1
|
Levian B, Hou Y, Tang X, Bainvoll L, Zheng K, Badarinarayana V, Aghamohammadzadeh S, Chen M. Novel readthrough agent suppresses nonsense mutations and restores functional type VII collagen and laminin 332 in epidermolysis bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102334. [PMID: 39391765 PMCID: PMC11465179 DOI: 10.1016/j.omtn.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) and junctional epidermolysis bullosa (JEB) are lethal blistering skin disorders resulting from mutations in genes coding for type VII collagen (COL7A1) and laminin 332 (LAMA3, LAMB3, or LAMC2), respectively. In RDEB, 25% of patients harbor nonsense mutations causing premature termination codons (PTCs). In JEB, a majority of mutations in LAMB3 are nonsense mutations (80%). ELX-02, an aminoglycoside analog, has demonstrated superior PTC readthrough activity and lower toxicity compared to gentamicin in various genetic disorders. This study investigated the ability of ELX-02 to suppress PTCs and promote the expression of C7 and laminin 332 in primary RDEB keratinocytes/fibroblasts and primary JEB keratinocytes harboring nonsense mutations. ELX-02 induced a dose-dependent production of C7 or laminin β3 that surpassed the results achieved with gentamicin. ELX-02 reversed RDEB and JEB cellular hypermotility and improved poor cell-substratum adhesion in JEB cells. Importantly, ELX-02-induced C7 and laminin 332 localized to the dermal-epidermal junction. This is the first study demonstrating that ELX-02 can induce PTC readthrough and restore functional C7 and laminin 332 in RDEB and JEB caused by nonsense mutations. Therefore, ELX-02 may offer a novel and safe therapy for RDEB, JEB, and other inherited skin diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Brandon Levian
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Tang
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Liat Bainvoll
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate Zheng
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Kim J, Hegener K, Hagedorn C, Weidinger D, Jamal Jameel K, Seuthe IMC, Eichhorn S, Kreppel F, Park JJH, Knobloch J. Simple, low-cost, and well-performing method, the outgrowth technique, for the isolation of cells from nasal polyps. BMC Mol Cell Biol 2023; 24:31. [PMID: 37817076 PMCID: PMC10566096 DOI: 10.1186/s12860-023-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Epithelial cells are an important part of the pathomechanism in chronic rhinosinusitis with nasal polyps. It is therefore essential to establish a robust method for the isolation and culture of epithelial cells from nasal polyps to enable further research. In this study, the feasibility of the outgrowth technique for the isolation of the epithelial cells from the nasal polyps was evaluated. RESULTS Using the outgrowth technique, epithelial cells could be isolated from all tissue samples. Isolated epithelial cells showed a proliferation rate of approximately 7- to 23-fold every 6 days up to the 3rd passage. Over 97% of isolated cells were shown to be cytokeratin- and p63-positive, and over 86% of them were Ki-67-positive in flow cytometry. Interleukin-33 and periostin were detectable in the supernatant. CONCLUSIONS We introduce a simple, low-cost, and well-performing method for isolating epithelial cells from nasal polyps with the outgrowth technique.
Collapse
Affiliation(s)
- Jonghui Kim
- Department of Oto-Rhino-Laryngology - Head and Neck Surgery, St.-Josefs-Hospital Hagen, University of Witten/Herdecke, Dreieckstraße 15, 58097, Hagen, Germany.
| | - Karla Hegener
- Department of Oto-Rhino-Laryngology - Head and Neck Surgery, St.-Josefs-Hospital Hagen, University of Witten/Herdecke, Dreieckstraße 15, 58097, Hagen, Germany
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Straße 10, 58453, Witten, Germany
| | - Daniel Weidinger
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Kashin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Inga Marte Charlott Seuthe
- Department of Oto-Rhino-Laryngology - Head and Neck Surgery, St.-Josefs-Hospital Hagen, University of Witten/Herdecke, Dreieckstraße 15, 58097, Hagen, Germany
| | - Sabine Eichhorn
- Department of Oto-Rhino-Laryngology - Head and Neck Surgery, St.-Josefs-Hospital Hagen, University of Witten/Herdecke, Dreieckstraße 15, 58097, Hagen, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Straße 10, 58453, Witten, Germany
| | - Jonas Jae-Hyun Park
- Department of Oto-Rhino-Laryngology - Head and Neck Surgery, St.-Josefs-Hospital Hagen, University of Witten/Herdecke, Dreieckstraße 15, 58097, Hagen, Germany
| | - Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
3
|
Abstract
We have developed a technique to isolate primary keratinocytes, melanocytes, fibroblasts, preadipocytes, and microvascular endothelial cells from an individual sample of human skin. The protocol describes step-by-step instructions for processing, cells isolation, and culture of neonatal foreskin, with adaptation for more demanding adult tissues. The availability of multiple isogenic cell types derived from individual skin samples offers the ability to investigate various areas of biology, in the context of cell-type specificity without potential confounding influence of inter-individual or genetic differences. For complete details on the use and execution of this protocol, please refer to Holliman et al. (2017), Horvath et al. (2019), Horvath et al. (2018), Kabacik et al. (2018), Lowe et al. (2020), Lu et al. (2019), and Lu et al. (2018). Protocol to isolate five different primary cell types from human skin sample Modification for more demanding adult tissue Extensive characterization of each cell type Expansion and cryopreservation for biobanking
Collapse
|
4
|
Generating iPSCs with a High-Efficient, Non-Invasive Method-An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming. Cells 2022; 11:cells11121955. [PMID: 35741085 PMCID: PMC9222083 DOI: 10.3390/cells11121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin biopsies. Nevertheless, to facilitate and simplify the process, which can be divided into three main steps (collecting, culturing and reprogramming), the whole procedure of generating hair keratinocytes has to be revised and upgraded continuously. In this study, we address advancements and approaches which improve the generation and handling of primary HF-derived keratinocytes tremendously, e.g., for iPSCs reprogramming. We not only evaluated different serum- and animal-origin-free media, but also supplements and coating solutions for an enhanced protocol. Here, we demonstrate the importance of speed and accuracy in the collecting step, as well as the choice of the right transportation medium. Our results lead to a more defined approach that further increases the reliability of downstream experiments and inter-laboratory reproducibility. These improvements will make it possible to obtain keratinocytes from plucked human hair for the generation of donor-specific iPSCs easier and more efficient than ever before, whilst preserving a non-invasive capability.
