1
|
Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, Pranothi M, Banda S, Kumar Bolla P, Kommineni N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int J Pharm 2022; 624:122022. [PMID: 35843364 DOI: 10.1016/j.ijpharm.2022.122022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
Liposomes have several advantages, such as the ability to be employed as a carrier/vehicle for a variety of drug molecules and at the same time they are safe and biodegradable. In the recent times, compared to other delivery systems, liposomes have been one of the most well-established and commercializing drug products of new drug delivery methods for majority of therapeutic applications. On the other hand, it has several limitations, particularly in terms of stability, which impedes product development and performance. In this review, we reviewed all the potential instabilities (physical, chemical, and biological) that a formulation development scientist confronts throughout the development of liposomal formulations as along with the ways to overcome these challenges. We have also discussed the effect of microbiological contamination on liposomal formulations with a focus on the use of sterilization methods used to improve the stability. Finally, we have reviewed quality control techniques and regulatory considerations recommended by the agencies (USFDA and MHLW) for liposome drug product development.
Collapse
Affiliation(s)
- Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mulinti Pranothi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58105, ND, USA
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA.
| | | |
Collapse
|
2
|
Cholesterol Sulfate Fluidizes the Sterol Fraction of the Stratum Corneum Lipid Phase and Increases its Permeability. J Lipid Res 2022; 63:100177. [PMID: 35143845 PMCID: PMC8953687 DOI: 10.1016/j.jlr.2022.100177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide’s acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.
Collapse
|
3
|
Interaction of cholesterol with artificial bilayer lipid membrane system and development of an electrochemical sensor. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
|
5
|
Chirality-Dependent Interaction of d- and l-Menthol with Biomembrane Models. MEMBRANES 2017; 7:membranes7040069. [PMID: 29244740 PMCID: PMC5746828 DOI: 10.3390/membranes7040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/19/2023]
Abstract
Chirality plays a vital role in biological membranes and has a significant effect depending on the type and arrangement of the isomer. Menthol has two typical chiral forms, d- and l-, which exhibit different behaviours. l-Menthol is known for its physiological effect on sensitivity (i.e. a cooling effect), whereas d-menthol causes skin irritation. Menthol molecules may affect not only the thermoreceptors on biomembranes, but also the membrane itself. Membrane heterogeneity (lipid rafts, phase separation) depends on lipid packing and acyl chain ordering. Our interest is to elaborate the chirality dependence of d- and l-menthol on membrane heterogeneity. We revealed physical differences between the two optical isomers of menthol on membrane heterogeneity by studying model membranes using nuclear magnetic resonance and microscopic observation.
Collapse
|
6
|
Sánchez-Borzone ME, Mariani ME, Miguel V, Gleiser RM, Odhav B, Venugopala KN, García DA. Membrane effects of dihydropyrimidine analogues with larvicidal activity. Colloids Surf B Biointerfaces 2017; 150:106-113. [DOI: 10.1016/j.colsurfb.2016.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
7
|
Barroso RP, Basso LGM, Costa-Filho AJ. Interactions of the antimalarial amodiaquine with lipid model membranes. Chem Phys Lipids 2014; 186:68-78. [PMID: 25555567 DOI: 10.1016/j.chemphyslip.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 11/28/2022]
Abstract
A detailed molecular description of the mechanism of action of the antimalarial drug amodiaquine (AQ) is still an open issue. To gain further insights on that, we studied the interactions of AQ with lipid model membranes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS) by spin labeling electron spin resonance (ESR) and differential scanning calorimetry (DSC). Both techniques indicate a coexistence of an ordered DPPS-rich domain with a disordered DPPC-rich domain in the binary DPPC/DPPS system. We found that AQ slightly lowered the melting transition temperatures associated to both domains and significantly increased the enthalpy change of the whole DPPC/DPPS phase transition. DSC and ESR data also suggest that AQ increases the number of DPPC molecules in the DPPC-rich domains. AQ also causes opposing ordering effects on different regions of the bilayer: while the drug increases the ordering of the lipid acyl chains from carbon 7 to 16, it decreases the order parameter of the lipid head group and of carbon 5. The gel phase was mostly affected by the presence of AQ, suggesting that AQ is able to influence more organized lipid domains. Moreover, the effects of AQ and cholesterol on lipid acyl chain ordering and mobility were compared at physiological temperature and, in a general way, they are similar. Our results suggest that the quinoline ring of AQ is located completely inside the lipid bilayers with its phenol ring and the tertiary amine directed towards the head group region. The nonspecific interaction between AQ and DPPC/DPPS bilayers is a combination of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Rafael P Barroso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Luis G M Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
8
|
Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Müller P, Herrmann A, Huster D. Cholesterol's aliphatic side chain modulates membrane properties. Angew Chem Int Ed Engl 2013; 52:12848-51. [PMID: 24382636 PMCID: PMC4011182 DOI: 10.1002/anie.201306753] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/06/2022]
Abstract
The influence of cholesterol's alkyl side chain on membrane properties was studied using a series of synthetic cholesterol derivatives without a side chain or with a branched side chain consisting of 5 to 14 carbon atoms. Cholesterol's side chain is crucial for all membrane properties investigated and therefore essential for the membrane properties of eukaryotic cells.
Collapse
Affiliation(s)
- Holger A. Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Thomas Meyer
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Jörg Nikolaus
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Dong Jae Baek
- Department of Chemistry and Biochemistry, Queens College of CUNY,
Flushing, NY 11367-1597, USA
| | - Ivan Haralampiev
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Lars Thomas
- Institute of Medical Physics and Biophysics, University of Leipzig,
Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY,
Flushing, NY 11367-1597, USA
| | - Peter Müller
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Andreas Herrmann
- Institute of Biology/Biophysics, Humboldt University Berlin,
Invalidenstr. 42, D-10115 Berlin, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of
Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
9
|
Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Müller P, Herrmann A, Huster D. Die aliphatische Seitenkette von Cholesterol bestimmt essenzielle Membraneigenschaften. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Naumowicz M, Petelska AD, Figaszewski ZA. Chronopotentiometric studies of phosphatidylcholine bilayers modified by ergosterol. Steroids 2011; 76:967-73. [PMID: 21641920 DOI: 10.1016/j.steroids.2011.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
We have monitored the effect of ergosterol on electrical capacitance and electrical resistance of the phosphatidylcholine bilayer membranes using chronopotentiometry method. The chronopotentiometric characteristic of the bilayers depends on constant-current flow through the membranes. For low current values, no electroporation takes place and the membrane voltage rises exponentially to a constant value described by the Ohm's law. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations is presented.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443 Bialystok, Poland.
| | | | | |
Collapse
|
11
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Lu FSH, Nielsen NS, Timm-Heinrich M, Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids 2010; 46:3-23. [PMID: 21088919 DOI: 10.1007/s11745-010-3496-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/26/2010] [Indexed: 12/15/2022]
Abstract
Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review was undertaken to provide the industry and academia with an overview of (1) the stability of MPL in different forms and their potential as liposomal material, and (2) the current applications and future prospects of MPL in both food and aquaculture industries with special emphasis on MPL in the liposomal form.
