1
|
Schaefer EL, Zopyrus N, Zielinski ZAM, Facey GA, Pratt DA. On the Products of Cholesterol Autoxidation in Phospholipid Bilayers and the Formation of Secosterols Derived Therefrom. Angew Chem Int Ed Engl 2020; 59:2089-2094. [DOI: 10.1002/anie.201914637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Emily L. Schaefer
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Nadia Zopyrus
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Glenn A. Facey
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
2
|
Schaefer EL, Zopyrus N, Zielinski ZAM, Facey GA, Pratt DA. On the Products of Cholesterol Autoxidation in Phospholipid Bilayers and the Formation of Secosterols Derived Therefrom. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201914637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emily L. Schaefer
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Nadia Zopyrus
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Zosia A. M. Zielinski
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Glenn A. Facey
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie Cure Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
3
|
Reaction of ionised steryl esters with ozone in the gas phase. Chem Phys Lipids 2019; 221:198-206. [DOI: 10.1016/j.chemphyslip.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/31/2023]
|
4
|
de Oliveira VS, Ferreira FS, Cople MCR, Labre TDS, Augusta IM, Gamallo OD, Saldanha T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr Rev Food Sci Food Saf 2018; 17:1465-1483. [DOI: 10.1111/1541-4337.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Vanessa Sales de Oliveira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Maria Clara Ramos Cople
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ivanilda Maria Augusta
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ormindo Domingues Gamallo
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana Saldanha
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| |
Collapse
|
5
|
Lu B, Hu Y, Huang W, Wang M, Jiang Y, Lou T. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Sci Rep 2016; 6:27240. [PMID: 27328709 PMCID: PMC4916447 DOI: 10.1038/srep27240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu(2+), Fe(2+), Mn(2+), Zn(2+), Na(+), and Mg(2+)) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe(2+) and Cu(2+) were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe(2+) > Cu(2+) > Mn(2+) > Zn(2+) > Mg(2+) ≈ Na(+). 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe(2+) and Cu(2+), as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.
Collapse
Affiliation(s)
- Baiyi Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yinzhou Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Lou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Barriuso B, Astiasarán I, Ansorena D. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment. Food Chem 2016; 196:451-8. [DOI: 10.1016/j.foodchem.2015.09.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
|
7
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
8
|
Dantas NM, Sampaio GR, Ferreira FS, Labre TDS, Torres EAFDS, Saldanha T. Cholesterol Oxidation in Fish and Fish Products. J Food Sci 2015; 80:R2627-39. [PMID: 26555783 DOI: 10.1111/1750-3841.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Dept. of Nutrition, School of Public Health, Univ. of São Paulo (USP), Brazil - Av. Dr. Arnaldo, 715, São Paulo, SP, CEP, 01246-904, Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | | | - Tatiana Saldanha
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| |
Collapse
|
9
|
|
10
|
Poirot M, Silvente-Poirot S. Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie 2013; 95:622-31. [DOI: 10.1016/j.biochi.2012.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 12/02/2022]
|
11
|
Yin H, Xu L, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev 2011; 111:5944-72. [DOI: 10.1021/cr200084z] [Citation(s) in RCA: 1195] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiyong Yin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 2011; 164:457-68. [PMID: 21703250 DOI: 10.1016/j.chemphyslip.2011.06.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/12/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022]
Abstract
Cholesterol has many functions, including those that affect biophysical properties of membranes, and is a precursor to hormone synthesis. These actions are governed by enzymatic pathways that modify the sterol nucleus or the isooctyl tail. The addition of oxygen to the cholesterol backbone produces its derivatives known as oxysterols. In addition to having an enzymatic origin, oxysterols can be formed in the absence of enzymatic catalysis in a pathway usually termed "autoxidation," which has been known for almost a century and observed under various experimental conditions. Autoxidation of cholesterol can occur through reactions initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system and by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The susceptibility of cholesterol to non-enzymatic oxidation has raised considerable interest in the function of oxysterols as biological effectors and potential biomarkers for the non-invasive study of oxidative stress in vivo.
