1
|
Xu HL, Zhu M, Sung HHY, Williams ID, Lin Z, Zhang C, Sun J. Organocatalytic Asymmetric Synthesis of o-Carboranyl Amines. J Am Chem Soc 2025; 147:3692-3701. [PMID: 39808207 DOI: 10.1021/jacs.4c16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy. Herein we have achieved the first catalytic asymmetric N-alkylation of o-carboranyl amine, providing general access to diverse secondary o-carboranyl amines with high efficiency and enantioselectivity under mild conditions. For the first time, asymmetric organocatalysis was introduced to carborane chemistry. Key to the success is the use of in situ generated (naphtho-)quinone methides as the alkylating reagents and suitable chiral acid catalysts. This protocol is also applicable to the asymmetric S-alkylation of 1-SH-o-C2B10H11. Control experiments and kinetic studies provided important insights into the reaction mechanism, which likely involves rate-determining generation of the quinone methide followed by fast and enantio-determining nucleophilic addition.
Collapse
Affiliation(s)
- Hong-Lei Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Minghui Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Herman H Y Sung
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ian D Williams
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhenyang Lin
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhang J, Wu Y, Lu W, Xiao Y, Liu S, Yu J. Carborane-FAPI conjugate: A potential FAP-targeted boron agent with improved boron content. Appl Radiat Isot 2024; 209:111330. [PMID: 38657372 DOI: 10.1016/j.apradiso.2024.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Boron neutron capture therapy (BNCT) has received extensive attention as an advanced binary radiotherapy method. However, BNCT still faces poor selectivity of boron agent and is insufficient boron content in tumor tissues. To improve the tumor-targeted ability and boron content, this research aims to design, synthesize and preliminary evaluate a new borane agent Carborane-FAPI, which coupling the o-carborane to the compound skeleton of a mature fibroblast activating protein (FAP) inhibitor (FAPI). FAP is a tumor-associated antigen. FAP expressed lowly in normal organs and highly expressed in tumors, so it is a potential target for diagnosis and treatment. Boronophenylalanine (BPA) is the most widely investigated BNCT drug in present. Compared with BPA, the boron content of a single molecule is increased and drug targeting is enhanced. The results show that Carboaren-FAPI has low toxicity to normal cells, and selective enrichment in tumor tissues. It is a promising boron drug that has the potential to be used in BNCT.
Collapse
Affiliation(s)
- Juan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yanyan Wu
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yi Xiao
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Shiyuan Liu
- Department of Radiology, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
4
|
Korolkov IV, Zaboronok A, Izbasar KA, Bekbol ZA, Lissovskaya LI, Zibert AV, Shakirzyanov RI, Korganbayeva LN, Yang H, Ishikawa E, Zdorovets MV. Synthesis of Gd-DTPA Carborane-Containing Compound and Its Immobilization on Iron Oxide Nanoparticles for Potential Application in Neutron Capture Therapy. Pharmaceutics 2024; 16:797. [PMID: 38931918 PMCID: PMC11207315 DOI: 10.3390/pharmaceutics16060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is one of the leading causes of global mortality, and its incidence is increasing annually. Neutron capture therapy (NCT) is a unique anticancer modality capable of selectively eliminating tumor cells within normal tissues. The development of accelerator-based, clinically mountable neutron sources has stimulated a worldwide search for new, more effective compounds for NCT. We synthesized magnetic iron oxide nanoparticles (NPs) that concurrently incorporate boron and gadolinium, potentially enhancing the effectiveness of NCT. These magnetic nanoparticles underwent sequential modifications through silane polycondensation and allylamine graft polymerization, enabling the creation of functional amino groups on their surface. Characterization was performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). ICP-AES measurements indicated that boron (B) content in the NPs reached 3.56 ppm/mg, while gadolinium (Gd) averaged 0.26 ppm/mg. Gadolinium desorption was observed within 4 h, with a peak rate of 61.74%. The biocompatibility of the NPs was confirmed through their relatively low cytotoxicity and sufficient cellular tolerability. Using NPs at non-toxic concentrations, we obtained B accumulation of up to 5.724 × 1010 atoms per cell, sufficient for successful NCT. Although limited by its content in the NP composition, the Gd amount may also contribute to NCT along with its diagnostic properties. Further development of the NPs is ongoing, focusing on increasing the boron and gadolinium content and creating active tumor targeting.
