1
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
2
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Liu D, Yang Y, Ai J, Li Y, Xing Y, Li J. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics. BIORESOURCE TECHNOLOGY 2021; 332:125047. [PMID: 33839509 DOI: 10.1016/j.biortech.2021.125047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Methanotrophs can oxidize methane as the sole carbon and energy, and the resulting intermediate products can be simultaneously utilized by coexistent denitrifying bacteria to remove the nitrogen, which named Aerobic Methane Oxidation Coupled to Denitrification (AME-D). In this paper, an AME-D system was built in an improved denitrification bio-filter, to analyze the nitrogen removal efficiency and mechanism. The maximum TN removal rate reached 95.05%. As shown in Raman spectroscopy, in the effluent wave crests generated by the symmetric expansion and contraction of NO3- disappeared, and the distortion of olefin CH2 and C-OH stretching of alcohols appeared. Metagenomics revealed Methylotenera and Methylobacter were the dominated methanotrophs. There was a completed methane and nitrogen metabolism pathway with the synergism of nxrAB, narGHI, nasAB, pmo-amoABC and mmo genes. Dissimilatory reduction pathway was the primary nitrate removal pathway. Moreover, Bradyrhizobium could participate in methane and nitrogen metabolism simultaneously.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yanan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Sinopec Great Wall Energy and Chemical (Guizhou) Co., LTD, Zhijin, Guizhou 552100, China
| | - Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Yi Xing
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
4
|
Abstract
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
Collapse
Affiliation(s)
- Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
5
|
Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett 2020; 367:5804726. [PMID: 32166327 DOI: 10.1093/femsle/fnaa045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic methane-oxidizing bacteria of the Alphaproteobacteria have been found to express a novel ribosomally synthesized post-translationally modified polypeptide (RiPP) termed methanobactin (MB). The primary function of MB in these microbes appears to be for copper uptake, but MB has been shown to have multiple capabilities, including oxidase, superoxide dismutase and hydrogen peroxide reductase activities, the ability to detoxify mercury species, as well as acting as an antimicrobial agent. Herein, we describe the diversity of known MBs as well as the genetics underlying MB biosynthesis. We further propose based on bioinformatics analyses that some methanotrophs may produce novel forms of MB that have yet to be characterized. We also discuss recent findings documenting that MBs play an important role in controlling copper availability to the broader microbial community, and as a result can strongly affect the activity of microbes that require copper for important enzymatic transformations, e.g. conversion of nitrous oxide to dinitrogen. Finally, we describe procedures for the detection/purification of MB, as well as potential medical and industrial applications of this intriguing RiPP.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | | | - Christina S Kang-Yun
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125
| |
Collapse
|
6
|
Methanol Production by " Methylacidiphilum fumariolicum" SolV under Different Growth Conditions. Appl Environ Microbiol 2020; 86:AEM.01188-20. [PMID: 32631865 PMCID: PMC7480378 DOI: 10.1128/aem.01188-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas. Industrial methanol production converts methane from natural gas into methanol through a multistep chemical process. Biological methane-to-methanol conversion under moderate conditions and using biogas would be more environmentally friendly. Methanotrophs, bacteria that use methane as an energy source, convert methane into methanol in a single step catalyzed by the enzyme methane monooxygenase, but inhibition of methanol dehydrogenase, which catalyzes the subsequent conversion of methanol into formaldehyde, is a major challenge. In this study, we used the thermoacidophilic methanotroph “Methylacidiphilum fumariolicum” SolV for biological methanol production. This bacterium possesses a XoxF-type methanol dehydrogenase that is dependent on rare earth elements for activity. By using a cultivation medium nearly devoid of lanthanides, we reduced methanol dehydrogenase activity and obtained a continuous methanol-producing microbial culture. The methanol production rate and conversion efficiency were growth-rate dependent. A maximal conversion efficiency of 63% mol methanol produced per mol methane consumed was obtained at a relatively high growth rate, with a methanol production rate of 0.88 mmol/g (dry weight)/h. This study demonstrates that methanotrophs can be used for continuous methanol production. Full-scale application will require additional increases in the titer, production rate, and efficiency, which can be achieved by further decreasing the lanthanide concentration through the use of increased biomass concentrations and novel reactor designs to supply sufficient gases, including methane, oxygen, and hydrogen. IMPORTANCE The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas.