Collapse
|
13
|
Xu L, Korade Z, Rosado JDA, Liu W, Lamberson CR, Porter NA. An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res 2011; 52:1222-1233. [PMID: 21402677 DOI: 10.1194/jlr.m014498] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of 7-dehydrocholesterol (7-DHC) is elevated in tissues and fluids of Smith-Lemli-Opitz syndrome (SLOS) patients due to defective 7-DHC reductase. Although over a dozen oxysterols have been identified from 7-DHC free radical oxidation in solution, oxysterol profiles in SLOS cells and tissues have never been studied. We report here the identification and complete characterization of a novel oxysterol, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), as a biomarker for 7-DHC oxidation in fibroblasts from SLOS patients and brain tissue from a SLOS mouse model. Deuterated (d₇)-standards of 7-DHC and DHCEO were synthesized from d₇-cholesterol. The presence of DHCEO in SLOS samples was supported by chemical derivatization in the presence of d₇-DHCEO standard followed by HPLC-MS or GC-MS analysis. Quantification of cholesterol, 7-DHC, and DHCEO was carried out by isotope dilution MS with the d₇-standards. The level of DHCEO was high and correlated well with the level of 7-DHC in all samples examined (R = 0.9851). Based on our in vitro studies in two different cell lines, the mechanism of formation of DHCEO that involves 5α,6α-epoxycholest-7-en-3β-ol, a primary free radical oxidation product of 7-DHC, and 7-cholesten-3β,5α,6β-triol is proposed. In a preliminary test, a pyrimidinol antioxidant was found to effectively suppress the formation of DHCEO in SLOS fibroblasts.
Collapse
Affiliation(s)
- Libin Xu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235
| | - Jr Dale A Rosado
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Connor R Lamberson
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235.
| |
Collapse
|
14
|
Smith LL. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free Radic Biol Med 2004; 37:318-24. [PMID: 15223065 DOI: 10.1016/j.freeradbiomed.2004.04.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/12/2004] [Accepted: 04/22/2004] [Indexed: 11/17/2022]
Abstract
The recent account of the oxidation of tissue cholesterol by ozone created in human arterial plaques by the oxidation of water by electronically excited (singlet) dioxygen depends on the identification of the oxysterols formed and on the presumption that they are formed uniquely by ozone action. The chief oxysterols found, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3beta,5-dihydroxy-5beta-B-norcholestane-6beta-carboxaldehyde, were identified as their 2,4-dinitrophenylhydrazones by chromatographic properties and a single mass spectral ion m/z 597 interpreted as [M-H](-). Conventional identification procedures for oxysterols were not conducted. Accordingly, absent other evidence, error may exist; such errors are known in the literature. Moreover, the assertion that ozone be the only oxidant that could form the 5,6-secosterol aldehyde from cholesterol is unproven. Other equally novel unproven processes can be posed. The account of biological ozone mimics prior 30-year-old reports of singlet oxygen itself in biological systems. Lest a similar history develop for biological ozone three topics of steroid oxidation are here reviewed to aid in understanding the current matter. Caution in evaluating the account of biological ozone is warranted.
Collapse
Affiliation(s)
- Leland L Smith
- University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
15
|
Wentworth P, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, Lerner RA. Evidence for ozone formation in human atherosclerotic arteries. Science 2003; 302:1053-6. [PMID: 14605372 DOI: 10.1126/science.1089525] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Here, we report evidence for the production of ozone in human disease. Signature products unique to cholesterol ozonolysis are present within atherosclerotic tissue at the time of carotid endarterectomy, suggesting that ozone production occurred during lesion development. Furthermore, advanced atherosclerotic plaques generate ozone when the leukocytes within the diseased arteries are activated in vitro. The steroids produced by cholesterol ozonolysis cause effects that are thought to be critical to the pathogenesis of atherosclerosis, including cytotoxicity, lipid-loading in macrophages, and deformation of the apolipoprotein B-100 secondary structure. We propose the trivial designation "atheronals" for this previously unrecognized class of steroids.