Collapse
Affiliation(s)
- Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Alexander Zaboronok
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Kairat A. Izbasar
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Zhangali A. Bekbol
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Lana I. Lissovskaya
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Alexandr V. Zibert
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
| | - Rafael I. Shakirzyanov
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Luiza N. Korganbayeva
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Haolan Yang
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| |
Collapse
|
5
|
Lanfranco A, Rakhshan S, Alberti D, Renzi P, Zarechian A, Protti N, Altieri S, Crich SG, Deagostino A. Combining BNCT with carbonic anhydrase inhibition for mesothelioma treatment: Synthesis, in vitro, in vivo studies of ureidosulfamido carboranes. Eur J Med Chem 2024; 270:116334. [PMID: 38552427 DOI: 10.1016/j.ejmech.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Mesothelioma is a malignant neoplasm of mesothelial cells caused by exposure to asbestos. The average survival time after diagnosis is usually nine/twelve months. A multi-therapeutic approach is therefore required to treat and prevent recurrence. Boronated derivatives containing a carborane cage, a sulfamido group and an ureido functionality (CA-USF) have been designed, synthesised and tested, in order to couple Boron Neutron Capture Therapy (BNCT) and the inhibition of Carbonic Anhydrases (CAs), which are overexpressed in many tumours. In vitro studies showed greater inhibition than the reference drug acetazolamide (AZ). To increase solubility in aqueous media, CA-USFs were used as inclusion complexes of hydroxypropyl β-cyclodextrin (HP-β-CD) in all the inhibition and cell experiments. BNCT experiments carried out on AB22 (murine mesothelioma) cell lines showed a marked inhibition of cell proliferation by CA-USFs, and in one case a complete inhibition of proliferation twenty days after neutron irradiation. Finally, in vivo neutron irradiation experiments on a mouse model of mesothelioma demonstrated the efficiency of combining CA IX inhibition and BNCT treatment. Indeed, a greater reduction in tumour mass was observed in treated mice compared to untreated mice, with a significant higher effect when combined with BNCT. For in vivo experiments CA-USFs were administered as inclusion complexes of higher molecular weight β-CD polymers thus increasing the selective extravasation into tumour tissue and reducing clearance. In this way, boron uptake was maximised and CA-USFs demonstrated to be in vivo well tolerated at a therapeutic dose. The therapeutic strategy herein described could be expanded to other cancers with increased CA IX activity, such as melanoma, glioma, and breast cancer.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Sahar Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Ayda Zarechian
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy.
| |
Collapse
|
6
|
Monti Hughes A, Schwint AE. Animal Tumor Models for Boron Neutron Capture Therapy Studies (Excluding Central Nervous System Solid Tumors). Cancer Biother Radiopharm 2022. [PMID: 36130136 DOI: 10.1089/cbr.2022.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translational research in adequate experimental models is necessary to optimize boron neutron capture therapy (BNCT) for different pathologies. Multiple radiobiological in vivo studies have been performed in a wide variety of animal models, studying multiple boron compounds, routes of compound administration, and a range of administration strategies. Animal models are useful for the study of the stability and potential toxicity of new boron compounds or delivery systems, BNCT theranostic strategies, the evaluation of biomarkers to monitor BNCT therapeutic and adverse effects, and to study the BNCT immune response by the host against tumor cells. This article will mention examples of these studies, highlighting the importance of experimental animal models for the advancement of BNCT. Animal models are essential to design novel, safe, and effective clinical BNCT protocols for existing or new targets for BNCT.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
9
|
Zaboronok A, Khaptakhanova P, Uspenskii S, Bekarevich R, Mechetina L, Volkova O, Mathis BJ, Kanygin V, Ishikawa E, Kasatova A, Kasatov D, Shchudlo I, Sycheva T, Taskaev S, Matsumura A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022; 14:pharmaceutics14040761. [PMID: 35456595 PMCID: PMC9032815 DOI: 10.3390/pharmaceutics14040761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/24/2023] Open
Abstract
Sufficient boron-10 isotope (10B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered 10B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT. These HEC particles are stable in aqueous media and show no apparent influence on U251, U87, and T98G human glioma cell proliferation without neutron beam irradiation. In BNCT experiments, cells incubated with eBNPs or BPA at an equivalent concentration of 40 µg 10B/mL for 24 h or control cells without boron were irradiated at an accelerator-based neutron source with a total fluence of thermal and epithermal neutrons of 2.685, 5.370, or 8.055 × 1012/cm2. The eBNPs significantly reduced colony-forming capacity in all studied cells during BNCT compared to BPA, verified by cell-survival curves fit to the linear-quadratic model and calculated radiobiological parameters, though the effect of both compounds differed depending on the cell line. The results of our study warrant further tumor targeting-oriented modifications of synthesized nanoparticles and subsequent in vivo BNCT experiments.
Collapse
Affiliation(s)
- Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +81-29-853-3220; Fax: +81-29-853-3214
| | - Polina Khaptakhanova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Sergey Uspenskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Raman Bekarevich
- The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Microscopy Laboratory, Trinity College Dublin, The University of Dublin, D02 W272 Dublin, Ireland;
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ludmila Mechetina
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Olga Volkova
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Japan;
| | - Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| |
Collapse
|
10
|
Gurubasavaraj PM, Sajjan VP, Muñoz-Flores BM, Jiménez Pérez VM, Hosmane NS. Recent Advances in BODIPY Compounds: Synthetic Methods, Optical and Nonlinear Optical Properties, and Their Medical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061877. [PMID: 35335243 PMCID: PMC8949266 DOI: 10.3390/molecules27061877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Organoboron compounds are attracting immense research interest due to their wide range of applications. Particularly, low-coordinate organoboron complexes are receiving more attention due to their improbable optical and nonlinear optical properties, which makes them better candidates for medical applications. In this review, we summarize the various synthetic methods including multicomponent reactions, microwave-assisted and traditional pathways of organoboron complexes, and their optical and nonlinear properties. This review also includes the usage of organoboron complexes in various fields including biomedical applications.
