1
|
Vicidomini C, Fontanella F, D’Alessandro T, Roviello GN. A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2024; 14:1330. [PMID: 39456263 PMCID: PMC11506269 DOI: 10.3390/biom14101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer's disease (AD) and Parkinson's disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| | - Francesco Fontanella
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Tiziana D’Alessandro
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| |
Collapse
|
2
|
Shebl N, Salama M. From metabolomics to proteomics: understanding the role of dopa decarboxylase in Parkinson's disease. Scientific commentary on: "Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson's disease". Acta Neuropathol 2024; 147:88. [PMID: 38761253 DOI: 10.1007/s00401-024-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland.
- Faculty of Medicine, Mansoura University, El Mansûra, Egypt.
| |
Collapse
|
3
|
Gil J, Suh M, Choi H, Paeng JC, Cheon GJ, Kang KW. [ 18F]FDOPA PET/CT in Solid Pseudopapillary Tumor of the Pancreas: a Recurred Tumor Mimicking Splenosis. Nucl Med Mol Imaging 2024; 58:81-85. [PMID: 38510822 PMCID: PMC10948710 DOI: 10.1007/s13139-023-00826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 03/22/2024] Open
Abstract
Solid pseudopapillary tumor (SPT) of the pancreas is a neoplasm with low malignant potential. It is often challenging to diagnose SPT due to its nonspecific clinical and radiological features, and [18F]FDOPA is effective in diagnosing SPT, particularly in differentiating SPT from benign conditions such as splenosis. A 55-year-old woman underwent distal pancreatectomy and splenectomy for histologically confirmed SPT. She was also initially diagnosed with splenosis. During follow-up, sizes of multiple nodular lesions were increased, raising the possibility of peritoneal seeding of SPT. For diagnosis, a spleen scan and SPECT/CT were performed using 99mTc-labeled damaged red blood cells, which showed no uptake in the peritoneal nodules. Subsequent [18F]FDOPA PET/CT revealed [18F]FDOPA-avidity of the nodules. The patient underwent tumor resection surgery, and the nodules were pathologically confirmed as SPT.
Collapse
Affiliation(s)
- Joonhyung Gil
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
4
|
Koshimizu E, Kato M, Misawa K, Uchiyama Y, Tsuchida N, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Matsumoto N. Detection of hidden intronic DDC variant in aromatic L-amino acid decarboxylase deficiency by adaptive sampling. J Hum Genet 2024; 69:153-157. [PMID: 38216729 DOI: 10.1038/s10038-023-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.
Collapse
Affiliation(s)
- Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
5
|
Kumar SB, Girish A, Sutar S, Premanand SA, Garg V, Yadav AK, Shukla R, Murthy TPK, Singh TR. A computational study on structural and functional consequences of nsSNPs in human dopa decarboxylase. J Biomol Struct Dyn 2024:1-15. [PMID: 38193892 DOI: 10.1080/07391102.2023.2301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/04/2023] [Indexed: 01/10/2024]
Abstract
The Dopa Decarboxylase (DDC) gene plays an important role in the synthesis of biogenic amines such as dopamine, serotonin, and histamine. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the DDC gene have been linked with various neurodegenerative disorders. In this study, a comprehensive in silico analysis of nsSNPs in the DDC gene was conducted to assess their potential functional consequences and associations with disease outcomes. Using publicly available databases, a complete list of nsSNPs in the DDC gene was obtained. 29 computational tools and algorithms were used to characterise the effects of these nsSNPs on protein structure, function, and stability. In addition, the population-based association studies were performed to investigate possible associations between specific nsSNPs and arthritis. Our research identified four novel DDC gene nsSNPs that have a major impact on the structure and function of proteins. Through molecular dynamics simulations (MDS), we observed changes in the stability of the DDC protein induced by specific nsSNPs. Furthermore, population-based association studies have revealed potential associations between certain DDC nsSNPs and various neurological disorders, including Parkinson's disease and dementia. The in silico approach used in this study offers insightful information about the functional effects of nsSNPs in the DDC gene. These discoveries provide insight into the cellular processes that underlie cognitive disorders. Furthermore, the detection of disease-associated nsSNPs in the DDC gene may facilitate the development of tailored and targeted therapy approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Birendra Kumar
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Aishwarya Girish
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Samruddhi Sutar
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vrinda Garg
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - T P Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
6
|
Zhao H, Shi C, Zhao G, Liu J, Wang X, Liang J, Li F. RNA modification regulator DDC in endometrial cancer affects the tumor microenvironment and patient prognosis. Sci Rep 2023; 13:18057. [PMID: 37872211 PMCID: PMC10593861 DOI: 10.1038/s41598-023-44269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is infiltrated by immune cells, which are involved in the growth and proliferation of malignant tumors and resistance to immunotherapy. This study suggested that RNA modification regulators played an important role in the development and prognosis of UCEC. Many studies confirmed that RNA modification played an essential role in tumor immune regulation, and abnormal RNA modification contributed to tumorigenesis and cancer progression. Based on the RNA modification regulatory factors, the UCEC samples from TCGA (The Cancer Genome Atlas) were classified into two clusters, namely Cluster A and Cluster B, using unsupervised consensus clustering. We obtained DEG (differentially expressed genes) between the two clusters, and constructed a risk model of RNA modification-related genes using DEGs. Cluster A had lower RNA modification regulatory factors, richer immune cell infiltration, and better prognosis. The differentially expressed genes between the two clusters were obtained, and these genes were used for modeling. This model divided patients with UCEC into two groups. The low-risk group had better immune infiltration, and the ROC (receiver operating characteristic) curve showed that this model had good predictive efficacy. The low-risk group had a better response to immunotherapy by immune checkpoint prediction. We obtained the key gene L-dopa decarboxylase (DDC) through the intersection of LASSO model genes and GEO dataset GSE17025. We evaluated the potential biological functions of DDC. The differences in the expression of DDC were verified by immunohistochemistry. We evaluated the relationship between DDC and immune cell infiltration and verified this difference using immunofluorescence. Cluster A with low expression of RNA modification regulators has better prognosis and richer immune cell infiltration, therefore, we believed that RNA modification regulators in UCEC were closely related to the tumor microenvironment. Also, the risk score could well predict the prognosis of patients and guide immunotherapy, which might benefit patients with UCEC.
Collapse
Affiliation(s)
- Huai Zhao
- Shengjing Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Chuang Shi
- Guangming Community Health Service Center, 101127, Shunyi District, Beijing, China
| | - Guoguang Zhao
- Shengjing Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Jiamin Liu
- Zigong First People's Hospital, 643099, Zigong, Sichuan, China
| | - Xi Wang
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
| | - Jie Liang
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China.
| | - Fangmei Li
- The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Grasso D, Geminiani M, Galderisi S, Iacomelli G, Peruzzi L, Marzocchi B, Santucci A, Bernini A. Untargeted NMR Metabolomics Reveals Alternative Biomarkers and Pathways in Alkaptonuria. Int J Mol Sci 2022; 23:ijms232415805. [PMID: 36555443 PMCID: PMC9779518 DOI: 10.3390/ijms232415805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Gabriella Iacomelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Luana Peruzzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Centro Regionale Medicina di Precisione, 53100 Siena, Italy
- ARTES 4.0, 56025 Pontedera, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
9
|
Exploring the mechanism of compromised thermostability of aromatic L-amino acid decarboxylase from Bacillus atrophaeus through comparative molecular dynamics simulations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
Han SW, Shin JS. Aromatic L-amino acid decarboxylases: mechanistic features and microbial applications. Appl Microbiol Biotechnol 2022; 106:4445-4458. [DOI: 10.1007/s00253-022-12028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
|
11
|
Beckers M, Bloem BR, Verbeek MM. Mechanisms of peripheral levodopa resistance in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:56. [PMID: 35546556 PMCID: PMC9095610 DOI: 10.1038/s41531-022-00321-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is an increasingly common neurodegenerative condition. The disease has a significant negative impact on quality of life, but a personalized management approach can help reduce disability. Pharmacotherapy with levodopa remains the cornerstone of treatment, and a gratifying and sustained response to this treatment is a supportive criterion that argues in favor of an underlying diagnosis of PD. Yet, in daily practice, it is not uncommon to encounter patients who appear to have true PD, but who nevertheless seem to lose the responsiveness to levodopa (secondary non-responders). Some patients may even fail to respond altogether (primary non-responders). Here, we address how two mechanisms of “peripheral resistance” may underlie this failing response to levodopa in persons with PD. The first explanation relates to impaired bowel motility leading to secondary bacterial overgrowth, and more specifically, to the excessive bacterial production of the enzyme tyrosine decarboxylase (TDC). This enzyme may convert levodopa to dopamine in the gut, thereby hampering entry into the circulation and, subsequently, into the brain. The second explanation relates to the systemic induction of the enzyme aromatic l-amino acid decarboxylase (AADC), leading to premature conversion of levodopa into dopamine, again limiting the bioavailability within the brain. We discuss these two mechanisms and focus on the clinical implications, potential treatments and directions for future research.
