1
|
Karolczak K, Guligowska A, Sołtysik BK, Kostanek J, Kostka T, Watala C. Estimated Intake of Potassium, Phosphorus and Zinc with the Daily Diet Negatively Correlates with ADP-Dependent Whole Blood Platelet Aggregation in Older Subjects. Nutrients 2024; 16:332. [PMID: 38337617 PMCID: PMC10857292 DOI: 10.3390/nu16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The aggregation of blood platelets is the pivotal step that leads to thrombosis. The risk of thrombotic events increases with age. Available data suggest that minerals taken with diet can affect the course of thrombosis. However, little is known about the relationship between platelet aggregability and mineral intake with diet among elderly people. Thus, we evaluated the associations between the reactivities of platelets to arachidonic acid, collagen or ADP and the estimated quantities of minerals consumed as a part of the daily diet in 246 subjects aged 60-65 years (124 men and 122 women). The found simple (not-adjusted) Spearman's rank negative correlations are as follows: 1. arachidonate-dependent aggregation and the amounts of potassium, zinc, magnesium, phosphorus, iron, copper and manganese; 2. collagen-dependent aggregation and the amounts of potassium, phosphorus, iron and zinc; and 3. ADP-dependent aggregation and the amounts of potassium, phosphorus and zinc. The negative associations between ADP-dependent platelet reactivity and the amount of potassium, phosphorus and zinc and between collagen-dependent aggregability and the amount of phosphorus were also noted after adjusting for a bunch of cardiovascular risk factors. Overall, in older subjects, the intake of minerals with diet is negatively related to blood platelet reactivity, especially in response to ADP. Diet fortification with some minerals may possibly reduce the thrombotic risk among elderly patients.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215 Lodz, Poland; (J.K.); (C.W.)
| | - Agnieszka Guligowska
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland; (A.G.); (B.K.S.); (T.K.)
| | - Bartłomiej K. Sołtysik
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland; (A.G.); (B.K.S.); (T.K.)
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215 Lodz, Poland; (J.K.); (C.W.)
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland; (A.G.); (B.K.S.); (T.K.)
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215 Lodz, Poland; (J.K.); (C.W.)
| |
Collapse
|
2
|
D'Agostino I, Tacconelli S, Bruno A, Contursi A, Mucci L, Hu X, Xie Y, Chakraborty R, Jain K, Sacco A, Zucchelli M, Landolfi R, Dovizio M, Falcone L, Ballerini P, Hwa J, Patrignani P. Low-dose Aspirin prevents hypertension and cardiac fibrosis when thromboxane A 2 is unrestrained. Pharmacol Res 2021; 170:105744. [PMID: 34182131 DOI: 10.1016/j.phrs.2021.105744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Enhanced platelet activation has been reported in patients with essential hypertension and heart failure. The possible contribution of platelet-derived thromboxane (TX)A2 in their pathophysiology remains unclear. We investigated the systemic TXA2 biosynthesis in vivo and gene expression of its receptor TP in 22 essential hypertension patients and a mouse model of salt-sensitive hypertension. The contribution of platelet TXA2 biosynthesis on enhanced blood pressure (BP) and overload-induced cardiac fibrosis was explored in mice by treating with low-dose Aspirin, resulting in selective inhibition of platelet cyclooxygenase (COX)-1-dependent TXA2 generation. In essential hypertensive patients, systemic biosynthesis of TXA2 [assessed by measuring its urinary metabolites (TXM) reflecting predominant platelet source] was enhanced together with higher gene expression of circulating leukocyte TP and TGF-β, vs. normotensive controls. Similarly, in hypertensive mice with prostacyclin (PGI2) receptor (IP) deletion (IPKO) fed with a high-salt diet, enhanced urinary TXM, and left ventricular TP overexpression were detected vs. normotensive wildtype (WT) mice. Increased cardiac collagen deposition and profibrotic gene expression (including TGF-β) was found. Low-dose Aspirin administration caused a selective inhibition of platelet TXA2 biosynthesis and mitigated enhanced blood pressure, cardiac fibrosis, and left ventricular profibrotic gene expression in IPKO but not WT mice. Moreover, the number of myofibroblasts and extravasated platelets in the heart was reduced. In cocultures of human platelets and myofibroblasts, platelet TXA2 induced profibrotic gene expression, including TGF-β1. In conclusion, our results support tailoring low-dose Aspirin treatment in hypertensive patients with unconstrained TXA2/TP pathway to reduce blood pressure and prevent early cardiac fibrosis.
Collapse
MESH Headings
- Adult
- Animals
- Antifibrotic Agents/pharmacology
- Antihypertensive Agents/pharmacology
- Aspirin/pharmacology
- Biomarkers/blood
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Blood Pressure/drug effects
- Cardiomyopathies/blood
- Cardiomyopathies/etiology
- Cardiomyopathies/pathology
- Cardiomyopathies/prevention & control
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Essential Hypertension/blood
- Essential Hypertension/complications
- Essential Hypertension/drug therapy
- Essential Hypertension/physiopathology
- Female
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myofibroblasts/drug effects
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Platelet Aggregation Inhibitors/pharmacology
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Receptors, Thromboxane/metabolism
- Thromboxane A2/blood
- Mice
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Luciana Mucci
- CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy; Department of Medical Science, Catholic University, Rome, Italy
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yi Xie
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Angela Sacco
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Mirco Zucchelli
- CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | | | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Lorenza Falcone
- CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - Patrizia Ballerini
- CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, School of Medicine, Chieti, Italy
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, School of Medicine, Chieti, Italy; CAST (Center for Advanced Studies and Technology), "G. d'Annunzio" University, School of Medicine, Chieti, Italy.