Collapse
|
7
|
Chu YX, Ma RC, Wang J, Zhu JT, Kang YR, He R. Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12280-12292. [PMID: 31993906 DOI: 10.1007/s11356-020-07767-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Aerobic CH4 oxidation coupled to denitrification (AME-D) can not only mitigate the emission of greenhouse gas (e.g., CH4) to the atmosphere, but also reduce NO3- and/or NO2- and alleviate nitrogen pollution. The effects of O2 tension on the community and functional gene expression of methanotrophs and denitrifiers were investigated in this study. Although higher CH4 oxidation occurred in the AME-D system with an initial O2 concentration of 21% (i.e., the O2-sufficient condition), more NO3--N was removed at the initial O2 concentration of 10% (i.e., the O2-limited environment). Type I methanotrophs, including Methylocaldum, Methylobacter, Methylococcus, Methylomonas, and Methylomicrobium, and type II methanotrophs, including Methylocystis and Methylosinus, dominated in the AME-D systems. Compared with type II methanotrophs, type I methanotrophs were more abundant in the AME-D systems. Proteobacteria and Actinobacteria were the main denitrifiers in the AME-D systems, and their compositions varied with the O2 tension. Quantitative PCR of the pmoA, nirS, and 16S rRNA genes showed that methanotrophs and denitrifiers were the main microorganisms in the AME-D systems, accounting for 46.4% and 24.1% in the O2-limited environment, respectively. However, the relative transcripts of the functional genes including pmoA, mmoX, nirK, nirS, and norZ were all less than 1%, especially the functional genes involved in denitrification under the O2-sufficient condition, likely due to the majority of the denitrifiers being dormant or even nonviable. These findings indicated that an optimal O2 concentration should be used to optimize the activity and functional gene expression of aerobic methanotrophs and denitrifiers in AME-D systems.
Collapse
Affiliation(s)
- Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Tian Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Ru Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
He R, Su Y, Leewis MC, Chu YX, Wang J, Ma RC, Wu D, Zhan LT, Herriott IC, Leigh MB. Low O 2 level enhances CH 4-derived carbon flow into microbial communities in landfill cover soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113676. [PMID: 31818614 DOI: 10.1016/j.envpol.2019.113676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/07/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).
Collapse
Affiliation(s)
- Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, Alaska, 99775, USA; US Geological Survey, Menlo Park, CA, 94025, USA
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Donglei Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang-Tong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | | | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Alaska, 99775, USA
| |
Collapse
|
9
|
Semrau JD, DiSpirito AA. Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23261-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Petersen LAH, Lieven C, Nandy SK, Villadsen J, Jørgensen SB, Christensen I, Gernaey KV. Dynamic investigation and modeling of the nitrogen cometabolism in
Methylococcus capsulatus
(
Bath
). Biotechnol Bioeng 2019; 116:2884-2895. [DOI: 10.1002/bit.27113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Leander A. H. Petersen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical EngineeringTechnical University of Denmark Lyngby Denmark
- Unibio A/S Odense Denmark
| | - Christian Lieven
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | | | - John Villadsen
- Center for Combustion and Harmful Emission Control (CHEC), Department of Chemical and Biochemical EngineeringTechnical University of Denmark Lyngby Denmark
| | - Sten B. Jørgensen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical EngineeringTechnical University of Denmark Lyngby Denmark
| | | | - Krist V. Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical EngineeringTechnical University of Denmark Lyngby Denmark
| |
Collapse
|
11
|
Versantvoort W, Pol A, Daumann LJ, Larrabee JA, Strayer AH, Jetten MS, van Niftrik L, Reimann J, Op den Camp HJ. Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:595-603. [DOI: 10.1016/j.bbapap.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
|
12
|
Aerobic methane oxidation under copper scarcity in a stratified lake. Sci Rep 2019; 9:4817. [PMID: 30886176 PMCID: PMC6423226 DOI: 10.1038/s41598-019-40642-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Aerobic methane-oxidizing bacteria (MOB) substantially reduce methane fluxes from freshwater sediments to the atmosphere. Their metalloenzyme methane monooxygenase (MMO) catalyses the first oxidation step converting methane to methanol. Its most prevalent form is the copper-dependent particulate pMMO, however, some MOB are also able to express the iron-containing, soluble sMMO under conditions of copper scarcity. So far, the link between copper availability in different forms and biological methane consumption in freshwater systems is poorly understood. Here, we present high-resolution profiles of MOB abundance and pMMO and sMMO functional genes in relation to copper, methane and oxygen profiles across the oxic-anoxic boundary of a stratified lake. We show that even at low nanomolar copper concentrations, MOB species containing the gene for pMMO expression are present at high abundance. The findings highlight the importance of copper as a micronutrient for MOB species and the potential usage of copper acquisition strategies, even under conditions of abundant iron, and shed light on the spatial distribution of these microorganisms.