Collapse
Affiliation(s)
- Milan Beckers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Mpekoulis G, Tsopela V, Chalari A, Kalliampakou KI, Panos G, Frakolaki E, Milona RS, Sideris DC, Vassilacopoulou D, Vassilaki N. Dengue Virus Replication Is Associated with Catecholamine Biosynthesis and Metabolism in Hepatocytes. Viruses 2022; 14:v14030564. [PMID: 35336971 PMCID: PMC8948859 DOI: 10.3390/v14030564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Anna Chalari
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
13
|
Kerbs A, Burgardt A, Veldmann KH, Schäffer T, Lee JH, Wendisch VF. Fermentative production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes. Chembiochem 2022; 23:e202200007. [PMID: 35224830 PMCID: PMC9315010 DOI: 10.1002/cbic.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Indexed: 11/24/2022]
Abstract
The aromatic amino acid l‐tryptophan serves as a precursor for many valuable compounds such as neuromodulators, indoleamines and indole alkaloids. In this work, tryptophan biosynthesis was extended by halogenation followed by decarboxylation to the respective tryptamines or cleavage to the respective indoles. Either the tryptophanase genes tnaAs from E. coli and Proteus vulgaris or the aromatic amino acid decarboxylase genes AADCs from Bacillus atrophaeus, Clostridium sporogenes, and Ruminococcus gnavus were expressed in Corynebacterium glutamicum strains producing (halogenated) tryptophan. Regarding indoles, final titers of 16 mg L−1 7‐Cl‐indole and 23 mg L−1 7‐Br‐indole were attained. Tryptamine production led to a much higher titer of 2.26 g L−1 upon expression of AADC from B. atrophaeus. AADC enzymes were shown to be active with halogenated tryptophan in vitro and in vivo and supported production of 0.36 g L−1 7‐Br‐tryptamine with a volumetric productivity of 8.3 mg L−1 h−1 in a fed‐batch fermentation.
Collapse
Affiliation(s)
- Anastasia Kerbs
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, GERMANY
| | - Arthur Burgardt
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, GERMANY
| | - Kareen H Veldmann
- Bielefeld University: Universitat Bielefeld, Genetisc of Prokaryotes, GERMANY
| | - Thomas Schäffer
- Bielefeld University: Universitat Bielefeld, Fermentation Technology, GERMANY
| | - Jin-Ho Lee
- Kyungsung University, Food Science and Biotechnology, KOREA, REPUBLIC OF
| | - Volker F Wendisch
- Bielefeld University: Universitat Bielefeld, Genetics of Prokaryotes, Universitätsstr. 25, 33615, Bielefeld, GERMANY
| |
Collapse
|
14
|
Mpekoulis G, Tsopela V, Panos G, Siozos V, Kalliampakou KI, Frakolaki E, Sideris CD, Vassiliou AG, Sideris DC, Vassilacopoulou D, Vassilaki N. Association of Hepatitis C Virus Replication with the Catecholamine Biosynthetic Pathway. Viruses 2021; 13:v13112139. [PMID: 34834946 PMCID: PMC8624100 DOI: 10.3390/v13112139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vasileiοs Siozos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Constantinos D. Sideris
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Alice G. Vassiliou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece;
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
15
|
Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines. Catal Letters 2021. [DOI: 10.1007/s10562-021-03535-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Choi Y, Han SW, Kim JS, Jang Y, Shin JS. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Appl Microbiol Biotechnol 2021; 105:2775-2785. [PMID: 33713143 DOI: 10.1007/s00253-021-11122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022]
Abstract
Aromatic L-amino acid decarboxylases (AADCs) are ubiquitously found in higher organisms owing to their physiological role in the synthesis of neurotransmitters and alkaloids. However, bacterial AADC has not attracted much attention because of its rather limited availability and narrow substrate range. Here, we examined the biochemical properties of AADC from Bacillus atrophaeus (AADC-BA) and assessed the synthetic feasibility of the enzyme for the preparation of monoamine neurotransmitters. AADC-BA was expressed in Escherichia coli BL21(DE3) and the purified enzyme showed a specific activity of 2.6 ± 0.4 U/mg for 10 mM L-phenylalanine (L-Phe) at 37 °C. AADC-BA showed optimal pH and temperature ranges at 7-8 and 37-45 °C, respectively. The KM and kcat values for L-Phe were 7.2 mM and 7.4 s-1, respectively, at pH 7.0 and 37 °C. Comparison of the kinetic constants at different temperatures revealed that the temperature dependency of the enzyme was mainly determined by catalytic turnover rather than substrate binding. AADC-BA showed a broad substrate scope for various aromatic amino acids, including L-Phe, L-tryptophan (610% relative to L-Phe), L-tyrosine (12%), 3,4-dihydroxyphenyl-L-alanine (24%), 5-hydroxy-L-tryptophan (L-HTP, 71%), 4-chloro-L-phenylalanine (520%), and 4-nitro-L-phenylalanine (450%). Homology modeling and docking simulations were carried out and were consistent with the observed substrate specificity. To demonstrate the synthetic potential of AADC-BA, we carried out the production of serotonin by decarboxylation of L-HTP. The reaction yield of serotonin reached 98% after 1 h at the reaction conditions of 50 mM L-HTP and 4 U/mL AADC-BA. Moreover, we carried out preparative-scale decarboxylation of L-Phe (100 mM in 40-mL reaction mixture) and isolated the resulting 2-phenylethylamine (51% recovery yield). We expect that the broad substrate specificity of AADC-BA can be exploited to produce various aromatic biogenic amines. KEY POINTS: • AADC-BA showed broad substrate specificity for various aromatic amino acids. • The substrate specificity was elucidated by in silico structural modeling. • The synthetic potential of AADC-BA was demonstrated for the production of biogenic amines.
Collapse
Affiliation(s)
- Yeri Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Sang-Woo Han
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jun-Sung Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Youngho Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
17
|
Jesús S, Periñán MT, Cortés C, Buiza-Rueda D, Macías-García D, Adarmes A, Muñoz-Delgado L, Labrador-Espinosa MÁ, Tejera-Parrado C, Gómez-Garre MP, Mir P. Integrating genetic and clinical data to predict impulse control disorders in Parkinson's disease. Eur J Neurol 2020; 28:459-468. [PMID: 33051953 DOI: 10.1111/ene.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Impulse control disorders (ICDs) are frequent in Parkinson's disease (PD), with associated clinical and genetic risk factors. This study was aimed at analyzing the clinical features and the genetic background that underlie ICDs in PD. METHODS We included 353 patients with PD in this study (58.9% men, mean age 62.4 ± 10.58 years, mean age at disease onset 52.71 ± 11.94 years). We used the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease for ICDs screening. Motor, nonmotor, and treatment-related features were evaluated according to the presence of ICDs. Twenty-one variants related to dopaminergic, serotonergic, glutamatergic, and opioid neurotransmitter systems were assessed. Association studies between polymorphisms and ICDs were performed. The combination of clinical and genetic variables was analyzed with receiver operating characteristic curves to assess the predictability of experiencing ICDs. RESULTS Impulse control disorders appeared in 25.1% of the cases. Patients with ICDs were younger and presented a higher rate of anxiety. Treatment with dopamine agonists increased the risk of ICDs and it was dose dependent (P < 0.05). Genetic association studies showed that the DOPA decarboxylase gene (DDC), rs1451375, might modulate the risk of ICDs. Plotting the clinical-genetic model, the predictability of ICDs increased 11% (area under curve = 0.80; z = 3.22, P = 0.001) when adding the genotype data for single nucleotide polymorphisms. CONCLUSIONS Polymorphisms in DDC might act as risk markers for ICDs in PD. The predictability of experiencing ICDs increased by adding genetic factors to clinical features. It is therefore important to assess the patient's genetic background to identify individuals at risk for ICDs.