Collapse
Affiliation(s)
- F S Henna Lu
- Division of Seafood Research, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
13
|
Davis PJ, Keough KM. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J 2010; 48:915-8. [PMID: 19431601 DOI: 10.1016/s0006-3495(85)83854-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Measures of chain length, inequivalence of chain length, and chain position have been incorporated into a parameter, D, which we call the "relative chain inequivalence." D has been calculated for a number of saturated phosphatidylcholines (PC) containing one type of chain (homoacid PC), saturated PC containing two different acyl chains (heteroacid PC), and heteroacid PC containing one saturated and one unsaturated chain. The gel to liquid-crystalline transition temperatures and D are related in a regular pattern, which suggests similarity of chain packing in the gel. This pattern may have useful predictive value.
Collapse
|
14
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
15
|
Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R. Why is the sn-2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated whereas the sn-1 Chain Is Saturated? Studies of 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-Oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) Membranes with and without Cholesterol. J Phys Chem B 2009; 113:8347-56. [DOI: 10.1021/jp902131b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hector Martinez-Seara
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Tomasz Róg
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Mikko Karttunen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ilpo Vattulainen
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ramon Reigada
- Department of Physical Chemistry, Barcelona University, c/ Marti i Franques 1, Pta 4, 08028 Barcelona, Spain, Department of Physics, Tampere University of Technology, Tampere, Finland, Department of Applied Mathematics, The University of Western Ontario, London (ON), Canada, Department of Applied Physics and Helsinki Institute of Physics, Helsinki University of Technology, Helsinki, Finland, and MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
16
|
Polyunsaturated fatty acid–cholesterol interactions: Domain formation in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:24-32. [DOI: 10.1016/j.bbamem.2008.10.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
|
17
|
Bartels T, Lankalapalli RS, Bittman R, Beyer K, Brown MF. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc 2008; 130:14521-32. [PMID: 18839945 DOI: 10.1021/ja801789t] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.
Collapse
Affiliation(s)
- Tim Bartels
- Laboratory of Neurodegenerative Disease Research, Ludwig-Maximilian-University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
18
|
Yoss NL, Mahfouz MM, Diao HS, Kummerow FA. Sphingomyelin Favors. Precipitation of Negatively Charged Liposomes in 1 mM Ca2+. J Liposome Res 2008. [DOI: 10.3109/08982109209018638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Popova AV, Hincha DK. Effects of cholesterol on dry bilayers: interactions between phosphatidylcholine unsaturation and glycolipid or free sugar. Biophys J 2007; 93:1204-14. [PMID: 17526577 PMCID: PMC1929023 DOI: 10.1529/biophysj.107.108886] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol and other sterols are important components of biological membranes and are known to strongly influence the physical characteristics of lipid bilayers. Although this has been studied extensively in fully hydrated membranes, little is known about the effects of cholesterol on the stability of membranes in the dry state. Here, we present a Fourier transform infrared spectroscopy study on the effects of cholesterol on the phase behavior of dry liposomes composed of phosphatidylcholines with different degrees of fatty acid unsaturation or of mixtures of phosphatidylcholine with a plant galactolipid. In addition, we have analyzed the H-bonding of cholesterol, galactose, and a combination of the two additives to the P=O and C=O groups in dry phosphatidylcholine bilayers. The data indicate a complex balance of interactions between the different components in the dry state and a strong influence of fatty acid unsaturation on the interactions of the diacyl lipids with both cholesterol and galactose.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | |
Collapse
|
20
|
Gruger A, Vogel-weill C. Étude Structurale par Microspectrométries Raman et Infrarouge de Figures Myéliniques Formées á Partir des Systémes Acide 2-g Octadécénoique/Solution D'Hydrazine 5M et Cholesterol Monohydraté/Solution Saturée d'Oléate de Sodium. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/10587259408046930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Gruger
- a Laboratoire de Spectrochimie Infrarouge et Raman , CNRS, 2 rue Henri Dunant, 94320 , Thiais , France
| | - C. Vogel-weill
- a Laboratoire de Spectrochimie Infrarouge et Raman , CNRS, 2 rue Henri Dunant, 94320 , Thiais , France
| |
Collapse
|
21
|
Soubias O, Jolibois F, Réat V, Milon A. Understanding sterol-membrane interactions, part II: complete 1H and 13C assignments by solid-state NMR spectroscopy and determination of the hydrogen-bonding partners of cholesterol in a lipid bilayer. Chemistry 2006; 10:6005-14. [PMID: 15497136 DOI: 10.1002/chem.200400246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complete assignment of cholesterol 1H and 13C NMR resonances in a lipid bilayer environment (Lalpha-dimyristoylphosphatidylcholine/cholesterol 2:1) has been obtained by a combination of 1D and 2D MAS NMR experiments: 13C spectral editing, ge-HSQC, dipolar HETCOR and J-based HETCOR. Specific chemical shift variations have been observed for the C1-C6 atoms of cholesterol measured in CCl4 solution and in the membrane. Based on previous work (F. Jolibois, O. Soubias, V. Reat, A. Milon, Chem. Eur. J. 2004, 10, preceding paper in this issue: DOI: 10.1002/chem.200400245) these variations were attributed to local changes around the cholesterol hydroxy group, such as the three major rotameric states of the C3-O3 bond and different hydrogen bonding partners (water molecules, carboxy and phosphodiester groups of phosphatidylcholine). Comparison of the experimental and theoretical chemical shifts obtained from quantum-chemistry calculations of various transient molecular complexes has allowed the distributions of hydrogen bonding partners and hydroxy rotameric states to be determined. This is the first time that the probability of hydrogen bonding occurring between cholesterol's hydroxy group and phosphatidylcholine's phosphodiester has been determined experimentally.