Collapse
Affiliation(s)
- Prabhuodeyara M. Gurubasavaraj
- Department of Chemistry, Rani Channamma University, Belagavi 591156, India;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | | | - Blanca M. Muñoz-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Víctor M. Jiménez Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| |
Collapse
|
11
|
Dai D, Lian G, He X, Feng J, Jin G. Water-soluble BODIPY-nido-carborane nanoparticles applied to biocompatibility tumor cell imaging. Photochem Photobiol Sci 2022; 21:185-194. [DOI: 10.1007/s43630-021-00148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
|
12
|
Ueda H, Suzuki M, Sakurai Y, Tanaka T, Aoki S. Design, Synthesis and Biological Evaluation of Boron‐Containing Macrocyclic Polyamine Dimers and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroki Ueda
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| |
Collapse
|
13
|
Bernier NA, Teh J, Reichel D, Zahorsky-Reeves JL, Perez JM, Spokoyny AM. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14500-14508. [PMID: 34843246 PMCID: PMC8761388 DOI: 10.1021/acs.langmuir.1c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of closo-dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating. We find that several boron cluster derivatives can become encapsulated into ferumoxytol, and the lack of pH dependence in these interactions suggests that ion pairing, hydrophobic/hydrophilic interaction, and hydrogen bonding are not the driving force for encapsulation in this system. Biodistribution experiments in BALB/c mice show that this system is nontoxic at the reported dosage and demonstrate that encapsulation of dodecaborate-based clusters in ferumoxytol can alter the biodistribution of the guest molecules.
Collapse
Affiliation(s)
- Nicholas A. Bernier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joanne L. Zahorsky-Reeves
- Division of Lab Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding Author:,
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Corresponding Author:,
| |
Collapse
|
14
|
Tolman WB, Evans W, Spokoyny AM. Mr. Inorganic Chemistry: M. Frederick Hawthorne (August 24, 1928-July 8, 2021). Inorg Chem 2021; 60:12621-12624. [PMID: 34492757 DOI: 10.1021/acs.inorgchem.1c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William B Tolman
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - William Evans
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
16
|
Novopashina DS, Vorobyeva MA, Venyaminova A. Recent Advances in the Synthesis of High Boron-Loaded Nucleic Acids for BNCT. Front Chem 2021; 9:619052. [PMID: 33791278 PMCID: PMC8005562 DOI: 10.3389/fchem.2021.619052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/02/2021] [Indexed: 12/05/2022] Open
Abstract
Boron clusters attract considerable attention as promising therapeutic tools for boron neutron capture therapy (BNCT). They combine high boron content with high chemical and biological stability, biorthogonality, and low toxicity. The development of oligonucleotide-based constructs and nucleic acid-like molecules, such as oligomeric phosphate diesters, bearing one or multiple boron clusters permits to create potential high boron-loaded agents for BNCT with good bioavailability, specifically interacting with nucleic acids inside the cell. Here, we shortly review the strategies and solutions in the design of oligonucleotide conjugates with boron clusters in light of the requirements for effective BNCT and future prospects of their practical use.
Collapse
Affiliation(s)
- Darya Sergeevna Novopashina
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | - Alya Venyaminova
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
17
|
Kanygin V, Zaboronok A, Taskaeva I, Zavjalov E, Mukhamadiyarov R, Kichigin A, Kasatova A, Razumov I, Sibirtsev R, Mathis BJ. In Vitro and In Vivo Evaluation of Fluorescently Labeled Borocaptate-Containing Liposomes. J Fluoresc 2021; 31:73-83. [PMID: 33078252 DOI: 10.1007/s10895-020-02637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Boron neutron capture therapy (BNCT), a binary cancer therapeutic modality, has moved to a new phase since development of accelerator-based neutron sources and establishment of BNCT centers in Finland and Japan. That stimulated efforts for better boron delivery agent development. As liposomes have shown effective boron delivery properties and sufficient tumor retention, fluorescent liposome labelling may serve as a rapid method to study initial ability of newly synthesized liposomes to be captured by tumor cells prior to experiments on boron accumulation and neutron irradiation. In this work, we studied the accumulation and biodistribution of pegylated liposomes with encapsulated borocaptate (BSH) and a fluorescent label (Nile Red) in U87 (human glioblastoma), SW-620 (human colon carcinoma), SK-MEL-28 (human melanoma), FetMSC (mesenchymal human embryo stem cells), and EMBR (primary embryocytes) cell lines as well as an orthotopic xenograft model of U87 glioma in SCID mice. Results indicate that fluorescent microscopy is effective at determining the intracellular localization of the liposomes using a fluorescent label. The synthesized, pegylated liposomes showed higher accumulation in tumors compared to normal cells, with characteristic concentration peaks in SW-620 and U87 cell lines, and provided in vivo tumor selectivity with several-fold higher tumor tissue fluorescence at the 6-h timepoint. Graphical abstract Fluorescent images of U-87 glioma cells after 24 hours of incubation with BSH-containing liposomes labeled with lipophilic Nile Red (red color)and water-soluble FITC-Dextran (green color); cell nuclei in blue color (DAPI-staining) (×400). Scale bar is 50 μm. Fluorescent labelling serves as anexpress method to study liposome delivery efficiency prior to boron accumulation evaluation and BNCT irradiation experiments.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation.