Collapse
|
5
|
Theocharidis G, Tekkela S, Veves A, McGrath JA, Onoufriadis A. Single-cell transcriptomics in human skin research: available technologies, technical considerations, and disease applications. Exp Dermatol 2022; 31:655-673. [PMID: 35196402 PMCID: PMC9311140 DOI: 10.1111/exd.14547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Single‐cell technologies have revolutionized research in the last decade, including for skin biology. Single‐cell RNA sequencing has emerged as a powerful tool allowing the dissection of human disease pathophysiology at unprecedented resolution by assessing cell‐to‐cell variation, facilitating identification of rare cell populations and elucidating cellular heterogeneity. In dermatology, this technology has been widely applied to inflammatory skin disorders, fibrotic skin diseases, wound healing complications and cutaneous neoplasms. Here, we discuss the available technologies and technical considerations of single‐cell RNA sequencing and describe its applications to a broad spectrum of dermatological diseases.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stavroula Tekkela
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
6
|
Wohlrab J, Gerloff D, Gebhardt K. Expression and activity of IL-17 receptor subunits in human cutaneous cells as targets for anti-IL-17 therapeutic antibodies. Biomed Pharmacother 2022; 146:112569. [PMID: 35062060 DOI: 10.1016/j.biopha.2021.112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022] Open
Abstract
The key players in different chronic inflammatory skin diseases are cytokines belonging to the IL-17 group, IL-17 receptors and a T helper cell population, Th17 cells. Successful therapeutic strategies that target either IL-17 or the major IL-17 receptor IL-17RA have confirmed the immune-pathogenic pathway. To study the IL-17-ligand - receptor axis at the molecular level, a number of cutaneous cell types from healthy human subjects has been cultured and analyzed for the expression of IL-17 receptors. IL-17RA was the most abundantly expressed receptor type in keratinocytes, epidermal stem cells, fibroblasts, mesenchymal stem cells, hemo- and lymphovascular endothelial cells. IL-17RC and IL-17RD showed moderate expression, while the genes for IL-17RB and IL-17RE were poorly expressed. In none of the investigated cell types, IL-17 ligands caused an increased expression level of the five receptor types in time- and dose-dependent experiments. No evidence for IL-17A, -C, -E or -F induced signal transduction cascades could be obtained by a qRT-PCR and western blot analyses. Further studies are necessary to identify relevant co-stimulating factors from IL-17 subtypes under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Johannes Wohlrab
- Department of Dermatology and Venerology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; Institute of Applied Dermatopharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Dennis Gerloff
- Department of Dermatology and Venerology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathleen Gebhardt
- Department of Dermatology and Venerology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Ramadan Q, Zourob M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:607648. [PMID: 35047890 PMCID: PMC8757855 DOI: 10.3389/fmedt.2020.607648] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
van Ee A, Kim D, Prizmic V, Rho H, Park Y, Evans B, Kim S, Lee S, Wang G, Yu J, Kane MA, Garza LA. CD14 Is Induced by Retinoic Acid and Is Required for Double Stranded Noncoding RNA-Induced Regeneration. J Invest Dermatol 2022; 142:2291-2294.e7. [PMID: 34999109 PMCID: PMC9259758 DOI: 10.1016/j.jid.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Amy van Ee
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dongwon Kim
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Vicky Prizmic
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hyunyoung Rho
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Yukyung Park
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Benjamin Evans
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Environment Science and Biotechnology, Jeonju University, Jeonju, Republic of Korea
| | - Sam Lee
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Woodley DT, Cogan J, Mosallaei D, Yim K, Chen M. Characterization of mutant type VII collagens underlying the inversa subtype of recessive dystrophic epidermolysis bullosa. J Dermatol Sci 2021; 104:104-111. [PMID: 34674926 DOI: 10.1016/j.jdermsci.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen (C7) leading to skin fragility, bullae, and erosive wounds. RDEB-Inversa (RDEB-I), a subset of RDEB, is characterized by lesions localized to body areas with higher skin temperatures such as flexures and skin folds. OBJECTIVE We aimed to determine if C7 derived from RDEB-I mutations had structural and functional aberrancies that were temperature sensitive and could be reversed by lowering the temperature. METHODS In this study, we generated 12 substitution mutations associated with RDEB-I via site-directed mutagenesis and purified recombinant C7 protein. These C7 mutants were evaluated for structural parameters (trimer formation and protease sensitivity) and the ability to promote keratinocyte migration at 37 °C (the temperature of skin folds) and 30 °C (the maximum skin temperature of arms and legs). Fibroblasts derived from RDEB-I patients were evaluated for C7 secretion and cellular migration at both temperatures. RESULTS C7s from RDEB-I mutations exhibited decreased thermal stability, increased sensitivity to protease digestion, diminished formation of collagen trimers, and reduced ability to promote keratinocyte migration compared with wild-type C7. In addition, fibroblasts derived from RDEB-I patients demonstrated intracellular accumulation of C7 and abnormal cell migration at 37 °C. All of these aberrancies were corrected by reducing the temperature to 30 °C. C7s generated from severe-RDEB mutations (non-Inversa) did not display temperature-dependent perturbations. CONCLUSION These data demonstrate that RDEB-I mutations generate C7 aberrancies that are temperature dependent. This may explain why RDEB-I patients develop clinical lesions in areas where their skin is considerably warmer.
Collapse
Affiliation(s)
- David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Daniel Mosallaei
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Kaitlyn Yim
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
10
|
Fjær R, Marciniak K, Sundnes O, Hjorthaug H, Sheng Y, Hammarström C, Sitek JC, Vigeland MD, Backe PH, Øye AM, Fosse JH, Stav-Noraas TE, Uchiyama Y, Matsumoto N, Comi A, Pevsner J, Haraldsen G, Selmer KK. A novel somatic mutation in GNB2 provides new insights to the pathogenesis of Sturge-weber syndrome. Hum Mol Genet 2021; 30:1919-1931. [PMID: 34124757 PMCID: PMC8522634 DOI: 10.1093/hmg/ddab144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Sturge-Weber syndrome (SWS) is a neurocutaneous disorder characterised by vascular malformations affecting skin, eyes and leptomeninges of the brain, which can lead to glaucoma, seizures and intellectual disability. The discovery of a disease-causing somatic missense mutation in the GNAQ gene, encoding an alpha chain of heterotrimeric G-proteins, has initiated efforts to understand how G-proteins contribute to SWS pathogenesis. The mutation is predominantly detected in endothelial cells and is currently believed to affect downstream MAPK-signalling. In this study of six Norwegian patients with classical SWS, we aimed to identify somatic mutations through deep sequencing of DNA from skin biopsies. Surprisingly, one patient was negative for the GNAQ mutation, but instead harboured a somatic mutation in GNB2 (NM_005273.3:c.232A > G, p.Lys78Glu) which encodes a beta chain of the same G-protein complex. The positions of the mutant amino acids in the G-protein are essential for complex reassembly. Therefore, failure of reassembly and continuous signalling is a likely consequence of both mutations. Ectopic expression of mutant proteins in endothelial cells revealed that expression of either mutant reduced cellular proliferation, yet regulated MAPK-signalling differently, suggesting that dysregulated MAPK-signalling cannot fully explain the SWS phenotype. Instead, both mutants reduced synthesis of YAP, a transcriptional co-activator of the Hippo signalling pathway, suggesting a key role for this pathway in the vascular pathogenesis of SWS. The discovery of the GNB2 mutation sheds novel light on the pathogenesis of SWS and suggests that future research on targets of treatment should be directed towards the YAP, rather than the MAPK, signalling pathway.
Collapse
Affiliation(s)
- Roar Fjær
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katarzyna Marciniak
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - Hanne Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Hammarström
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Jan Cezary Sitek
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane-Marte Øye
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johanna Hol Fosse
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anne Comi
- Department of Neurology, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Neurology and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Pevsner
- Department of Neurology, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Kaja Kristine Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital and the University of Oslo, Oslo, Norway.,Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Worrell JC, Leslie J, Smith GR, Zaki MYW, Paish HL, Knox A, James ML, Cartwright TN, O'Reilly S, Kania G, Distler O, Distler JHW, Herrick AL, Jeziorska M, Borthwick LA, Fisher AJ, Mann J, Mann DA, Oakley F. cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology (Oxford) 2021; 59:3939-3951. [PMID: 32725139 DOI: 10.1093/rheumatology/keaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.
Collapse
Affiliation(s)
- Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Biochemistry Department, Faculty of Pharmacy, Minia University, Egypt
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Michelle L James
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Tyrell N Cartwright
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, University of Manchester, Manchester
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Institute of Transplantation, The Freeman Hospital, High Heaton, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
12
|
Shao H, Li Y, Pastar I, Xiao M, Prokupets R, Liu S, Yu K, Vazquez-Padron RI, Tomic-Canic M, Velazquez OC, Liu ZJ. Notch1 signaling determines the plasticity and function of fibroblasts in diabetic wounds. Life Sci Alliance 2020; 3:3/12/e202000769. [PMID: 33109684 PMCID: PMC7652398 DOI: 10.26508/lsa.202000769] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts play a pivotal role in wound healing. However, the molecular mechanisms determining the reparative response of fibroblasts remain unknown. Here, we identify Notch1 signaling as a molecular determinant controlling the plasticity and function of fibroblasts in modulating wound healing and angiogenesis. The Notch pathway is activated in fibroblasts of diabetic wounds but not in normal skin and non-diabetic wounds. Consistently, wound healing in the FSP-1 +/- ;ROSA LSL-N1IC+/+ mouse, in which Notch1 is activated in fibroblasts, is delayed. Increased Notch1 activity in fibroblasts suppressed their growth, migration, and differentiation into myofibroblasts. Accordingly, significantly fewer myofibroblasts and less collagen were present in granulation tissues of the FSP-1 +/- ;ROSA LSL-N1IC+/+ mice, demonstrating that high Notch1 activity inhibits fibroblast differentiation. High Notch1 activity in fibroblasts diminished their role in modulating the angiogenic response. We also identified that IL-6 is a functional Notch1 target and involved in regulating angiogenesis. These findings suggest that Notch1 signaling determines the plasticity and function of fibroblasts in wound healing and angiogenesis, unveiling intracellular Notch1 signaling in fibroblasts as potential target for therapeutic intervention in diabetic wound healing.