Collapse
Affiliation(s)
- S Jesús
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M T Periñán
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - C Cortés
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - D Buiza-Rueda
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - D Macías-García
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - A Adarmes
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - L Muñoz-Delgado
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - M Á Labrador-Espinosa
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - C Tejera-Parrado
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - M P Gómez-Garre
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - P Mir
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology/Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
18
|
Park JW, Okamoto LE, Shibao CA, Biaggioni I. Pharmacologic treatment of orthostatic hypotension. Auton Neurosci 2020; 229:102721. [PMID: 32979782 DOI: 10.1016/j.autneu.2020.102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022]
Abstract
Neurogenic orthostatic hypotension (OH) is a disabling disorder caused by impairment of the normal autonomic compensatory mechanisms that maintain upright blood pressure. Nonpharmacologic treatment is always the first step in the management of this condition, but a considerable number of patients will require pharmacologic therapies. Denervation hypersensitivity and impairment of baroreflex buffering makes these patients sensitive to small doses of pressor agents. Understanding the underlying pathophysiology can help in selecting between treatment options. In general, patients with low "sympathetic reserve", i.e., those with peripheral noradrenergic degeneration (pure autonomic failure, Parkinson's disease) and low plasma norepinephrine, tend to respond better to "norepinephrine replacers" (midodrine and droxidopa). On the other hand, patients with relatively preserved "sympathetic reserve", i.e., those with impaired central autonomic pathways but spared peripheral noradrenergic fibers (multiple system atrophy) and normal or slightly reduced plasma norepinephrine, tend to respond better to "norepinephrine enhancers" (pyridostigmine, atomoxetine, and yohimbine). There is, however, a spectrum of responses within these extremes, and treatment should be individualized. Other nonspecific treatments include fludrocortisone and octreotide. The presence of associated clinical conditions, such as supine hypertension, heart failure, postprandial hypotension, PD, MSA, and diabetes need to be considered in the pharmacologic management of these patients.
Collapse
Affiliation(s)
- Jin-Woo Park
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America; Institute for Inflammation Control, Korea University, Seoul, Republic of Korea
| | - Luis E Okamoto
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Cyndya A Shibao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Italo Biaggioni
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
19
|
Chalatsa I, Arvanitis N, Arvanitis D, Tsakou AC, Kalantzis ED, Vassiliou AG, Sideris DC, Frakolaki E, Vassilaki N, Vassilacopoulou D. Human L-Dopa decarboxylase interaction with annexin V and expression during apoptosis. Biochimie 2020; 177:78-86. [PMID: 32835737 DOI: 10.1016/j.biochi.2020.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
l-Dopa Decarboxylase (DDC) is a pyridoxal requiring enzyme that catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (l-Dopa) to Dopamine (DA). The function of DDC in physiological and pathological biochemical pathways remains poorly understood, while the function and regulation of human DDC isoforms is almost completely elusive. We have shown that Annexin V, a fundamental apoptosis marker, is an inhibitor of l-Dopa decarboxylase activity. Here we show the interaction of both the full-length DDC and the truncated isoform alternative DDC (Alt-DDC) with Annexin V in human tissue and cell lines. Interestingly, DDC isoform expression is enhanced or remains unaffected following staurosporine (STS) treatment, despite increased levels of cytotoxicity and apoptosis. The findings presented here provide novel insights concerning the involvement of DDC in programmed cell death.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece; Neurodegenerative Diseases Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Nikolaos Arvanitis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Dimitrios Arvanitis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Anastasia C Tsakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Evangelos D Kalantzis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), Vas. Sofias 127 av, 11521, Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), Vas. Sofias 127 av, 11521, Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| |
Collapse
|
20
|
Dratman MB, Martin JV. The many faces of thyroxine. AIMS Neurosci 2020; 7:17-29. [PMID: 32455163 PMCID: PMC7242060 DOI: 10.3934/neuroscience.2020002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 11/18/2022] Open
Abstract
Hönes et al. have recently shown that in vivo interference with the apparatus of the nuclear receptor-mediated, gene-driven mechanism of triiodothyronine (T3) actions fails to eliminate all actions of T3. However, the investigators conducting that study provided little information regarding the mechanisms that might be responsible for conferring those implied gene-independent effects. Dratman has long ago suggested a system wherein such gene-free mechanisms might operate. Therefore, since news of that discovery was originally published in 1974, it seems appropriate to describe the progress made since then. We propose that thyroxine and triiodothyronine have many different structural properties that may confer a series of different capabilities on their functions. These conform with our proposal that a series of catecholamine analogs and their conversion to iodothyronamines, allows them to perform many of the functions that previously were attributed to nuclear receptors regulating gene expression. The actions of deiodinases and the differential distribution of iodine substituents are among the critical factors that allow catecholamine analogs to change their effects into ones that either activate their targets or block them. They do this by using two different deiodinases to vary the position of an iodide ion on the diphenylether backbones of thyroxine metabolites. A panoply of these structural features imparts major unique functional properties on the behavior of vertebrates in general and possibly on Homo sapiens in particular.
Collapse
Affiliation(s)
- Mary B Dratman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph V Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ 08102, USA
| |
Collapse
|
21
|
Kurtova AI, Dil’mukhametova LK, Pronina TS, Mingazov ER, Nikishina YO, Sukhinich KK, Ugrumov MV. Dopamine-Producing Neurons in Rat Ontogeny: Phenotypic Features Underlying Molecular Mechanisms of Secretion and Regulation. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Emerging Role of l-Dopa Decarboxylase in Flaviviridae Virus Infections. Cells 2019; 8:cells8080837. [PMID: 31387309 PMCID: PMC6721762 DOI: 10.3390/cells8080837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
l-dopa decarboxylase (DDC) that catalyzes the biosynthesis of bioactive amines, such as dopamine and serotonin, is expressed in the nervous system and peripheral tissues, including the liver, where its physiological role remains unknown. Recently, we reported a physical and functional interaction of DDC with the major signaling regulator phosphoinosite-3-kinase (PI3K). Here, we provide compelling evidence for the involvement of DDC in viral infections. Studying dengue (DENV) and hepatitis C (HCV) virus infection in hepatocytes and HCV replication in liver samples of infected patients, we observed a negative association between DDC and viral replication. Specifically, replication of both viruses reduced the levels of DDC mRNA and the ~120 kDa SDS-resistant DDC immunoreactive functional complex, concomitant with a PI3K-dependent accumulation of the ~50 kDa DDC monomer. Moreover, viral infection inhibited PI3K-DDC association, while DDC did not colocalize with viral replication sites. DDC overexpression suppressed DENV and HCV RNA replication, while DDC enzymatic inhibition enhanced viral replication and infectivity and affected DENV-induced cell death. Consistently, we observed an inverse correlation between DDC mRNA and HCV RNA levels in liver biopsies from chronically infected patients. These data reveal a novel relationship between DDC and Flaviviridae replication cycle and the role of PI3K in this process.