Collapse
|
13
|
Lieven C, Petersen LAH, Jørgensen SB, Gernaey KV, Herrgard MJ, Sonnenschein N. A Genome-Scale Metabolic Model for Methylococcus capsulatus (Bath) Suggests Reduced Efficiency Electron Transfer to the Particulate Methane Monooxygenase. Front Microbiol 2018; 9:2947. [PMID: 30564208 PMCID: PMC6288188 DOI: 10.3389/fmicb.2018.02947] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Genome-scale metabolic models allow researchers to calculate yields, to predict consumption and production rates, and to study the effect of genetic modifications in silico, without running resource-intensive experiments. While these models have become an invaluable tool for optimizing industrial production hosts like Escherichia coli and S. cerevisiae, few such models exist for one-carbon (C1) metabolizers. Results: Here, we present a genome-scale metabolic model for Methylococcus capsulatus (Bath), a well-studied obligate methanotroph, which has been used as a production strain of single cell protein (SCP). The model was manually curated, and spans a total of 879 metabolites connected via 913 reactions. The inclusion of 730 genes and comprehensive annotations, make this model not only a useful tool for modeling metabolic physiology, but also a centralized knowledge base for M. capsulatus (Bath). With it, we determined that oxidation of methane by the particulate methane monooxygenase could be driven both through direct coupling or uphill electron transfer, both operating at reduced efficiency, as either scenario matches well with experimental data and observations from literature. Conclusion: The metabolic model will serve the ongoing fundamental research of C1 metabolism, and pave the way for rational strain design strategies toward improved SCP production processes in M. capsulatus.
Collapse
Affiliation(s)
- Christian Lieven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Leander A H Petersen
- Unibio A/S, Kongens Lyngby, Denmark.,Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sten Bay Jørgensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus J Herrgard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
La H, Hettiaratchi JPA, Achari G, Dunfield PF. Biofiltration of methane. BIORESOURCE TECHNOLOGY 2018; 268:759-772. [PMID: 30064899 DOI: 10.1016/j.biortech.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
The on-going annual increase in global methane (CH4) emissions can be largely attributed to anthropogenic activities. However, as more than half of these emissions are diffuse and possess a concentration less than 3% (v/v), physical-chemical treatments are inefficient as an abatement technology. In this regard, biotechnologies, such as biofiltration using methane-oxidizing bacteria, or methanotrophs, are a cost-effective and efficient means of combating diffuse CH4 emissions. In this review, a number of abiotic factors including temperature, pH, water content, packing material, empty-bed residence time, inlet gas flow rate, CH4 concentration, as well biotic factors, such as biomass development, are reviewed based on empirical findings on CH4 biofiltration studies that have been performed in the last decades.
Collapse
Affiliation(s)
- Helen La
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - J Patrick A Hettiaratchi
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - Gopal Achari
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada.