Collapse
Affiliation(s)
- Paul Wentworth
- Department of Chemistry, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
17
|
Galvin K, Morrissey P, Buckley D. Effect of dietary α-tocopherol supplementation and gamma-irradiation on α-tocopherol retention and lipid oxidation in cooked minced chicken. Food Chem 1998. [DOI: 10.1016/s0308-8146(97)00208-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Wilson AM, Sisk RM, O'Brien NM. Modulation of cholestane-3 beta,5 alpha,6 beta-triol toxicity by butylated hydroxytoluene, alpha-tocopherol and beta-carotene in newborn rat kidney cells in vitro. Br J Nutr 1997; 78:479-92. [PMID: 9306888 DOI: 10.1079/bjn19970165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholesterol oxidation products (COP) have been reported to influence vital cellular processes such as cell growth, cell proliferation, membrane function and de novo sterol biosynthesis. The objectives of the present study were: (1) to develop an in vitro model using newborn rat kidney (NRK) cells to investigate the actions of COP; (2) to investigate the effect of COP on cell viability, endogenous antioxidant enzymes activities, i.e. superoxide dismutase (EC 1.15.1.1; SOD) and catalase (EC 1.11.1.6; CAT), and the extent of lipid peroxidation in this model; (3) to determine whether the addition of 100-1000 nM-alpha-tocopherol, beta-carotene or butylated hydroxytoluene (BHT) could protect against COP-induced cytotoxicity. NRK cells were cultured in the presence of various concentrations (5-50 microM) of cholesterol or cholestane-3 beta,5 alpha,6 beta-triol (cholestantriol) for a period of 24 h. Cholesterol over the range 5-50 microM did not induce cytotoxicity as indicated by the neutral-red-uptake assay or the lactate dehydrogenase (EC 1.1.1.27)-release assay. However, cell viability was compromised by the addition of > 10 microM-cholestantriol (P < 0.05). The addition of beta-carotene (100-1000 nM) did not increase cell viability significantly in cholestantriol-supplemented cells. However, the addition of alpha-tocopherol (1000 nM) and BHT (1000 nM) significantly increased percentage cell viability above that of the cholestantriol-supplemented cells but not back to control levels. SOD and CAT activities in NRK cells significantly decreased (P < 0.05) following incubation with cholestantriol. The addition of > 750 nM-alpha-tocopherol, beta-carotene or BHT returned SOD and CAT activities to that of the control. Lipid peroxidation was significantly induced (P < 0.05) in the presence of cholestantriol. Supplementation of the cells with alpha-tocopherol (250, 500 or 1000 nM) or BHT (750 or 1000 nM) resulted in a reduction in the extent of lipid peroxidation (P < 0.05). The addition of beta-carotene over the concentration range of 250-1000 nM did not reduce lipid peroxidation significantly compared with cells exposed to cholestantriol alone. These findings suggest that addition of exogenous antioxidants may be beneficial in the prevention of COP-induced toxicity in vitro.
Collapse
Affiliation(s)
- A M Wilson
- Department of Nutrition, National Food Biotechnology Centre, University College, Cork, Republic of Ireland
| | | | | |
Collapse
|
19
|
Abstract
The structures of cholesterol 3 beta-acyl ester ozonides formed by reaction with ozone in participating alcoholic solvents are established by proton and carbon-13 spectra as a 3 beta-acyloxy-7 alpha-alkoxy-(5R,7R)-5 alpha-B-homo-6-oxacholestane-5-hydroperoxides (7a, 7b), and that of the dimeric cholesterol ozonide formed in nonparticipating solvents with cholesterol acting as alcohol is established as 7 alpha-cholest-5'-en-3'-yloxy-3 beta-hydroxy-(5R,7R)-5 alpha-B-homo-6-oxacholestane-5-hydroperoxide (7c).