Collapse
Affiliation(s)
- Olivier Soubias
- Institut de Pharmacologie et de Biologie Structurale, CNRS and University P. Sabatier, 205 rte de Narbonne, Toulouse, France
| | | | | | | |
Collapse
|
22
|
Buchenauer H. Inhibition of ergosterol biosynthesis by triadimenol inUstilago avenae. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780090603] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Yohannes G, Pystynen KH, Riekkola ML, Wiedmer SK. Stability of phospholipid vesicles studied by asymmetrical flow field-flow fractionation and capillary electrophoresis. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.12.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Subuddhi U, Mishra AK. Prototropism of 1-hydroxypyrene in liposome suspensions: implications towards fluorescence probing of lipid bilayers in alkaline medium. Photochem Photobiol Sci 2006; 5:283-90. [PMID: 16520863 DOI: 10.1039/b513200b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The partitioning efficiency of neutral and anionic prototropic forms of 1-hydroxypyrene in liposome suspensions has been studied. The high partition coefficient value of 1-hydroxypyrene indicates an easy incorporation of the molecule into the lipid bilayer. Detailed pH studies indicate that only the neutral form of 1-hydroxypyrene partitions into the membrane and appreciable spectral changes are observed in the pH range of 9.0-11.5 in Tris-NaOH buffer. However, at pH 11 the spectral changes are maximum. The possibility of using 1-hydroxypyrene as a fluorescent molecular probe for lipid bilayer membranes in alkaline media has been examined, by employing fluorescence intensity and fluorescence anisotropy as probe parameters. The neutral form fluorescence intensity as well as fluorescence anisotropy is sensitive to the changes in the membrane properties and is capable of sensing the phase-transition. This is also capable of monitoring the changes in the membrane due to incorporation of cholesterol and the ethanol-induced interdigitation. The time resolved fluorescence data and the quenching experiments show that 1-hydroxypyrene occupies the water inaccessible interior of the liposome. The high anisotropy value of 1-hydroxypyrene in liposome suggests that it resides in a considerably rigid environment and is very sensitive to the temperature-induced changes in the liposome.
Collapse
Affiliation(s)
- Usharani Subuddhi
- Department of Chemistry, Indian Institute of Technology-Madras, Chennai, 36, India
| | | |
Collapse
|
25
|
Li XM, Momsen MM, Brockman HL, Brown RE. Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophys J 2004; 85:3788-801. [PMID: 14645069 PMCID: PMC1303681 DOI: 10.1016/s0006-3495(03)74794-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Membrane microdomains, such as caveolae and rafts, are enriched in cholesterol and sphingomyelin, display liquid-ordered phase properties, and putatively function as protein organizing platforms. The goal of this investigation was to identify sterol and sphingomyelin structural features that modulate surface compression and solubilization by detergent because liquid-ordered phase displays low lateral elasticity and resists solubilization by Triton X-100. Compared to cholesterol, sterol structural changes involved either altering the polar headgroup (e.g., 6-ketocholestanol) or eliminating the isooctyl hydrocarbon tail (e.g., 5-androsten-3beta-ol). Synthetic changes to sphingomyelin resulted in homogeneous acyl chains of differing length but of biological relevance. Using a Langmuir surface balance, surface compressional moduli were assessed at various surface pressures including those (pi > or =30 mN/m) that mimic biomembrane conditions. Sphingomyelin-sterol mixtures generally were less elastic in a lateral sense than chain-matched phosphatidylcholine-sterol mixtures at equivalent high sterol mole fractions. Increasing content of 6-ketocholestanol or 5-androsten-3beta-ol in sphingomyelin decreased lateral elasticity but much less effectively than cholesterol. Our results indicate that cholesterol is ideally structured for maximally reducing the lateral elasticity of membrane sphingolipids, for enabling resistance to Triton X-100 solubilization, and for interacting with sphingomyelins that contain saturated acyl chains similar in length to their sphingoid bases.
Collapse
Affiliation(s)
- Xin-Min Li
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912-3698, USA
| | | | | | | |
Collapse
|
26
|
Barenholz Y. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell Biochem 2004; 37:167-215. [PMID: 15376621 DOI: 10.1007/978-1-4757-5806-1_5] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The preferential sphingomyelin-cholesterol interaction which results from the structure and the molecular properties of these two lipids seems to be the physicochemical basis for the formation and maintenance of cholesterol/sphingolipid-enriched nano- and micro-domains (referred to as membrane "rafts") in the plane of plasma and other organelle (i.e., Golgi) membranes. This claim is supported by much experimental evidence and also by theoretical considerations. However, although there is a large volume of information about these rafts regarding their lipid and protein composition, their size, and their dynamics, there is still much to be clarified on these issues, as well as on how rafts are formed and maintained. It is well accepted now that the lipid phase of the rafts is the liquid ordered (LO) phase. However, other (non-raft) parts of the membrane may also be in the LO phase. There are indications that the raft LO phase domains are more tightly packed than the non-raft LO phase, possibly due to intermolecular hydrogen bonding involving sphingolipid and cholesterol. This also explains why the former are detergent-resistant membranes (DRM), while the non-raft LO phase domains are detergent-soluble (sensitive) membranes (DSM). Recent findings suggest that protein-protein interactions such as cross-linking can be controlled by protein distribution between raft and non-raft domains, and, as well, these interactions affect raft size distribution. The cholesterol/sphingomyelin-enriched rafts seem to be involved in many biological processes, mediated by various receptors, as exemplified by various lipidated glycosylphosphatidylinositol (GPI)- and acyl chain-anchored proteins that reside in the rafts. The rafts serve as signaling platforms in the cell. Various pathogens (viruses and toxins) utilize the raft domains on the host cell membrane as a port of entry, site of assembly (viruses), and port of exit (viral budding). Existence and maintenance of cholesterol-sphingomyelin rafts are dependent on the level of membrane cholesterol and sphingomyelin. This explains why reduction of cholesterol level--either through reverse cholesterol transport, using cholesterol acceptors such as beta-cyclodextrin, or through cholesterol biosynthesis inhibition using statins--interferes with many processes which involve rafts and can be applied to treating raft-related infections and diseases. Detailed elucidation of raft structure and function will improve understanding of biological membrane composition-structure-function relationships and also may serve as a new avenue for the development of novel treatments for major diseases, including viral infections, neurodegenerative diseases (Alzheimer's), atherosclerosis, and tumors.
Collapse
Affiliation(s)
- Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, The Hebrew University--Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
27
|
Epand RM, Hughes DW, Sayer BG, Borochov N, Bach D, Wachtel E. Novel properties of cholesterol–dioleoylphosphatidylcholine mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:196-208. [PMID: 14561477 DOI: 10.1016/j.bbamem.2003.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern. At molar fraction cholesterol 0.6 and higher and at temperatures above 70 degrees C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry, McMaster University, Health Sciences Center, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | | | |
Collapse
|
28
|
Niu SL, Litman BJ. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys J 2002; 83:3408-15. [PMID: 12496107 PMCID: PMC1302415 DOI: 10.1016/s0006-3495(02)75340-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.
