) and several imputed SNPs showed marginal associations. Moreover, in silico analysis (PolyPhen) of a missense variant (rs11677099: Asp357Val), which is in strong linkage disequilibrium with rs11894868, predicted a deleterious effect on Nogo protein function. Despite a failure to detect robust associations in this Japanese cohort, our nominally positive signals, taken together with previously reported biological and genetic findings, add further support to the "disturbed myelin system theory of schizophrenia" across different populations.
Collapse
Affiliation(s)
- Daisuke Jitoku
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 2010; 30:6825-37. [PMID: 20484625 DOI: 10.1523/jneurosci.6239-09.2010] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional recovery after adult CNS damage is limited in part by myelin inhibitors of axonal regrowth. Three molecules, Nogo-A, MAG, and OMgp, are produced by oligodendrocytes and share neuronal receptor mechanisms through NgR1 and PirB. While each has an axon-inhibitory role in vitro, their in vivo interactions and relative potencies have not been defined. Here, we compared mice singly, doubly, or triply mutant for these three myelin inhibitor proteins. The myelin extracted from Nogo-A mutant mice is less inhibitory for axons than is that from wild-type mice, but myelin lacking MAG and OMgp is indistinguishable from control. However, myelin lacking all three inhibitors is less inhibitory than Nogo-A-deficient myelin, uncovering a redundant and synergistic role for all three proteins in axonal growth inhibition. Spinal cord injury studies revealed an identical in vivo hierarchy of these three myelin proteins. Loss of Nogo-A allows corticospinal and raphespinal axon growth above and below the injury, as well as greater behavioral recovery than in wild-type or heterozygous mutant mice. In contrast, deletion of MAG and OMgp stimulates neither axonal growth nor enhanced locomotion. The triple-mutant mice exhibit greater axonal growth and improved locomotion, consistent with a principal role for Nogo-A and synergistic actions for MAG and OMgp, presumably through shared receptors. These data support the hypothesis that targeting all three myelin ligands, as with NgR1 decoy receptor, provides the optimal chance for overcoming myelin inhibition and improving neurological function.
Collapse
|
12
|
Development of the delay lines in the nucleus laminaris of the chicken embryo revealed by optical imaging. Neuroscience 2010; 168:564-72. [PMID: 20394725 DOI: 10.1016/j.neuroscience.2010.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/23/2022]
Abstract
One strategy in localizing a sound source in the azimuthal plane is the comparison of arrival times of sound stimuli at the two ears. The processing of interaural time differences (ITDs) in the auditory brainstem was suggested by the Jeffress model in 1948. In chicks, binaural neurons in the nucleus laminaris (NL) receive input from both ipsilateral and contralateral nucleus magnocellularis (NM) neurons, with the axons of the latter acting as delay lines. A given neuron in the NL responds maximally to coinciding input from both NM neurons. To achieve maximum resolution of sound localization in the NL, the conduction velocity along these delay lines must be precisely tuned. Here, we examined the development of this velocity between embryonic days (E)12 and E18. Our optical imaging approach visualizes the contralateral delay lines along almost the complete NL of the chicken embryo. Optical imaging with the voltage-sensitive dye RH 795 showed no significant differences in the velocity between E12 and E15, but a significant increase from E15 to E18, at both 21 degrees C and 35 degrees C. Surprisingly, at 21 degrees C the conduction velocity in the dorso-lateral part of the NL was significantly higher compared to the situation in the ventro-medial part. The observed development in contralateral conduction velocity may be due to a developmental increase in myelination of the NM axons. Indeed, antibody staining against myelin-associated glycoprotein (alpha-MAG) showed no myelination of the NM axon branches within the NL at E12 and E15. On the other hand, a clear alpha-MAG immunoreactivity occurred at E18. Our results therefore describe the developmental physiological properties of the delay line in the chicken embryo.