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Neurosurgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
- Laboratory of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Rinat Mukhamadiyarov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Research Institute for Complex Issues of Cardiovascular Diseases SB RAS, Kemerovo, Russian Federation
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Anna Kasatova
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation
| | - Ivan Razumov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Roman Sibirtsev
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Bryan J Mathis
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Streitmatter SW, Stewart RD, Moffitt G, Jevremovic T. Mechanistic Modeling of the Relative Biological Effectiveness of Boron Neutron Capture Therapy. Cells 2020; 9:cells9102302. [PMID: 33076401 PMCID: PMC7602619 DOI: 10.3390/cells9102302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
Accurate dosimetry and determination of the biological effectiveness of boron neutron capture therapy (BNCT) is challenging because of the mix of different types and energies of radiation at the cellular and subcellular levels. In this paper, we present a computational, multiscale system of models to better assess the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) of several neutron sources as applied to BNCT using boronophenylalanine (BPA) and a potential monoclonal antibody (mAb) that targets HER-2-positive cells with Trastuzumab. The multiscale model is tested against published in vitro and in vivo measurements of cell survival with and without boron. The combined dosimetric and radiobiological model includes an analytical formulation that accounts for the type of neutron source, the tissue- or cancer-specific dose–response characteristics, and the microdistribution of boron. Tests of the model against results from published experiments with and without boron show good agreement between modeled and experimentally determined cell survival for neutrons alone and in combination with boron. The system of models developed in this work is potentially useful as an aid for the optimization and individualization of BNCT for HER-2-positive cancers, as well as other cancers, that can be targeted with mAb or a conventional BPA compound.
Collapse
Affiliation(s)
- Seth W. Streitmatter
- Medical Imaging Physics and Radiation Safety, Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, UT 84132, USA
- Correspondence: ; Tel.: +1-801-581-2271
| | - Robert D. Stewart
- Department of Radiation Oncology, University of Washington, Seattle, WA 98115, USA; (R.D.S.); (G.M.)
| | - Gregory Moffitt
- Department of Radiation Oncology, University of Washington, Seattle, WA 98115, USA; (R.D.S.); (G.M.)
| | | |
Collapse
|
19
|
Couto M, Alamón C, Nievas S, Perona M, Dagrosa MA, Teixidor F, Cabral P, Viñas C, Cerecetto H. Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chemistry 2020; 26:14335-14340. [PMID: 32738078 DOI: 10.1002/chem.202002963] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Indexed: 12/17/2022]
Abstract
About 95 % of people diagnosed with glioblastoma die within five years. Glioblastoma is the most aggressive central nervous system tumour. It is necessary to make progress in the glioblastoma treatment so that advanced chemotherapy drugs or radiation therapy or, ideally, two-in-one hybrid systems should be implemented. Tyrosine kinase receptors-inhibitors and boron neutron capture therapy (BNCT), together, could provide a therapeutic strategy. In this work, sunitinib decorated-carborane hybrids were prepared and biologically evaluated identifying excellent antitumoral- and BNCT-agents. One of the selected hybrids was studied against glioma-cells and found to be 4 times more cytotoxic than sunitinib and 1.7 times more effective than 10 B-boronophenylalanine fructose complex when the cells were irradiated with neutrons.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Catalina Alamón
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Nievas
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission (CNEA), Buenos Aires, Argentina
| | - Marina Perona
- Department of Radiobiology, CNEA, Buenos Aires, Argentina
| | | | - Francesc Teixidor
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Pablo Cabral
- Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| |
Collapse
|
20
|
Comparative study of the effects of ortho-, meta- and para-carboranes (C2B10H12) on the physicochemical properties, cytotoxicity and antiviral activity of uridine and 2′-deoxyuridine boron cluster conjugates. Bioorg Chem 2020; 94:103466. [DOI: 10.1016/j.bioorg.2019.103466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
21
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
22
|
Luderer MJ, Muz B, Alhallak K, Sun J, Wasden K, Guenthner N, de la Puente P, Federico C, Azab AK. Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharm Res 2019; 36:144. [PMID: 31392417 DOI: 10.1007/s11095-019-2670-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation requires sufficient tumor boron delivery while minimizing nonspecific accumulation. METHODS Thermal sensitive liposomes (TSLs) were designed to have a stable drug payload at physiological temperatures but engineered to have high permeability under mild hyperthermia. RESULTS We found that TSLs improved the tumor-specific delivery of boronophenylalanine (BPA) and boronated 2-nitroimidazole derivative B-381 in D54 glioma cells. Uniquely, the 2-nitroimidazole moiety extended the tumor retention of boron content compared to BPA. CONCLUSION This is the first study to show the delivery of boronated compounds using TSLs for BNCT, and these results will provide the basis of future clinical trials using TSLs for BNCT.