Collapse
Affiliation(s)
- Shui-Lin Niu
- Section of Fluorescence Studies, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism/NIH, 12420 Parklawn Drive, Rockville, MD 20852 USA
| | | |
Collapse
|
29
|
Wang MM, Sugar IP, Chong PLG. Effect of Double Bond Position on Dehydroergosterol Fluorescence Intensity Dips in Phosphatidylcholine Bilayers with Saturated sn-1 and Monoenoic sn-2 Acyl Chains. J Phys Chem B 2002. [DOI: 10.1021/jp020585e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mei Mei Wang
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, and Departments of Biomathematical Sciences and Physiology & Biophysics, Mount Sinai Medical Center, New York, New York 10029
| | - Istvan P. Sugar
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, and Departments of Biomathematical Sciences and Physiology & Biophysics, Mount Sinai Medical Center, New York, New York 10029
| | - Parkson Lee-Gau Chong
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, and Departments of Biomathematical Sciences and Physiology & Biophysics, Mount Sinai Medical Center, New York, New York 10029
| |
Collapse
|
30
|
Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:39-53. [PMID: 10930507 DOI: 10.1016/s0005-2736(00)00196-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have employed four lipids in the present study, of which two are cationic and two bear phosphatidylcholine (PC) headgroups. Unlike dipalmitoylphosphatidylcholine, the other lipids employed herein do not have any ester linkage between the hydrocarbon chains and the respective lipid backbones. Small unilamellar vesicles formed from each of the PC and cationic lipids with or without varying amounts of cholesterol have been examined using the steady-state fluorescence anisotropy method as a function of temperature. The anisotropy data clearly indicate that the order in the lipid bilayer packing is strongly affected upon inclusion of cholesterol. This effect is similar irrespective of the electrostatic character of the lipid employed. The influence of cholesterol inclusion on multi-lamellar lipid dispersions has also been examined by 1H-nuclear magnetic resonance spectroscopy above the phase transition temperatures. With all the lipids, the line widths of (CH2)n protons of hydrocarbon chains in the NMR spectra respond to the addition of cholesterol to membranes. The influence on the bilayer widths of various lipids upon inclusion of cholesterol was determined from X-ray diffraction studies of the cast films of the lipid-cholesterol coaggregates in water. The effect of cholesterol on the efflux rates of entrapped carboxyfluorescein (CF) from the phospholipid vesicles was determined. Upon incremental incorporation of cholesterol into the phospholipid vesicles, the CF leakage rates were progressively reduced. Independent experiments measuring transmembrane OH- ion permeation rates from cholesterol-doped cationic lipid vesicles using entrapped dye riboflavin also demonstrated that the addition of cholesterol into the cationic lipid vesicles reduced the leakage rates irrespective of lipid molecular structure. It was found that the cholesterol induced changes on the membrane properties such as lipid order, linewidth broadening, efflux rates, bilayer widths, etc., did not depend on the ability of the lipids to participate in the hydrogen bonding interactions with the 3beta-OH of cholesterol. These findings emphasize the importance of hydrophobic interaction between lipid and cholesterol and demonstrate that it is not necessary to explain the observed cholesterol induced effects on the basis of the presence of hydrogen bonding between the 3beta-OH of cholesterol and the lipid chain-backbone linkage region or headgroup region.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore.
| | | |
Collapse
|
31
|
Massey JB. Effect of cholesteryl hemisuccinate on the interfacial properties of phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:193-204. [PMID: 9858729 DOI: 10.1016/s0005-2736(98)00194-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholesteryl hemisuccinate (CHEMS) is an amphipathic lipid that can regulate cell growth. A comparison of the effects of CHEMS and cholesterol on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers was investigated using fluorescence techniques. In liquid-crystalline phase POPC bilayers, CHEMS increased the interfacial surface charge, but was less effective than cholesterol in reducing acyl chain mobility and interfacial hydration. In liquid-crystalline phase DPPC bilayers, CHEMS and cholesterol were equally effective in reducing acyl chain mobility. Similar to the POPC matrix, CHEMS increased the interfacial surface charge and cholesterol decreased the surface hydration. The different effect of cholesterol and CHEMS on acyl chain mobility may be due to a preferential interaction of cholesterol with POPC. In gel phase DPPC bilayers, CHEMS and a succinylated pyrenyl cholesterol analog exhibited different effects on membrane physical-chemical properties than cholesterol. Succinylation also increased the rate of transfer of the pyrenyl cholesterol analog between single unilamellar vesicles approximately seven fold. This process demonstrated first-order kinetics which indicated that transbilayer migration was not a rate-limiting step. The succinylation of cholesterol places a carboxyl group at the lipid-water interface and the sterol ring deeper in the bilayer. For a structural model to explain its biological properties, CHEMS should be considered a bulky fatty acid.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine and The Methodist Hospital, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Schofield M, Jenski LJ, Dumaual AC, Stillwell W. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid. Chem Phys Lipids 1998; 95:23-36. [PMID: 9807808 DOI: 10.1016/s0009-3084(98)00065-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The important omega-3 fatty acid docosahexaenoic acid (DHA) is present at high concentration in some membranes that also contain the unusual sterol cholesterol sulfate (CS). The association between these lipids and their effect on membrane structure is presented here. Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes. By DSC, CS decreases the main phase transition temperature and broadens the transitions of dipalmitolyphosphatidylcholine (DPPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1 PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6 PC) to a much larger extent than does cholesterol. In addition CS produces a three-component transition in 18:0,18:1 PC bilayers that is not seen with cholesterol. In a mixed phospholipid bilayer composed of 18:0,18:1 PC/18:0,22:6 PC (1:1, mol/mol), CS at 2.5 membrane mol% or more induces lateral phase separation while cholesterol does not. CS decreases lipid packing density and increases permeability of 18:0,18:1 PC and 18:0,22:6 PC bilayers to a much larger extent than cholesterol. CS disrupts oleic acid-containing bilayers more than those containing DHA. Molecular modeling confirms that the anionic sulfate moiety on CS renders this sterol more polar than cholesterol with the consequence that CS likely resides higher (extends further into the aqueous environment) in the bilayer. CS can therefore be preferentially accommodated into DHA-enriched bilayers where its tetracyclic ring system may fit into the delta 4 pocket of DHA, a location excluded to cholesterol. It is proposed that CS may in part replace the membrane function of cholesterol in DHA-rich membranes.