Collapse
Affiliation(s)
- Hongwei Shao
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Yan Li
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Min Xiao
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rochelle Prokupets
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Sophia Liu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Kerstin Yu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | | | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Zhao-Jun Liu
- Department of Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
13
|
Henrot P, Laurent P, Levionnois E, Leleu D, Pain C, Truchetet ME, Cario M. A Method for Isolating and Culturing Skin Cells: Application to Endothelial Cells, Fibroblasts, Keratinocytes, and Melanocytes From Punch Biopsies in Systemic Sclerosis Skin. Front Immunol 2020; 11:566607. [PMID: 33117350 PMCID: PMC7575752 DOI: 10.3389/fimmu.2020.566607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic Sclerosis (SSc) is a complex auto-immune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin effectively recapitulates the main pathogenic processes and therefore is a good organ to decipher the disease pathophysiology, which remains unclear. However, culturing primary skin cells is SSc can be a major issue due to small sample size combined to skin fibrosis. Here, we present a protocol allowing to isolate and culture the four main types of skin cells: dermal cells (microvascular dermal endothelial cells—HDMECs—and fibroblasts) and epidermal cells (keratinocytes and melanocytes), from a single 4 mm-punch biopsy, at a low cost. The present protocol has been optimized to fit SSc skin cells particularities. Such technique allows to culture primary cells, crucial to study the disease pathophysiology, as well as to isolate cells in order to perform immediate molecular biology experiments such as single-cell transcriptomic. Cells grown from biopsies are also suitable for various types of experiments such as immunocytochemistry, Western blot, RT-qPCR or functional in vitro assays (angiogenesis, migration, etc.). Ultimately, they can be used for experimental 3D cell culture models such as reconstructed skin.
Collapse
Affiliation(s)
- Pauline Henrot
- Univ. Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France
| | - Paôline Laurent
- Univ. Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | | | - Damien Leleu
- Univ. Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Catherine Pain
- Univ. Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Muriel Cario
- Univ. Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France.,AquiDerm, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Henrot P, Moisan F, Laurent P, Manicki P, Kaulanjan-Checkmodine P, Jolivel V, Rezvani HR, Leroy V, Picard F, Boulon C, Schaeverbeke T, Seneschal J, Lazaro E, Taïeb A, Truchetet ME, Cario M. Decreased CCN3 in Systemic Sclerosis Endothelial Cells Contributes to Impaired Angiogenesis. J Invest Dermatol 2020; 140:1427-1434.e5. [PMID: 31954725 DOI: 10.1016/j.jid.2019.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc) is a rare and severe connective tissue disease combining autoimmune and vasculopathy features, ultimately leading to organ fibrosis. Impaired angiogenesis is an often silent and life-threatening complication of the disease. We hypothesize that CCN3, a member of the CCN family of extracellular matrix proteins, which is an antagonist of the profibrotic protein CCN2 as well as a proangiogenic factor, is implicated in SSc pathophysiology. We performed skin biopsies on 26 patients with SSc, both in fibrotic and nonfibrotic areas for 17 patients, and collected 18 healthy control skin specimens for immunohistochemistry and cell culture. Histological analysis of nonfibrotic and fibrotic SSc skin shows a systemic decrease of papillary dermis surface as well as disappearance of capillaries. CCN3 expression is systematically decreased in the dermis of patients with SSc compared with healthy controls, particularly in dermal blood vessels. Moreover, CCN3 is decreased in vitro in endothelial cells from patients with SSc. We show that CCN3 is essential for endothelial cell migration and angiogenesis in vitro. In conclusion, CCN3 may represent a promising therapeutic target for patients with SSc presenting with vascular involvement.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France.
| | - François Moisan
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France
| | - Paôline Laurent
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Pauline Manicki
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France; University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | | | - Valérie Jolivel
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Hamid Reza Rezvani
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Vaianu Leroy
- Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - François Picard
- Department of Cardiology, Hôpital Haut-Levêque, Pessac, France
| | - Carine Boulon
- Department of Vascular Medicine, Hôpital Saint André, Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Estibaliz Lazaro
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France; Department of Internal Medicine, National Reference Center for Systemic Autoimmune Rare Diseases, Hôpital Haut-Levêque, Pessac, France
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France; University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|
15
|
Kim J, Guhl S, Babina M, Zuberbier T, Artuc M. Integration of the Human Dermal Mast Cell into the Organotypic Co-culture Skin Model. Methods Mol Biol 2020; 2163:91-107. [PMID: 32766969 DOI: 10.1007/978-1-0716-0696-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The organotypic co-culture skin model has been providing an advanced approach to in vitro investigations of the skin. Mast cells, containing various mediators such as tryptase and chymase, are thought to contribute to many physiological and pathological events of the skin interactively with other cells. Here, we introduce an organotypic co-culture skin model which successfully integrates human dermal mast cells for further study of mast cell interactions with fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Jonghui Kim
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Guhl
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Magda Babina
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany
| | - Metin Artuc
- Department of Dermatology and Allergy, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Three-Dimensionally-Printed Polyether-Ether-Ketone Implant with a Cross-Linked Structure and Acid-Etched Microporous Surface Promotes Integration with Soft Tissue. Int J Mol Sci 2019; 20:ijms20153811. [PMID: 31382697 PMCID: PMC6695707 DOI: 10.3390/ijms20153811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Polyether-ether-ketone (peek) is one of the most common materials used for load-bearing orthopedic devices owing to its radiolucency and favorable mechanical properties. However, current smooth-surfaced peek implants can lead to fibrous capsule formation. To overcome this issue, here, peek specimens with well-defined internal cross-linked structures (macropore diameters of 1.0–2.0 mm) were fabricated using a three-dimensional (3D) printer, and an acid-etched microporous surface was achieved using injection-molding technology. The cell adhesion properties of smooth and microporous peek specimens was compared in vitro through a scanning electron microscope (SEM), and the soft tissue responses to the both microporous and cross-linked structure of different groups were determined in vivo using a New Zealand white rabbit model, and examined through histologic staining and separating test. The results showed that the acid-etched microporous surface promoted human skin fibroblasts (HSF) adherence, while internal cross-linked structure improved the ability of the peek specimen to form a mechanical combination with soft tissue, especially with the 1.5 mm porous specimen. The peek specimens with both the internal cross-linked structure and external acid-etched microporous surface could effectively promote the close integration of soft tissue and prevent formation of fibrous capsules, demonstrating the potential for clinical application in surgical repair.
Collapse
|
17
|
Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat Commun 2019; 10:2811. [PMID: 31243280 PMCID: PMC6594970 DOI: 10.1038/s41467-019-10811-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
How developmental programs reactivate in regeneration is a fundamental question in biology. We addressed this question through the study of Wound Induced Hair follicle Neogenesis (WIHN), an adult organogenesis model where stem cells regenerate de novo hair follicles following deep wounding. The exact mechanism is uncertain. Here we show that self-noncoding dsRNA activates the anti-viral receptor toll like receptor 3 (TLR3) to induce intrinsic retinoic acid (RA) synthesis in a pattern that predicts new hair follicle formation after wounding in mice. Additionally, in humans, rejuvenation lasers induce gene expression signatures for dsRNA and RA, with measurable increases in intrinsic RA synthesis. These results demonstrate a potent stimulus for RA synthesis by non-coding dsRNA, relevant to their broad functions in development and immunity. During wound induced hair follicle neogenesis (WIHN), stem cells regenerate hair follicles but how this arises is unclear. Here, the authors show that self-noncoding dsRNA activates the antiviral receptor TLR3 to induce intrinsic retinoic acid, which stimulates WIHN in mice, and in isolated human keratinocyte cells.
Collapse
|
18
|
Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, Kao D, Ohri K, Viththiyapaskaran S, Tarnopolsky MA, Mathews KD, Moore SA, Osorio AN, Villanova D, Kemaladewi DU, Cohn RD, Brudno M, Dowling JJ. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am J Hum Genet 2019; 104:466-483. [PMID: 30827497 PMCID: PMC6407525 DOI: 10.1016/j.ajhg.2019.01.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel "negative" cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual's fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergey Naumenko
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Viswateja Nelakuditi
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Pouria Mashouri
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peiqui Wang
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Dennis Kao
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Krish Ohri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | | | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andres N Osorio
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona 08950, Spain; Center for the Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona 08950, Spain
| | - David Villanova
- GenomicTales Parc de la Mola, 10, AD700 Escaldes-Engordany, Andorra
| | - Dwi U Kemaladewi
- Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronald D Cohn
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael Brudno
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - James J Dowling
- Division of Neurology, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
19
|
In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep 2019; 9:1856. [PMID: 30755653 PMCID: PMC6372693 DOI: 10.1038/s41598-018-38366-w] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023] Open
Abstract
The early treatment and rapid closure of acute or chronic wounds is essential for normal healing and prevention of hypertrophic scarring. The use of split thickness autografts is often limited by the availability of a suitable area of healthy donor skin to harvest. Cellular and non-cellular biological skin-equivalents are commonly used as an alternative treatment option for these patients, however these treatments usually involve multiple surgical procedures and associated with high costs of production and repeated wound treatment. Here we describe a novel design and a proof-of-concept validation of a mobile skin bioprinting system that provides rapid on-site management of extensive wounds. Integrated imaging technology facilitated the precise delivery of either autologous or allogeneic dermal fibroblasts and epidermal keratinocytes directly into an injured area, replicating the layered skin structure. Excisional wounds bioprinted with layered autologous dermal fibroblasts and epidermal keratinocytes in a hydrogel carrier showed rapid wound closure, reduced contraction and accelerated re-epithelialization. These regenerated tissues had a dermal structure and composition similar to healthy skin, with extensive collagen deposition arranged in large, organized fibers, extensive mature vascular formation and proliferating keratinocytes.