Collapse
|
13
|
Katsel P, Davis KL, Li C, Tan W, Greenstein E, Kleiner Hoffman LB, Haroutunian V. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology 2008; 33:2993-3009. [PMID: 18322470 DOI: 10.1038/npp.2008.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of this study was to determine what signaling pathways may elicit myelin-specific gene expression deficits in schizophrenia (SZ). Microarray analyses indicated that genes associated with canonical cell cycle pathways were significantly affected in the anterior cingulate gyrus (ACG), the region exhibiting the most profound myelin-specific gene expression changes, in persons with SZ (N=16) as compared with controls (N=19). Detected gene expression changes of key regulators of G1/S phase transition and genes central to oligodendrocyte differentiation were validated using qPCR in the ACG in an independent cohort (Ns=45/34). The relative abundance of phosphorylated retinoblastoma protein (pRb) was increased in the white matter underlying the ACG in SZ subjects (Ns=12). The upregulation of cyclin D1 gene expression and the downregulation of p57(Kip2), accompanied by increased cyclin D/CDK4-dependent phosphorylation of pRb, acting as a checkpoint for G1/S phase transition, suggest abnormal cell cycle re-entry in postmitotic oligodendrocytes in SZ. Furthermore, gene expression profiling of brain samples from myelin mutant animal models, quaking and myelin-associated glycoprotein (MAG) null mice, showed that cell cycle gene expression changes were not a necessary consequence of the reduced gene expression of structural myelin proteins, such as MAG. While, quaking, a known modulator of cell cycle activity during oligodendrocyte differentiation impairs the expression of multiple myelin genes, including those that are affected in SZ. These data suggest that the normal patterns of cell cycle gene and protein expression are disrupted in SZ and that this disruption may contribute to the oligodendroglial deficits observed in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY 10468, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Freude S, Leeser U, Müller M, Hettich MM, Udelhoven M, Schilbach K, Tobe K, Kadowaki T, Köhler C, Schröder H, Krone W, Brüning JC, Schubert M. IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 2008; 107:907-17. [PMID: 18717815 DOI: 10.1111/j.1471-4159.2008.05631.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.
Collapse
Affiliation(s)
- Susanna Freude
- Department of Internal Medicine II, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dąbrowska-Bouta B, Strużyńska L, Walski M, Rafałowska U. Myelin glycoproteins targeted by lead in the rodent model of prolonged exposure. Food Chem Toxicol 2008; 46:961-6. [DOI: 10.1016/j.fct.2007.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/19/2007] [Accepted: 10/22/2007] [Indexed: 11/25/2022]
|
16
|
Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M. GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 2007; 36:185-94. [PMID: 17702601 PMCID: PMC2034440 DOI: 10.1016/j.mcn.2007.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022] Open
Abstract
Axonal regeneration within the CNS fails due to the growth inhibitory environment and the limited intrinsic growth capacity of injured neurons. Injury to DRG peripheral axons induces expression of growth associated genes including members of the glial-derived neurotrophic factor (GDNF) signaling pathway and "preconditions" the injured cells into an active growth state, enhancing growth of their centrally projecting axons. Here, we show that preconditioning DRG neurons prior to culturing increased neurite outgrowth, which was further enhanced by GDNF in a bell-shaped growth response curve. In vivo, GDNF delivered directly to DRG cell bodies facilitated the preconditioning effect, further enhancing axonal regeneration beyond spinal cord lesions. Consistent with the in vitro results, the in vivo effect was seen only at low GDNF concentrations. We conclude that peripheral nerve injury upregulates GDNF signaling pathway components and that exogenous GDNF treatment selectively promotes axonal growth of injury-primed sensory neurons in a concentration-dependent fashion.