| |
Collapse
|
3
|
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020; 12:CD004022. [PMID: 33314019 PMCID: PMC8094404 DOI: 10.1002/14651858.cd004022.pub5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent cohort studies show that salt intake below 6 g is associated with increased mortality. These findings have not changed public recommendations to lower salt intake below 6 g, which are based on assumed blood pressure (BP) effects and no side-effects. OBJECTIVES To assess the effects of sodium reduction on BP, and on potential side-effects (hormones and lipids) SEARCH METHODS: The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to April 2018 and a top-up search in March 2020: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. The searches had no language restrictions. The top-up search articles are recorded under "awaiting assessment." SELECTION CRITERIA Studies randomizing persons to low-sodium and high-sodium diets were included if they evaluated at least one of the outcome parameters (BP, renin, aldosterone, noradrenalin, adrenalin, cholesterol, high-density lipoprotein, low-density lipoprotein and triglyceride,. DATA COLLECTION AND ANALYSIS Two review authors independently collected data, which were analysed with Review Manager 5.3. Certainty of evidence was assessed using GRADE. MAIN RESULTS Since the first review in 2003 the number of included references has increased from 96 to 195 (174 were in white participants). As a previous study found different BP outcomes in black and white study populations, we stratified the BP outcomes by race. The effect of sodium reduction (from 203 to 65 mmol/day) on BP in white participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.14 mmHg (95% confidence interval (CI): -1.65 to -0.63), 5982 participants, 95 trials; DBP: MD + 0.01 mmHg (95% CI: -0.37 to 0.39), 6276 participants, 96 trials. Hypertension: SBP: MD -5.71 mmHg (95% CI: -6.67 to -4.74), 3998 participants,88 trials; DBP: MD -2.87 mmHg (95% CI: -3.41 to -2.32), 4032 participants, 89 trials (all high-quality evidence). The largest bias contrast across studies was recorded for the detection bias element. A comparison of detection bias low-risk studies versus high/unclear risk studies showed no differences. The effect of sodium reduction (from 195 to 66 mmol/day) on BP in black participants was as follows: Normal blood pressure: SBP: mean difference (MD) -4.02 mmHg (95% CI:-7.37 to -0.68); DBP: MD -2.01 mmHg (95% CI:-4.37, 0.35), 253 participants, 7 trials. Hypertension: SBP: MD -6.64 mmHg (95% CI:-9.00, -4.27); DBP: MD -2.91 mmHg (95% CI:-4.52, -1.30), 398 participants, 8 trials (low-quality evidence). The effect of sodium reduction (from 217 to 103 mmol/day) on BP in Asian participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.50 mmHg (95% CI: -3.09, 0.10); DBP: MD -1.06 mmHg (95% CI:-2.53 to 0.41), 950 participants, 5 trials. Hypertension: SBP: MD -7.75 mmHg (95% CI:-11.44, -4.07); DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15), 254 participants, 8 trials (moderate-low-quality evidence). During sodium reduction renin increased 1.56 ng/mL/hour (95%CI:1.39, 1.73) in 2904 participants (82 trials); aldosterone increased 104 pg/mL (95%CI:88.4,119.7) in 2506 participants (66 trials); noradrenalin increased 62.3 pg/mL: (95%CI: 41.9, 82.8) in 878 participants (35 trials); adrenalin increased 7.55 pg/mL (95%CI: 0.85, 14.26) in 331 participants (15 trials); cholesterol increased 5.19 mg/dL (95%CI:2.1, 8.3) in 917 participants (27 trials); triglyceride increased 7.10 mg/dL (95%CI: 3.1,11.1) in 712 participants (20 trials); LDL tended to increase 2.46 mg/dl (95%CI: -1, 5.9) in 696 participants (18 trials); HDL was unchanged -0.3 mg/dl (95%CI: -1.66,1.05) in 738 participants (20 trials) (All high-quality evidence except the evidence for adrenalin). AUTHORS' CONCLUSIONS In white participants, sodium reduction in accordance with the public recommendations resulted in mean arterial pressure (MAP) decrease of about 0.4 mmHg in participants with normal blood pressure and a MAP decrease of about 4 mmHg in participants with hypertension. Weak evidence indicated that these effects may be a little greater in black and Asian participants. The effects of sodium reduction on potential side effects (hormones and lipids) were more consistent than the effect on BP, especially in people with normal BP.
Collapse
Affiliation(s)
- Niels Albert Graudal
- Department of Rheumatology VRR4242, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Gesche Jurgens
- Clinical Pharmacology Unit, Roskilde Hospital, Roskilde, Denmark
| |
Collapse
|
4
|
Huang L, Trieu K, Yoshimura S, Neal B, Woodward M, Campbell NRC, Li Q, Lackland DT, Leung AA, Anderson CAM, MacGregor GA, He FJ. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 2020; 368:m315. [PMID: 32094151 PMCID: PMC7190039 DOI: 10.1136/bmj.m315] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To examine the dose-response relation between reduction in dietary sodium and blood pressure change and to explore the impact of intervention duration. DESIGN Systematic review and meta-analysis following PRISMA guidelines. DATA SOURCES Ovid MEDLINE(R), EMBASE, and Cochrane Central Register of Controlled Trials (Wiley) and reference lists of relevant articles up to 21 January 2019. INCLUSION CRITERIA Randomised trials comparing different levels of sodium intake undertaken among adult populations with estimates of intake made using 24 hour urinary sodium excretion. DATA EXTRACTION AND ANALYSIS Two of three reviewers screened the records independently for eligibility. One reviewer extracted all data and the other two reviewed the data for accuracy. Reviewers performed random effects meta-analyses, subgroup analyses, and meta-regression. RESULTS 133 studies with 12 197 participants were included. The mean reductions (reduced sodium v usual sodium) of 24 hour urinary sodium, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were 130 mmol (95% confidence interval 115 to 145, P<0.001), 4.26 mm Hg (3.62 to 4.89, P<0.001), and 2.07 mm Hg (1.67 to 2.48, P<0.001), respectively. Each 50 mmol reduction in 24 hour sodium excretion was associated with a 1.10 mm Hg (0.66 to 1.54; P<0.001) reduction in SBP and a 0.33 mm Hg (0.04 to 0.63; P=0.03) reduction in DBP. Reductions in blood pressure were observed in diverse population subsets examined, including hypertensive and non-hypertensive individuals. For the same reduction in 24 hour urinary sodium there was greater SBP reduction in older people, non-white populations, and those with higher baseline SBP levels. In trials of less than 15 days' duration, each 50 mmol reduction in 24 hour urinary sodium excretion was associated with a 1.05 mm Hg (0.40 to 1.70; P=0.002) SBP fall, less than half the effect observed in studies of longer duration (2.13 mm Hg; 0.85 to 3.40; P=0.002). Otherwise, there was no association between trial duration and SBP reduction. CONCLUSIONS The magnitude of blood pressure lowering achieved with sodium reduction showed a dose-response relation and was greater for older populations, non-white populations, and those with higher blood pressure. Short term studies underestimate the effect of sodium reduction on blood pressure. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019140812.