Collapse
|
23
|
Khoury S, Piltonen MH, Ton AT, Cole T, Samoshkin A, Smith SB, Belfer I, Slade GD, Fillingim RB, Greenspan JD, Ohrbach R, Maixner W, Neely GG, Serohijos AWR, Diatchenko L. A functional substitution in the L-aromatic amino acid decarboxylase enzyme worsens somatic symptoms via a serotonergic pathway. Ann Neurol 2019; 86:168-180. [PMID: 31177555 DOI: 10.1002/ana.25521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Heightened somatic symptoms are reported by a wide range of patients with chronic pain and have been associated with emotional distress and physical dysfunction. Despite their clinical significance, molecular mechanisms leading to their manifestation are not understood. METHODS We used an association study design based on a curated list of 3,295 single nucleotide polymorphisms mapped to 358 genes to test somatic symptoms reporting using the Pennebaker Inventory of Limbic Languidness questionnaire from a case-control cohort of orofacial pain (n = 1,607). A replication meta-analysis of 3 independent cohorts (n = 3,189) was followed by functional validation, including in silico molecular dynamics, in vitro enzyme assays, and measures of serotonin (5-HT) plasma concentration. RESULTS An association with the T allele of rs11575542 coding for an arginine to glutamine substitution in the L-aromatic amino acid decarboxylase (AADC) enzyme was replicated in a meta-analysis of 3 independent cohorts. In a combined meta-analysis of all cohorts, this association reached p = 6.43 × 10-8 . In silico studies demonstrated that this substitution dramatically reduces the conformational dynamics of AADC, potentially lowering its binding capacity to a cofactor. in vitro enzymatic assays showed that this substitution reduces the maximum kinetic velocity of AADC, hence lowering 5-HT levels. Finally, plasma samples from 90 subjects showed correlation between low 5-HT levels and heightened somatic symptoms. INTERPRETATION Using functional genomics approaches, we identified a polymorphism in the AADC enzyme that contributes to somatic symptoms through reduced levels of 5-HT. Our findings suggest a molecular mechanism underlying the pathophysiology of somatic symptoms and opens up new treatment options targeting the serotonergic system. ANN NEUROL 2019;86:168-180.
Collapse
Affiliation(s)
- Samar Khoury
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Marjo H Piltonen
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Anh-Tien Ton
- Department of Biochemistry, Robert Cedergren Centre on Bioinformatics and Genomics, University of Montreal, Montreal, Quebec, Canada
| | - Tiffany Cole
- Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Samoshkin
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.,School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shad B Smith
- Department of Anesthesia, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC
| | - Inna Belfer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD
| | - Gary D Slade
- Department of Dental Ecology, School of Dentistry, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Roger B Fillingim
- University of Florida Pain Research and Intervention Center of Excellence, College of Dentistry, University of Florida, Gainesville, FL
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, Brotman Facial Pain Clinic, School of Dentistry, University of Maryland, Baltimore, MD
| | - Richard Ohrbach
- Department of Oral Diagnostic Services, University at Buffalo, Buffalo, NY
| | - William Maixner
- Department of Anesthesia, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC
| | - G Gregory Neely
- Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Adrian W R Serohijos
- Department of Biochemistry, Robert Cedergren Centre on Bioinformatics and Genomics, University of Montreal, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
D'Andrea G, Pizzolato G, Gucciardi A, Stocchero M, Giordano G, Baraldi E, Leon A. Different Circulating Trace Amine Profiles in De Novo and Treated Parkinson's Disease Patients. Sci Rep 2019; 9:6151. [PMID: 30992490 PMCID: PMC6467876 DOI: 10.1038/s41598-019-42535-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) remains a challenge to date. New evidence highlights the potential clinical value of circulating trace amines (TAs) in early-stage PD and their involvement in disease progression. A new ultra performance chromatography mass spectrometry (UPLC-MS/MS) method was developed to quantify plasmatic TAs, and the catecholamines and indolamines pertaining to the same biochemical pathways. Three groups of subjects were recruited: 21 de novo, drug untreated, PD patients, 27 in treatment PD patients and 10 healthy subjects as controls. Multivariate and univariate data analyses were applied to reveal metabolic changes among the groups in attempt to discover new putative markers for early PD detection and disease progression. Different circulating levels of tyrosine (p = 0.002), tyramine (p < 0.001), synephrine (p = 0.015), norepinephrine (p = 0.012), metanephrine (p = 0.001), β-phenylethylamine (p = 0.001) and serotonin (p = 0.006) were found among the three groups. While tyramine behaves as a putative biomarker for early-stage PD (AUC = 0.90) tyramine, norepinephrine, and tyrosine appear to act as biomarkers of disease progression (AUC > 0.75). The findings of this pilot cross-sectional study suggest that biochemical anomalies of the aminergic and indolic neurotransmitters occur in PD patients. Compounds within the TAs family may constitute putative markers for early stage detection and progression of PD.
Collapse
Affiliation(s)
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy. .,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy.
| | - Matteo Stocchero
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Eugenio Baraldi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Alberta Leon
- Research and Innovation (R&I Genetics) s.r.l., Padova, Italy
| |
Collapse
|
25
|
Vassiliou AG, Siaterli MZ, Frakolaki E, Gkogkosi P, Paspaltsis I, Sklaviadis T, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase interaction with the major signaling regulator ΡΙ3Κ in tissues and cells of neural and peripheral origin. Biochimie 2019; 160:76-87. [PMID: 30796964 DOI: 10.1016/j.biochi.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
L-Dopa decarboxylase (DDC) catalyzes the decarboxylation of L-Dopa to dopamine and 5-hydroxytryptophan (5-HTP) to serotonin. Although DDC has been purified from a variety of peripheral organs, including the liver, kidney and pancreas, the physiological significance of the peripherally expressed enzyme is not yet fully understood. DDC has been considered as a potential novel biomarker for various types of cancer, however, the role of DDC in the development of hepatocellular carcinoma (HCC) remains to be evaluated. Phosphatidylinositol 3-kinase (PI3K), on the other hand, has been shown to play a key role in the tumorigenesis, proliferation, metastasis, apoptosis, and angiogenesis of HCC by regulating gene expression. We initially identified the interaction of DDC with PI3K by means of the phage display methodology. This association was further confirmed in human hepatocellular carcinoma cell lines, human embryonic kidney cells, human neuroblastoma cells, as well as mouse brain, by the use of specific antibodies raised against DDC and PI3K. Functional aspects of the above interaction were studied upon treatment with the DDC inhibitor carbidopa and the PI3K inhibitor LY294002. Interestingly, our data demonstrate the expression of the neuronal type DDC mRNA in HCC cells. The present investigation provides new evidence on the possible link of DDC with the PI3K pathway, underlining the biological significance of this complex enzyme.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Ipsilantou 45-47, 10676, Athens, Greece; Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Maria-Zacharenia Siaterli
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias ave., 11521, Athens, Greece
| | - Panayiota Gkogkosi
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Ioannis Paspaltsis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece.
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias ave., 11521, Athens, Greece.
| |
Collapse
|
26
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
27
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
28
|
Gratz MJ, Stavrou S, Kuhn C, Hofmann S, Hermelink K, Heidegger H, Hutter S, Mayr D, Mahner S, Jeschke U, Vattai A. Dopamine synthesis and dopamine receptor expression are disturbed in recurrent miscarriages. Endocr Connect 2018; 7:727-738. [PMID: 29686031 PMCID: PMC5958746 DOI: 10.1530/ec-18-0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES l-dopa decarboxylase (DDC) is responsible for the synthesis of dopamine. Dopamine, which binds to the D2-dopamine receptor (D2R), plays an important role in the maintenance of pregnancy. Aim of our study was the analysis of DDC and D2R expression in placentas of spontaneous miscarriages (SMs) and recurrent miscarriages (RMs) in comparison to healthy controls. METHODS Patients with SM (n = 15) and RM (n = 15) were compared with patients from healthy pregnancies (n = 15) (pregnancy weeks 7-13 each). Placental tissue has been collected from SMs and RMs from the first trimester (Department of Gynaecology and Obstetrics, LMU Munich) and from abruptions (private practice, Munich). Placental cell lines, BeWo- and JEG-3 cells, were stimulated with the trace amines T0AM and T1AM in vitro. RESULTS Levels of DDC and D2R in trophoblasts and the decidua were lower in RMs in comparison to healthy controls. Stimulation of BeWo cells with T1AM significantly reduced DDC mRNA and protein levels. Via double-immunofluorescence, a DDC-positive cell type beneath decidual stromal cells and foetal EVT in the decidua could be detected. CONCLUSIONS Downregulation of DDC and D2R in trophoblasts of RMs reflects a reduced signal cascade of catecholamines on the foetal side.