Collapse
Affiliation(s)
- Charles D Mills
- Neural Plasticity Research Group, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
17
|
Regeneration and Repair. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Yarovaya N, Schot R, Fodero L, McMahon M, Mahoney A, Williams R, Verbeek E, de Bondt A, Hampson M, van der Spek P, Stubbs A, Masters CL, Verheijen FW, Mancini GMS, Venter DJ. Sialin, an anion transporter defective in sialic acid storage diseases, shows highly variable expression in adult mouse brain, and is developmentally regulated. Neurobiol Dis 2005; 19:351-65. [PMID: 16023578 DOI: 10.1016/j.nbd.2004.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/15/2004] [Accepted: 12/22/2004] [Indexed: 01/27/2023] Open
Abstract
Sialin is a lysosomal membrane protein encoded by the SLC17A5 gene, which is mutated in patients with sialic acid storage diseases (SASD). To further understand the role of sialin in normal CNS development and in the progressive neuronal atrophy and dysmyelination seen in SASD, we investigated its normal cellular distribution in adult and developing mice. Overall, sialin showed granular immunoreactivity, consistent with a vesicular protein. Adult mice showed widespread sialin expression, including in the brain, heart, lung, and liver. High-level immunoreactivity was seen in the neuropil of the hippocampus, striatum, and cerebral cortex, as well as in the perikarya of cerebellar Purkinje cells, globus pallidus, and certain thalamic and brainstem nuclei. In mouse embryos, the highest levels of expression were observed in the nervous system. We discuss the possible role of sialin in normal development and in SASD pathogenesis, as a framework for further investigation of its function in these contexts.
Collapse
Affiliation(s)
- Natalia Yarovaya
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Loers G, Aboul-Enein F, Bartsch U, Lassmann H, Schachner M. Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of differentially myelin-compromised mutant mice: a morphological and biochemical study. Mol Cell Neurosci 2005; 27:175-89. [PMID: 15485773 DOI: 10.1016/j.mcn.2004.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/27/2004] [Accepted: 06/08/2004] [Indexed: 01/06/2023] Open
Abstract
The present study was carried out to compare different myelin-compromised mouse mutants with regard to myelin morphology in relation to axon-, lipid-, and immunopathology as a function of age. Mouse mutants deficient in the myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) display subtle and severe myelin pathologies in the central nervous system (CNS), respectively. Animals doubly deficient in MAG and the neural cell adhesion molecule (NCAM) show defects similar to those present in MAG single mutants while mice deficient in MAG and the nonreceptor type tyrosine kinase Fyn are severely hypomyelinated, in addition to the MAG-specific myelin abnormalities. These mutant mice showed distinct myelin pathologies in different regions of the central nervous system and generally displayed a decrease in axonal integrity with age. Myelin pathology did not correlate locally with axon transection and with an involvement of the immune system as seen by numbers of CD3-positive lymphocytes and MAC-3-positive macrophages. Interestingly, the degree of these cellular abnormalities also did not correlate with abnormalities in levels of phospholipids, arachidonic acid, cholesterol, and apolipoprotein E (apoE). Moreover, these changes in lipid metabolism, including immune system-related arachidonic acid, preceded cellular pathology. The combined observations point to differences, but also similarities in the relation of myelin, axon, and immunopathology with genotype, and to a common aggravation of the phenotype with age.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Ogawa T, Suzuki M, Matoh K, Sasaki K. Three-dimensional electron microscopic studies of the transitional oligodendrocyte associated with the initial stage of myelination in developing rat hippocampal fimbria. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:207-12. [PMID: 14766198 DOI: 10.1016/j.devbrainres.2003.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 11/19/2022]
Abstract
We identified the transitional oligodendrocyte and their processes of rat hippocampal fimbria associated with the initial stage of myelination in both the morphological and functional classifications by means of three-dimensional ultrastructural analysis. Transitional oligodendrocytes appeared around P7, and their cell bodies were morphologically an intermediate form between the light and medium oligodendrocytes described by Mori and Leblond [J. Comp. Neurol. 139 (1970) 1]. Three phenotypes of the transitional oligodendrocytic processes were recognized. Spiral wrapping processes were ensheathing processes, club-like processes were nonensheathing processes, and sheet-like processes were possibly the transmuting form between the nonensheathing and ensheathing processes. Club-like processes were the major part of the nonensheathing processes, and most likely function as sensors to perceive axon maturation and find target axons. Multivesicular bodies that appeared to be associated with the initial ensheathment were observed in the transitional oligodendrocytic processes, suggesting that their roles are crucial in myelinogenesis.