Collapse
Affiliation(s)
- L L Smith
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0653, USA
| | | | | |
Collapse
|
20
|
Brown AJ, Dean RT, Jessup W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37619-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
[35] Assay of cholesterol autoxidation. Methods Enzymol 1994. [DOI: 10.1016/s0076-6879(94)33038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
22
|
Abstract
The purpose of this study was to investigate the effects of temperature, oxidation time, presence of water, pH, type of buffer and form of substrate used on cholesterol oxidation. Microcrystalline cholesterol films, both solid and melted, and aqueous suspensions of film fragments were used as substrates. Use of dispersing agents was avoided. Quantitative analysis of the unaltered substrate and the products of its autoxidation was carried out by gas chromatography over the course of oxidation. Solid cholesterol films were found to be resistant to autoxidation in the dry state. However, when heated at 125 degrees C, a sudden increase in oxidation rate occurred at a point coinciding with the visible melting followed by a plateau of the oxidation rate. All of the autoxidation products formed underwent further decomposition. Film fragments of cholesterol oxidized at a faster rate in aqueous suspensions than when oxidized in the dry state. In aqueous suspensions, the differences in the resistance of cholesterol to oxidation were not significant within the pH range 6.0-7.4, except for the early stages of oxidation. The 7-ketocholesterol/7-hydroxycholesterol ratio dropped significantly with increasing pH. However, at all pH levels tested, this ratio remained relatively constant during the 6 h of heating. While the 7 beta-hydroxycholesterol/7 alpha-hydroxycholesterol ratio was not affected by pH in the range of 6.0-7.4, at pH 7.4 a high preference was observed for the cholesterol beta-epoxide over its alpha-isomer.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S K Kim
- Department of Food Science, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
23
|
|
24
|
Maerker G, Jones KC. Unusual product ratios resulting from the gamma-irradiation of cholesterol in liposomes. Lipids 1991; 26:139-44. [PMID: 2051896 DOI: 10.1007/bf02544008] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cholesterol in aqueous suspensions of multilamellar vesicles (MLV) was exposed to gamma-irradiation (0.5-10 kGy) at 0-4 degrees C. Cholesterol oxidation products resulting from the irradiation were isolated by dry column extraction followed by preparative thin-layer chromatography (TLC) and were quantitated by on-column gas chromatography (GC). The ratio of 7-ketocholesterol/cholesterol 5,6-epoxides generated by irradiation was less than one, much lower than the ratio of ten commonly produced by autoxidation. Irradiation also produced relatively higher amounts of 7-hydroxycholesterol than did autoxidation. These unique product ratios may be suitable indicators of past exposure to irradiation.
Collapse
Affiliation(s)
- G Maerker
- U.S. Department of Agriculture, Eastern Regional Research Center, Philadelphia, Pennsylvania 19118
| | | |
Collapse
|
25
|
Abstract
Current emphasis on cholesterol as agency if not cause of human atherosclerosis and subsequent cardiovascular disease ignores the essentiality of cholesterol in life processes. Additionally ignored is the ubiquitous presence of low levels of oxidized cholesterol derivatives (oxysterols) in human blood and select tissues, oxysterols also implicated in atherosclerosis. Whereas such oxysterols may be regarded putatively as agents injurious to the aorta, an alternative view of some of them is here proposed: that B-ring oxidized oxysterols of human blood represent past interception of blood and tissue oxidants in vivo by cholesterol as an ordinary aspect of oxygen metabolism. Such interception and subsequent efficient hepatic metabolism of oxysterols so formed, with biliary secretion and fecal excretion, constitute as in vivo antioxidant system. Whether cholesterol, oxysterols, oxidized lipoproteins, or oxidants in blood, singly or in concert, cause or exacerbate human atherosclerosis remains to be understood.
Collapse
Affiliation(s)
- L L Smith
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston 77550
| |
Collapse
|
26
|
|
27
|
|
28
|
Peterson AR, Peterson H, Spears CP, Trosko JE, Sevanian A. Mutagenic characterization of cholesterol epoxides in Chinese hamster V79 cells. Mutat Res 1988; 203:355-66. [PMID: 3173386 DOI: 10.1016/0165-1161(88)90032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The uptake, metabolism and alkylating properties of the diastereomeric cholesterol epoxides were studied using Chinese hamster lung fibroblasts (V79 cells). Specific emphasis is given to the comparative cyto- and geno-toxic effects of cholesterol 5 beta,6 beta-epoxide (beta CE) and cholesterol 5 alpha,6 alpha-epoxide (alpha CE) and data are provided for the first time indicating that beta CE can induce more 6-thioguanine-resistant cells than alpha CE. Cholesterol 5 beta,6 beta-epoxide induced colonies of cells resistant to 6-thioguanine at 2-3-fold the frequencies observed with the alpha-isomer, but neither compound produced ouabain-resistant colonies. The cytotoxicity (LD50) of alpha CE was estimated to be 45-50 microM whereas beta CE displayed an LD50 of 25-29 microM. Inhibition of DNA synthesis (IC50) was observed over the same dose ranges as the LD50 for each epoxide isomer. The epoxides were assimilated by cells to an equal extent, however, beta CE was metabolized to cholestane 3 beta,5 alpha-6 beta-triol twice as rapidly as the alpha-isomer. Both epoxides reacted with 4-(4'-nitrobenzyl)-pyridine to a similar extent, and with identical nucleophilic selectivity at pH 7.4, but their alkylating activity was estimated on this basis to be two orders of magnitude less than methyl methanesulfonate. Binding experiments with the DNA or cultured V79 cells or with calf-thymus DNA indicated that interactions were noncovalent and DNA binding did not correlate with the potency of the epoxides to induce the 6-thioguanine-resistant phenotype. Our results could be interpreted as indicating that both cholesterol epoxide isomers are weak mutagens or that they might induce some epigenetic event repressing the hypoxanthine guanine-phosphoribosyltransferase gene. The similarity of the epoxides' alkylating activity and their DNA-binding properties are inconsistent with their different potencies in inducing the 6-thioguanine-resistant phenotype, suggesting that the mechanism leading to this phenotype is not necessarily the result of DNA alkylation.