Collapse
Affiliation(s)
- Michael J Gratz
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Stavroula Stavrou
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Simone Hofmann
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Kerstin Hermelink
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Helene Heidegger
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Stefan Hutter
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Doris Mayr
- Department of PathologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and GynecologyUniversity Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
29
|
Caine C, Shohat M, Kim JK, Nakanishi K, Homma S, Mosharov EV, Monani UR. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency. Hum Mol Genet 2018; 26:4406-4415. [PMID: 28973165 DOI: 10.1093/hmg/ddx326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency.
Collapse
Affiliation(s)
- Charlotte Caine
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | - Meytal Shohat
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | - Jeong-Ki Kim
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | | | | | - Eugene V Mosharov
- Department of Neurology.,Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,New York State Psychiatric Institute, New York, NY 10032, USA
| | - Umrao R Monani
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease.,Department of Neurology
| |
Collapse
|
30
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Kurtova AI, Dil’mukhametova LK, Mingazov ER, Ugrumov MV. General Sources of Dopamine As a Potential Morphogenic Factor in the Developing Striatum of Rats. DOKL BIOCHEM BIOPHYS 2018; 479:123-126. [DOI: 10.1134/s1607672918020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 11/23/2022]
|
32
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
33
|
Wu HQ, Cheng ML, Lai JM, Wu HH, Chen MC, Liu WH, Wu WH, Chang PMH, Huang CYF, Tsou AP, Shiao MS, Wang FS. Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a. PLoS Comput Biol 2017; 13:e1005618. [PMID: 28686599 PMCID: PMC5536358 DOI: 10.1371/journal.pcbi.1005618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/31/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a–/–mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells. For almost a century, researchers have known that cancer cells have an abnormal metabolism and utilize glucose differently than normal cells do. Aerobic glycolysis or the Warburg effect in cancer cells involves elevated glucose uptake with lactic acid production in the presence of oxygen. MicroRNAs have recently been discovered to be key metabolic regulators that mediate the fine tuning of genes that are involved directly or indirectly in cancer metabolism. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic modeling (GSMM) of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. In silico and in vivo observations indicated that DDC overexpression induced Warburg effect in hepatocyte. Furthermore, through a bioinformatics prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells.
Collapse
Affiliation(s)
- Hua-Qing Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Jin-Mei Lai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hsuan-Hui Wu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Meng-Chun Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Huan Liu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ann-Ping Tsou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail: (MSS); (FSW)
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
- * E-mail: (MSS); (FSW)
| |
Collapse
|
34
|
de la Barca JMC, Huang NT, Jiao H, Tessier L, Gadras C, Simard G, Natoli R, Tcherkez G, Reynier P, Valter K. Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics. Metabolomics 2017; 13:22. [PMID: 28706468 PMCID: PMC5486622 DOI: 10.1007/s11306-016-1156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. OBJECTIVES This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning. METHODS Retinas from 12 rats exposed to mild light stress (1000 lux × for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis. RESULTS Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines. CONCLUSIONS Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Nuan-Ting Huang
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Haihan Jiao
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Lydie Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2248 3363grid.7252.2INSERM U1063, Université d’Angers, 49933 Angers, France
| | - Riccardo Natoli
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| | - Guillaume Tcherkez
- 0000 0001 2180 7477grid.1001.0Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601 Australia
| | - Pascal Reynier
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Krisztina Valter
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
35
|
Eriksson O, Wall A, Olsson U, Marteinsdottir I, Holstad M, Ågren H, Hartvig P, Långström B, Naessén T. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms. PLoS One 2016; 11:e0159538. [PMID: 27617751 PMCID: PMC5019404 DOI: 10.1371/journal.pone.0159538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Study Objective To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD) and asymptomatic controls. Background Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women. Methods Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP), radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity–a proxy for serotonin precursor uptake and synthesis–was measured in 9 regions of interest (ROIs): the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single “whole brain”. Results There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001). Menstrual phase changes in this asymmetry (premenstrual—follicular) correlated with changes in self ratings of ‘irritability’ for the entire group (rs = -0.595, p = 0.006). The PMD group showed a strong inverse correlation between phase changes (premenstrual—follicular) in plasma levels of estradiol and phase changes in the laterality (dx/sin) of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027). The control group showed no such correlation. Conclusion Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral prefrontal cortices was found to strongly correlate to premenstrual irritability. A causal relationship here seems plausible, and the findings give further support to an underlying frontal brain disturbance in hormonally influenced serotonergic activity in women with PMD. Because of the small number of subjects in the study, these results should be considered preliminary, requiring verification in larger studies.
Collapse
Affiliation(s)
- Olle Eriksson
- Department of Women’s and Children’s Health, Obstetrics and Gynaecology, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| | - Anders Wall
- Department of Surgical Sciences, Unit for Nuclear Medicine and PET, Uppsala University Hospital, Uppsala, Sweden
| | - Ulf Olsson
- Unit of Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ina Marteinsdottir
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maria Holstad
- Department of Neuroscience, Psychiatry Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Ågren
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Per Hartvig
- Department of Drug design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
| | - Tord Naessén
- Department of Women’s and Children’s Health, Obstetrics and Gynaecology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
36
|
Ren LQ, Wienecke J, Hultborn H, Zhang M. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury. J Neurotrauma 2016; 33:1150-60. [PMID: 26830512 DOI: 10.1089/neu.2015.4037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Li-Qun Ren
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Jacob Wienecke
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,3 Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen, Denmark
| | - Hans Hultborn
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Mengliang Zhang
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,4 Neuronano Research Center, Department of Experimental Medical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
37
|
Fossat P, Bacqué-Cazenave J, De Deurwaerdère P, Cattaert D, Delbecque JP. Serotonin, but not dopamine, controls the stress response and anxiety-like behavior in the crayfish Procambarus clarkii. ACTA ACUST UNITED AC 2015; 218:2745-52. [PMID: 26139659 DOI: 10.1242/jeb.120550] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
In the animal kingdom, biogenic amines are widespread modulators of the nervous system that frequently interact to control mood. Our previous investigations in crayfish (Procambarus clarkii) have established that stress induces changes in brain serotonin (5-HT) concentrations that are responsible for the appearance of anxiety-like behavior (ALB). Here, we further analyze the roles of 5-HT and another biogenic amine, dopamine (DA), on the crayfish response to stress. We show that the intensity of crayfish ALB depends on the intensity of stressful stimulation and is associated with increased concentrations of 5-HT in the brain. These 5-HT levels were significantly correlated, before, as well as after stress, with those of DA, which were approximately 3- to 5-times less abundant. However, whereas the degree of ALB was clearly correlated with brain 5-HT concentrations, it was not significantly correlated with DA. Moreover, in contrast to injections of 5-HT, DA injections were not able to elicit a stress response or ALB. In addition, 5-HT and DA levels were not modified by treatment with the anxiolytic chlordiazepoxide, confirming that suppression of ALB by this GABA-A receptor ligand acts downstream and is independent of changes in crayfish bioamine levels. Our study also provides evidence that the anxiogenic effect of 5-HT injections can be prevented by a preliminary injection of 5-HT antagonists. Altogether, our results emphasize that the rises in brain concentrations of 5-HT, but not DA, play a role in controlling the induction and the intensity of crayfish ALB.