Collapse
Affiliation(s)
- Tokiko Ogawa
- Department of Anatomy, Graduate School of Medicine, Osaka City University, 1-4-54, Asahi-machi, Abeno, Osaka 545-8585 Japan
| | | | | | | |
Collapse
|
21
|
Abstract
CNS regeneration in higher vertebrates is a long sought after goal in neuroscience. The lack of regeneration is attributable in part to inhibitory factors found in myelin (Caroni and Schwab, 1988a). Myelin-associated glycoprotein (MAG) is an abundant myelin protein that inhibits neurite outgrowth in vitro (McKerracher et al., 1994; Mukhopadhyay et al., 1994), but its role in regeneration remains controversial. To address this role, we performed nerve crush on embryonic day 15 chick retina-optic nerve explants and then acutely eliminated MAG function along the nerve using chromophore-assisted laser inactivation (CALI). CALI of MAG permitted significant regrowth of retinal axons past the site of lesion containing CNS myelin in contrast to various control treatments. Electron microscopy of the site of nerve crush shows abundant regenerating axons crossing the gap. When crushed optic nerve was retrogradely labeled at the nerve stump, no labeling of retinal neurons was observed. In contrast, labeling of CALI of MAG-treated crushed optic nerve showed significant retinal labeling (89 +/- 16 cells per square millimeter), a value indistinguishable from that seen with non-crushed nerve (98 +/- 13 cells per square millimeter). These findings implicate MAG as an important component of the myelin-derived inhibition of nerve regeneration. The acute loss of MAG function can promote significant axon growth across a site of CNS nerve damage.
Collapse
|
22
|
Ferretti P, Zhang F, O'Neill P. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 2003; 226:245-56. [PMID: 12557203 DOI: 10.1002/dvdy.10226] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Lower vertebrates, such as fish and amphibians, and developing higher vertebrates can regenerate complex body structures, including significant portions of their central nervous system. It is still poorly understood why this potential is lost with evolution and development and becomes very limited in adult mammals. In this review, we will discuss the current knowledge on the cellular and molecular changes after spinal cord injury in adult tailed amphibians, where regeneration does take place, and in developing chick and mammalian embryos at different developmental stages. We will focus on the recruitment of progenitor cells to repair the damage and discuss possible roles of changes in early response to injury, such as cell death by apoptosis, and of myelin-associated proteins, such as Nogo, in the transition between regeneration-competent and regeneration-incompetent stages of development. A better understanding of the mechanisms underlying spontaneous regeneration of the spinal cord in vivo in amphibians and in the chick embryo will help to devise strategies for restoring function to damaged or diseased nervous tissues in mammals.
Collapse
Affiliation(s)
- Patrizia Ferretti
- Developmental Biology Unit, Institute of Child Health, UCL, London, United Kingdom.
| | | | | |
Collapse
|
23
|
Abstract
The neural cell adhesion molecule (NCAM) is a cell recognition molecule of the Ig superfamily implicated in cell migration, myelination, and synaptic plasticity, as well as elongation, fasciculation, and pathfinding of axons. Here, we used NCAM-deficient mice to investigate the role of NCAM in the development of the corticospinal tract. We demonstrate severe hypoplasia of the corticospinal tract in adult NCAM mutants. Anterograde tracing of the tract of early postnatal NCAM mutants revealed pronounced pathfinding errors of corticospinal axons. At the pyramidal decussation of mutant mice, some corticospinal axons either stayed ventrally and extended laterally, or axons turned dorsally, but instead of growing to the contralateral dorsal column, a significant fraction of axons projected ipsilaterally. We also observed that corticospinal axons of NCAM mutants entered the pyramidal decussation significantly later than axons of wild-type littermates. Our observations thus demonstrate a critical role of NCAM for the formation of this major axon tract.