Collapse
|
20
|
Even B, Fayad-Kobeissi S, Gagliolo JM, Motterlini R, Boczkowski J, Foresti R, Dagouassat M. Heme oxygenase-1 induction attenuates senescence in chronic obstructive pulmonary disease lung fibroblasts by protecting against mitochondria dysfunction. Aging Cell 2018; 17:e12837. [PMID: 30341816 PMCID: PMC6260925 DOI: 10.1111/acel.12837] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/21/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with lung fibroblast senescence, a process characterized by an irreversible proliferation arrest associated with secretion of inflammatory mediators. ROS production, known to induce senescence, is increased in COPD fibroblasts and mitochondria dysfunction participates in this process. Among the battery of cellular responses against oxidative stress damage, heme oxygenase (HO)‐1 plays a critical role in defending the lung against oxidative stress and inflammation. Therefore, we investigated whether pharmacological induction of HO‐1 by chronic hemin treatment attenuates senescence and improves dysfunctional mitochondria in COPD fibroblasts. Fibroblasts from smoker controls (S‐C) and COPD patients were isolated from lung biopsies. Fibroblasts were long‐term cultured in the presence or absence of hemin, and/or ZnPP or QC‐15 (HO‐1 inhibitors). Lung fibroblasts from smokers and COPD patients displayed in long‐term culture a senescent phenotype, characterized by a reduced replicative capacity, an increased senescence and inflammatory profile. These parameters were significantly higher in senescent COPD fibroblasts which also exhibited decreased mitochondrial activity (respiration, glycolysis, and ATP levels) which led to an increased production of ROS, and mitochondria biogenesis and impaired mitophagy process. Exposure to hemin increased the gene and protein expression level of HO‐1 in fibroblasts and diminished ROS levels, senescence, the inflammatory profile and simultaneously rescued mitochondria dysfunction by restoring mitophagy in COPD cells. The effects of hemin were abolished by a cotreatment with ZnPP or QC‐15. We conclude that HO‐1 attenuates senescence in COPD fibroblasts by protecting, at least in part, against mitochondria dysfunction and restoring mitophagy.
Collapse
Affiliation(s)
- Benjamin Even
- Inserm U955, Equipe 04; Créteil France
- Université Paris Est; Faculté de Médecine; Créteil France
| | - Sarah Fayad-Kobeissi
- Université Paris Est; Faculté de Médecine; Créteil France
- Inserm U955, Equipe 12; Créteil France
| | - Jean-Marie Gagliolo
- Inserm U955, Equipe 04; Créteil France
- Université Paris Est; Faculté de Médecine; Créteil France
| | - Roberto Motterlini
- Université Paris Est; Faculté de Médecine; Créteil France
- Inserm U955, Equipe 12; Créteil France
| | - Jorge Boczkowski
- Inserm U955, Equipe 04; Créteil France
- Université Paris Est; Faculté de Médecine; Créteil France
- AP-HP, Hôpital Henri Mondor, DHU A-TVB, Antenne de Pneumologie; Service de Réanimation Médicale; Créteil France
| | - Roberta Foresti
- Université Paris Est; Faculté de Médecine; Créteil France
- Inserm U955, Equipe 12; Créteil France
| | - Maylis Dagouassat
- Inserm U955, Equipe 04; Créteil France
- Université Paris Est; Faculté de Médecine; Créteil France
| |
Collapse
|
21
|
Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, Mavandadnejad F, Pang A, Russo G, Brudno M, Haucke V, Dirksen RT, Dowling JJ. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun 2018; 9:4849. [PMID: 30451841 PMCID: PMC6242823 DOI: 10.1038/s41467-018-07057-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Dynamin II/genetics
- Dynamin II/metabolism
- Estradiol/metabolism
- Estradiol/pharmacology
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada
| | - Kamran Rezai
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Arun Ramani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Nadine Eltayeb
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Faranak Mavandadnejad
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Andrea Pang
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Giulia Russo
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Michael Brudno
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada.
| |
Collapse
|
22
|
Apostolidis SA, Stifano G, Tabib T, Rice LM, Morse CM, Kahaleh B, Lafyatis R. Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin. Front Immunol 2018; 9:2191. [PMID: 30327649 PMCID: PMC6174292 DOI: 10.3389/fimmu.2018.02191] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023] Open
Abstract
Objective: The mechanisms that lead to endothelial cell (EC) injury and propagate the vasculopathy in Systemic Sclerosis (SSc) are not well understood. Using single cell RNA sequencing (scRNA-seq), our goal was to identify EC markers and signature pathways associated with vascular injury in SSc skin. Methods: We implemented single cell sorting and subsequent RNA sequencing of cells isolated from SSc and healthy control skin. We used t-distributed stochastic neighbor embedding (t-SNE) to identify the various cell types. We performed pathway analysis using Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA). Finally, we independently verified distinct markers using immunohistochemistry on skin biopsies and qPCR in primary ECs from SSc and healthy skin. Results: By combining the t-SNE analysis with the expression of known EC markers, we positively identified ECs among the sorted cells. Subsequently, we examined the differential expression profile between the ECs from healthy and SSc skin. Using GSEA and IPA analysis, we demonstrated that the SSc endothelial cell expression profile is enriched in processes associated with extracellular matrix generation, negative regulation of angiogenesis and epithelial-to-mesenchymal transition. Two of the top differentially expressed genes, HSPG2 and APLNR, were independently verified using immunohistochemistry staining and real-time qPCR analysis. Conclusion: ScRNA-seq, differential gene expression and pathway analysis revealed that ECs from SSc patients show a discrete pattern of gene expression associated with vascular injury and activation, extracellular matrix generation and negative regulation of angiogenesis. HSPG2 and APLNR were identified as two of the top markers of EC injury in SSc.
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Lisa M Rice
- Boston University School of Medicine, Boston, MA, United States
| | - Christina M Morse
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Medicine, University of Toledo, Toledo, OH, United States
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Dulnik J, Kołbuk D, Denis P, Sajkiewicz P. The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Wang Y, Tissot M, Rolin G, Muret P, Robin S, Berthon JY, He L, Humbert P, Viennet C. Development and validation of a simple method for the extraction of human skin melanocytes. Cytotechnology 2018; 70:1167-1176. [PMID: 29564589 DOI: 10.1007/s10616-018-0207-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/14/2018] [Indexed: 10/17/2022] Open
Abstract
Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm2) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.
Collapse
Affiliation(s)
- Yinjuan Wang
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Marion Tissot
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Gwenaël Rolin
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Clinical Investigation Center, Inserm CICB 1431, University Hospital, Besançon, France
| | - Patrice Muret
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | | | | | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Philippe Humbert
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Céline Viennet
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.
| |
Collapse
|
25
|
Baba A, Matsushita S, Kitayama K, Asakura T, Sezutsu H, Tanimoto A, Kanekura T. Silk fibroin produced by transgenic silkworms overexpressing the Arg‐Gly‐Asp motif accelerates cutaneous wound healing in mice. J Biomed Mater Res B Appl Biomater 2018; 107:97-103. [DOI: 10.1002/jbm.b.34098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/10/2018] [Accepted: 02/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Atsunori Baba
- Department of DermatologyGraduate School of Medical and Dental Sciences, Kagoshima UniversitySakuragaoka Kagoshima Japan
| | - Shigeto Matsushita
- Department of DermatologyGraduate School of Medical and Dental Sciences, Kagoshima UniversitySakuragaoka Kagoshima Japan
| | - Kasumi Kitayama
- Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei Tokyo Japan
| | - Tetsuo Asakura
- Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei Tokyo Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological SciencesTsukuba Ibaraki Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular PathologyGraduate School of Medical and Dental Sciences, Kagoshima UniversitySakuragaoka Kagoshima Japan
| | - Takuro Kanekura
- Department of DermatologyGraduate School of Medical and Dental Sciences, Kagoshima UniversitySakuragaoka Kagoshima Japan
| |
Collapse
|
26
|
Various Surface Treatments to Implant Provisional Restorations and Their Effect on Epithelial Cell Adhesion: A Comparative In Vitro Study. IMPLANT DENT 2017; 26:12-23. [PMID: 28114240 DOI: 10.1097/id.0000000000000538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE AND OBJECTIVE The aim of this in vitro study was to investigate the ability of epithelial cells to attach to or proliferate on various mechanical or chemical surface treatments of an implant provisional material. MATERIALS AND METHODS Polyethyl methacrylate discs 10 mm in diameter and ∼0.2 to 0.75 mm in width were used in the study. Experimental discs were treated with either a mechanical (pumice, varnish for shine, or high polishing) or a chemical agent (alcohol, chlorhexidine, or steam) to provide cleaning and/or polishing. Using primary human epidermal keratinocytes, experiments were performed to test the adhesion or proliferation of cells on the discs with various surface treatments. RESULTS Scanning electron microscope analysis, rhodamine staining, and cell counting using a hemocytometer corroborated all findings and illustrated that the highest cell adhesion was found to be in the smooth surface treatment groups and the poorest adhesion was found to be in the rough surface groups and chemical treatment group. CONCLUSION Within the limitations of this study, the following clinical protocol is recommended for finishing, polishing, and disinfecting implant provisional restorations: coarse, medium, fine pumice → high polishing (if desired) → steam. It is recommended to avoid applying varnish in the perimucosal area near the epithelium. This study could establish the most appropriate way to handle provisional restorations in the peri-implant sulcus for improved soft tissue health, esthetics, and long-term stability.