Collapse
Affiliation(s)
- M Schofield
- Department of Biology, Indiana University-Purdue University at Indianapolis 46202-5132, USA
| | | | | | | |
Collapse
|
33
|
Mitchell DC, Litman BJ. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J 1998; 75:896-908. [PMID: 9675190 PMCID: PMC1299763 DOI: 10.1016/s0006-3495(98)77578-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effect of cholesterol on phospholipid acyl chain packing in bilayers consisting of highly unsaturated acyl chains in the liquid crystalline phase was examined for a series of symmetrically and asymmetrically substituted phosphatidylcholines (PCs). The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic structural properties of bilayers containing 30 mol % cholesterol. The bilayers were composed of symmetrically substituted PCs with acyl chains of 14:0, 18:1n9, 20:4n6, or 22:6n3, containing 0, 1, 4, or 6 double bonds, respectively, and mixed-chain PCs with a saturated 16:0 sn-1 chain and 1, 4, or 6 double bonds in the sn-2 chain. DPH excited-state lifetime was fit to a Lorentzian lifetime distribution, the center of which was increased 1-2 ns by 30 mol % cholesterol relative to the cholesterol-free bilayers. Lifetime distributions were dramatically narrowed by the addition of cholesterol in all bilayers except the two consisting of dipolyunsaturated PCs. DPH anisotropy decay was interpreted in terms of the Brownian rotational diffusion model. The effect of cholesterol on both the perpendicular diffusion coefficient D perpendicular and the orientational distribution function f(theta) varied with acyl chain unsaturation. In all bilayers, except the two dipolyunsaturated PCs, 30 mol % cholesterol dramatically slowed DPH rotational motion and restricted DPH orientational freedom. The effect of cholesterol was especially diminished in di-22:6n3 PC, suggesting that this phospholipid may be particularly effective at promoting lateral domains, which are cholesterol-rich and unsaturation-rich, respectively. The results are discussed in terms of a model for lipid packing in membranes containing cholesterol and PCs with highly unsaturated acyl chains.
Collapse
Affiliation(s)
- D C Mitchell
- Section of Fluorescence Studies, Laboratory of Membrane Biophysics and Biochemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852 USA.
| | | |
Collapse
|
34
|
Dimitrov OA, Lalchev ZI. Interaction of sex hormones and cholesterol with monolayers of dipalmitoylphosphatidylcholine in different phase state. J Steroid Biochem Mol Biol 1998; 66:55-61. [PMID: 9712412 DOI: 10.1016/s0960-0760(98)00002-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interactions of estradiol, progesterone, testosterone and cholesterol with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air/water interface using Wilhelmy-Tensiometer were studied by measuring the change of the monolayer surface tension gamma (mN/m). In order to estimate the role of DPPC phase state on the deltagamma effects the experiments were carried out at three temperatures: 37 degrees C, 41.5 degrees C and 47 degrees C, since at 37 degrees C and 47 degrees C the formation of ripple gel Pbeta and liquid-crystalline Lalpha DPPC phases respectively were realized. Surface tension lowering capacity of the individual components at the air/water interface decreases in the order cholesterol>estradiol>progesterone>testosterone. The surface tension decrease of previously formed DPPC monolayer after addition of cholesterol and hormones follows the order cholesterol>>estradiol>progesterone approximately = testosterone. The higher activity of cholesterol and estradiol is interpreted by the existence of hydroxyl group in the steroid A-ring and hydrocarbon chain in the cholesterol structure and the same hydroxyl group in the estradiol, with possible formation of hydrogen bond between this group and the C=O group of the DPPC. It is shown that the existence of C-H chain in the molecular structure is stronger determinant than the OH group regarding the interactions with the DPPC monolayers. The very low capacity of progesterone and testosterone to interact with the DPPC monolayer is explained by the lack of the C-H chain and OH group in their structures. It was shown that the interaction forces of the steroids studied with DPPC monolayers were dependent on the DPPC phase state, being in any conditions stronger in the Lalpha (47 degrees C) than in Pbeta (37 degrees C) phase. At 41.5 degrees C more complex behavior of the components at the monolayers was observed. The obtained results could serve the concept of regulated entry of the steroid sex hormones into the cells with the participation of the lipid membrane components.
Collapse
Affiliation(s)
- O A Dimitrov
- Department of Human and Animal Physiology, Sofia University St. Kliment Ohridski, Faculty of Biology, Bulgaria
| | | |
Collapse
|
35
|
Mizushima H, Fukasawa J, Suzuki T. Intermolecular Interaction between a Synthetic Pseudoceramide and a Sterol-Combined Fatty Acid. J Colloid Interface Sci 1997; 195:156-63. [PMID: 9441616 DOI: 10.1006/jcis.1997.5153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To better understand the phase behavior of a pseudoceramide (SLE), a potential skin moisturizer and/or a drug carrier, we investigated the lipid-lipid interaction between SLE and a sterol-combined fatty acid (CEOS), which has a sterol ring and a carboxyl group in a molecule. X-ray analysis showed that a hexagonal packing (4.15 A spacing) and a liquid-like packing (4.5 A spacing) coexisted within the hydrocarbon chains of the SLE/CEOS (1/1 mole) lipid mixture. The structural characteristics were very similar to those of the SLE/stearic acid/cholesterol (1/1/1 mole) system, which was in a stable lamellar alpha-phase. However, in the SLE/stearic acid (1/1 mole) system, there was only a strong hexagonal reflection in the wide-angle X-ray profile. The melting enthalpy (23.9 kJ mol-1) and entropy (75.0 J mol-1 K-1) of the SLE/CEOS system were also smaller than those (DeltaHm = 43.9 kJ mol-1, DeltaSm = 131.6 J mol-1 K-1) of the SLE/stearic acid system. The X-ray data along with the DSC results suggested that the sterol ring of CEOS molecule contributed to the enhancement of molecular motion or the decrease in the molecular packing of lipids. A strong hydrogen bond between the carboxyl group of CEOS and the amide group of SLE molecule was also considered to be important for the formation of the stable alpha-phase, as suggested by FT-IR spectroscopy. Further, in the presence of water, the three artificial SC lipids, SLE/CEOS (1/1 mole), SLE/stearic acid/cholesterol (1/1/1 mole), and SLE/stearic acid (1/1 mole), were all capable of forming lamellar structures. Copyright 1997 Academic Press. Copyright 1997Academic Press
Collapse
Affiliation(s)
- H Mizushima
- Wakayama Research Laboratories, Kao Corporation, 1334 Minato, Wakayama, 640, Japan
| | | | | |
Collapse
|
36
|