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
15
|
Lieven C, Herrgård MJ, Sonnenschein N. Microbial Methylotrophic Metabolism: Recent Metabolic Modeling Efforts and Their Applications In Industrial Biotechnology. Biotechnol J 2018; 13:e1800011. [PMID: 29917330 DOI: 10.1002/biot.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Developing methylotrophic bacteria into cell factories that meet the chemical demand of the future could be both economical and environmentally friendly. Methane is not only an abundant, low-cost resource but also a potent greenhouse gas, the capture of which could help to reduce greenhouse gas emissions. Rational strain design workflows rely on the availability of carefully combined knowledge often in the form of genome-scale metabolic models to construct high-producer organisms. In this review, the authors present the most recent genome-scale metabolic models in aerobic methylotrophy and their applications. Further, the authors present models for the study of anaerobic methanotrophy through reverse methanogenesis and suggest organisms that may be of interest for expanding one-carbon industrial biotechnology. Metabolic models of methylotrophs are scarce, yet they are important first steps toward rational strain-design in these organisms.
Collapse
Affiliation(s)
- Christian Lieven
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
E. Bjorck C, D. Dobson P, Pandhal J. Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.1.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Ross MO, Rosenzweig AC. A tale of two methane monooxygenases. J Biol Inorg Chem 2017; 22:307-319. [PMID: 27878395 PMCID: PMC5352483 DOI: 10.1007/s00775-016-1419-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Collapse
Affiliation(s)
- Matthew O Ross
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
18
|
Stackhouse B, Lau MCY, Vishnivetskaya T, Burton N, Wang R, Southworth A, Whyte L, Onstott TC. Atmospheric CH 4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. GEOBIOLOGY 2017; 15:94-111. [PMID: 27474434 DOI: 10.1111/gbi.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
The response of methanotrophic bacteria capable of oxidizing atmospheric CH4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH4 gdw-1 d-1 ). Extrapolation of the CH4 oxidation rates to the field yields net CH4 uptake fluxes ranging from 11 to 73 μmol CH4 m-2 d-1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH4 oxidation rates vs. water saturation and the depth to the water table during summer thaw.
Collapse
Affiliation(s)
- B Stackhouse
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - M C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - T Vishnivetskaya
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - N Burton
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - R Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - A Southworth
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - L Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
19
|
Lawton TJ, Rosenzweig AC. Biocatalysts for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol 2016; 35:142-149. [PMID: 27768948 PMCID: PMC5161620 DOI: 10.1016/j.cbpa.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
Nature utilizes two groups of enzymes to catalyze methane conversions, methyl-coenzyme M reductases (MCRs) and methane monooxygenases (MMOs). These enzymes have been difficult to incorporate into industrial processes due to their complexity, poor stability, and lack of recombinant tractability. Despite these issues, new ways of preparing and stabilizing these enzymes have recently been discovered, and new mechanistic insight into how MCRs and MMOs break the C-H bond in nature's most inert hydrocarbon have been obtained. This review focuses on recent findings in the methane biocatalysis field, and discusses the impact of these finding on designing MMO and MCR-based biotechnologies.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
20
|
Lawton TJ, Rosenzweig AC. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. J Am Chem Soc 2016; 138:9327-40. [PMID: 27366961 PMCID: PMC5242187 DOI: 10.1021/jacs.6b04568] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
de la Torre A, Metivier A, Chu F, Laurens LML, Beck DAC, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 2015; 14:188. [PMID: 26607880 PMCID: PMC4658805 DOI: 10.1186/s12934-015-0377-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. RESULTS A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. CONCLUSION We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.
Collapse
Affiliation(s)
- Andrea de la Torre
- Biology Department, San Diego State University, North Life Science Room 406, San Diego, CA, 92182-4614, USA.
| | - Aisha Metivier
- Biology Department, San Diego State University, North Life Science Room 406, San Diego, CA, 92182-4614, USA.
| | - Frances Chu
- Department of Chemical Engineering, University of Washington, Seattle, USA.
| | - Lieve M L Laurens
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA.
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, Seattle, USA.
- eScience Institute, University of Washington, Seattle, USA.
| | - Philip T Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA.
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, USA.
- Department of Microbiology, University of Washington, Seattle, USA.
| | - Marina G Kalyuzhnaya
- Biology Department, San Diego State University, North Life Science Room 406, San Diego, CA, 92182-4614, USA.