Collapse
Affiliation(s)
- Liping Huang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kathy Trieu
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sohei Yoshimura
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Bruce Neal
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Mark Woodward
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Norm R C Campbell
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Qiang Li
- The George Institute for Global Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Alexander A Leung
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | | | - Graham A MacGregor
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Feng J He
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
5
|
Graudal NA, Hubeck‐Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2017; 4:CD004022. [PMID: 28391629 PMCID: PMC6478144 DOI: 10.1002/14651858.cd004022.pub4] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In spite of more than 100 years of investigations the question of whether a reduced sodium intake improves health is still unsolved. OBJECTIVES To estimate the effects of low sodium intake versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to March 2016: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also searched the reference lists of relevant articles. SELECTION CRITERIA Studies randomising persons to low-sodium and high-sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two review authors independently collected data, which were analysed with Review Manager 5.3. MAIN RESULTS A total of 185 studies were included. The average sodium intake was reduced from 201 mmol/day (corresponding to high usual level) to 66 mmol/day (corresponding to the recommended level).The effect of sodium reduction on blood pressure (BP) was as follows: white people with normotension: SBP: mean difference (MD) -1.09 mmHg (95% confidence interval (CI): -1.63 to -0.56; P = 0.0001); 89 studies, 8569 participants; DBP: + 0.03 mmHg (MD 95% CI: -0.37 to 0.43; P = 0.89); 90 studies, 8833 participants. High-quality evidence. Black people with normotension: SBP: MD -4.02 mmHg (95% CI:-7.37 to -0.68; P = 0.002); seven studies, 506 participants; DBP: MD -2.01 mmHg (95% CI:-4.37 to 0.35; P = 0.09); seven studies, 506 participants. Moderate-quality evidence. Asian people with normotension: SBP: MD -0.72 mmHg (95% CI: -3.86 to 2.41; P = 0.65); DBP: MD -1.63 mmHg (95% CI:-3.35 to 0.08; P =0.06); three studies, 393 participants. Moderate-quality evidence.White people with hypertension: SBP: MD -5.51 mmHg (95% CI: -6.45 to -4.57; P < 0.00001); 84 studies, 5925 participants; DBP: MD -2.88 mmHg (95% CI: -3.44 to -2.32; P < 0.00001); 85 studies, 6001 participants. High-quality evidence. Black people with hypertension: SBP MD -6.64 mmHg (95% CI:-9.00 to -4.27; P = 0.00001); eight studies, 619 participants; DBP -2.91 mmHg (95% CI:-4.52, -1.30; P = 0.0004); eight studies, 619 participants. Moderate-quality evidence. Asian people with hypertension: SBP: MD -7.75 mmHg (95% CI:-11,44 to -4.07; P < 0.0001) nine studies, 501 participants; DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15; P = 0.0006). Moderate-quality evidence.In plasma or serum, there was a significant increase in renin (P < 0.00001), aldosterone (P < 0.00001), noradrenaline (P < 0.00001), adrenaline (P < 0.03), cholesterol (P < 0.0005) and triglyceride (P < 0.0006) with low sodium intake as compared with high sodium intake. All effects were stable in 125 study populations with a sodium intake below 250 mmol/day and a sodium reduction intervention of at least one week. AUTHORS' CONCLUSIONS Sodium reduction from an average high usual sodium intake level (201 mmol/day) to an average level of 66 mmol/day, which is below the recommended upper level of 100 mmol/day (5.8 g salt), resulted in a decrease in SBP/DBP of 1/0 mmHg in white participants with normotension and a decrease in SBP/DBP of 5.5/2.9 mmHg in white participants with hypertension. A few studies showed that these effects in black and Asian populations were greater. The effects on hormones and lipids were similar in people with normotension and hypertension. Renin increased 1.60 ng/mL/hour (55%); aldosterone increased 97.81 pg/mL (127%); adrenalin increased 7.55 pg/mL (14%); noradrenalin increased 63.56 pg/mL: (27%); cholesterol increased 5.59 mg/dL (2.9%); triglyceride increased 7.04 mg/dL (6.3%).
Collapse
Affiliation(s)
- Niels Albert Graudal
- Copenhagen University Hospital RigshospitaletDepartment of Rheumatology VRR4242Blegdamsvej 9CopenhagenDenmarkDK‐2100 Ø
| | | | - Gesche Jurgens
- Roskilde HospitalClinical Pharmacology UnitRoskildeDenmark
| | | |
Collapse
|
6
|
Rhee OJ, Rhee MY, Oh SW, Shin SJ, Gu N, Nah DY, Kim SW, Lee JH. Effect of sodium intake on renin level: Analysis of general population and meta-analysis of randomized controlled trials. Int J Cardiol 2016; 215:120-6. [PMID: 27111173 DOI: 10.1016/j.ijcard.2016.04.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND We evaluated the association between sodium intake and plasma renin levels in the cross sectional study and meta-analysis of randomized controlled trials, whether there is a persistent elevation of plasma renin by longer-term sodium intake restriction. METHODS Plasma renin activity (PRA) and 24-h urine sodium (24HUNa) excretion were measured from individuals randomly selected from a community. Simple and multiple linear regression analyses adjusted for age, 24-h systolic blood pressure, 24-h average heart rate, fasting blood glucose and gender were performed. For meta-analysis, 74 studies published from 1975 to mid-2014 were identified in a systematic literature search using EMBASE, CINAHL, and MEDLINE. Random effects meta-analyses and a meta-regression analysis were performed. RESULTS Among the 496 participants recruited, 210 normotensive and 87 untreated hypertensive subjects were included in the analysis. There was no significant association between PRA and 24HUNa in the total population, or hypertensive and normotensive individuals. In the meta-analysis, the standard mean difference (SMD) of renin level by sodium intake reduction was 1.26 (95% CI: 1.08 to 1.44, Z=12.80, P<0.001, I(2)=87%). In the meta-regression analysis, an increase in a day of intervention was associated with a fall in SMD by -0.04 (95% CI: -0.05 to -0.02, Z=-5.27, P<0.001, I(2)=86%), indicating that longer duration of reduced sodium intake would lead to lesser SMD of renin level. CONCLUSIONS The present population based cross-sectional study and meta-analysis suggests that prolonged reduction in sodium intake is very unlikely associated with elevation of plasma renin levels.