Collapse
|
27
|
Ciechomska M, O'Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone Demethylation and Toll-like Receptor 8-Dependent Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-2. Arthritis Rheumatol 2017; 68:1493-504. [PMID: 26814616 DOI: 10.1002/art.39602] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/14/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate whether epigenetic changes can modulate monocytes to produce tissue inhibitor of metalloproteinases 1 (TIMP-1) via Fra-2 (an activator protein 1 [AP-1] family member), a novel downstream mediator that promotes fibrogenesis. METHODS AP-1 transcription factors and TIMP-1 expression were measured in monocytes from systemic sclerosis (SSc) patients and healthy controls. Involvement of Fra-2 in the regulation of TIMP-1 following treatment with Toll-like receptor 8 (TLR-8) agonist was investigated using a luciferase activity assay and chromatin immunoprecipitation (ChIP) analysis. Expression of TIMP-1 and Fra-2 was determined in response to TLR-8 treatment and to different histone modifications, including 3'-deazaneplanocin (DZNep) and apicidin. Fibroblasts from healthy controls were cocultured with DZNep plus TLR-8-treated healthy control monocytes. RESULTS Up-regulation of Fra-2 was detected in bleomycin-challenged mice and in skin biopsy samples from SSc patients. Enhanced expression of Fra-2 and TIMP-1 was correlated in SSc monocytes (P = 0.021). The expression of Fra-1 was significantly reduced (P = 0.037) in SSc monocytes. Inhibiting AP-1 activity reduced TIMP-1 production in TLR-8-stimulated monocytes from healthy controls and SSc patients. ChIP experiments revealed binding of Fra-2 to the TIMP-1 promoter. Stimulation with DZNep plus TLR-8 enhanced Fra-2 and TIMP-1 expression in healthy control monocytes, whereas TLR-8 plus apicidin repressed Fra-2 and TIMP-1 expression. Finally, healthy control monocytes treated with DZNep plus TLR-8 induced strong production of α-smooth muscle actin in dermal fibroblasts, which was inhibited by TIMP-1-blocking antibody. CONCLUSION These data demonstrate a novel role of histone demethylation induced by DZNep on Fra-2-mediated TIMP-1 production by monocytes in the presence of TLR-8 agonist. This consequently orchestrates the transdifferentiation of fibroblasts, a key event in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland, and National Institute of Geriatrics, Rheumatology, and Rehabilitation, Warsaw, Poland
| | - Steven O'Reilly
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, and Durham University, School of Biological and Biomedical Sciences, Durham, UK
| | - Stefan Przyborski
- Durham University, School of Biological and Biomedical Sciences, Durham, UK
| | - Fiona Oakley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, and Wroclaw Medical University, Wroclaw, Poland
| | - Jacob M van Laar
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
To Control Site-Specific Skin Gene Expression, Autocrine Mimics Paracrine Canonical Wnt Signaling and Is Activated Ectopically in Skin Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1140-50. [PMID: 27105735 DOI: 10.1016/j.ajpath.2015.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
Abstract
Despite similar components, the heterogeneity of skin characteristics across the human body is enormous. It is classically believed that site-specific fibroblasts in the dermis control postnatal skin identity by modulating the behavior of the surface-overlying keratinocytes in the epidermis. To begin testing this hypothesis, we characterized the gene expression differences between volar (ventral; palmoplantar) and nonvolar (dorsal) human skin. We show that KERATIN 9 (KRT9) is the most uniquely enriched transcript in volar skin, consistent with its etiology in genetic diseases of the palms and soles. In addition, ectopic KRT9 expression is selectively activated by volar fibroblasts. However, KRT9 expression occurs in the absence of all fibroblasts, although not to the maximal levels induced by fibroblasts. Through gain-of-function and loss-of-function experiments, we demonstrate that the mechanism is through overlapping paracrine or autocrine canonical WNT-β-catenin signaling in each respective context. Finally, as an in vivo example of ectopic expression of KRT9 independent of volar fibroblasts, we demonstrate that in the human skin disease lichen simplex chronicus, WNT5a and KRT9 are robustly activated outside of volar sites. These results highlight the complexities of site-specific gene expression and its disruption in skin disease.
Collapse
|
29
|
Wen X, He X, Jiao F, Wang C, Sun Y, Ren X, Li Q. Fibroblast Activation Protein-α-Positive Fibroblasts Promote Gastric Cancer Progression and Resistance to Immune Checkpoint Blockade. Oncol Res 2017; 25:629-640. [PMID: 27983931 PMCID: PMC7841289 DOI: 10.3727/096504016x14768383625385] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is one of the main causes of cancer death. The tumor microenvironment has a profound effect on inducing tumor growth, metastasis, and immunosuppression. Fibroblast activation protein-α (FAP) is a protein that is usually expressed in fibroblasts, such as cancer-associated fibroblasts, which are major components of the tumor microenvironment. However, the role of FAP in GC progression and treatment is still unknown. In this study, we explored these problems based on GC patient samples and experimental models. We found that high FAP expression was an independent prognosticator of poor survival in GC patients. FAP+ cancer-associated fibroblasts (CAFs) promoted the survival, proliferation, and migration of GC cell lines in vitro. Moreover, they also induced drug resistance of the GC cell lines and inhibited the antitumor functions of T cells in the GC tumor microenvironment. More importantly, we found that targeting FAP+ CAFs substantially enhanced the antitumor effects of immune checkpoint blockades in GC xenograft models. This evidence highly suggested that FAP is a potential prognosticator of GC patients and a target for synergizing with other treatments, especially immune checkpoint blockades in GC.
Collapse
Affiliation(s)
- Xuyang Wen
- *Oncology Department, The 82nd Hospital of PLA, Huai’an City, Jiangsu Province, P.R. China
| | - Xiaoping He
- †IMR Residency Program of Florida Hospital, Orlando, FL, USA
| | - Feng Jiao
- ‡Department of General Surgery, The 82nd Hospital of PLA, Huai’an City, Jiangsu Province, P.R. China
| | - Chunhui Wang
- §Department of Cardiology, The 82nd hospital of PLA, Huai’an City, Jiangsu Province, P.R. China
| | - Yang Sun
- ‡Department of General Surgery, The 82nd Hospital of PLA, Huai’an City, Jiangsu Province, P.R. China
| | - Xuequn Ren
- ¶Medical Institution, Nanjing University, Nanjing, P.R. China
| | - Qianwen Li
- *Oncology Department, The 82nd Hospital of PLA, Huai’an City, Jiangsu Province, P.R. China
| |
Collapse
|
30
|
Colomb S, Bareil C, Baccino E, Berthet JP, Knabe L, Vachier I, Bourdin A. LIFE BEYOND LIFE - An Easy Way to Derive Lung Fibroblasts from Cadavers. J Forensic Sci 2017; 62:1339-1344. [PMID: 28185266 DOI: 10.1111/1556-4029.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
Abstract
Several protocols have illustrated the possibility of deriving cells, such as fibroblasts, from different organs. These techniques generally concern organs sampled from living persons, but have already been described for cadavers, especially concerning the skin and tendons. We present, for the first time, an easy way to derive pulmonary fibroblasts from a lung tissue sampled from a cadaver and directly culture plated. The fibroblast output was checked daily. We obtained lung fibroblasts from 3 (60%) cadavers and 2 (100%) living persons. The fibroblast output took about 3 days for cells from living persons and took up to 39 days for those from cadavers. We did not clearly identify any parameters that could explain these differences. Nevertheless, these derived cells had the same features as the source cells, especially in terms of morphology and proliferation, and could potentially be used in different research domains such as forensic or regeneration medicine.