- Viral Information Institute, San Diego State University, San Diego, USA.
| |
Collapse
|
22
|
Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME JOURNAL 2015; 9:2304-14. [PMID: 26057842 PMCID: PMC4579481 DOI: 10.1038/ismej.2015.98] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/27/2015] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane.
Collapse
|
23
|
Abstract
Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, protein-protein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.
Collapse
Affiliation(s)
- Sarah Sirajuddin
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Khmelenina VN, Rozova ON, But SY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020088] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Culpepper MA, Rosenzweig AC. Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry 2014; 53:6211-9. [PMID: 25185034 PMCID: PMC4188263 DOI: 10.1021/bi500850j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
In
the initial steps of their metabolic pathway, methanotrophic
bacteria oxidize methane to methanol with methane monooxygenases (MMOs)
and methanol to formaldehyde with methanol dehydrogenases (MDHs).
Several lines of evidence suggest that the membrane-bound or particulate
MMO (pMMO) and MDH interact to form a metabolic supercomplex. To further
investigate the possible existence of such a supercomplex, native
MDH from Methylococcus capsulatus (Bath) has been
purified and characterized by size exclusion chromatography with multi-angle
light scattering and X-ray crystallography. M. capsulatus (Bath) MDH is primarily a dimer in solution, although an oligomeric
species with a molecular mass of ∼450–560 kDa forms
at higher protein concentrations. The 2.57 Å resolution crystal
structure reveals an overall fold and α2β2 dimeric architecture similar to those of other MDH structures.
In addition, biolayer interferometry studies demonstrate specific
protein–protein interactions between MDH and M. capsulatus (Bath) pMMO as well as between MDH and the truncated recombinant
periplasmic domains of M. capsulatus (Bath) pMMO
(spmoB). These interactions exhibit KD values of 833 ± 409 nM and 9.0 ± 7.7 μM, respectively.
The biochemical data combined with analysis of the crystal lattice
interactions observed in the MDH structure suggest a model in which
MDH and pMMO associate not as a discrete, stoichiometric complex but
as a larger assembly scaffolded by the intracytoplasmic membranes.
Collapse
Affiliation(s)
- Megen A Culpepper
- Departments of Molecular Biosciences and Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | |
Collapse
|
26
|
Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 2014; 4:2785. [PMID: 24302011 DOI: 10.1038/ncomms3785] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/16/2013] [Indexed: 11/08/2022] Open
Abstract
Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
Collapse
|
27
|
Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 2014; 32:596-614. [PMID: 24726715 DOI: 10.1016/j.biotechadv.2014.03.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/29/2014] [Accepted: 03/30/2014] [Indexed: 11/22/2022]
Abstract
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.
Collapse
|
28
|
Rostkowski KH, Criddle CS, Lepech MD. Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9822-9829. [PMID: 22775327 DOI: 10.1021/es204541w] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At present, most synthetic organic materials are produced from fossil carbon feedstock that is regenerated over time scales of millions of years. Biobased alternatives can be rapidly renewed in cradle-to-cradle cycles (1-10 years). Such materials extend landfill life and decrease undesirable impacts due to material persistence. This work develops a LCA for synthesis of polyhydroxybutyrate (PHB) from methane with subsequent biodegradation of PHB back to biogas (40-70% methane, 30-60% carbon dioxide). The parameters for this cradle-to-cradle cycle for PHB production are developed and used as the basis for a cradle-to-gate LCA. PHB production from biogas methane is shown to be preferable to its production from cultivated feedstock due to the energy and land required for the feedstock cultivation and fermentation. For the PHB-methane cycle, the major challenges are PHB recovery and demands for energy. Some or all of the energy requirements can be satisfied using renewable energy, such as a portion of the collected biogas methane. Oxidation of 18-26% of the methane in a biogas stream can meet the energy demands for aeration and agitation, and recovery of PHB synthesized from the remaining 74-82%. Effective coupling of waste-to-energy technologies could thus conceivably enable PHB production without imported carbon and energy.