Collapse
Affiliation(s)
- O J Rhee
- Department of Social Welfare, Soongsil University, Seoul, Republic of Korea
| | - M Y Rhee
- Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| | - S W Oh
- Department of Family Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - S J Shin
- Division of Nephrology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - N Gu
- Department of Clinical Pharmacology and Therapeutics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - D Y Nah
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - S W Kim
- Department of Statistics, Survey and Health Policy Research Center, Dongguk University, Seoul, Republic of Korea
| | - J H Lee
- Department of Thoracic and Cardiovascular Surgery, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
7
|
Arcand J, Wong MMY, Trieu K, Leung AA, Campbell NRC, Webster J, Johnson C, Raj TS, McLean R, Neal B. The Science of Salt: A Regularly Updated Systematic Review of Salt and Health Outcomes (June and July 2015). J Clin Hypertens (Greenwich) 2015; 18:371-7. [DOI: 10.1111/jch.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- JoAnne Arcand
- Faculty of Health Sciences; University of Ontario Institute of Technology; Oshawa ON Canada
| | | | - Kathy Trieu
- The George Institute for Global Health; University of Sydney; Sydney NSW Australia
| | | | - Norm R. C. Campbell
- Department of Medicine, Physiology and Pharmacology and Community Health Sciences; O'Brien Institute for Public Health and Libin Cardiovascular Institute of Alberta; University of Calgary; Calgary AB Canada
| | - Jacqui Webster
- The George Institute for Global Health; University of Sydney; Sydney NSW Australia
| | - Claire Johnson
- The George Institute for Global Health; University of Sydney; Sydney NSW Australia
| | | | - Rachael McLean
- Departments of Preventive & Social Medicine/Human Nutrition; University of Otago; Dunedin New Zealand
| | - Bruce Neal
- The George Institute for Global Health; University of Sydney and the Royal Prince Alfred Hospital; Sydney NSW Australia
| |
Collapse
|
8
|
Graudal N, Hubeck-Graudal T, Jürgens G, McCarron DA. The significance of duration and amount of sodium reduction intervention in normotensive and hypertensive individuals: a meta-analysis. Adv Nutr 2015; 6:169-77. [PMID: 25770255 PMCID: PMC4352175 DOI: 10.3945/an.114.007708] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of this meta-analysis was to establish the time for achievement of maximal blood pressure (BP) efficacy of a sodium reduction (SR) intervention and the relation between the amount of SR and the BP response in individuals with hypertension and normal BP. Relevant studies were retrieved from a pool of 167 randomized controlled trials (RCTs) published in the period 1973-2010 and integrated in meta-analyses. Fifteen relevant RCTs were included in the maximal efficacy analysis. After initiation of sodium reduction (range: 55-118 mmol/d), there were no significant differences in systolic blood pressure (SBP) or diastolic blood pressure (DBP) between measurements at weeks 1 and 2 (∆SBP: -0.18 mmHg/∆DBP: 0.12 mmHg), weeks 1 and 4 (∆SBP: -0.50 mmHg/∆DBP: 0.35 mmHg), weeks 2 and 4 (∆SBP: -0.20 mmHg/∆DBP: -0.10 mmHg), weeks 2 and 6 (∆SBP: -0.50 mmHg/∆DBP: -0.42 mmHg), and weeks 4 and 6 (∆SBP: 0.39 mmHg/∆DBP: -0.22 mmHg). Eight relevant RCTs were included in the dose-response analysis, which showed that within the established usual range of sodium intake [<248 mmol/d (5700 mg/d)], there was no relation between the amount of SR (range: 136-188 mmol) and BP outcome in normotensive populations [∆SBP: 0.99 mm Hg (95% CI: -2.12, 4.10 mm Hg), [corrected] P = 0.53; ∆DBP: -0.49 mm Hg (95% CI: -4.0, 3.03), P = 0.79]. In contrast, prehypertensive and hypertensive populations showed a significant dose-response relation (range of sodium reduction: 77-140 mmol/d) [∆SBP: 6.87 mmHg (95% CI: 5.61, 8.12, P < 0.00001); ∆DBP: 3.61 mmHg (95% CI: 2.83, 4.39, P < 0.00001)]. Consequently, the importance of kinetic and dynamic properties of sodium reduction, as well as baseline BP, should probably be considered when establishing a policy of sodium reduction.
Collapse
Affiliation(s)
- Niels Graudal
- Department of Infectious Diseases and Rheumatology 4242, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;
| | | | - Gesche Jürgens
- Department of Clinical Pharmacology, Bispebjerg University Hospital, Copenhagen, Denmark; and
| | - David A McCarron
- Department of Nutrition, University of California–Davis, Davis, CA
| |
Collapse
|
9
|
Abstract
BACKGROUND A reduction in salt intake lowers blood pressure (BP) and, thereby, reduces cardiovascular risk. A recent meta-analysis by Graudal implied that salt reduction had adverse effects on hormones and lipids which might mitigate any benefit that occurs with BP reduction. However, Graudal's meta-analysis included a large number of very short-term trials with a large change in salt intake, and such studies are irrelevant to the public health recommendations for a longer-term modest reduction in salt intake. We have updated our Cochrane meta-analysis. OBJECTIVES To assess (1) the effect of a longer-term modest reduction in salt intake (i.e. of public health relevance) on BP and whether there was a dose-response relationship; (2) the effect on BP by sex and ethnic group; (3) the effect on plasma renin activity, aldosterone, noradrenaline, adrenaline, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglycerides. SEARCH METHODS We searched MEDLINE, EMBASE, Cochrane Hypertension Group Specialised Register, Cochrane Central Register