Collapse
Affiliation(s)
- Micah John Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Katherine Wasden
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Nicole Guenthner
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Cinzia Federico
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
23
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019; 58:11886-11892. [DOI: 10.1002/anie.201904940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
25
|
He T, Chittur SV, Musah RA. Impact on Glioblastoma U87 Cell Gene Expression of a Carborane Cluster-Bearing Amino Acid: Implications for Carborane Toxicity in Mammalian Cells. ACS Chem Neurosci 2019; 10:1524-1534. [PMID: 30475580 DOI: 10.1021/acschemneuro.8b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Carboranes have been extensively investigated as potential drugs for the treatment of malignant human brain tumors by boron neutron capture therapy (BNCT). This noninvasive treatment modality utilizes compounds containing the nonradioactive isotope 10B which has a high propensity to capture slow neutrons. In response, it emits high energy α-particles that kill the cell. We have successfully synthesized a boron delivery agent by installing a boron-rich m-carborane within the amino acid cysteine. Rapid uptake of this compound into U87 glioblastoma cells within 5 min of exposure was observed, and fluorescence microscopy studies showed that it was retained intracellularly after 48 h. In the absence of thermal neutrons, a cytostatic effect in U87 cells was observed at exposures ranging from 1 μM to 1 mM relative to the control, while no change was observed at 1-0.01 μM. Microarray studies unveiled a wide range of unique changes in the gene expression profile of the U87 cells, particularly for the genes associated with cell cycle, which were observed to be greatly suppressed after treatment with the compound. These results were validated by qPCR studies. Although the compound was designed for BNCT, its distinctive impacts on gene regulation reveal that it and other carborane-containing cluster molecules may exert unique heretofore unknown effects on the transcriptome, even in the absence of applied radiation.
Collapse
Affiliation(s)
- Tianyu He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sridar V. Chittur
- Center for Functional Genomics, University at Albany, State University of New York, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
26
|
Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, Liu T, Liu Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43387-43395. [PMID: 30451482 DOI: 10.1021/acsami.8b14682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) induces high-energy radiation within cancer cells while avoiding damage to normal cells without uptake of BNCT drugs, which is holding great promise to provide excellent control over locally invasive malignant tumors. However, lack of quantitative imaging technique to determine local boron concentration has been a great challenge for nuclear physicians to apply accurate neutron irradiation during the treatment, which is a key factor that has limited BNCT's application in clinics. To meet this challenge, this study describes coating boronated porphyrins with a biocompatible poly(lactide- co-glycolide)-monomethoxy-poly(polyethylene-glycol) (PLGA-mPEG) micelle for selective tumor accumulation and reduced toxicity comparing with the previously reported boronated porphyrin drugs. Fluorescence imaging and positron emission tomography (PET) imaging were performed, unveiling the potential imaging properties of this boronated porphyrin nanocomplex (BPN) to locate tumor region and to determine tissue-localized boron concentration which facilitates treatment planning. By studying the pharmacokinetics of BPN with Cu-64 PET imaging, the treatment plan was adjusted from single bolus injection to multiple times of injections of smaller doses. As expected, high tumor uptake of boron (125.17 ± 13.54 ppm) was achieved with an extraordinarily high tumor to normal tissue ratio: tumors to liver, muscle, fat, and blood were 3.24 ± 0.22, 61.46 ± 20.26, 31.55 ± 10.30, and 33.85 ± 5.73, respectively. At last, neutron irradiation with BPN showed almost complete tumor suppression, demonstrating that BPN holds a great potential for being an efficient boron delivery agent for imaging-guided BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Dongban Duan
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengchu Zhang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
27
|
Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother 2018; 23:462-473. [PMID: 30263016 PMCID: PMC6158036 DOI: 10.1016/j.rpor.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Neutron capture therapy (NCT) is a targeted radiotherapy for cancer treatment. In this method, neutrons with a spectra/specific energy (depending on the type of agent used for NCT) are captured with an agent that has a high cross-section with these neutrons. There are some agents that have been proposed in NCT including 10B, 157Gd and 33S. Among these agents, only 10B is used in clinical trials. Application of 157Gd is limited to in-vivo and in-vitro research. In addition, 33S has been applied in the field of Monte Carlo simulation. In BNCT, the only two delivery agents which are presently applied in clinical trials are BPA and BSH, but other delivery systems are being developed for more effective treatment in NCT. Neutron sources used in NCT are fission reactors, accelerators, and 252Cf. Among these, fission reactors have the most application in NCT. So far, BNCT has been applied to treat various cancers including glioblastoma multiforme, malignant glioma, malignant meningioma, liver, head and neck, lung, colon, melanoma, thyroid, hepatic, gastrointestinal cancer, and extra-mammary Paget's disease. This paper aims to review physical, dosimetric and clinical aspects as well as delivery systems in NCT for various agents.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Salman Zakariaee
- Department of Medical Physics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Courtney Knaup
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| |
Collapse
|
28
|
Jin GF, Ban HS, Nakamura H, Lee JD. o-Carboranylalkoxy-1,3,5-Triazine Derivatives: Synthesis, Characterization, X-ray Structural Studies, and Biological Activity. Molecules 2018; 23:molecules23092194. [PMID: 30200261 PMCID: PMC6225125 DOI: 10.3390/molecules23092194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Morpholine- and bis(2-methoxyethyl)amine-substituted 1,3,5-triazine derivatives containing an alkoxy-o-carborane in the 6-position of the triazine ring were successfully synthesized. The molecular structures of the methoxy- and ethoxy-o-carboranyl-1,3,5-triazines were established by X-ray crystallography. In vitro studies showed that the methylene bridged morpholine- and bis(2-methoxyethyl)amine-substituted o-carboranyl-1,3,5-triazines accumulated to high levels in B16 melanoma cells and exhibited higher cytotoxicity than p-boronophenylalanine.