Collapse
|
24
|
Vyas AA, Schnaar RL. Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 2001; 83:677-82. [PMID: 11522397 DOI: 10.1016/s0300-9084(01)01308-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gangliosides, sialylated glycosphingolipids which are the predominant glycans on vertebrate nerve cell surfaces, are emerging as components of membrane rafts, where they can mediate important physiological functions. Myelin associated glycoprotein (MAG), a minor constituent of myelin, is a sialic acid binding lectin with two established physiological functions: it is involved in myelin-axon stability and cytoarchitecture, and controls nerve regeneration. MAG is found selectively on the myelin membranes directly apposed to the axon surface, where it has been proposed to mediate myelin-axon interactions. Although the nerve cell surface ligands for MAG remain to be established, evidence supports a functional role for sialylated glycoconjugates. Here we review recent studies that reflect on the role of gangliosides, sialylated glycosphingolipids, as functional MAG ligands. MAG binds to gangliosides with the terminal sequence 'NeuAc alpha 3Gal beta 3GalNAc' which is found on the major nerve gangliosides GD1a and GT1b. Gangliosides lacking that terminus (e.g., GM1 or GD1b), or having any biochemical modification of the terminal NeuAc residue fail to support MAG binding. Genetically engineered mice lacking the GalNAc transferase required for biosynthesis of the 'NeuAc alpha 3Gal beta 3GalNAc' terminus have grossly impaired myelination and progressive neurodegeneration. Notably the MAG level in these animals is dysregulated. Furthermore, removal of NeuAc residues from nerve cells reverses MAG-mediated inhibition of neuritogenesis, and neurons from mice lacking the 'NeuAc alpha 3 Gal beta 3GalNAc' terminus have an attenuated response to MAG. Cross-linking nerve cell surface gangliosides can mimic MAG-mediated inhibition of nerve regeneration. Taken together these observations implicate gangliosides as functional MAG ligands.
Collapse
Affiliation(s)
- A A Vyas
- Department of Pharmacology, The Johns Hopkins School of Medicine, 318 WBSB, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
25
|
Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and fyn tyrosine kinase. J Neurosci 2001. [PMID: 11007902 DOI: 10.1523/jneurosci.20-19-07430.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The analysis of mice deficient in the myelin-associated glycoprotein (MAG) or Fyn, a nonreceptor-type tyrosine kinase proposed to act as a signaling molecule downstream of MAG, has revealed that both molecules are involved in the initiation of myelination. To obtain more insights into the role of the MAG-Fyn signaling pathway during initiation of myelination and formation of morphologically intact myelin sheaths, we have analyzed optic nerves of MAG-, Fyn- and MAG/Fyn-deficient mice. We observed a slight hypomyelination in optic nerves of MAG mutants that was significantly increased in Fyn mutants and massive in MAG/Fyn double mutants. The severe morphological phenotype of MAG/Fyn mutants, accompanied by behavioral deficits, substantiates the importance of both molecules for the initiation of myelination. The different severity of the phenotype of different genotypes indicates that the MAG-Fyn signaling pathway is complex and suggests the presence of compensatory mechanisms in the single mutants. However, data are also compatible with the possibility that MAG and Fyn act independently to initiate myelination. Hypomyelination of optic nerves was not related to a loss of oligodendrocytes, indicating that the phenotype results from impaired interactions between oligodendrocyte processes and axons and/or impaired morphological maturation of oligodendrocytes. Finally, we demonstrate that Fyn, unlike MAG, is not involved in the formation of ultrastructurally intact myelin sheaths.
Collapse
|
26
|
Abstract
Although medical advancements have significantly increased the survival of spinal cord injury patients, restoration of function has not yet been achieved. Neural transplantation has been studied over the past decade in animal models as a repair strategy for spinal cord injury. Although spinal cord neural transplantation has yet to reach the point of clinical application and much work remains to be done, reconstructive strategies offer the greatest hope for the treatment of spinal cord injury in the future. This article presents the scientific basis of neural transplantation as a repair strategy and reviews the current status of neural transplantation in spinal cord injury.
Collapse
Affiliation(s)
- S D Christie
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
27
|
Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475-508. [PMID: 10869780 DOI: 10.1016/s0301-0082(00)00016-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed.