of Controlled Trials, and reference list of relevant articles. SELECTION CRITERIA We included randomised trials with a modest reduction in salt intake and duration of at least 4 weeks. DATA COLLECTION AND ANALYSIS Data were extracted independently by two reviewers. Random effects meta-analyses, subgroup analyses and meta-regression were performed. MAIN RESULTS Thirty-four trials (3230 participants) were included. Meta-analysis showed that the mean change in urinary sodium (reduced salt vs usual salt) was -75 mmol/24-h (equivalent to a reduction of 4.4 g/d salt), the mean change in BP was -4.18 mmHg (95% CI: -5.18 to -3.18, I (2)=75%) for systolic and -2.06 mmHg (95% CI: -2.67 to -1.45, I (2)=68%) for diastolic BP. Meta-regression showed that age, ethnic group, BP status (hypertensive or normotensive) and the change in 24-h urinary sodium were all significantly associated with the fall in systolic BP, explaining 68% of the variance between studies. A 100 mmol reduction in 24 hour urinary sodium (6 g/day salt) was associated with a fall in systolic BP of 5.8 mmHg (95%CI: 2.5 to 9.2, P=0.001) after adjusting for age, ethnic group and BP status. For diastolic BP, age, ethnic group, BP status and the change in 24-h urinary sodium explained 41% of the variance between studies. Meta-analysis by subgroup showed that, in hypertensives, the mean effect was -5.39 mmHg (95% CI: -6.62 to -4.15, I (2)=61%) for systolic and -2.82 mmHg (95% CI: -3.54 to -2.11, I (2)=52%) for diastolic BP. In normotensives, the mean effect was -2.42 mmHg (95% CI: -3.56 to -1.29, I (2)=66%) for systolic and -1.00 mmHg (95% CI: -1.85 to -0.15, I (2)=66%) for diastolic BP. Further subgroup analysis showed that the decrease in systolic BP was significant in both whites and blacks, men and women. Meta-analysis of hormone and lipid data showed that the mean effect was 0.26 ng/ml/hr (95% CI: 0.17 to 0.36, I (2)=70%) for plasma renin activity, 73.20 pmol/l (95% CI: 44.92 to 101.48, I (2)=62%) for aldosterone, 31.67 pg/ml (95% CI: 6.57 to 56.77, I (2)=5%) for noradrenaline, 6.70 pg/ml (95% CI: -0.25 to 13.64, I (2)=12%) for adrenaline, 0.05 mmol/l (95% CI: -0.02 to 0.11, I (2)=0%) for cholesterol, 0.05 mmol/l (95% CI: -0.01 to 0.12, I (2)=0%) for LDL, -0.02 mmol/l (95% CI: -0.06 to 0.01, I (2)=16%) for HDL, and 0.04 mmol/l (95% CI: -0.02 to 0.09, I (2)=0%) for triglycerides. AUTHORS' CONCLUSIONS A modest reduction in salt intake for 4 or more weeks causes significant and, from a population viewpoint, important falls in BP in both hypertensive and normotensive individuals, irrespective of sex and ethnic group. With salt reduction, there is a small physiological increase in plasma renin activity, aldosterone and noradrenaline. There is no significant change in lipid levels. These results provide further strong support for a reduction in population salt intake. This will likely lower population BP and, thereby, reduce cardiovascular disease. Additionally, our analysis demonstrates a significant association between the reduction in 24-h urinary sodium and the fall in systolic BP, indicating the greater the reduction in salt intake, the greater the fall in systolic BP. The current recommendations to reduce salt intake from 9-12 to 5-6 g/d will have a major effect on BP, but are not ideal. A further reduction to 3 g/d will have a greater effect and should become the long term target for population salt intake.
Collapse
Affiliation(s)
- Feng J He
- Wolfson Institute of PreventiveMedicine, Barts and The London School of Medicine & Dentistry, QueenMary University of London, London, UK.
| | | | | |
Collapse
|
10
|
Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens 2012; 25:1-15. [PMID: 22068710 DOI: 10.1038/ajh.2011.210] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The question of whether reduced sodium intake is effective as a health prophylaxis initiative is unsolved. The purpose was to estimate the effects of low-sodium vs. high-sodium intake on blood pressure (BP), renin, aldosterone, catecholamines, and lipids. METHODS Studies randomizing persons to low-sodium and high-sodium diets evaluating at least one of the above outcome parameters were included. Data were analyzed with Review Manager 5.1. RESULTS A total of 167 studies were included. The effect of sodium reduction in: (i) Normotensives: Caucasians: systolic BP (SBP) -1.27 mm Hg (95% confidence interval (CI): -1.88, -0.66; P = 0.0001), diastolic BP (DBP) -0.05 mm Hg (95% CI: -0.51, 0.42; P = 0.85). Blacks: SBP -4.02 mm Hg (95% CI: -7.37, -0.68; P = 0.002), DBP -2.01 mm Hg (95% CI: -4.37, 0.35; P = 0.09). Asians: SBP -1.27 mm Hg (95% CI: -3.07, 0.54; P = 0.17), DBP -1.68 mm Hg (95% CI: -3.29, -0.06; P = 0.04). (ii) Hypertensives: Caucasians: SBP -5.48 mm Hg (95% CI: -6.53, -4.43; P < 0.00001), DBP -2.75 mm Hg (95% CI: -3.34, -2.17; P < 0.00001). Blacks: SBP -6.44 mm Hg (95% CI: -8.85, -4.03; P = 0.00001), DBP -2.40 mm Hg (95% CI: -4.68, -0.12; P = 0.04). Asians: SBP -10.21 mm Hg (95% CI: -16.98, -3.44; P = 0.003), DBP -2.60 mm Hg (95% CI: -4.03, -1.16; P = 0.0004). Sodium reduction resulted in significant increases in renin (P < 0.00001), aldosterone (P < 0.00001), noradrenaline (P < 0.00001), adrenaline (P < 0.0002), cholesterol (P < 0.001), and triglyceride (P < 0.0008). CONCLUSIONS Sodium reduction resulted in a significant decrease in BP of 1% (normotensives), 3.5% (hypertensives), and a significant increase in plasma renin, plasma aldosterone, plasma adrenaline, and plasma noradrenaline, a 2.5% increase in cholesterol, and a 7% increase in triglyceride.