Collapse
Affiliation(s)
- Guo Fan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Hyun Seung Ban
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Jong-Dae Lee
- Department of Chemistry, College of Natural Sciences, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
29
|
Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond) 2018; 38:36. [PMID: 29914575 PMCID: PMC6006699 DOI: 10.1186/s40880-018-0280-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary therapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope boron-10 is irradiated with neutrons to produce high-energy alpha particles and recoiling lithium-7 nuclei. In this Commentary we will focus on a number of papers that were presented at a Symposium entitled "Current Clinical Status of Boron Neutron Capture Therapy and Paths to the Future", which was held in September 2017 at the China National Convention Center in Beijing. Results were presented by clinicians from Japan, Finland, the United States, the China mainland and Taiwan, China who have been working in the multiple disciplines that are required for carrying out clinical BNCT. The main focus was on the treatment of patients with malignant brain tumors, recurrent tumors of the head and neck region, and cutaneous melanomas. The results obtained in treating these patients were reported in detail and, although most of the patients with brain tumors and head and neck cancer were not cured, there was evidence of some clinical efficacy. Although there are a number of problems that must be addressed, further clinical studies to evaluate the efficacy of BNCT are warranted. First, despite considerable effort by numerous investigators over the past 40 years, there still are only two boron-containing drugs in clinical use, L-boronophenylalanine (BPA) and sodium borocaptate (BSH). Therefore, until new and more effective boron delivery agents are developed, efforts should be directed to improving the dosing and delivery of BPA and BSH. Second, due to a variety of reasons, nuclear reactor-based BNCT has ended except for its use in the China mainland and Taiwan. Therefore, the future of BNCT depends upon the results of the ongoing Phase II clinical trials that are being carried out in Japan and the soon to be initiated trials that will be carried out in Finland. If the results obtained from these clinical trials are sufficiently promising, then BNCT will have a clear path to the future, especially for patients with the therapeutically challenging malignancies that in the past have been treated with reactor-based BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Zizhu Zhang
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| | - Tong Liu
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| |
Collapse
|
30
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
31
|
Zhang X, Yan H. Pd(ii)-catalyzed synthesis of bifunctionalized carboranes via cage B-H activation of 1-CH 2NH 2- o-carboranes. Chem Sci 2018; 9:3964-3969. [PMID: 29780529 PMCID: PMC5941203 DOI: 10.1039/c8sc01154k] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Aminoalkyl carboranes are anticipated to be valuable synthons toward the synthesis of bifunctionalized carboranes. However, direct cage boron derivation of these carborane derivatives has not been solved. Herein, the reversible conversion of catalytically infeasible o-carboranyl methylamines (1-CH2NH2-o-carboranes) into bidentate imines initiates Pd-mediated cage B-H activation. As a result, an amine coordinated bicyclic Pd(ii) complex (3) has been isolated and proven to be the catalytically active intermediate for highly site-selective B-H diarylation of o-carboranyl methylamines. Using glyoxylic acid as an inexpensive and commercially available transient directing reagent, a wide range of cage B(4,5)-diarylated free primary o-carboranyl methylamines were prepared in good to excellent yields with the avoidance of the pre-installation and removal of a directing group. This method provides easy access to cage boron functionalized o-carboranyl methylamines with potential for application in pharmaceuticals.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Pharmaceutical Sciences , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China .
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China .
| |
Collapse
|
32
|
Fernandez-Alvarez R, Ďorďovič V, Uchman M, Matějíček P. Amphiphiles without Head-and-Tail Design: Nanostructures Based on the Self-Assembly of Anionic Boron Cluster Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3541-3554. [PMID: 29144761 DOI: 10.1021/acs.langmuir.7b03306] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anionic boron cluster compounds (ABCCs) are intrinsically amphiphilic building blocks suitable for nanochemistry. ABCCs are involved in atypical weak interactions, notably dihydrogen bonding, due to their peculiar polyhedral structure, consisting of negatively charged B-H units. The most striking feature of ABCCs that differentiates them from typical surfactants is the lack of head-and-tail structure. Furthermore, their structure can be described as intrinsically amphiphilic or aquaneutral. Therefore, classical terms established to describe self-assembly of classical amphiphiles are insufficient and need to be reconsidered. The opinions and theories focused on the solution behavior of ABCCs are briefly discussed. Moreover, a comparison between ABCCs with other amphiphilic systems is made focusing on the explanation of enthalpy-driven micellization or relations between hydrophobic and chaotropic effects. Despite the unusual structure, ABCCs still show self- and coassembly properties comparable to classical amphiphiles such as ionic surfactants. They self-assemble into micelles in water according to the closed association model. The most typical features of ABCCs solution behavior is demonstrated on calorimetry, NMR spectroscopy, and tensiometry experiments. Altogether, the unique features of ABCCs makes them a valuable inclusion into the nanochemisty toolbox to develop novel nanostructures both alone and with other molecules.