Collapse
Affiliation(s)
- J R Jacobs
- Department of Biology, McMaster University, 1280 Main Street W., L8S 4K1, Hamilton, Canada.
| |
Collapse
|
28
|
Hsieh ST, Chiang HY, Lin WM. Pathology of nerve terminal degeneration in the skin. J Neuropathol Exp Neurol 2000; 59:297-307. [PMID: 10759185 DOI: 10.1093/jnen/59.4.297] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To characterize the pathology of epidermal nerve degeneration and regeneration, we investigated temporal and spatial changes in skin innervation of the mouse footpad. Within 24 hours after sciatic nerve axotomy, terminals of epidermal nerves appeared swollen and there was a mild reduction in epidermal nerve density (5.7 +/- 2.8 vs 12.7 +/- 2.2 fibers/mm, p < 0.04). Epidermal nerves completely disappeared by 48 hours (0.2 +/- 0.2 vs 14.2 +/- 0.9 fibers/mm, p < 0.001). Concomitant with the disappearance of epidermal nerves, the immunocytochemical pattern of the subepidermal nerve plexus became fragmented. At the electron microscopic level, the axoplasm of degenerating dermal nerves was distended with organelles and later became amorphous. Beginning from day 28 after axotomy, collateral sprouts from the adjacent saphenous nerve territory extended into the denervated area with a beaded appearance. They never penetrated the epidermal-dermal junction to innervate the epidermis. In contrast, 3 months after nerve crushing, the epidermis on the surgery side resumed a normal innervation pattern as the epidermis on the control side (10.3 +/- 3.9 vs 10.6 +/- 1.5 fibers/mm, p = 0.1). This study demonstrates the characteristics of degenerating and regenerating nerves, and suggests that successful reinnervation mainly originates from regenerating nerves of the original nerve trunks. All these findings provide qualitative and quantitative information for interpreting the pathology of cutaneous nerves.
Collapse
Affiliation(s)
- S T Hsieh
- Department of Anatomy, National Taiwan University College of Medicine, Taipei
| | | | | |
Collapse
|
29
|
Abstract
The myelin-associated glycoprotein, a minor component of myelin in the central and peripheral nervous system, has been implicated in the formation and maintenance of myelin. Although the analysis of MAG null mutants confirms this view, the phenotype of this mutant is surprisingly subtle. In the CNS of MAG-deficient mice, initiation of myelination, formation of morphologically intact myelin sheaths and to a minor extent, integrity of myelin is affected. In the PNS, in comparison, only maintenance of myelin is impaired. Recently, the large isoform of MAG has been identified as the functionally important isoform in the CNS, whereas the small MAG isoform is sufficient to maintain the integrity of myelinated fibers in the PNS. Remarkably, none of the different defects in the MAG mutant is consistently associated with each myelinated fiber. These observations suggest that other molecules performing similar functions as MAG might compensate, at least partially, for the absence of MAG in the null mutant.
Collapse
Affiliation(s)
- M Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
30
|
Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A 1999; 96:7532-7. [PMID: 10377449 PMCID: PMC22120 DOI: 10.1073/pnas.96.13.7532] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1999] [Accepted: 04/16/1999] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are a family of sialic acid-containing glycosphingolipids highly enriched in the mammalian nervous system. Although they are the major sialoglycoconjugates in the brain, their neurobiological functions remain poorly defined. By disrupting the gene for a key enzyme in complex ganglioside biosynthesis (GM2/GD2 synthase; EC 2.4.1.92) we generated mice that express only simple gangliosides (GM3/GD3) and examined their central and peripheral nervous systems. The complex ganglioside knockout mice display decreased central myelination, axonal degeneration in both the central and peripheral nervous systems, and demyelination in peripheral nerves. The pathological features of their nervous system closely resemble those reported in mice with a disrupted gene for myelin-associated glycoprotein (MAG), a myelin receptor that binds to complex brain gangliosides in vitro. Furthermore, GM2/GD2 synthase knockout mice have reduced MAG expression in the central nervous system. These results indicate that complex gangliosides function in central myelination and maintaining the integrity of axons and myelin. They also support the theory that complex gangliosides are endogenous ligands for MAG. The data extend and clarify prior observations on a similar mouse model, which reported only subtle conduction defects in their nervous system [Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., et al. (1996) Proc. Natl. Acad. Sci. USA 93, 10662-10667].