Collapse
Affiliation(s)
- Sophie Colomb
- Emergency Pole, Forensic Medicine Department, Montpellier University Hospital, 371 Avenue du Doyen Gaston Giraud, Montpellier, 34285, France
| | - Corinne Bareil
- Molecular Genetics Laboratory - IURC, Montpellier University Hospital, 641 Avenue du Doyen Gaston Giraud, Montpellier, 34093, France
| | - Eric Baccino
- Emergency Pole, Forensic Medicine Department, Montpellier University Hospital, 371 Avenue du Doyen Gaston Giraud, Montpellier, 34285, France
| | - Jean-Philippe Berthet
- Heart-Lung Pole, Cardiac, Thoracic and Vascular Surgery, Montpellier University Hospital, 375 Avenue du Doyen Gaston Giraud, Montpellier, 34295, France
| | - Lucie Knabe
- Heart-Lung Pole, Department of Lung Diseases and Addictology, Montpellier University Hospital, 375 Avenue du Doyen Gaston Giraud, Montpellier, 34295, France
| | - Isabelle Vachier
- Heart-Lung Pole, Department of Lung Diseases and Addictology, Montpellier University Hospital, 375 Avenue du Doyen Gaston Giraud, Montpellier, 34295, France
| | - Arnaud Bourdin
- Heart-Lung Pole, Department of Lung Diseases and Addictology, Montpellier University Hospital, 375 Avenue du Doyen Gaston Giraud, Montpellier, 34295, France
| |
Collapse
|
31
|
Präklinische Validierung der Sicherheit von Chloralhydrat zur topischen Applikation am Beispiel des psoriatischen Pruritus. Hautarzt 2016; 68:217-223. [DOI: 10.1007/s00105-016-3909-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Jin H, St Hilaire C, Huang Y, Yang D, Dmitrieva NI, Negro A, Schwartzbeck R, Liu Y, Yu Z, Walts A, Davaine JM, Lee DY, Donahue D, Hsu KS, Chen J, Cheng T, Gahl W, Chen G, Boehm M. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci Signal 2016; 9:ra121. [PMID: 27965423 DOI: 10.1126/scisignal.aaf9109] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ACDC (arterial calcification due to deficiency of CD73) is an autosomal recessive disease resulting from loss-of-function mutations in NT5E, which encodes CD73, a 5'-ectonucleotidase that converts extracellular adenosine monophosphate to adenosine. ACDC patients display progressive calcification of lower extremity arteries, causing limb ischemia. Tissue-nonspecific alkaline phosphatase (TNAP), which converts pyrophosphate (PPi) to inorganic phosphate (Pi), and extracellular purine metabolism play important roles in other inherited forms of vascular calcification. Compared to cells from healthy subjects, induced pluripotent stem cell-derived mesenchymal stromal cells (iMSCs) from ACDC patients displayed accelerated calcification and increased TNAP activity when cultured under conditions that promote osteogenesis. TNAP activity generated adenosine in iMSCs derived from ACDC patients but not in iMSCs from control subjects, which have CD73. In response to osteogenic stimulation, ACDC patient-derived iMSCs had decreased amounts of the TNAP substrate PPi, an inhibitor of extracellular matrix calcification, and exhibited increased activation of AKT, mechanistic target of rapamycin (mTOR), and the 70-kDa ribosomal protein S6 kinase (p70S6K), a pathway that promotes calcification. In vivo, teratomas derived from ACDC patient cells showed extensive calcification and increased TNAP activity. Treating mice bearing these teratomas with an A2b adenosine receptor agonist, the mTOR inhibitor rapamycin, or the bisphosphonate etidronate reduced calcification. These results show that an increase of TNAP activity in ACDC contributes to ectopic calcification by disrupting the extracellular balance of PPi and Pi and identify potential therapeutic targets for ACDC.
Collapse
Affiliation(s)
- Hui Jin
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cynthia St Hilaire
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Yuting Huang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Dan Yang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Natalia I Dmitrieva
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Alejandra Negro
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Robin Schwartzbeck
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Yangtengyu Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Zhen Yu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Avram Walts
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Jean-Michel Davaine
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Duck-Yeon Lee
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.,Biochemistry Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Danielle Donahue
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.,Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Kevin S Hsu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.,Medical Genetics Branch, National Human Genome Research Institute, NIH, Building 10, Room 10C103, Bethesda, MD 20892, USA
| | - Jessica Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | | | - William Gahl
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.,Medical Genetics Branch, National Human Genome Research Institute, NIH, Building 10, Room 10C103, Bethesda, MD 20892, USA
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Wohlrab J, Neubert RH, Sommer E, Michael J. Ex vivo Cutaneous Bioavailability of Topical Mometasone Furoate in an O/W Preparation. Skin Pharmacol Physiol 2016; 29:273-279. [DOI: 10.1159/000452743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022]
|
34
|
Tiruvannamalai Annamalai R, Rioja AY, Putnam AJ, Stegemann JP. Vascular Network Formation by Human Microvascular Endothelial Cells in Modular Fibrin Microtissues. ACS Biomater Sci Eng 2016; 2:1914-1925. [PMID: 29503863 PMCID: PMC5830175 DOI: 10.1021/acsbiomaterials.6b00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microvascular endothelial cells (MVEC) are a preferred cell source for autologous revascularization strategies, since they can be harvested and propagated from small tissue biopsies. Biomaterials-based strategies for therapeutic delivery of cells are aimed at tailoring the cellular microenvironment to enhance the delivery, engraftment, and tissue-specific function of transplanted cells. In the present study, we investigated a modular tissue engineering approach to therapeutic revascularization using fibrin-based microtissues containing embedded human MVEC and human fibroblasts (FB). Microtissues were formed using a water-in-oil emulsion process that produced populations of spheroidal tissue modules with a diameter of 100-200 µm. The formation of MVEC sprouts within a fibrin matrix over 7 days in culture was dependent on the presence of FB, with the most robust sprouting occurring at a 1:3 MVEC:FB ratio. Cell viability in microtissues was high (>90%) and significant FB cell proliferation was observed over time in culture. Robust sprouting from microtissues was evident, with larger vessels developing over time and FB acting as pericyte-like cells by enveloping endothelial tubes. These neovessels were shown to form an interconnected vascular plexus over 14 days of culture when microtissues were embedded in a surrounding fibrin hydrogel. Vessel networks exhibited branching and inosculation of sprouts from adjacent microtissues, resulting in MVEC-lined capillaries with hollow lumens. Microtissues maintained in suspension culture aggregated to form larger tissue masses (1-2 mm in diameter) over 7 days. Vessels formed within microtissue aggregates at a 1:1 MVEC:FB ratio were small and diffuse, whereas the 1:3 MVEC:FB ratio produced large and highly interconnected vessels by day 14. This study highlights the utility of human MVEC as a cell source for revascularization strategies, and suggests that the ratio of endothelial to support cells can be used to tailor vessel characteristics. The modular microtissue format may allow minimally invasive delivery of populations of prevascularized microtissues for therapeutic applications.
Collapse
Affiliation(s)
| | - Ana Y. Rioja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|
35
|
McIntyre MK, Peacock TJ, Akers KS, Burmeister DM. Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS One 2016; 11:e0166176. [PMID: 27824921 PMCID: PMC5100914 DOI: 10.1371/journal.pone.0166176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 02/01/2023] Open
Abstract
Elucidating the roles and composition of the human skin microbiome has revealed a delicate interplay between resident microbes and wound healing. Evolutionarily speaking, normal cutaneous flora likely has been selected for because it potentiates or, at minimum, does not impede wound healing. While pigs are the gold standard model for wound healing studies, the porcine skin microbiome has not been studied in detail. Herein, we performed 16S rDNA sequencing to characterize the pig skin bacteriome at several anatomical locations. Additionally, we used bacterial conditioned-media with in vitro techniques to examine the paracrine effects of bacterial-derived proteins on human keratinocytes (NHEK) and fibroblasts (NHDF). We found that at the phyla level, the pig skin bacteriome is similar to that of humans and largely consists of Firmicutes (55.6%), Bacteroidetes (20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) however species-level differences between anatomical locations exist. Studies of bacterial supernatant revealed location-dependent effects on NHDF migration and NHEK apoptosis and growth factor release. These results expand the limited knowledge of the cutaneous bacteriome of healthy swine, and suggest that naturally occurring bacterial flora affects wound healing differentially depending on anatomical location. Ultimately, the pig might be considered the best surrogate for not only wound healing studies but also the cutaneous microbiome. This would not only facilitate investigations into the microbiome’s role in recovery from injury, but also provide microbial targets for enhancing or accelerating wound healing.