Bittman R. Has nature designed the cholesterol side chain for optimal interaction with phospholipids? Subcell Biochem 1997; 28:145-71. [PMID: 9090294 DOI: 10.1007/978-1-4615-5901-6_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R Bittman
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing 11367-1597, USA
| |
Collapse
|
37
|
Bhattacharya S, Haldar S. The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1283:21-30. [PMID: 8765090 DOI: 10.1016/0005-2736(96)00064-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small unilamellar vesicles formed from four cationic lipids in the absence and the presence of varying amounts of cholesterol were studied using fluorescence polarization and 1H-NMR techniques. The fluorescence polarization data clearly indicate that the packing order in the cationic lipid bilayers are affected by inclusion of cholesterol. Importantly, this effect exists also with a cationic lipid that is devoid of any formal linkage region where the interaction of the lipid with cholesterol through hydrogen bonding is not feasible. The interactions of cholesterol with different types of cationic lipids in excess water have also been examined in multilamellar dispersions using proton magnetic resonance spectroscopy. In all the cases, the methylene proton linewidths in the NMR spectra respond to the addition of cholesterol to vesicles. Hydrophobic association of the lipid and cholesterol imposes restriction on the chain (CH2)n motions, leaving the terminal CH3 groups relatively mobile. On the basis of energy-minimized structural models, a rationale of the cholesterol-cationic lipid assembly has also been presented.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
38
|
Bose S, Feix J, Seetharam S, Seetharam B. Dimerization of transcobalamin II receptor. Requirement of a structurally ordered lipid bilayer. J Biol Chem 1996; 271:11718-25. [PMID: 8662615 DOI: 10.1074/jbc.271.20.11718] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcobalamin II receptor (TC II-R) exists as a monomer and a dimer of molecular masses of 62 and 124 kDa in the microsomal and plasma membranes, respectively, and in vitro, pure TC II-R monomer dimerizes upon insertion into egg PC/cholesterol (molar ratio, 4:1) liposomes (Bose, S., Seetharam, S., and Seetharam, B. (1995) J. Biol Chem. 270, 8152-8157 and Bose, S., Seetharam, S., Hammond, T., and Seetharam, B. (1995) Biochem. J. 310, 923-929). The current studies were carried out to define the mechanism of TC II-R dimerization. Both the mature TC II-R (62 kDa) and the enzymatically deglycosylated TC II-R (45-47 kDa) demonstrated optimal association and formed dimers of molecular masses of 95 and 124 kDa, respectively, at 22 degrees C when bound to egg PC vesicles containing at least 10 mol % of cholesterol. Mature TC II-R dimerized upon insertion into synthetic phosphatidylcholine vesicles of different fatty acyl chain length (dimyristoyl, dipalmitoyl, and disteroyl phosphatidylcholine) in the absence or the presence of cholesterol at temperatures below or above their transition temperatures, respectively. Dimerization of TC II-R also occurred with vesicles prepared using lipid extract from the plasma but not microsomal membranes. Cholesterol depletion of native intestinal plasma membranes or its enrichment in the microsomal membranes resulted in the in situ conversion of the 124-kDa dimer to the 62-kDa monomer or of the monomer into the dimer form, respectively. Treatment of plasma membranes with phospholipase A2 resulted in the conversion of the dimer form of the receptor to the monomer form and spin label studies using 1-palmitoyl, 12 doxylsteroyl phosphatidylcholine revealed that interactions of TC II-R with PC vesicles increased order around the probe. Based on these results we suggest that dimerization of TC II-R is mediated by its interactions with a rigid more ordered lipid bilayer membrane, is regulated in plasma membranes by cholesterol levels, and is independent of glycosylation-mediated folding.
Collapse
Affiliation(s)
- S Bose
- Department of Biochemistry, Medical College of Wisconsin and Veterans Administration Medical Center, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
39
|
Vilchèze C, McMullen TP, McElhaney RN, Bittman R. The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1279:235-42. [PMID: 8603092 DOI: 10.1016/0005-2736(95)00258-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we have examined the effects of analogues of cholesterol differing with respect to alkyl side-chain length and structure on the thermotropic phase behavior of bilayers formed from 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), an important subclass of naturally occurring phosphatidylcholines (PCs). The synthetic sterols we studied contained either a terminally unbranched (n-series) or a single methyl-branched (iso-series) side chain of 3 to 10 carbon atoms. The phase transition behavior was examined by high-sensitivity differential scanning calorimetry (DSC). The main phase transition endotherm of SOPC/sterol bilayers consists of superimposed sharp and broad components, which represent the hydrocarbon chain melting of sterol-poor and sterol-rich phospholipid domains, respectively. The transition temperature and the cooperativity of the sharp component are moderately reduced upon sterol incorporation and the enthalpy decreases to zero when sterol levels of 20-30 mol% are reached. The enthalpy of the broad component transition initially increases to a maximum around 25 or 25-30 mol% sterol and thereafter decreases with further increases in sterol concentration. However, the broad transition of SOPC bilayers containing both short (C-22, i-C5 and n-C3) and long (i-C9 and i-C10) side-chain sterols still persists at levels of 50 mol% sterol. Thus the effective stoichiometry of SOPC-sterol interactions varies with changes in sterol alkyl side-chain length. The incorporation of short linear or branched side-chain sterols (C-22, n-C3, n-C4, i-C5) causes the broad component transition temperature and cooperativity to decrease dramatically, whereas the incorporation of medium- and long-chain sterols in both the n- and iso-series has less effect on the transition temperature and cooperativity of the broad component. Overall, no significant differences were found between the n- and iso-series sterols for a given side-chain length. A comparison of the phase behavior of dipalmitoylphosphatidylcholine (DPPC)/sterol (McMullen et al. (1995) Biophys. J. 69, 169-176) and SOPC/sterol mixtures indicates that the primary factor responsible for changes in the thermotropic phase behavior of these systems is the extent of the hydrophobic mismatch between the sterol and the host lipid bilayer. However, sterol miscibility in PC bilayers, and thus the stoichiometry of lipid-sterol interactions, also appears to depend on the degree of unsaturation of the host lipid bilayer.