Collapse
Affiliation(s)
- K A Sheikh
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The number of animal lectins, basically defined upon their interaction with specific carbohydrate structures, is growing considerably during the last few years. Among these proteins the recently identified subfamily of I-type lectins consists of mainly transmembranous glycoproteins belonging to the immunoglobulin superfamily. Most of the I-type lectins participate in cell adhesion events, as are the different sialoadhesins recognizing sialylated glycan structures, which represent the best characterized subgroup. I-type lectins are abundant in the nervous system and have been implicated in a number of morphogenetic processes as fundamental as axon growth, myelin formation and growth factor signaling. In the present review, we summarize the structural and functional properties of I-type lectins expressed in neural tissues with a main focus on the sialoadhesin myelin-associated glycoprotein, the neural cell adhesion molecule and the fibroblast growth factor receptors.
Collapse
Affiliation(s)
- R Probstmeier
- Department of Biochemistry, Institute for Animal Anatomy and Physiology, University of Bonn, Germany
| | | |
Collapse
|
32
|
Strenge K, Schauer R, Kelm S. Binding partners for the myelin-associated glycoprotein of N2A neuroblastoma cells. FEBS Lett 1999; 444:59-64. [PMID: 10037148 DOI: 10.1016/s0014-5793(99)00029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The myelin-associated glycoprotein (MAG) has been proposed to be important for the integrity of myelinated axons. For a better understanding of the interactions involved in the binding of MAG to neuronal axons, we performed this study to identify the binding partners for MAG on neuronal cells. Experiments with glycosylation inhibitors revealed that sialylated N-glycans of glycoproteins represent the major binding sites for MAG on the neuroblastoma cell line N2A. From extracts of [3H]glucosamine-labelled N2A cells several glycoproteins with molecular weights between 20 and 230 kDa were affinity-precipitated using immobilised MAG. The interactions of these proteins with MAG were sialic acid-dependent and specific for MAG.
Collapse
Affiliation(s)
- K Strenge
- Institute of Biochemistry, University of Kiel, Germany
| | | | | |
Collapse
|
33
|
Martini R, Carenini S. Formation and maintenance of the myelin sheath in the peripheral nerve: roles of cell adhesion molecules and the gap junction protein connexin 32. Microsc Res Tech 1998; 41:403-15. [PMID: 9672423 DOI: 10.1002/(sici)1097-0029(19980601)41:5<403::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Based on previous in vitro studies, the cell adhesion molecules L1, N-CAM, MAG, and P0, which all belong to the immunoglobulin (Ig)-superfamily, have been suggested to mediate myelin formation in the peripheral nervous system. Unexpectedly, studies in mice deficient for the corresponding molecules revealed that only P0 plays pivotal roles during the formation of peripheral nerve myelin in vivo, while L1-, N-CAM-, and MAG-deficient mice develop myelin of normal ultrastructure. However, MAG turned out to be important for the maintenance of myelin, as reflected by degeneration of myelin and axons in MAG-deficient mice older than 6 months. The MAG-mediated maintenance of myelin is backed up by N-CAM, since mice deficient in both MAG and N-CAM show an earlier and more prominent myelin degeneration than MAG single mutants. Another peripheral nerve component involved in the maintenance of myelinated fibers is connexin 32 (Cx32), a gap junction channel protein that does not belong to the Ig-superfamily. Mice deficient in Cx32 initially form normal myelin, which then develops blown-up periaxonal collars and abnormally shaped non-compacted regions followed by myelin and axonal degeneration. Our findings strongly support the view that very few myelin components are necessary for myelin formation whereas the maintenance of myelin is much more sensitive to molecular alterations. In addition, it became evident that myelin molecules can fulfill functionally overlapping roles that ensure that myelination takes place even under conditions in which there is a deficiency in the normal molecular components of myelin.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany
| | | |
Collapse
|
34
|