Collapse
|
11
|
Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2011:CD004022. [PMID: 22071811 DOI: 10.1002/14651858.cd004022.pub3] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In spite of more than 100 years of investigations the question of reduced sodium intake as a health prophylaxis initiative is still unsolved. OBJECTIVES To estimate the effects of low sodium versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides. SEARCH METHODS PUBMED, EMBASE and Cochrane Central and reference lists of relevant articles were searched from 1950 to July 2011. SELECTION CRITERIA Studies randomizing persons to low sodium and high sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two authors independently collected data, which were analysed with Review Manager 5.1. MAIN RESULTS A total of 167 studies were included in this 2011 update.The effect of sodium reduction in normotensive Caucasians was SBP -1.27 mmHg (95% CI: -1.88, -0.66; p=0.0001), DBP -0.05 mmHg (95% CI: -0.51, 0.42; p=0.85). The effect of sodium reduction in normotensive Blacks was SBP -4.02 mmHg (95% CI:-7.37, -0.68; p=0.002), DBP -2.01 mmHg (95% CI:-4.37, 0.35; p=0.09). The effect of sodium reduction in normotensive Asians was SBP -1.27 mmHg (95% CI: -3.07, 0.54; p=0.17), DBP -1.68 mmHg (95% CI:-3.29, -0.06; p=0.04). The effect of sodium reduction in hypertensive Caucasians was SBP -5.48 mmHg (95% CI: -6.53, -4.43; p<0.00001), DBP -2.75 mmHg (95% CI: -3.34, -2.17; p<0.00001). The effect of sodium reduction in hypertensive Blacks was SBP -6.44 mmHg (95% CI:-8.85, -4.03; p=0.00001), DBP -2.40 mmHg (95% CI:-4.68, -0.12; p=0.04). The effect of sodium reduction in hypertensive Asians was SBP -10.21 mmHg (95% CI:-16.98, -3.44; p=0.003), DBP -2.60 mmHg (95% CI: -4.03, -1.16; p=0.0004).In plasma or serum there was a significant increase in renin (p<0.00001), aldosterone (p<0.00001), noradrenaline (p<0.00001), adrenaline (p<0.0002), cholesterol (p<0.001) and triglyceride (p<0.0008) with low sodium intake as compared with high sodium intake. In general the results were similar in studies with a duration of at least 2 weeks. AUTHORS' CONCLUSIONS Sodium reduction resulted in a 1% decrease in blood pressure in normotensives, a 3.5% decrease in hypertensives, a significant increase in plasma renin, plasma aldosterone, plasma adrenaline and plasma noradrenaline, a 2.5% increase in cholesterol, and a 7% increase in triglyceride. In general, these effects were stable in studies lasting for 2 weeks or more.
Collapse
Affiliation(s)
- Niels Albert Graudal
- Department of Rheumatology TA4242/Internal Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Abstract
The kidney plays a central role in our ability to maintain an appropriate sodium balance, which is critical for the determination of blood pressure. The kidney's capacity for salt conservation may not be widely appreciated, and in general we consume vastly more salt than we need. Here we consider the socioeconomics of salt consumption, outline current knowledge of renal salt handling at the molecular level, describe some of the disease entities associated with abnormal sodium handling, give an overview of some of the animal models and their relevance to human disease, and examine the evidence that lowering our salt intake can help combat hypertension and cardiovascular disease.
Collapse
|
13
|
Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 2005; 85:679-715. [PMID: 15788708 DOI: 10.1152/physrev.00056.2003] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epidemiological, migration, intervention, and genetic studies in humans and animals provide very strong evidence of a causal link between high salt intake and high blood pressure. The mechanisms by which dietary salt increases arterial pressure are not fully understood, but they seem related to the inability of the kidneys to excrete large amounts of salt. From an evolutionary viewpoint, the human species is adapted to ingest and excrete <1 g of salt per day, at least 10 times less than the average values currently observed in industrialized and urbanized countries. Independent of the rise in blood pressure, dietary salt also increases cardiac left ventricular mass, arterial thickness and stiffness, the incidence of strokes, and the severity of cardiac failure. Thus chronic exposure to a high-salt diet appears to be a major factor involved in the frequent occurrence of hypertension and cardiovascular diseases in human populations.
Collapse
Affiliation(s)
- Pierre Meneton
- Institut National de la Santé et de la Recherche Médicale U367, Département de Santé Publique et d'Informatique Médicale, Faculté de Médecine Broussais Hôtel Dieu, Paris, France.
| | | | | | | |
Collapse
|
14
|
Strazzullo P, Scalfi L, Branca F, Cairella G, Garbagnati F, Siani A, Barba G, Rubba P, Mancia G. Nutrition and prevention of ischemic stroke: present knowledge, limitations and future perspectives. Nutr Metab Cardiovasc Dis 2004; 14:97-114. [PMID: 15242243 DOI: 10.1016/s0939-4753(04)80017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stroke, particularly ischemic stroke, has a major impact on public health due to its high incidence, prevalence and rate of subsequent disability in Italy as in most industrialised countries. Apart from age, many modifiable factors, such as hypertension, smoking, diabetes, dyslipidemia, obesity, physical inactivity, alcohol abuse and hyperhomocysteinemia, have been recognised as playing a role in the pathogenesis of this disease. While appropriate pharmacological therapy has proven effective in the prevention of stroke in particular categories of patients, most of the above mentioned predisposing conditions are amenable to be affected by nutrition. Unequivocal demonstration of a protective or adverse role of single foods and nutrients against the risk of stroke has been however difficult to achieve due to confounding by biological variability, methodological inadequacies in the assessment of individual nutritional habits and difficulty to carry out long-term randomised controlled trials in the nutritional area. Notwithstanding, in several cases, causal relationships could be inferred from case-control and cohort studies in the presence of plausible and reproducible associations, evidence of dose-dependent effects and consistency in the results of different studies. The aim of this paper was to review present knowledge and highlight limitations and future perspectives about the role of nutrition in the prevention of ischemic stroke.