Collapse
Affiliation(s)
- C Vilchèze
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, 11367-1597, USA
| | | | | | | |
Collapse
|
40
|
Slotte JP. Effect of sterol structure on molecular interactions and lateral domain formation in monolayers containing dipalmitoyl phosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1237:127-34. [PMID: 7632705 DOI: 10.1016/0005-2736(95)00096-l] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular associations between different sterols and dipalmitoyl phosphatidylcholine (DPPC) were examined in monolayers at the air/water interface. The sterols examined included cholesterol, 5-cholesten-3- one, 4-cholesten-3 beta-ol, 4-cholesten-3-one, cholesteryl acetate, and cholesteryl methyl-and ethyl ether. Information about the long-range order in pure sterol monolayers, as well as lateral domain-formation in mixed sterol/DPPC monolayers was obtained from the lateral miscibility or distribution of NBD-cholesterol (present at 0.5 mol%), as determined by monolayer epifluorescence microscopy. It was observed that the miscibility of NBD-cholesterol with the host sterol was limited in all monolayers except those of 5-cholesten-3-one and 4-cholesten-3-one, suggesting that only these monolayers lacked a long-range order present in the other sterol monolayers. Note that the term long-range order does not necessarily imply that the monolayer is solid. In mixed monolayers containing 3 beta-OH sterols and DPPC, cholesterol formed laterally condensed domains whereas 4-cholesten-3 beta-ol did not. This finding suggest that the sterols/DPPC interaction is sensitive to the position of the double-bond of the sterol molecule (delta 5 versus delta 4). Neither of the 3-keto sterols formed laterally condensed domains with DPPC. Cholesteryl acetate, however, formed lateral domains with DPPC which were in part similar to those seen in the cholesterol/DPPC system. The domains formed were circular, indicating their fluid nature. Mixed monolayers containing either of the ether sterol derivatives failed to produce clearly defined condensed domains with DPPC, although both mixed monolayers had a surface texture which suggested some degree of nonuniform distribution of the fluorescent probe. In summary, these novel results directly demonstrate the selective importance of both the delta 5 double bond, as well as of specific functional groups at the 3-position, for the molecular association with DPPC, and consequently for the formation of sterol/phospholipid-rich lateral domains.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
41
|
Ghosh PK, Mukherjea M. Increase in fluidity of human placental syncytiotrophoblastic brush-border membrane with advancement of gestational age: a fluorescence polarization study. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1236:317-22. [PMID: 7794971 DOI: 10.1016/0005-2736(95)00066-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The syncytiotrophoblastic brush-border membrane (BBM) of human placenta plays a vital role in the exchange of metabolites between mother and developing fetus. The fluidity of this membrane renders its selective permeable character. To meet the changing needs of the growing fetus with the progress of gestational age changes in the composition and properties of BBM occur. In the present study, decrease in cholesterol/phospholipid ratio of BBM indicated an increase in fluidity with advancement of gestational age. Measurement of the steady state fluorescence anisotropy of labeled liposomes prepared from lipid extract of BBM as well as that of labeled BBM vesicles prepared from native BBM shows decrease in restriction of the bound dye molecule with increased gestational age. Decrease in transition temperature of BBM and enhanced glucose transport through it have been observed with advancement of pregnancy.
Collapse
Affiliation(s)
- P K Ghosh
- Department of Biochemistry, University College of Science, Calcutta, India
| | | |
Collapse
|
42
|
Mason RP. Differential effect of cholesterol on membrane interaction of charged versus uncharged 1,4-dihydropyridine calcium channel antagonists: A biophysical analysis. Cardiovasc Drugs Ther 1995. [DOI: 10.1007/bf00878572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Mason RP. Probing membrane bilayer interactions of 1,4-dihydropyridine calcium channel blockers. Implications for aging and Alzheimer's disease. Ann N Y Acad Sci 1994; 747:125-39. [PMID: 7847667 DOI: 10.1111/j.1749-6632.1994.tb44405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The results of this study demonstrate that the equilibrium nonspecific binding of DHP Ca2+ channel blockers to the membrane bilayer is highly dependent on cholesterol content. The molecular explanation for this observation appears to be related to the fact that cholesterol and DHPs occupy a similar molecular location in the membrane hydrocarbon core (Fig. 4). The membrane location of amlodipine may also be critical for subsequent receptor recognition and binding to voltage-sensitive Ca2+ channels in peripheral and CNS tissue. Finally, changes in the cholesterol content of neural plasma membranes isolated from diseased cortical regions of subjects with AD were reported and may be indicative of a general defect in lipid metabolism. Further studies are underway to characterize in greater detail possible changes in cholesterol content with aging and AD. The implication of these changes for structure/function relationships in the membrane is also being explored.
Collapse
Affiliation(s)
- R P Mason
- Neurosciences Research Center, Medical College of Pennsylvania, Pittsburgh 15212-4772
| |
Collapse
|
44
|
Stillwell W, Ehringer WD, Dumaual AC, Wassall SR. Cholesterol condensation of alpha-linolenic and gamma-linolenic acid-containing phosphatidylcholine monolayers and bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1214:131-6. [PMID: 7918592 DOI: 10.1016/0005-2760(94)90036-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholesterol is demonstrated to condense phosphatidylcholine (PC) monolayers and bilayers containing stearic acid in the sn-1 position and alpha-linolenic acid in the sn-2 position (18:0, alpha-18:3 PC) but has no effect when gamma-linolenic acid occupies the sn-2 position (18:0,gamma-18:3 PC). Cholesterol-induced condensation is measured by area/molecule determinations made on monolayers using a Langmuir trough, while condensation in bilayers is followed by the fluorescent dyes merocyanine (MC540) and dansyllysine. Permeability to erythritol is also demonstrated to be diminished by cholesterol for the condensable 18:0,alpha-18:3 PC bilayer membranes but not the 18:0,gamma-18:3 PC membranes. alpha- and gamma-linolenic acid are isomers containing 18 carbons and three unsaturations. Both fatty acids have unsaturations at positions 9 and 12 and differ only in the location of the third unsaturation, at either position 6 for gamma-linolenic acid (an omega-6 fatty acid) and at position 15 for alpha-linolenic acid (an omega-3 fatty acid). Here lipid-cholesterol interaction is used to distinguish the effect of position of unsaturation on membrane structure.
Collapse
Affiliation(s)
- W Stillwell
- Department of Biology, Indiana University-Purdue University Indianapolis 46202-5132
| | | | | | | |
Collapse
|
45
|
Li S, Lin HN, Wang ZQ, Huang C. Identification and characterization of kink motifs in 1-palmitoyl-2-oleoyl- phosphatidylcholines: a molecular mechanics study. Biophys J 1994; 66:2005-18. [PMID: 8075334 PMCID: PMC1275925 DOI: 10.1016/s0006-3495(94)80993-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As a cis carbon-carbon double bond (delta) is introduced into the middle of an isolated all-trans hydrocarbon chain, it can be shown by molecular graphics that this delta-bond makes a bend of 130 degrees in the chain axis, thus producing a boomerang-like conformation. Such a bent structure, indeed, has been detected experimentally for oleic acid by x-ray crystallography (Abrahamson and Ryderstedt-Nahringbaur, 1962). Membrane diacyl phospholipids are largely mixed-chain lipids containing a saturated sn-1 acyl chain and an unsaturated sn-2 acyl chain. 1-Palmitoyl-2-oleoyl-phosphatidylcholine (POPC), the most abundant phospholipid in animal cell membranes, is a typical example in which the sn-2 acyl chain is the acyl chain of an oleic acid. However, this sn-2 acyl chain of POPC is unlikely to adopt a boomerang-like configuration in the gel-state lipid bilayer due to the steric hindrance imposed by neighboring chains. Instead, it has been suggested that the oleate chain in POPC is kinked in the shape of a crankshaft in the gel-state bilayer (Huang, 1977; Lagaly et al., 1977), because POPC with such a kinked sn-2 acyl chain, which is denoted here as the secondary structural element or motif, can pack efficiently against other neighboring phospholipids. In this communication, 16 different types of secondary structural elements or motifs are derived for POPC at T < Tm based on a single protocol guided by two-dimensional steric contour maps and computer-based molecular graphics. After subjecting these derived molecular species to energy minimization using the molecular mechanics method, the number of the secondary structural motifs is reduced to 13 as a result of conformational degeneracy. The structure and steric energy of each of the energy-minimized lipid rotomers are presented in this communication. Furthermore, these rotomers packed in small clusters are also simulated to mimic the lipid bilayer structure of 1-palmitoyl-2-oleoyl-phosphatidylcholines at T < Tm.