Collapse
Affiliation(s)
- Pascal Fossat
- Université de Bordeaux, 33400 Talence, France Centre National de la Recherche Scientifique (CNRS), UMR 5287, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, Avenue des Facultés, 33405 Talence Cedex, France
| | - Julien Bacqué-Cazenave
- Université de Bordeaux, 33400 Talence, France Centre National de la Recherche Scientifique (CNRS), UMR 5287, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, Avenue des Facultés, 33405 Talence Cedex, France
| | - Philippe De Deurwaerdère
- Université de Bordeaux, 33400 Talence, France CNRS UMR 5293, Institut des Maladies Neurodégénératives, Rue Léo Saignat, 33076 Bordeaux, France
| | - Daniel Cattaert
- Université de Bordeaux, 33400 Talence, France Centre National de la Recherche Scientifique (CNRS), UMR 5287, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, Avenue des Facultés, 33405 Talence Cedex, France
| | - Jean-Paul Delbecque
- Université de Bordeaux, 33400 Talence, France Centre National de la Recherche Scientifique (CNRS), UMR 5287, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, Avenue des Facultés, 33405 Talence Cedex, France
| |
Collapse
|
38
|
Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A, Delval A, Bardyn T, Devedjian JC, Rouaix N, Petyt G, Brefel-Courbon C, Ory-Magne F, Guehl D, Eusebio A, Fraix V, Saulnier PJ, Lagha-Boukbiza O, Durif F, Faighel M, Giordana C, Drapier S, Maltête D, Tranchant C, Houeto JL, Debû B, Azulay JP, Tison F, Destée A, Vidailhet M, Rascol O, Dujardin K, Defebvre L, Bordet R, Sablonnière B, Devos D. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson's disease. Brain 2015; 138:1271-83. [PMID: 25805645 DOI: 10.1093/brain/awv063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/17/2015] [Indexed: 11/14/2022] Open
Abstract
After more than 50 years of treating Parkinson's disease with l-DOPA, there are still no guidelines on setting the optimal dose for a given patient. The dopamine transporter type 1, now known as solute carrier family 6 (neurotransmitter transporter), member 3 (SLC6A3) is the most powerful determinant of dopamine neurotransmission and might therefore influence the treatment response. We recently demonstrated that methylphenidate (a dopamine transporter inhibitor) is effective in patients with Parkinson's disease with motor and gait disorders. The objective of the present study was to determine whether genetic variants of the dopamine transporter type 1-encoding gene (SLC6A3) are associated with differences in the response to treatment of motor symptoms and gait disorders with l-DOPA and methylphenidate (with respect to the demographic, the disease and the treatment parameters and the other genes involved in the dopaminergic neurotransmission). This analysis was part of a multicentre, parallel-group, double-blind, placebo-controlled, randomized clinical trial of methylphenidate in Parkinson's disease (Protocol ID:2008-005801-20; ClinicalTrials.gov:NCT00914095). We scored the motor Unified Parkinson's Disease Rating Scale and the Stand-Walk-Sit Test before and after a standardized acute l-DOPA challenge before randomization and then after 3 months of methylphenidate treatment. Patients were screened for variants of genes involved in dopamine metabolism: rs28363170 and rs3836790 polymorphisms in the SLC6A3 gene, rs921451 and rs3837091 in the DDC gene (encoding the aromatic L-amino acid decarboxylase involved in the synthesis of dopamine from l-DOPA), rs1799836 in the MAOB gene (coding for monoamine oxidase B) and rs4680 in the COMT gene (coding for catechol-O-methyltransferase). Investigators and patients were blinded to the genotyping data throughout the study. Eighty-one subjects were genotyped and 61 were analysed for their acute motor response to l-DOPA. The SLC6A3 variants were significantly associated with greater efficacy of l-DOPA for motor symptoms. The SLC6A3 variants were also associated with greater efficacy of methylphenidate for motor symptoms and gait disorders in the ON l-DOPA condition. The difference between motor Unified Parkinson's Disease Rating Scale scores for patients with different SLC6A3 genotypes was statistically significant in a multivariate analysis that took account of other disease-related, treatment-related and pharmacogenetic parameters. Our preliminary results suggest that variants of SLC6A3 are genetic modifiers of the treatment response to l-DOPA and methylphenidate in Parkinson's disease. Further studies are required to assess the possible value of these genotypes for (i) guiding l-DOPA dose adaptations over the long term; and (ii) establishing the risk/benefit balance associated with methylphenidate treatment for gait disorders.
Collapse
Affiliation(s)
- Caroline Moreau
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Sayah Meguig
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - Jean-Christophe Corvol
- 4 Sorbonne Universités, UPMC Univ Paris 06, and INSERM UMRS_1127 and CIC_1422, and CNRS UMR_7225, and AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des Maladies du Système Nerveux, Paris, France
| | - Julien Labreuche
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Francis Vasseur
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Alain Duhamel
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Arnaud Delval
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Thomas Bardyn
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | | | - Nathalie Rouaix
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - Gregory Petyt
- 6 Department of Nuclear Medicine, Lille University, CHU Lille, Lille, France
| | - Christine Brefel-Courbon
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France
| | - Fabienne Ory-Magne
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France
| | - Dominique Guehl
- 8 Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR CNRS 5293 and CHU de Bordeaux, Bordeaux, France
| | - Alexandre Eusebio
- 9 Department of Neurology and Movement Disorders - APHM Timone University Hospital and Institut de Neurosciences de la Timone, AMU-CNRS UMR 7289, Marseille, France
| | - Valérie Fraix
- 10 Department of Psychiatry and Neurology, CHU Grenoble, Grenoble, France
| | - Pierre-Jean Saulnier
- 11 Department of Movement Disorders and Neurology, Centre d'Investigation Clinique, INSERM CIC 0802, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, CHU de Poitiers, Poitiers, France
| | - Ouhaid Lagha-Boukbiza
- 12 Department of Movement Disorders and Neurology, CHU Strasbourg, Strasbourg, France
| | - Frank Durif
- 13 Department of Movement Disorders and Neurology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Mirela Faighel
- 14 Department of Movement Disorders and Neurology, INSERM, CIC04, CHU Nantes, Nantes, France
| | - Caroline Giordana
- 15 Department of Movement Disorders and Neurology, CHU Nice, Nice, France
| | - Sophie Drapier
- 16 Department of Neurology, EA- 425 Université Rennes 1 et CHU Pontchaillou, CHU Rennes, Rennes, France
| | - David Maltête
- 17 Department of Neurology and INSERM CIC-CRB 0204, Rouen University Hospital, CHU Rouen Rouen, France
| | - Christine Tranchant
- 12 Department of Movement Disorders and Neurology, CHU Strasbourg, Strasbourg, France
| | - Jean-Luc Houeto
- 11 Department of Movement Disorders and Neurology, Centre d'Investigation Clinique, INSERM CIC 0802, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, CHU de Poitiers, Poitiers, France
| | - Bettina Debû
- 10 Department of Psychiatry and Neurology, CHU Grenoble, Grenoble, France
| | - Jean-Philippe Azulay
- 9 Department of Neurology and Movement Disorders - APHM Timone University Hospital and Institut de Neurosciences de la Timone, AMU-CNRS UMR 7289, Marseille, France
| | - François Tison
- 8 Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR CNRS 5293 and CHU de Bordeaux, Bordeaux, France
| | - Alain Destée
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 18 INSERM U837/6 Lille JPARC, France
| | - Marie Vidailhet
- 6 Department of Nuclear Medicine, Lille University, CHU Lille, Lille, France
| | - Olivier Rascol
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France 19 INSERM NS-PARK National Network, France
| | - Kathy Dujardin
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Luc Defebvre
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Régis Bordet
- 2 INSERM U1171, Lille University, Lille, France 18 INSERM U837/6 Lille JPARC, France
| | - Bernard Sablonnière
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - David Devos
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France 20 Department of Medical Pharmacology, Lille University, CHU Lille, Lille, France
| | | |
Collapse
|
39
|
Han Q, Deng ZQ, Xin L, Cao JQ, Hu XY, Mao SX. Clinical significance of dopa decarboxylase expression in gastric peritoneal lavage in patients with gastric adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:959-963. [DOI: 10.11569/wcjd.v23.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the mRNA expression of dopa decarboxylase (DDC) in intraperitoneal lavage fluid from patients with gastric adenocarcinoma, and to evaluate the possibility of using DDC expression in intraperitoneal lavage fluid as a new predictor of peritoneal micrometastasis of gastric adenocarcinoma.