Collapse
|
29
|
Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 2012; 94:601-11. [DOI: 10.1007/s00253-012-3998-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
30
|
Boden R, Murrell JC. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 2011; 324:106-10. [PMID: 22092810 DOI: 10.1111/j.1574-6968.2011.02395.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/28/2022] Open
Abstract
The mercury (II) ion is toxic and is usually detoxified in Bacteria by reduction to elemental mercury, which is less toxic. This is catalysed by an NAD(P)H-dependent mercuric reductase (EC 1.16.1.1). Here, we present strong evidence that Methylococcus capsulatus (Bath) - a methanotrophic member of the Gammaproteobacteria - uses this enzyme to detoxify mercury. In radiorespirometry studies, it was found that cells exposed to mercury dissimilated 100% of [(14) C]-methane provided to generate reducing equivalents to fuel mercury (II) reduction, rather than the mix of assimilation and dissimilation found in control incubations. The detoxification system is constitutively expressed with a specific activity of 352 (±18) nmol NADH oxidized min(-1) (mg protein)(-1) . Putative mercuric reductase genes were predicted in the M. capsulatus (Bath) genome and found in mRNA microarray studies. The MerA-derived polypeptide showed high identity (> 80%) with MerA sequences from the Betaproteobacteria.
Collapse
Affiliation(s)
- Rich Boden
- School of Life Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
31
|
Im J, Lee SW, Yoon S, Dispirito AA, Semrau JD. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:174-181. [PMID: 23761249 DOI: 10.1111/j.1758-2229.2010.00204.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A non-motile strain of Methylocystis, strain SB2, isolated from a spring bog in southeast Michigan, had a curved rod morphology with a typical type II intracytoplasmic membrane system. This organism expressed the membrane-bound or particulate methane monooxygenase (pMMO) as well as a chalkophore with high affinity for copper and did not express the cytoplasmic or soluble methane monooxygenase (sMMO). Strain SB2 was found to grow within the pH range of 6-9, with optimal growth at 6.8. Growth was observed at temperatures ranging between 10°C and 30°C, with no growth at 37°C. The DNA G+C content was 62.9 mol%. Predominant fatty acids were 18:1ω7c (72.7%) and 18:1ω9c (24%) when grown on methane. Phylogenetic comparisons based on both pmoA and 16S rRNA sequences indicated that this organism belonged to the Methylocystis genus, and was closely related to Methylocystis rosea SV97(T) and Methylocystis echinoides IMET10491(T) (98% 16S rRNA gene sequence similarity to both strains). DNA : DNA hybridizations indicated that strain SB2 had 70% similarity with M. rosea SV97(T) . Unlike M. rosea SV97(T) , strain SB2 was able to utilize not only methane for growth, but also ethanol and acetate. Furthermore, the predominant fatty acids in strain SB2 were different from those found in M. rosea SV97(T) , i.e. 54.2% and 39.7% of fatty acids are 18:1ω8 and 18:1ω7 in M. rosea SV97(T) , while 18:1ω8 is completely absent in strain SB2.
Collapse
Affiliation(s)
- Jeongdae Im
- Department of Civil and Environmental Engineering, The University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109-2125, USA. Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011-3211, USA
| | | | | | | | | |
Collapse
|
32
|
Modin O, Fukushi K, Nakajima F, Yamamoto K. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. WATER RESEARCH 2010; 44:85-96. [PMID: 19781736 DOI: 10.1016/j.watres.2009.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Aerobic methanotrophs can contribute to nitrate removal from contaminated waters, wastewaters, or landfill leachate by assimilatory reduction and by producing soluble organics that can be utilized by coexisting denitrifiers. The goal of this study was to investigate nitrate removal and biofilm characteristics in membrane biofilm reactors (MBfR) with various supply regimes of oxygen and methane gas. Three MBfR configurations were developed and they achieved significantly higher nitrate removal efficiencies in terms of methane utilization (values ranging from 0.25 to 0.36molNmol(-1)CH(4)) than have previously been observed with suspended cultures. The biofilm characteristics were investigated in two MBfRs with varying modes of oxygen supply. The biofilms differed in structure, but both were dominated by Type I methanotrophs growing close to the membrane surface. Detection of the nitrite reductase genes, nirS and nirK, suggested genetic potential for denitrification was present in the mixed culture biofilms.