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry, University of Virginia, Charlottesville 22908
| | | | | | | |
Collapse
|
46
|
Vanderkooi G. Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization. Biophys J 1994; 66:1457-68. [PMID: 8061195 PMCID: PMC1275866 DOI: 10.1016/s0006-3495(94)80936-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The energetically preferred structures of dimyristoylphosphatidylcholine (DMPC)-cholesterol bilayers were determined at a 1:1 mole ratio. Crystallographic symmetry operations were used to generate planar bilayers of cholesterol and DMPC. Energy minimization was carried out with respect to bond rotations, rigid body motions, and the two-dimensional lattice constants. The lowest energy structures had a hydrogen bond between the cholesterol hydroxyl and the carbonyl oxygen of the sn-2 acyl chain, but the largest contribution to the intermolecular energy was from the nonbonded interactions between the flat alpha surface of cholesterol and the acyl chains of DMPC. Two modes of packing in the bilayer were found; in structure A (the global minimum), unlike molecules are nearest neighbors, whereas in structure B (second lowest energy) like-like intermolecular interactions predominate. Crystallographic close packing of the molecules in the bilayer was achieved, as judged from the molecular areas and the bilayer thickness. These energy-minimized structures are consistent with the available experimental data on mixed bilayers of lecithin and cholesterol, and may be used as starting points for molecular dynamics or other calculations on bilayers.
Collapse
Affiliation(s)
- G Vanderkooi
- Department of Chemistry, Northern Illinois University, DeKalb 60115
| |
Collapse
|
47
|
Liu K, Pierce GN. The Modulation of Membrane Ion Movements by Cholesterol. MEMBRANE PHYSIOPATHOLOGY 1994. [DOI: 10.1007/978-1-4615-2616-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Wolf DE. Microheterogeneity in Biological Membranes. CURRENT TOPICS IN MEMBRANES 1994. [DOI: 10.1016/s0070-2161(08)60980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
49
|
Higinbotham J, Beswick PH, Malcolmson RJ, Reed D, Parkinson JA, Sadler IH. 13C-NMR determination of the molecular dynamics of cholesterol in dimyristoylphosphatidylcholine vesicles. Chem Phys Lipids 1993; 66:1-11. [PMID: 8118912 DOI: 10.1016/0009-3084(93)90025-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using 13C-NMR measurements of T1, T2 and the nuclear Overhauser enhancement factor at 50.32, 90.56 and 150.87 MHz, we have measured the dynamics of cholesterol in dimyristoylphosphatidylcholine (DMPC) vesicles from 28 to 50 degrees C. Using the model-free approach of Lipari and Szabo, we have found that at 37 degrees C the motion of the rigid steroid ring can be described by an equal contribution from two effective motions with correlation times of 63 and 0.85 ns. The C26 and C27 carbon atoms of cholesterol were found to have an effective correlation time of 8 +/- 2 ps and a value for the square of the generalised order parameter of 0.03 +/- 0.01. The corresponding values for the C25 carbon atom were 17 +/- 4 ps and 0.09 +/- 0.02, showing slower motion and greater order for this carbon atom, which is nearer to the rigid steroid ring. Apart from the effect of vesicle size on T2, no concentration dependence of the dynamics of cholesterol was detected over the cholesterol concentration range 2-30 mol%. The order parameters and correlation times from the present 13C-NMR experiments are shown to be compatible with those from 2H-NMR experiments. This establishes the validity of the present approach, which we are currently extending to low concentrations of cholesteryl oleate in DMPC vesicles.
Collapse
Affiliation(s)
- J Higinbotham
- Department of Applied Chemical and Physical Sciences, Napier University, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
50
|
Li S, Wang ZQ, Lin HN, Huang C. Energy-minimized structures and packing states of a homologous series of mixed-chain phosphatidylcholines: a molecular mechanics study on the diglyceride moieties. Biophys J 1993; 65:1415-28. [PMID: 8274635 PMCID: PMC1225868 DOI: 10.1016/s0006-3495(93)81205-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphatidylcholines or C(X):C(Y)PC, quantitatively the most abundant lipids in animal cell membranes, are structurally composed of two parts: a headgroup and a diglyceride. The diglyceride moiety consists of the glycerol backbone and two acyl chains. It is the wide diversity of the acyl chains, or the large variations in X and Y in C(X):C(Y)PC, that makes the family of phosphatidylcholines an extremely complex mixture of different molecular species. Since most of the physical properties of phospholipids with the same headgroup depend strongly on the structures of the lipid acyl chains, the energy-minimized structure and steric energy of each diglyceride moiety of a series of 14 molecular species of phosphatidylcholines with molecular weights identical to that of dimyristoylphosphatidylcholine without the headgroup are determined in this communication by molecular mechanics (MM) calculations. Results of two types of trans-bilayer dimer for each of the 14 molecular species of phosphatidylcholines are also presented; specifically, the dimeric structures are constructed initially based on the partially interdigitated and mixed interdigitated packing motifs followed subsequently by the energy-minimized refinement with MM calculations. Finally, tetramers with various structures to model the lateral lipid-lipid interactions in a lipid bilayer are considered. Results of laborious MM calculations show that saturated diacyl C(X):C(Y)PC with delta C/CL values greater than 0.41 prefer topologically to assemble into tetramers of the mixed interdigitated motif, and those with delta C/CL values less than 0.41 prefer to assemble into tetramers with a repertoire of the partially interdigitated motif. Here, delta C/CL, a lipid asymmetry parameter, is defined as the normalized acyl chain length difference between the sn-1 and sn-2 acyl chains for a C(X):C(Y)PC molecule; an increase in delta C/CL value is an indication of increasing asymmetry between the two lipid acyl chains. These computational results are in complete accord with the calorimetric data presented previously from this laboratory (H-n. Lin, Z-q. Wang, and C. Huang. 1991. Biochim. Biophys. Acta. 1067:17-28).
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry, University of Virginia, Charlottesville 22908
| | | | | | | |
Collapse
|