Collapse
Affiliation(s)
- Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| |
Collapse
|
33
|
Calabrese G, Daou A, Barbu E, Tsibouklis J. Towards carborane-functionalised structures for the treatment of brain cancer. Drug Discov Today 2017; 23:63-75. [PMID: 28886331 DOI: 10.1016/j.drudis.2017.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a promising targeted chemoradiotherapeutic technique for the management of invasive brain tumors, such as glioblastoma multiforme (GBM). A prerequisite for effective BNCT is the selective targeting of tumour cells with 10B-rich therapeutic moieties. To this end, polyhedral boranes, especially carboranes, have received considerable attention because they combine a high boron content with relative low toxicity and metabolic inertness. Here, we review progress in the molecular design of recently investigated carborane derivatives in light of the widely accepted performance requirements for effective BNCT.
Collapse
Affiliation(s)
- Gianpiero Calabrese
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK.
| | - Anis Daou
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
34
|
Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl Oncol 2017; 10:686-692. [PMID: 28683435 PMCID: PMC5498409 DOI: 10.1016/j.tranon.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH2)15–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9)-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.
Collapse
|
35
|
Mi P, Yanagie H, Dewi N, Yen HC, Liu X, Suzuki M, Sakurai Y, Ono K, Takahashi H, Cabral H, Kataoka K, Nishiyama N. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J Control Release 2017; 254:1-9. [DOI: 10.1016/j.jconrel.2017.03.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 01/15/2023]
|
36
|
Núñez R, Tarrés M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chem Rev 2016; 116:14307-14378. [DOI: 10.1021/acs.chemrev.6b00198] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rosario Núñez
- Institut de Ciència de Materials
de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Màrius Tarrés
- Institut de Ciència de Materials
de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials
de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Fabrizia Fabrizi de Biani
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Universita degli Studi di Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Francesc Teixidor
- Institut de Ciència de Materials
de Barcelona (ICMAB-CSIC), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Lyu H, Quan Y, Xie Z. Transition Metal Catalyzed Direct Amination of the Cage B(4)–H Bond in o-Carboranes: Synthesis of Tertiary, Secondary, and Primary o-Carboranyl Amines. J Am Chem Soc 2016; 138:12727-12730. [DOI: 10.1021/jacs.6b07086] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong, China
| | - Yangjian Quan
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and
State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong, China
| |
Collapse
|
38
|
Luderer MJ, Muz B, de la Puente P, Chavalmane S, Kapoor V, Marcelo R, Biswas P, Thotala D, Rogers B, Azab AK. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharm Res 2016; 33:2530-9. [PMID: 27401411 DOI: 10.1007/s11095-016-1977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. METHODS B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. RESULTS B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. CONCLUSIONS B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on hypoxic tumor metabolism. Further studies are warranted to evaluate B-381 and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma.
Collapse
Affiliation(s)
- Micah John Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Sanmathi Chavalmane
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Raymundo Marcelo
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Buck Rogers
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, Missouri, 63108, USA.
| |
Collapse
|
39
|
Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016; 8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.
Collapse
|
40
|
Alberti D, Protti N, Toppino A, Deagostino A, Lanzardo S, Bortolussi S, Altieri S, Voena C, Chiarle R, Geninatti Crich S, Aime S. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:741-50. [PMID: 25596074 DOI: 10.1016/j.nano.2014.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Nicoletta Protti
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Antonio Toppino
- Department of Chemistry, University of Torino, Torino, Italy
| | | | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Silva Bortolussi
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Saverio Altieri
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy; Department of Pathology, Children's Hospital Harvard Medical School, Boston, MA, USA
| | | | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| |
Collapse
|
41
|
Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci U S A 2014; 111:16077-81. [PMID: 25349432 DOI: 10.1073/pnas.1410865111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.
Collapse
|
42
|
Achilli C, Jadhav SA, Guidetti GF, Ciana A, Abbonante V, Malara A, Fagnoni M, Torti M, Balduini A, Balduini C, Minetti G. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem Biol Drug Des 2014; 83:532-40. [PMID: 24666508 DOI: 10.1111/cbdd.12264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
Boron neutron capture therapy (BNCT) is an anticancer treatment based on the accumulation in the tumor cells of (10) B-containing molecules and subsequent irradiation with low-energy neutrons, which bring about the decay of (10) B to very toxic (7) Li(3+) and (4) He(2+) ions. The effectiveness of BNCT is limited by the low delivery and accumulation of the used (10) B-containing compounds. Here, we report the development of folic acid-conjugated 4-amino-phenylboronate as a novel possible compound for the selective delivery of (10) B in BNCT. An extensive analysis about its biocompatibility to mature blood cells and platelet progenitors revealed that the compound markedly supports platelet aggregation, neutrophil oxidative burst, and inhibition of megakaryocyte development, while it does not have any manifest effect on red blood cells.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, via Bassi, 21, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade(®)), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin's lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans.