Collapse
Affiliation(s)
- A R Peterson
- Institute for Toxicology, University of Southern California, School of Pharmacy, Los Angeles 90033
| | | | | | | | | |
Collapse
|
29
|
Galaris D, Mira D, Sevanian A, Cadenas E, Hochstein P. Co-oxidation of salicylate and cholesterol during the oxidation of metmyoglobin by H2O2. Arch Biochem Biophys 1988; 262:221-31. [PMID: 3355168 DOI: 10.1016/0003-9861(88)90184-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The reaction between metmyoglobin and H2O2 proceeds with oxidation of the hemo-protein iron to a higher valence state and consumption of the peroxide. This reaction is further associated with (a) O2 evolution; (b) hydroxylation of the aromatic compound salicylate to yield a set of dihydroxybenzoic acid derivatives (analyzed by HPLC with electrochemical detection); (c) autoxidation of cholesterol with formation of 3 beta-hydroxy-5-alpha-cholest-6-ene-5-hydroperoxide; and (d) formation of electronically excited states detected by low-level chemiluminescence. The heterolytic scission of the O-O bond of hydroperoxides by metmyoglobin causes the formation of an oxidizing equivalent capable of promoting peroxidation of linoleate and arachidonate (as indicated by the parallel formation of thiobarbituric acid-reactive material and an enhancement of chemiluminescence intensity). The identity of the oxidizing equivalent(s) is discussed in terms of the formation of a relatively stable higher state of oxidation of heme Fe (FeIV-OH or FeV = O) as well as on possible intermediate species derived during the decomposition of H2O2 by metmyoglobin, such as HO.and 1O2. These species might be involved either simultaneously or sequentially in the peroxidation of fatty acids as well as in the tissue damage associated with the formation of H2O2 in ischemic-reperfusion states.
Collapse
Affiliation(s)
- D Galaris
- Institute for Toxicology, University of Southern California, Los Angeles 90033
| | | | | | | | | |
Collapse
|
30
|
Smith LL, Jaworski K. Cholesterol epoxidations by defined oxygen species. BASIC LIFE SCIENCES 1988; 49:313-7. [PMID: 3250487 DOI: 10.1007/978-1-4684-5568-7_47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- L L Smith
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
31
|
Abstract
Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation. Our findings indicate that cholesterol autoxidation in biological membranes is modeled by the peroxide-induced oxidation of liposomes bearing unsaturated fatty acids and suggest that a number of cholesterol oxidation products are derived from peroxide-dependent propagation reactions occurring in biomembranes.
Collapse
Affiliation(s)
- A Sevanian
- Institute for Toxicology, University of Southern California, School of Pharmacy, Los Angeles 90033
| | | |
Collapse
|
32
|
Abstract
Literature published between 1980 and 1986 dealing broadly with the topic of cholesterol autoxidation is reviewed. The review builds on the detailed 1981 monographic treatment of the topic by the author and covers new items of chemistry, analysis, and metabolism.