METHODS: Intraperitoneal lavage fluid samples were collected from 87 patients with gastric adenocarcinoma treated in the Second Affiliated Hospital of Nanchang University. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to detect the DDC mRNA expression in intraperitoneal lavage fluid. Intraperitoneal lavage fluid samples from 12 non-cancer patients were used as negative controls.
RESULTS: In the 87 patients with gastric adenocarcinoma, the number of patients with T1, T2, T3 and T4 stage disease was 6, 14, 28 and 39, respectively. The relative expression levels (×107) of DDC mRNA in different T stages (invasion grade) were: T1, 168 ± 21; T2, 283 ± 87; T3, 31162 ± 4261; T4, 35310 ± 6593; and 60.28 ± 19.00 in non-cancer group. The expression of DDC was also correlated with the degree of tumor differentiation, pathological type and lymph node metastasis. Conventional intraperitoneal cytology (CY) revealed positive results (CY+) in 11 patients, and the positive rate was 13% (11/87). In 9 of 11 CY+ cases, the DDC mRNA expression was higher than the critical value (classified as DDC+), and the sensitivity of DDC detection was 86% (9/11). In addition, only two DDC+ cases were found in the 10 patients with T1 and 14 with T2 disease, and no DDC+ result was observed in the non-cancer group. The DDC specificity was 92% (22/24). Differential expression of DDC in intraperitoneal lavage fluid was noted in gastric adenocarcinoma with different depth of invasion (P < 0.05).
CONCLUSION: QRT-PCR can effectively detect DDC mRNA expression in intraperitoneal lavage fluid, which may become a new reliable predictor of peritoneal metastasis of gastric adenocarcinoma.
Collapse
|
40
|
Synthesis of 5-methyl phenanthridium derivatives: A new class of human DOPA decarboxylase inhibitors. Bioorg Med Chem Lett 2014; 24:2712-6. [DOI: 10.1016/j.bmcl.2014.04.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/21/2014] [Accepted: 04/11/2014] [Indexed: 12/23/2022]
|
41
|
Devos D, Lejeune S, Cormier-Dequaire F, Tahiri K, Charbonnier-Beaupel F, Rouaix N, Duhamel A, Sablonnière B, Bonnet AM, Bonnet C, Zahr N, Costentin J, Vidailhet M, Corvol JC. Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson's disease. Parkinsonism Relat Disord 2013; 20:170-5. [PMID: 24216088 DOI: 10.1016/j.parkreldis.2013.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/05/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), the response to L-dopa is highly variable and unpredictable. The major pathway for dopamine synthesis from L-dopa is decarboxylation by aromatic L-amino acid decarboxylase (AAAD, encoded by the DDC gene). OBJECTIVE To determine the motor response to L-dopa in PD patients as a function of the DDC gene promoter polymorphisms (rs921451 T > C polymorphism (DDC(T/C)) and rs3837091 AGAG del (DDC(AGAG/-))). METHODS Thirty-three Caucasian PD patients underwent an acute l-dopa challenge together with the peripheral AAAD inhibitor benserazide and were genotyped for rs921451 and rs3837091. The primary efficacy criterion was the motor response to L-dopa, as estimated by the area under the curve for the change in the Unified Parkinson's Disease Rating Scale part III (UPDRS) score relative to baseline (AUCΔUPDRS) in the 4 h following L-dopa administration. Secondary endpoints were pharmacokinetic parameters for plasma levels of L-dopa and dopamine. Investigators and patients were blinded to genotypes data throughout the study. RESULTS When adjusted for the L-dopa dose, the AUCΔUPDRS was significantly lower in DDC(CC/CT) patients (n = 14) than in DDC(TT) patients (n = 19) and significantly lower in DDC(-/- or AGAG/-) patients (n = 8) than in DDC(AGAG/AGAG) patients (n = 25). There were no significant intergroup differences in plasma pharmacokinetic parameters for L-dopa and dopamine. DISCUSSION The rs921451 and rs3837091 polymorphisms of the DDC gene promoter influence the motor response to L-dopa but do not significantly change peripheral pharmacokinetic parameters for L-dopa and dopamine. Our results suggest that DDC may be a genetic modifier of the l-dopa response in Parkinson's disease.
Collapse
Affiliation(s)
- David Devos
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France; Lille Nord de France University, Department of Medical Pharmacology, Lille University Medical Center, Faculty of Medicine of Lille 2, EA 4610, France.
| | - Stéphanie Lejeune
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France
| | - Florence Cormier-Dequaire
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France
| | - Khadija Tahiri
- INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France
| | - Fanny Charbonnier-Beaupel
- INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France; APHP (Assistance Publique Hopitaux de Paris), Pitié-Salpêtrière Hospital, Department of Pharmacy, France; APHP, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - Nathalie Rouaix
- Lille Nord de France University, Department of Molecular Biology, Lille University Medical Center, France
| | - Alain Duhamel
- Lille Nord de France University, Department of Molecular Biology, Lille University Medical Center, France
| | - Bernard Sablonnière
- Lille Nord de France University, Department of Molecular Biology, Lille University Medical Center, France
| | | | - Cecilia Bonnet
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France
| | - Noel Zahr
- APHP, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - Jean Costentin
- University of Rouen, Neuropharmacology Laboratory, Rouen, France
| | - Marie Vidailhet
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France; APHP, Pitié-Salpêtrière Hospital, Department of Neurology, France
| | - Jean-Christophe Corvol
- INSERM (French National Institute of Medical Research and Health), APHP (Assistance Publique Hopitaux de Paris), Clinical Investigation Center (CIC-9503), Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS_975 unit, UPMC (Pierre and Marie Curie University), CNRS UMR7525 CR-ICM, Paris, France; APHP, Pitié-Salpêtrière Hospital, Department of Neurology, France
| |
Collapse
|
42
|
Li Y, Li L, Stephens MJ, Zenner D, Murray KC, Winship IR, Vavrek R, Baker GB, Fouad K, Bennett DJ. Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J Neurophysiol 2013; 111:145-63. [PMID: 24068759 DOI: 10.1152/jn.00508.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord transection leads to elimination of brain stem-derived monoamine fibers that normally synthesize most of the monoamines in the spinal cord, including serotonin (5-hydroxytryptamine, 5-HT) synthesized from tryptophan by enzymes tryptophan hydroxylase (TPH, synthesizing 5-hydroxytryptophan, 5-HTP) and aromatic l-amino acid decarboxylase (AADC, synthesizing 5-HT from 5-HTP). Here we examine whether spinal cord caudal to transection remains able to manufacture and metabolize 5-HT. Immunolabeling for AADC reveals that, while most AADC is confined to brain stem-derived monoamine fibers in spinal cords from normal rats, caudal to transection AADC is primarily found in blood vessel endothelial cells and pericytes as well as a novel group of neurons (NeuN positive and GFAP negative), all of which strongly upregulate AADC with injury. However, immunolabeling for 5-HT reveals that there is no detectable endogenous 5-HT synthesis in any structure in the spinal cord caudal to a chronic transection, including in AADC-containing vessels and neurons, consistent with a lack of TPH. In contrast, when we applied exogenous 5-HTP (in vitro or in vivo), AADC-containing vessels and neurons synthesized 5-HT, which contributed to increased motoneuron activity and muscle spasms (long-lasting reflexes, LLRs), by acting on 5-HT2 receptors (SB206553 sensitive) located on motoneurons (TTX resistant). Blocking monoamine oxidase (MAO) markedly increased the sensitivity of the motoneurons (LLR) to 5-HTP, more than it increased the sensitivity of motoneurons to 5-HT, suggesting that 5-HT synthesized from AADC is largely metabolized in AADC-containing neurons and vessels. In summary, after spinal cord injury AADC is upregulated in vessels, pericytes, and neurons but does not endogenously produce 5-HT, whereas when exogenous 5-HTP is provided AADC does produce functional amounts of 5-HT, some of which is able to escape metabolism by MAO, diffuse out of these AADC-containing cells, and ultimately act on 5-HT receptors on motoneurons.