The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. J Neurosci 1998. [PMID: 9482783 DOI: 10.1523/jneurosci.18-06-01970.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The myelin-associated glycoprotein (MAG) is a member of the immunoglobulin gene superfamily and is thought to play a critical role in the interaction of myelinating glial cells with the axon. Myelin from mutant mice incapable of expressing MAG displays various subtle abnormalities in the CNS and degenerates with age in the peripheral nervous system (PNS). Two distinct isoforms, large MAG (L-MAG) and small MAG (S-MAG), are produced through the alternative splicing of the primary MAG transcript. The cytoplasmic domain of L-MAG contains a unique phosphorylation site and has been shown to associate with the fyn tyrosine kinase. Moreover, L-MAG is expressed abundantly early in the myelination process, possibly indicating an important role in the initial stages of myelination. We have adapted the gene-targeting approach in embryonic stem cells to generate mutant mice that express a truncated form of the L-MAG isoform, eliminating the unique portion of its cytoplasmic domain, but that continue to express S-MAG. Similar to the total MAG knockouts, these animals do not express an overt clinical phenotype. CNS myelin of the L-MAG mutant mice displays most of the pathological abnormalities reported for the total MAG knockouts. In contrast to the null MAG mutants, however, PNS axons and myelin of older L-MAG mutant animals do not degenerate, indicating that S-MAG is sufficient to maintain PNS integrity. These observations demonstrate a differential role of the L-MAG isoform in CNS and PNS myelin.
Collapse
|
35
|
Abstract
The myelin-associated glycoprotein (MAG) has been postulated to play a crucial role during myelin formation. Evidence supporting this hypothesis was provided by infecting rat Schwann cells with a retrovirus expressing MAG antisense RNA; these Schwann cells showed reduced levels of MAG expression and failed to myelinate DRG neurons in vitro. However, when MAG expression was disrupted by generating MAG-deficient mice, normal myelin sheaths were formed in peripheral nerves in vivo. In the present study we investigated whether myelination is compromised in MAG-deficient Schwann cells in vitro, i.e., under similar conditions where Schwann cells expressing MAG antisense RNA failed to myelinate. We show that MAG-deficient Schwann cells do myelinate DRG neurons in vitro and express the myelin-specific glycolipid galactocerebroside (Gal-C) and the myelin proteins P0 and MBP. Furthermore, myelin sheaths appear morphologically normal with both compacted and uncompacted aspects when investigated by electron microscopy. Quantitative analysis revealed that the number of myelin sheaths was similar in cultures from MAG-deficient and wild-type mice. These findings support the view that MAG is not essential for myelin formation in the PNS.
Collapse
Affiliation(s)
- S Carenini
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich
| | | | | | | |
Collapse
|
36
|
Bartsch S, Montag D, Schachner M, Bartsch U. Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG). Brain Res 1997; 762:231-4. [PMID: 9262180 DOI: 10.1016/s0006-8993(97)00484-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently demonstrated that the formation of myelin sheaths in the optic nerve of young postnatal mice deficient in the myelin-associated glycoprotein (MAG) is retarded when compared to age-matched wild-type mice. In the present study, we analyzed whether impaired myelination of retinal ganglion cell axons is detectable in adult MAG mutants. In optic nerves of 2- and 9-month-old MAG-deficient mice, we observed a significantly increased number of unmyelinated axons compared to age-matched wild-type mice. At both ages, unmyelinated axons in optic nerves of MAG mutants were of small caliber. The number of unmyelinated axons decreased significantly in 9-month-old MAG mutants when compared to 2-month-old MAG mutants, indicative of a slow and long-lasting myelination of axons in the mutant. Our observations support the view that MAG is involved in the initiation of myelination in the CNS.
Collapse
Affiliation(s)
- S Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Zürich
| | | | | | | |
Collapse
|
37
|
Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199704)19:4<298::aid-glia3>3.0.co;2-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|