Collapse
Affiliation(s)
- Matthew K. McIntyre
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Trent J. Peacock
- Dental Trauma Research Detachment, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Kevin S. Akers
- Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - David M. Burmeister
- Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Onofre I, Mendonça N, Lopes S, Nobre R, de Melo JB, Carreira IM, Januário C, Gonçalves AF, de Almeida LP. Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Sci Rep 2016; 6:28220. [PMID: 27328712 PMCID: PMC4916410 DOI: 10.1038/srep28220] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Machado Joseph Disease (MJD) is the most frequent autosomal dominantly inherited cerebellar ataxia caused by the over-repetition of a CAG trinucleotide in the ATXN3 gene. This expansion translates into a polyglutamine tract within the ataxin-3 protein that confers a toxic gain-of-function to the mutant protein ataxin-3, contributing to protein misfolding and intracellular accumulation of aggregates and neuronal degeneration. Autophagy impairment has been shown to be one of the mechanisms that contribute for the MJD phenotype. Here we investigated whether this phenotype was present in patient-derived fibroblasts, a common somatic cell type used in the derivation of induced pluripotent stem cells and subsequent differentiation into neurons, for in vitro disease modeling. We generated and studied adult dermal fibroblasts from 5 MJD patients and 4 healthy individuals and we found that early passage MJD fibroblasts exhibited autophagy impairment with an underlying mechanism of decreased autophagosome production. The overexpression of beclin-1 on MJD fibroblasts reverted partially autophagy impairment by increasing the autophagic flux but failed to increase the levels of autophagosome production. Overall, our results provide a well-characterized MJD fibroblast resource for neurodegenerative disease research and contribute for the understanding of mutant ataxin-3 biology and its molecular consequences.
Collapse
Affiliation(s)
- Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Nuno Mendonça
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Sara Lopes
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui Nobre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa de Melo
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Marques Carreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - António Freire Gonçalves
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun 2015; 6:7505. [PMID: 26106036 PMCID: PMC4491827 DOI: 10.1038/ncomms8505] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of haploinsufficiency-induced senescence (HIS) specific to epithelial cells, which is triggered by pRb pathway activation rather than p53 induction. HIS and telomere erosion in HMECs correlate with misregulation of SIRT1 leading to increased levels of acetylated pRb as well as acetylated H4K16 both globally and at telomeric regions. These results identify a novel form of cellular senescence and provide a potential molecular basis for the rapid cell- and tissue- specific predisposition of breast cancer development associated with BRCA1 haploinsufficiency.
Collapse
|
39
|
Park LK, Maione AG, Smith A, Gerami-Naini B, Iyer LK, Mooney DJ, Veves A, Garlick JA. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts. Epigenetics 2015; 9:1339-49. [PMID: 25437049 PMCID: PMC4622843 DOI: 10.4161/15592294.2014.967584] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.
Collapse
Key Words
- ANOVA, Analysis of Variance
- BMP, Bone Morphogenic Protein
- COL4A1, Collagen 4A1
- DAVID, Database for Annotation, Visualization, and Integrative Discovery
- DCCT, Diabetes Control and Complications Trial
- DFF, Diabetic Foot Fibroblast
- DFU, Diabetic Foot Ulcer
- DFUF, Diabetic Foot Ulcer Fibroblast
- DHS, DNase Hypersensitive Site
- DMP, Differentially Methylated Probe
- DNA methylation
- ECM, Extracellular Matrix
- EDIC, Epidemiology of Diabetes Interventions and Complications
- ENCODE, Encyclopedia of DNA Elements
- FGF1, Fibroblast Growth Factor 1
- HbA1c, Hemoglobin A1c
- NFF, Non-diabetic Foot Fibroblast
- NHLF, Normal Human Lung Fibroblast
- PLAU, Plasminogen Activator Urokinase
- SNP, Single Nucleotide Polymorphism
- TFBS, Transcription Factor Binding Site
- TGFb, Transforming Growth Factor b
- TNFa, Tumor Necrosis Factor a
- TSS, Transcription Start Site
- UTR, Untranslated Region.
- dNTPs, deoxynucleotide
- diabetes
- diabetic foot ulcer
- epigenetics
- fibroblast
- metabolic memory
- wound healing
Collapse
Affiliation(s)
- Lara K Park
- a Department of Oral and Maxillofacial Pathology ; Oral Medicine and Craniofacial Pain ; Tufts University School of Dental Medicine ; Boston , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mussel adhesive protein/platelet-rich plasma composite-coated titanium surfaces increase functionality of dermal fibroblasts. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Lung fibroblasts share mesenchymal stem cell features which are altered in chronic obstructive pulmonary disease via the overactivation of the Hedgehog signaling pathway. PLoS One 2015; 10:e0121579. [PMID: 25815884 PMCID: PMC4376723 DOI: 10.1371/journal.pone.0121579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Background Alteration of functional regenerative properties of parenchymal lung fibroblasts is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD). However, what these functions are and how they are impaired in COPD remain poorly understood. Apart from the role of fibroblasts in producing extracellular matrix, recent studies in organs different from the lung suggest that such cells might contribute to repair processes by acting like mesenchymal stem cells. In addition, several reports sustain that the Hedgehog pathway is altered in COPD patients thus aggravating the disease. Nevertheless, whether this pathway is dysregulated in COPD fibroblasts remains unknown. Objectives and Methods We investigated the stem cell features and the expression of Hedgehog components in human lung fibroblasts isolated from histologically-normal parenchymal tissue from 25 patients—8 non-smokers/non-COPD, 8 smokers-non COPD and 9 smokers with COPD—who were undergoing surgery for lung tumor resection. Results We found that lung fibroblasts resemble mesenchymal stem cells in terms of cell surface marker expression, differentiation ability and immunosuppressive potential and that these properties were altered in lung fibroblasts from smokers and even more in COPD patients. Furthermore, we showed that some of these phenotypic changes can be explained by an over activation of the Hedgehog signaling in smoker and COPD fibroblasts. Conclusions Our study reveals that lung fibroblasts possess mesenchymal stem cell-features which are impaired in COPD via the contribution of an abnormal Hedgehog signaling. These processes should constitute a novel pathomechanism accounting for disease occurrence and progression.
Collapse
|
42
|
Karthikeyan K, Krishnaswamy VR, Lakra R, Kiran MS, Korrapati PS. Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:101. [PMID: 25655500 DOI: 10.1007/s10856-015-5439-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
In this study, zein nanofibers based siRNA delivery system has been attempted for the first time. Here, the amphiphilic property of zein and the size advantage of nanofibers have been brought together in developing an ideal delivery system for siRNA. The morphological analysis of the GAPDH-siRNA loaded zein nanofibers revealed the proper encapsulation of the siRNA in the polymeric matrix. The loading efficiency of this delivery system was found to be 58.57±2.4% (w/w). The agarose gel analysis revealed that the zein nanofibers preserved the integrity of siRNA for a longer period even at the room temperature. The in vitro release studies not only depicted the sustaining potential of the zein nanofibers but also ensured the release of sufficient quantity of siRNA required to induce the gene silencing effect. The amphiphilic property of zein supported the cell attachment and thereby facilitated the transfection of siRNA into the cells. qRT-PCR analysis confirmed the potential of the developed system in inducing the desired gene silencing effect. Thus, electrospun zein nanofibers have been successfully employed for the delivery of siRNA which has a great therapeutic potential.