Collapse
Affiliation(s)
- Yaqing Li
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Quantification and study of the L-DOPA decarboxylase expression in gastric adenocarcinoma cells treated with chemotherapeutic substances. Anticancer Drugs 2013; 24:291-9. [PMID: 23328075 DOI: 10.1097/cad.0b013e32835db25a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
3,4-Dihydroxy-L-phenylalanine decarboxylase (DDC) is an enzyme implicated in the biosynthetic pathways of the neurotransmitters dopamine and probably serotonin. DDC gene expression has been studied in numerous malignancies and the corresponding data have shown remarkable alterations in the mRNA and/or protein levels encoded by the gene. The aim of this study was to examine any modulations in the DDC mRNA levels in gastric cancer cells after their treatment with the chemotherapeutic agents 5-fluorouracil, leucovorin, irinotecan, etoposide, cisplatin, and taxol. The sensitivity of the AGS gastric adenocarcinoma cells to the antineoplastic drugs was evaluated using the MTT assay. Total RNA was extracted and reverse transcribed into cDNA. A highly sensitive quantitative real-time PCR methodology was developed for the quantification of DDC mRNA. GAPDH was used as a housekeeping gene. Relative quantification analysis was carried out using the comparative C T method ((Equation is included in full-text article.)). The treatment of AGS cells with several concentrations of various broadly used anticancer drugs resulted in significant modulations of the DDC mRNA levels compared with those in the untreated cells in a time-specific and drug-specific manner. Generally, DDC expression levels appeared to decrease after three time periods of exposure to the selected chemotherapeutic agents, suggesting a characteristic DDC mRNA expression profile that is possibly related to the mechanism of each drug. Our experimental data show that the DDC gene might serve as a new potential molecular biomarker predicting treatment response in gastric cancer cells.
Collapse
|
44
|
The DOPA decarboxylase (DDC) gene is associated with alerting attention. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:140-5. [PMID: 23276884 DOI: 10.1016/j.pnpbp.2012.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/23/2012] [Accepted: 12/23/2012] [Indexed: 01/03/2023]
Abstract
DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders.
Collapse
|
45
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
46
|
Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 2013; 18:543-56. [PMID: 22641180 DOI: 10.1038/mp.2012.57] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Schizophrenia is a chronic, severe and highly complex mental illness. Current treatments manage the positive symptoms, yet have minimal effects on the negative and cognitive symptoms, two prominent features of the disease with critical impact on the long-term morbidity. In addition, antipsychotic treatments trigger serious side effects that precipitate treatment discontinuation. Here, we show that activation of the trace amine-associated receptor 1 (TAAR1), a modulator of monoaminergic neurotransmission, represents a novel therapeutic option. In rodents, activation of TAAR1 by two novel and pharmacologically distinct compounds, the full agonist RO5256390 and the partial agonist RO5263397, blocks psychostimulant-induced hyperactivity and produces a brain activation pattern reminiscent of the antipsychotic drug olanzapine, suggesting antipsychotic-like properties. TAAR1 agonists do not induce catalepsy or weight gain; RO5263397 even reduced haloperidol-induced catalepsy and prevented olanzapine from increasing body weight and fat accumulation. Finally, TAAR1 activation promotes vigilance in rats and shows pro-cognitive and antidepressant-like properties in rodent and primate models. These data suggest that TAAR1 agonists may provide a novel and differentiated treatment of schizophrenia as compared with current medication standards: TAAR1 agonists may improve not only the positive symptoms but also the negative symptoms and cognitive deficits, without causing adverse effects such as motor impairments or weight gain.
Collapse
Affiliation(s)
- F G Revel
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Geomela PA, Kontos CK, Yiotakis I, Fragoulis EG, Scorilas A. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study. BMC Cancer 2012; 12:484. [PMID: 23083099 PMCID: PMC3495033 DOI: 10.1186/1471-2407-12-484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 12/22/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.
Collapse
Affiliation(s)
- Panagiota-Aikaterini Geomela
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | | | | | | | | |
Collapse
|
48
|
l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer. Transl Oncol 2012; 5:288-96. [PMID: 22937181 DOI: 10.1593/tlo.12223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 12/22/2022] Open
Abstract
l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.
Collapse
|
49
|
Chalatsa I, Fragoulis EG, Vassilacopoulou D. Release of membrane-associated L-dopa decarboxylase from human cells. Neurochem Res 2011; 36:1426-34. [PMID: 21479916 DOI: 10.1007/s11064-011-0468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 02/06/2023]
Abstract
L-Dopa Decarboxylase is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyses the decarboxylation of L-Dopa to dopamine. In this study, we investigated the cellular topology of the active human enzyme. Fractionation of membranes from human cell lines, of neural and non-neural origin, by temperature-induced phase separation in Triton X-114 resulted in the detection of DDC molecules in all separation phases. Solubilization of membrane-associated DDC was observed in a pH and time-dependent manner and was affected by divalent cations and protease inhibitors, suggesting the involvement of a possible release mechanism. The study of the biological properties and function of the solubilization phenomenon described here, as well as, the study of the membrane-associated enzyme could provide us with new information about the participation of the human L-Dopa decarboxylase in physiological and aberrant processes.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | | | | |
Collapse
|
50
|
Wassenberg T, Willemsen MAAP, Geurtz PBH, Lammens M, Verrijp K, Wilmer M, Lee WT, Wevers RA, Verbeek MM. Urinary dopamine in aromatic L-amino acid decarboxylase deficiency: the unsolved paradox. Mol Genet Metab 2010; 101:349-56. [PMID: 20832343 DOI: 10.1016/j.ymgme.2010.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In aromatic L-amino acid decarboxylase (AADC) deficiency, a neurotransmitter biosynthesis defect, paradoxical normal or increased levels of urinary dopamine have been reported. Genotype/phenotype correlations or alternative metabolic pathways may explain this remarkable finding, but were never studied systematically. METHODS We studied the mutational spectrum and urinary dopamine levels in 20 patients with AADC-deficiency. Experimental procedures were designed to test for alternative metabolic pathways of dopamine production, which included alternative substrates (tyramine and 3-methoxytyrosine) and alternative enzymes (tyrosinase and CYP2D6). RESULTS/DISCUSSION In 85% of the patients the finding of normal or increased urinary levels of dopamine was confirmed, but a relation with AADC genotype could not be identified. Renal microsomes containing CYP2D were able to convert tyramine into dopamine (3.0 nmol/min/g protein) but because of low plasma levels of tyramine this is an unlikely explanation for urinary dopamine excretion in AADC-deficiency. No evidence was found for the production of dopamine from 3-methoxytyrosine. Tyrosinase was not expressed in human kidney. CONCLUSION Normal or increased levels of urinary dopamine are found in the majority of AADC-deficient patients. This finding can neither be explained by genotype/phenotype correlations nor by alternative metabolic pathways, although small amounts of dopamine may be formed via tyramine hydroxylation by renal CYP2D6. CYP2D6-mediated conversion of tyramine into dopamine might be an interesting target for the development of new therapeutic strategies in AADC-deficiency.
Collapse
Affiliation(s)
- T Wassenberg
- Radboud University Nijmegen Medical Centre, Department of Neurology, Neurochemistry Lab, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|