Collapse
|
45
|
Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, Cansolino L, Tomasi C, Balduini A, Fagnoni M, Merli D, Mustarelli P, Canobbio I, Balduini C, Minetti G. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:589-97. [PMID: 24161383 DOI: 10.1016/j.nano.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/23/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. FROM THE CLINICAL EDITOR Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies.
Collapse
Affiliation(s)
- Cesare Achilli
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Annarita Ciana
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | - Laura Cansolino
- Department of Clinico-Surgical Sciences, University of Pavia, Pavia, Italy; I.R.C.C.S. S.Matteo Hospital, Pavia, Italy
| | - Corrado Tomasi
- Department of Chemistry, University of Pavia, Pavia, Italy; fI.E.N.I. C.N.R. Unit of Lecco, C.So Promessi Sposi n°29, 23900 Lecco, Italy
| | | | | | - Daniele Merli
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Cesare Balduini
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampaolo Minetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
46
|
Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci U S A 2013; 110:6512-7. [PMID: 23536304 DOI: 10.1073/pnas.1303437110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of boron neutron capture therapy (BNCT) following liposomal delivery of a (10)B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2'-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h--with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)--following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 10(12) neutrons per cm(2) (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study.
Collapse
|
47
|
Calabrese G, Nesnas JJ, Barbu E, Fatouros D, Tsibouklis J. The formulation of polyhedral boranes for the boron neutron capture therapy of cancer. Drug Discov Today 2011; 17:153-9. [PMID: 21978988 DOI: 10.1016/j.drudis.2011.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022]
Abstract
The early promise of boron neutron capture therapy as a method for the treatment of cancer has been inhibited by the inherent toxicity associated with therapeutically useful doses of ¹⁰B-containing pharmacophores, the need for target-tissue specificity and the challenges imposed by biological barriers. Although developments in the synthetic chemistry of polyhedral boranes have addressed issues of toxicity to a considerable extent, the optimisation of the transport and the delivery of boronated agents to the site of action--the subject of this review--is a challenge that is addressed by the development of innovative formulation strategies.
Collapse
Affiliation(s)
- Gianpiero Calabrese
- School of Pharmacy and Chemistry, Kingston University, Kingston-upon Thames KT1 2EE, UK.
| | | | | | | | | |
Collapse
|
48
|
Pozzi ECC, Thorp S, Brockman J, Miller M, Nigg DW, Hawthorne MF. Intercalibration of physical neutron dosimetry for the RA-3 and MURR thermal neutron sources for BNCT small-animal research. Appl Radiat Isot 2011; 69:1921-3. [PMID: 21330143 DOI: 10.1016/j.apradiso.2011.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/05/2011] [Indexed: 11/29/2022]
Abstract
New thermal neutron irradiation facilities to perform cell and small-animal irradiations for Boron Neutron Capture Therapy research have been installed at the Missouri University Research Reactor and at the RA-3 research reactor facility in Buenos Aires, Argentina. Recognizing the importance of accurate and reproducible physical beam dosimetry as an essential tool for combination and intercomparisons of preclinical and clinical results from the different facilities, we have conducted an experimental intercalibration of the neutronic performance of the RA-3 and MURR thermal neutron sources.
Collapse
Affiliation(s)
- Emiliano C C Pozzi
- Department of Radiobiology, National Atomic Energy Commission (CNEA), Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Kumar S, Freytag SO, Barton KN, Burmeister J, Joiner MC, Sedghi B, Movsas B, Binns PJ, Kim JH, Brown SL. A novel method of boron delivery using sodium iodide symporter for boron neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2010; 51:621-626. [PMID: 20921830 PMCID: PMC3735134 DOI: 10.1269/jrr.10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF(4)) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF(4), compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications.
Collapse
Affiliation(s)
- Sanath Kumar
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tiwari R, Mahasenan K, Pavlovicz R, Li C, Tjarks W. Carborane clusters in computational drug design: a comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. J Chem Inf Model 2009; 49:1581-9. [PMID: 19449853 DOI: 10.1021/ci900031y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compounds containing boron atoms play increasingly important roles in the therapy and diagnosis of various diseases, particularly cancer. However, computational drug design of boron-containing therapeutics and diagnostics is hampered by the fact that many software packages used for this purpose lack parameters for all or part of the various types of boron atoms. In the present paper, we describe simple and efficient strategies to overcome this problem, which are based on the replacement of boron atom types with carbon atom types. The developed methods were validated by docking closo- and nido-carboranyl antifolates into the active site of a human dihydrofolate reductase (hDHFR) using AutoDock, Glide, FlexX, and Surflex and comparing the obtained docking poses with the poses of their counterparts in the original hDHFR-carboranyl antifolate crystal structures. Under optimized conditions, AutoDock and Glide were equally good in docking of the closo-carboranyl antifolates followed by Surflex and FlexX, whereas Autodock, Glide, and Surflex proved to be comparably efficient in the docking of nido-carboranyl antifolates followed by FlexX. Differences in geometries and partial atom charges in the structures of the carboranyl antifolates resulting from different data sources and/or optimization methods did not impact the docking performances of AutoDock or Glide significantly. Binding energies predicted by all four programs were in accordance with experimental data.
Collapse
Affiliation(s)
- Rohit Tiwari
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|