Collapse
Affiliation(s)
- L L Smith
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| |
Collapse
|
33
|
Gruenke LD, Craig JC, Petrakis NL, Lyon MB. Analysis of cholesterol, cholesterol-5,6-epoxides and cholestane-3 beta,5 alpha,6 beta-triol in nipple aspirates of human breast fluid by gas chromatography/mass spectrometry. BIOMEDICAL & ENVIRONMENTAL MASS SPECTROMETRY 1987; 14:335-8. [PMID: 2959341 DOI: 10.1002/bms.1200140707] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A method has been developed for the quantitative determination of cholesterol and three of its major oxidative metabolites (the 5 alpha,6 alpha-epoxide, the 3 beta,5 alpha,6 beta-triol, and the 5 beta,6 beta-epoxide) in a single sample of human breast fluid (2-50 microliters), using gas chromatography/mass spectrometry with selected ion monitoring. High specificity and reliable quantification is achieved by the use of the inverse stable isotope dilution method, employing deuterium-labeled variants of the compounds as internal standards.
Collapse
Affiliation(s)
- L D Gruenke
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
34
|
|
35
|
Cholesterol oxides I. Isolation and determination of some cholesterol oxidation products. J AM OIL CHEM SOC 1986. [DOI: 10.1007/bf02541961] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Maerker G, Bunick FJ. Cholesterol oxides II. Measurement of the 5,6-epoxides during cholesterol oxidation in aqueous dispersions. J AM OIL CHEM SOC 1986. [DOI: 10.1007/bf02541962] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G. Maerker
- Eastern Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 600 E. Mermaid Lane Philadelphia PA 19118
| | - F. J. Bunick
- Eastern Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 600 E. Mermaid Lane Philadelphia PA 19118
| |
Collapse
|
37
|
Sevanian A, McLeod LL. Catalytic properties and inhibition of hepatic cholesterol-epoxide hydrolase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Park SW, Addis PB. Capillary column gas-liquid chromatographic resolution of oxidized cholesterol derivatives. Anal Biochem 1985; 149:275-83. [PMID: 4073482 DOI: 10.1016/0003-2697(85)90505-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fused-silica capillary columns were evaluated for the resolution of oxidized cholesterol derivatives. Thermal instability of diol derivatives, epimeric 7 alpha- and 7 beta-hydroxy, 4 beta-hydroxy, and 25-hydroxycholesterol, was observed during gas chromatography. After derivatization as trimethylsilyl ethers the foregoing diols, alpha-epoxide, cholestane-triol, 7-ketocholesterol, and cholesta-3,5-dien-7-one were completely resolved on a DB-1 column. Each oxidized sterol revealed excellent response linearity as the trimethylsilylated sterol, enabling reliable quantification. The identity of each derivatized sterol was confirmed by mass spectrometry.
Collapse
|
39
|
Hammock BD, Moody DE, Sevanian A. Epoxide hydrolases in the catabolism of sterols and isoprenoids. Methods Enzymol 1985; 111:303-11. [PMID: 3897774 DOI: 10.1016/s0076-6879(85)11018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Made Gowda NM, Smith LL. On reaction of sterol hydroperoxides with superoxide. JOURNAL OF STEROID BIOCHEMISTRY 1984; 20:917-22. [PMID: 6323884 DOI: 10.1016/0022-4731(84)90406-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reduction of sterol hydroperoxides 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide and cholesterol 7 alpha-hydroperoxide by KO2 (or other strong base in air) solubilized by crown ether in dimethylsulfoxide gave only corresponding alcohols, but in the presence of cholesterol (or other sterols) gave 3 beta-hydroxycholest-5-en-7-one together with the corresponding alcohols. Both hydroperoxides likewise gave the corresponding alcohol and ketone products with KO2 in benzene and in oxidations by ceric ammonium nitrate in a biphasic system. The 7-ketone product is recognized as deriving from termination reactions of sterol peroxyl and/or oxyl radicals.
Collapse
|
41
|
Brooks C, Cole W, Lawrie T, MacLachlan J, Borthwick J, Barrett G. Selective reactions in the analytical characterisation of steroids by gas chromatography—Mass spectrometry. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s0022-4731(83)80025-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Watabe T, Isobe M, Tsubaki A. Epoxidation of cholesterol by hepatic microsomal lipid hydroperoxides. Biochem Biophys Res Commun 1982; 108:724-30. [PMID: 7150318 DOI: 10.1016/0006-291x(82)90889-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|