Collapse
Affiliation(s)
- Oskar Modin
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
33
|
Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source. WATER RESEARCH 2007; 41:2726-38. [PMID: 17433401 DOI: 10.1016/j.watres.2007.02.053] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/16/2007] [Accepted: 02/25/2007] [Indexed: 05/14/2023]
Abstract
Methane is a potentially inexpensive, widely available electron donor for biological denitrification of wastewater, landfill leachate or drinking water. Although no known methanotroph is able to denitrify, various consortia of microorganisms using methane as the sole carbon source carry out denitrification both aerobically and anaerobically. Aerobic methane-oxidation coupled to denitrification (AME-D) is accomplished by aerobic methanotrophs oxidizing methane and releasing soluble organics that are used by coexisting denitrifiers as electron donors for denitrification. This process has been observed in several laboratory studies. Anaerobic methane oxidation coupled to denitrification (ANME-D) was recently discovered and was found to be mediated by an association of an archaeon and bacteria. Methane oxidizing consortia of microorganisms have also been studied for simultaneous nitrification and denitrification (SND) of wastewater. This review focuses on the AME-D process, but also encompasses methane oxidation coupled to SND as well as ANME-D.
Collapse
Affiliation(s)
- Oskar Modin
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | |
Collapse
|
34
|
Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H. Three-Dimensional Structure Determination of a Protein Supercomplex That Oxidizes Methane to Formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 2006; 45:11905-14. [PMID: 17002291 DOI: 10.1021/bi061294p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of methane to methanol in methanotrophs is catalyzed by the enzyme methane monooxygenase (MMO). Two distinct forms of this enzyme exist, a soluble cytoplasmic MMO (sMMO) and a membrane-bound particulate form (pMMO). The active protein complex termed pMMO-C was purified recently from Methylococcus capsulatus (Bath). The complex consists of pMMO hydroxylase and an additional component pMMO-R, which was proposed to be the reductase for the pMMO complex. Further study of this complex has led here to the proposal that the pMMO-R is in fact methanol dehydrogenase, the subsequent enzyme in the methane oxidation pathway by methanotrophs. We describe here the biochemical and biophysical characterization of a stable purified complex of pMMO hydroxylase (pMMO-H) with methanol dehydrogenase (MDH) and report the first three-dimensional (3D) structure, determined by cryoelectron microscopy and single particle analysis to approximately 16 A resolution. The 3D structure reported here provides the first insights into the supramolecular organization of pMMO with MDH. These studies of pMMO-MDH complexes have provided further understanding of the structural basis for the particular functions of the enzymes in this system which might also be of relevance to the complete process of methane oxidation by methanotrophs under high copper concentration in the environment.
Collapse
Affiliation(s)
- Natalia Myronova
- Department of Biological Sciences, University of Warwick, Coventry CV4 8EZ, UK
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Malashenko Y, Sokolov I, Romanovskaya V. Role of monooxygenase reaction during assimilation of non-growth substrates by methanotrophs. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1177(00)00131-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Schnell S, King GM. Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiol Ecol 1995. [DOI: 10.1111/j.1574-6941.1995.tb00153.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Peltola P, Priha P, Laakso S. Effect of copper on membrane lipids and on methane monooxygenase activity of Methylococcus capsulatus (Bath). Arch Microbiol 1993. [DOI: 10.1007/bf00249029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
King GM. Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics. ADVANCES IN MICROBIAL ECOLOGY 1992. [DOI: 10.1007/978-1-4684-7609-5_9] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Dikjhuizen L, Sokolov IG. Regulation of oxidation and assimilation of one-carbon compounds in methylotrophic bacteria. BIOTECHNOLOGY (READING, MASS.) 1991; 18:127-48. [PMID: 1909911 DOI: 10.1016/b978-0-7506-9188-8.50013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Dalton H, Higgins IJ. Physiology and biochemistry of methylotrophic bacteria. Antonie Van Leeuwenhoek 1987; 53:23-8. [PMID: 3118801 DOI: 10.1007/bf00422631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- H Dalton
- Department of Biological Sciences, University of Warwick, Coventry, U.K
| | | |
Collapse
|
42
|
|