Collapse
Affiliation(s)
- P Strazzullo
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jürgens G, Graudal NA. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride. Cochrane Database Syst Rev 2004:CD004022. [PMID: 14974053 DOI: 10.1002/14651858.cd004022.pub2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND One of the controversies in preventive medicine is, whether a general reduction in sodium intake can decrease the blood pressure of a population and thereby reduce cardiovascular mortality and morbidity. In recent years the debate has been extended by studies indicating that reducing sodium intake has effects on the hormone and lipid profile. OBJECTIVES To estimate the effects of low sodium versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol and triglycerides. SEARCH STRATEGY "MEDLINE" and reference lists of relevant articles were searched from 1966 through December 2001. SELECTION CRITERIA Studies randomising persons to low sodium and high sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two authors independently extracted the data, which were analysed by means of Review Manager 4.1. MAIN RESULTS In 57 trials of mainly Caucasians with normal blood pressure, low sodium intake reduced SBP by -1.27 mm Hg (CI: -1.76; -0.77)(p<0.0001) and DBP by -0.54 mm Hg (CI: -0.94; -0.14) (p = 0.009) as compared to high sodium intake. In 58 trials of mainly Caucasians with elevated blood pressure, low sodium intake reduced SBP by -4.18 mm Hg (CI: -5.08; - 3.27) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -2.46; -1.32) (p < 0.0001) as compared to high sodium intake. The median duration of the intervention was 8 days in the normal blood pressure trials (range 4-1100) and 28 days in the elevated blood pressure trials (range 4-365). Multiple regression analyses showed no independent effect of duration on the effect size. In 8 trials of blacks with normal or elevated blood pressure, low sodium intake reduced SBP by -6.44 mm Hg (CI: -9.13; -3.74) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -4.75; 0.78) (p = 0.16) as compared to high sodium intake. The magnitude of blood pressure reduction was also greater in a single trial in Japanese patients. There was also a significant increase in plasma or serum renin, 304% (p < 0.0001), aldosterone, 322%, (p < 0.0001), noradrenaline, 30% (p < 0.0001), cholesterol, 5.4% (p < 0.0001) and LDL cholesterol, 4.6% (p < 0.004), and a borderline increase in adrenaline, 12% (p = 0.04) and triglyceride, 5.9% (p = 0.03) with low sodium intake as compared with high sodium intake. REVIEWER'S CONCLUSIONS The magnitude of the effect in Caucasians with normal blood pressure does not warrant a general recommendation to reduce sodium intake. Reduced sodium intake in Caucasians with elevated blood pressure has a useful effect to reduce blood pressure in the short-term. The results suggest that the effect of low versus high sodium intake on blood pressure was greater in Black and Asian patients than in Caucasians. However, the number of studies in black (8) and Asian patients (1) was insufficient for different recommendations. Additional long-term trials of the effect of reduced dietary sodium intake on blood pressure, metabolic variables, morbidity and mortality are required to establish whether this is a useful prophylactic or treatment strategy.
Collapse
|
16
|
Abstract
BACKGROUND Many randomised trials assessing the effect of salt reduction on blood pressure show reduction in blood pressure in individuals with high blood pressure. However, there is controversy about the magnitude and the clinical significance of the fall in blood pressure in individuals with normal blood pressure. Several meta-analyses of randomised salt reduction trials have been published in the last few years. However, most of these included trials of very short duration (e.g. 5 days) and included trials with salt loading followed by salt deprivation (e.g. from 20 to 1 g/day) over only a few days. These short-term experiments are not appropriate to inform public health policy which is for a modest reduction in salt intake over a prolonged period of time. A meta-analysis by Hooper et al is an important attempt to look at whether advice to achieve a long-term salt reduction (i.e. more than 6 months) in randomised trials causes a fall in blood pressure. However, most trials included in this meta-analysis achieved a small reduction in salt intake; on average, salt intake was reduced by 2 g/day. It is, therefore, not surprising that this analysis showed a small fall in blood pressure, and that a dose-response to salt reduction was not demonstrable. OBJECTIVES To assess the effect of the currently recommended modest reduction in salt intake (WHO 2003; SACN 2003; Whelton 2002), on blood pressure in individuals with normal and elevated blood pressure. To assess whether the magnitude of the reduction in blood pressure is dependent on the magnitude of the reduction in salt intake. SEARCH STRATEGY We searched MEDLINE, EMBASE, Cochrane library, CINAHL, and reference list of original and review articles. SELECTION CRITERIA We included randomised trials with a modest reduction in salt intake and a duration of 4 or more weeks. DATA COLLECTION AND ANALYSIS Data were extracted independently by two persons. Mean effect sizes were calculated using both fixed and random effect models using Review Manager 4.2.1 software. Weighted linear regression was used to examine the relationship between the change in urinary sodium and the change in blood pressure. We used funnel plots to detect publication and other biases in the meta-analysis. MAIN RESULTS Seventeen trials in individuals with elevated blood pressure (n=734) and 11 trials in individuals with normal blood pressure (n=2220) were included. In individuals with elevated blood pressure the median reduction in 24-h urinary sodium excretion was 78 mmol (4.6 g/day of salt), the mean reduction in systolic blood pressure was -4.97 mmHg (95%CI:-5.76 to -4.18), and the mean reduction in diastolic blood pressure was -2.74 mmHg (95% CI:-3.22 to -2.26). In individuals with normal blood pressure the median reduction in 24-h urinary sodium excretion was 74 mmol (4.4 g/day of salt), the mean reduction in systolic blood pressure was -2.03 mmHg (95% CI: -2.56 to -1.50) mmHg, and the mean reduction in diastolic blood pressure was -0.99 mmHg (-1.40 to -0.57). Weighted linear regression analyses showed a correlation between the reduction in urinary sodium and the reduction in blood pressure. REVIEWERS' CONCLUSIONS Our meta-analysis demonstrates that a modest reduction in salt intake for a duration of 4 or more weeks has a significant and, from a population viewpoint, important effect on blood pressure in both individuals with normal and elevated blood pressure. These results support other evidence suggesting that a modest and long-term reduction in population salt intake could reduce strokes, heart attacks, and heart failure. Furthermore, our meta-analysis demonstrates a correlation between the magnitude of salt reduction and the magnitude of blood pressure reduction. Within the daily intake range of 3 to 12 g/day, the lower the salt intake achieved, the lower the blood pressure.