Collapse
Affiliation(s)
- K Karthikeyan
- Biomaterials Department, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | | | | | | |
Collapse
|
43
|
Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One 2014; 9:e115596. [PMID: 25549087 PMCID: PMC4280195 DOI: 10.1371/journal.pone.0115596] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterised by skin and internal organs fibrosis due to accumulation of extra cellular matrix (ECM) proteins. Tissue inhibitor of metalloproteinases 1 (TIMP-1) plays a key role in ECM deposition. Aim To investigate the role of miR-29a in regulation of TAB1-mediated TIMP-1 production in dermal fibroblasts in systemic sclerosis. Methods Healthy control (HC) and SSc fibroblasts were cultured from skin biopsies. The expression of TIMP-1, MMP-1 and TGF-β activated kinase 1 binding protein 1 (TAB1) was measured following miR-29a transfection using ELISA, qRT-PCR, and Western Blotting. The functional effect of miR-29a on dermal fibroblasts was assessed in collagen gel assay. In addition, HeLa cells were transfected with 3′UTR of TAB1 plasmid cloned downstream of firefly luciferase gene to assess TAB1 activity. HC fibroblasts and HeLa cells were also transfected with Target protectors in order to block the endogenous miR-29a activity. Results We found that TAB1 is a novel target gene of miR-29a, also regulating downstream TIMP-1 production. TAB1 is involved in TGF-β signal transduction, a key cytokine triggering TIMP-1 production. To confirm that TAB1 is a bona fide target gene of miR-29a, we used a TAB1 3′UTR luciferase assay and Target protector system. We showed that miR-29a not only reduced TIMP-1 secretion via TAB1 repression, but also increased functional MMP-1 production resulting in collagen degradation. Blocking TAB1 activity by pharmacological inhibition or TAB1 knockdown resulted in TIMP-1 reduction, confirming TAB1-dependent TIMP-1 regulation. Enhanced expression of miR-29a was able to reverse the profibrotic phenotype of SSc fibroblasts via downregulation of collagen and TIMP-1. Conclusions miR-29a repressed TAB1-mediated TIMP-1 production in dermal fibroblasts, demonstrating that miR-29a may be a therapeutic target in SSc.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Newcastle University, Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle upon Tyne, United Kingdom
- L. Hirszferd Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wroclaw, Poland
- * E-mail:
| | - Steven O’Reilly
- Newcastle University, Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle upon Tyne, United Kingdom
| | - Monika Suwara
- Newcastle University, Fibrosis Research Group, Institute of Cellular Medicine, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Bogunia-Kubik
- L. Hirszferd Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wroclaw, Poland
| | - Jacob M. van Laar
- Newcastle University, Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle upon Tyne, United Kingdom
- University Medical Center Utrecht, Department of Rheumatology & Clinical Immunology, Utrecht, the Netherlands
| |
Collapse
|
44
|
Role of dermatopontin in re-epithelialization: implications on keratinocyte migration and proliferation. Sci Rep 2014; 4:7385. [PMID: 25486882 PMCID: PMC4260223 DOI: 10.1038/srep07385] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023] Open
Abstract
Re-epithelialization is a key event in wound healing and any impairment in that process is associated with various pathological conditions. Epidermal keratinocyte migration and proliferation during re-epithelialization is largely regulated by the cytokines and growth factors from the provisional matrix and dermis. Extracellular matrix consists of numerous growth factors which mediate cell migration via cell membrane receptors. Dermatopontin (DPT), a non-collagenous matrix protein highly expressed in dermis is known for its striking ability to promote cell adhesion. DPT also enhances the biological activity of transforming growth factor beta 1 which plays a central role in the process of wound healing. This study was designed to envisage the role of DPT in keratinocyte migration and proliferation along with its mRNA and protein expression pattern in epidermis. The results showed that DPT promotes keratinocyte migration in a dose dependant fashion but fail to induce proliferation. Further, PCR and immunodetection studies revealed that the mRNA and protein expression of DPT is considerably negligible in the epidermis in contrast to the dermis. To conclude, DPT has a profound role in wound healing specifically during re-epithelialization by promoting keratinocyte migration via paracrine action from the underlying dermis.
Collapse
|
45
|
Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nat Commun 2014; 5:5442. [PMID: 25421844 PMCID: PMC4385735 DOI: 10.1038/ncomms6442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network.
Collapse
|
46
|
Samaras SE, Almodóvar-García K, Wu N, Yu F, Davidson JM. Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:96-109. [PMID: 25452119 DOI: 10.1016/j.ajpath.2014.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/27/2022]
Abstract
The expression of ankyrin repeat domain protein 1 (Ankrd1), a transcriptional cofactor and sarcomeric component, is strongly elevated by wounding and tissue injury. We developed a conditional Ankrd1(fl/fl) mouse, performed global deletion with Sox2-cre, and assessed the role of this protein in cutaneous wound healing. Although global deletion of Ankrd1 did not affect mouse viability or development, Ankrd1(-/-) mice had at least two significant wound-healing phenotypes: extensive necrosis of ischemic skin flaps, which was reversed by adenoviral expression of ANKRD1, and delayed excisional wound closure, which was characterized by decreased contraction and reduced granulation tissue thickness. Skin fibroblasts isolated from Ankrd1(-/-) mice did not spread or migrate on collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from Ankrd1(fl/fl) mice. More important, Ankrd1(-/-) fibroblasts failed to contract three-dimensional floating collagen gels. Reconstitution of ANKRD1 by adenoviral infection stimulated both collagen gel contraction and actin fiber organization. These in vitro data were consistent with in vivo wound closure studies, and suggest that ANKRD1 is important for the proper interaction of fibroblasts with a compliant collagenous matrix both in vitro and in vivo.
Collapse
Affiliation(s)
- Susan E Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Karinna Almodóvar-García
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nanjun Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fang Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
47
|
Aminoglycosides restore full-length type VII collagen by overcoming premature termination codons: therapeutic implications for dystrophic epidermolysis bullosa. Mol Ther 2014; 22:1741-52. [PMID: 25155989 DOI: 10.1038/mt.2014.140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022] Open
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) have severe, incurable skin fragility, blistering, and multiple skin wounds due to mutations in the gene encoding type VII collagen (C7), the major component of anchoring fibrils mediating epidermal-dermal adherence. Nearly 10-25% of RDEB patients carry nonsense mutations leading to premature stop codons (PTCs) that result in truncated C7. In this study, we evaluated the feasibility of using aminoglycosides to suppress PTCs and induce C7 expression in two RDEB keratinocyte cell lines (Q251X/Q251X and R578X/R906) and two primary RDEB fibroblasts (R578X/R578X and R163X/R1683X). Incubation of these cells with aminoglycosides (geneticin, gentamicin, and paromomycin) resulted in the synthesis and secretion of a full-length C7 in a dose-dependent and sustained manner. Importantly, aminoglycoside-induced C7 reversed the abnormal RDEB cell phenotype and incorporated into the dermal-epidermal junction of skin equivalents. We further demonstrated the general utility of aminoglycoside-mediated readthrough in 293 cells transiently transfected with expression vectors encoding 22 different RDEB nonsense mutations. This is the first study demonstrating that aminoglycosides can induce PTC readthrough and restore functional C7 in RDEB caused by nonsense mutations. Therefore, aminoglycosides may have therapeutic potential for RDEB patients and other inherited skin diseases caused by nonsense mutations.
Collapse
|
48
|
Wang Z, Wu G, Bai S, Feng Z, Dong Y, Zhou J, Qin H, Zhao Y. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts. Biomed Mater 2014; 9:035006. [PMID: 24739496 DOI: 10.1088/1748-6041/9/3/035006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.
Collapse
Affiliation(s)
- Zhongshan Wang
- Department of Prosthetics, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ganesh SK, Morissette R, Xu Z, Schoenhoff F, Griswold BF, Yang J, Tong L, Yang ML, Hunker K, Sloper L, Kuo S, Raza R, Milewicz DM, Francomano CA, Dietz HC, Van Eyk J, McDonnell NB. Clinical and biochemical profiles suggest fibromuscular dysplasia is a systemic disease with altered TGF-β expression and connective tissue features. FASEB J 2014; 28:3313-24. [PMID: 24732132 DOI: 10.1096/fj.14-251207] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibromuscular dysplasia (FMD) is a rare, nonatherosclerotic arterial disease for which the molecular basis is unknown. We comprehensively studied 47 subjects with FMD, including physical examination, spine magnetic resonance imaging, bone densitometry, and brain magnetic resonance angiography. Inflammatory biomarkers in plasma and transforming growth factor β (TGF-β) cytokines in patient-derived dermal fibroblasts were measured by ELISA. Arterial pathology other than medial fibrodysplasia with multifocal stenosis included cerebral aneurysm, found in 12.8% of subjects. Extra-arterial pathology included low bone density (P<0.001); early onset degenerative spine disease (95.7%); increased incidence of Chiari I malformation (6.4%) and dural ectasia (42.6%); and physical examination findings of a mild connective tissue dysplasia (95.7%). Screening for mutations causing known genetically mediated arteriopathies was unrevealing. We found elevated plasma TGF-β1 (P=0.009), TGF-β2 (P=0.004) and additional inflammatory markers, and increased TGF-β1 (P=0.0009) and TGF-β2 (P=0.0001) secretion in dermal fibroblast cell lines from subjects with FMD compared to age- and gender-matched controls. Detailed phenotyping of patients with FMD allowed us to demonstrate that FMD is a systemic disease with alterations in common with the spectrum of genetic syndromes that involve altered TGF-β signaling and offers TGF-β as a marker of FMD.
Collapse
Affiliation(s)
- Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Rachel Morissette
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA;
| | - Zhi Xu
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Florian Schoenhoff
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin F Griswold
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Jiandong Yang
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Lan Tong
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Leslie Sloper
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Shinie Kuo
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rafi Raza
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Jennifer Van Eyk
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nazli B McDonnell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA;
| |
Collapse
|
50
|
Almodóvar-García K, Kwon M, Samaras SE, Davidson JM. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site. Mol Cell Biol 2014; 34:1500-11. [PMID: 24515436 PMCID: PMC3993579 DOI: 10.1128/mcb.01357-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 01/21/2023] Open
Abstract
The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs.
Collapse
Affiliation(s)
- Karinna Almodóvar-García
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Minjae Kwon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Susan E. Samaras
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|