Collapse
|
17
|
Jürgens G, Graudal NA. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride. Cochrane Database Syst Rev 2003:CD004022. [PMID: 12535503 DOI: 10.1002/14651858.cd004022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND One of the controversies in preventive medicine is, whether a general reduction in sodium intake can decrease the blood pressure of a population and thereby reduce cardiovascular mortality and morbidity. In recent years the debate has been extended by studies indicating that reducing sodium intake has effects on the hormone and lipid profile. OBJECTIVES To estimate the effects of low sodium versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol and triglycerides. SEARCH STRATEGY "MEDLINE" and reference lists of relevant articles were searched from 1966 through December 2001. SELECTION CRITERIA Studies randomising persons to low sodium and high sodium diets were included if they evaluated at least one of the above outcome parameters. DATA COLLECTION AND ANALYSIS Two authors independently extracted the data, which were analysed by means of Review Manager 4.1. MAIN RESULTS In 57 trials of mainly Caucasians with normal blood pressure, low sodium intake reduced SBP by -1.27 mm Hg (CI: -1.76; -0.77)(p<0.0001) and DBP by -0.54 mm Hg (CI: -0.94; -0.14) (p = 0.009) as compared to high sodium intake. In 58 trials of mainly Caucasians with elevated blood pressure, low sodium intake reduced SBP by -4.18 mm Hg (CI: -5.08; - 3.27) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -2.46; -1.32) (p < 0.0001) as compared to high sodium intake. The median duration of the intervention was 8 days in the normal blood pressure trials (range 4-1100) and 28 days in the elevated blood pressure trials (range 4-365). Multiple regression analyses showed no independent effect of duration on the effect size. In 8 trials of blacks with normal or elevated blood pressure, low sodium intake reduced SBP by -6.44 mm Hg (CI: -9.13; -3.74) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -4.75; 0.78) (p = 0.16) as compared to high sodium intake. The magnitude of blood pressure reduction was also greater in a single trial in Japanese patients. There was also a significant increase in plasma or serum renin, 304% (p < 0.0001), aldosterone, 322%, (p < 0.0001), noradrenaline, 30% (p < 0.0001), cholesterol, 5.4% (p < 0.0001) and LDL cholesterol, 4.6% (p < 0.004), and a borderline increase in adrenaline, 12% (p = 0.04) and triglyceride, 5.9% (p = 0.03) with low sodium intake as compared with high sodium intake. REVIEWER'S CONCLUSIONS The magnitude of the effect in Caucasians with normal blood pressure does not warrant a general recommendation to reduce sodium intake. Reduced sodium intake in Caucasians with elevated blood pressure has a useful effect to reduce blood pressure in the short-term. The results suggest that the effect of low versus high sodium intake on blood pressure was greater in Black and Asian patients than in Caucasians. However, the number of studies in black (8) and Asian patients (1) was insufficient for different recommendations. Additional long-term trials of the effect of reduced dietary sodium intake on blood pressure, metabolic variables, morbidity and mortality are required to establish whether this is a useful prophylactic or treatment strategy.
Collapse
Affiliation(s)
- G Jürgens
- Department of Internal Medicine and Rheumatology Q 107, Copenhagen University hospital at Herlev, Herlev Ringvej, Herlev, Copenhagen County, Denmark, 2730
| | | |
Collapse
|
18
|
|
19
|
de Wardener HE, MacGregor GA. Harmful effects of dietary salt in addition to hypertension. J Hum Hypertens 2002; 16:213-23. [PMID: 11967714 DOI: 10.1038/sj.jhh.1001374] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 11/22/2001] [Accepted: 11/22/2001] [Indexed: 11/09/2022]
Abstract
In addition to raising the blood pressure dietary salt is responsible for several other harmful effects. The most important are a number which, though independent of the arterial pressure, also harm the cardiovascular system. A high salt intake increases the mass of the left ventricle, thickens and stiffens conduit arteries and thickens and narrows resistance arteries, including the coronary and renal arteries. It also increases the number of strokes, the severity of cardiac failure and the tendency for platelets to aggregate. In renal disease, a high salt intake accelerates the rate of renal functional deterioration. Apart from its effect on the cardiovascular system dietary salt has an effect on calcium and bone metabolism, which underlies the finding that in post-menopausal women salt intake controls bone density of the upper femur and pelvis. Dietary salt controls the incidence of carcinoma of the stomach and there is some evidence which suggests that salt is associated with the severity of asthma in male asthmatic subjects.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College of Science, Technology and Medicine, Faculty of Medicine, Charing Cross Hospital, St Dunstan's Road, London W6 8RP, UK.
| | | |
Collapse
|
20
|
Clark WR, Leypoldt JK, Henderson LW, Mueller BA, Scott MK, Vonesh EF. Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J Am Soc Nephrol 1999; 10:601-9. [PMID: 10073611 DOI: 10.1681/asn.v103601] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
One potential benefit of chronic hemodialysis (HD) regimens of longer duration or greater frequency than typical three-times-weekly schedules is enhanced solute removal over a relatively wide molecular weight spectrum of uremic toxins. This study assesses the effect of variations in HD frequency (F: per week), duration (T: min per treatment), and blood/dialysate flow rates (QB/QD: ml/min) on steady-state concentration profiles of five surrogates: urea (U), creatinine (Cr), vancomycin (V), inulin (I), and beta2-microglobulin (beta2M). The regimens assessed for an anephric 70-kg patient were: A (standard): F = 3, T = 240, QB = 350, QD = 600; B (daily/short-time): F = 7, T = 100, QB = 350, QD = 600; C/D/E (low-flow/long-time): F = 3/5/7, T = 480, QB = 300, QD = 100. HD was simulated with a variable-volume double-pool model, which was solved by numerical integration (Runge-Kutta method). Endogenous generation rates (G) for U, Cr, and beta2M were 6.25, 1.0, and 0.17 mg/min, respectively; constant infusion rates for V and I of 0.2 and 0.3 mg/min, respectively, were used to simulate middle molecule (MM) G values. Intercompartment clearances of 600, 275, 125, 90, and 40 ml/min were used for U, Cr, V, I, and beta2M, respectively, For each solute/regimen combination, the equivalent renal clearance (EKR: ml/min) was calculated as a dimensionless value normalized to the regimen A EKR, which was 13.4, 10.8, 6.6, 3.7, and 4.8 ml/min for U, Cr, V, I, and beta2M, respectively. For regimens B, C, D, and E, respectively, these normalized EKR values were U: 1.04, 0.96, 1.58, and 2.22; Cr: 1.03, 1.08, 1.80, and 2.55; V: 1.06, 1.32, 2.21, and 3.12; I: 1.05, 1.54, 2.57, and 3.62; beta2M: 1.00, 1.27, 1.73, and 2.19. The extent of post-HD rebound (%) was highest for regimens A and B, ranging from 16% (urea) to 50% (inulin), and lowest for regimen E, ranging from 6% (urea) to 28% (beta2M). The following conclusions can be made: (1) Relative to a standard three-times-weekly HD regimen of approximately the same total (weekly) treatment duration, a daily/short-time regimen results in modest (3 to 6%) increases in effective small solute and MM removal. (2) Relative to a standard three-times-weekly HD regimen, a three-times-weekly low-flow/long-time regimen results in comparable effective small solute removal and progressive increases in MM and beta2M removal. A daily low-flow/long-time regimen substantially increases the effective removal of all solutes.
Collapse
Affiliation(s)
- W R Clark
- Renal Division, Baxter Healthcare Corporation, McGaw Park, Illinois 60085, USA.
| | | | | | | | | | | |
Collapse
|