1
|
Seeger DR, Schofield B, Besch D, Golovko SA, Kotha P, Parmer M, Solaymani-Mohammadi S, Golovko MY. Exogenous oxygen is required for prostanoid induction under brain ischemia as evidence for a novel regulatory mechanism. J Lipid Res 2023; 64:100452. [PMID: 37783389 PMCID: PMC10630775 DOI: 10.1016/j.jlr.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Previously, we and others reported a rapid and dramatic increase in brain prostanoids (PG), including prostaglandins, prostacyclins, and thromboxanes, under ischemia that is traditionally explained through the activation of esterified arachidonic acid (20:4n6) release by phospholipases as a substrate for cyclooxygenases (COX). However, the availability of another required COX substrate, oxygen, has not been considered in this mechanism. To address this mechanism for PG upregulation through oxygen availability, we analyzed mouse brain PG, free 20:4n6, and oxygen levels at different time points after ischemic onset using head-focused microwave irradiation (MW) to inactivate enzymes in situ before craniotomy. The oxygen half-life in the ischemic brain was 5.32 ± 0.45 s and dropped to undetectable levels within 12 s of ischemia onset, while there were no significant free 20:4n6 or PG changes at 30 s of ischemia. Furthermore, there was no significant PG increase at 2 and 10 min after ischemia onset compared to basal levels, while free 20:4n6 was increased ∼50 and ∼100 fold, respectively. However, PG increased ∼30-fold when ischemia was followed by craniotomy of nonMW tissue that provided oxygen for active enzymes. Moreover, craniotomy performed under anoxic conditions without MW did not result in PG induction, while exposure of these brains to atmospheric oxygen significantly induced PG. Our results indicate, for the first time, that oxygen availability is another important regulatory factor for PG production under ischemia. Further studies are required to investigate the physiological role of COX/PG regulation through tissue oxygen concentration.
Collapse
Affiliation(s)
- Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Derek Besch
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Peddanna Kotha
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Meredith Parmer
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Shahram Solaymani-Mohammadi
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
2
|
Kratz D, Wilken-Schmitz A, Sens A, Hahnefeld L, Scholich K, Geisslinger G, Gurke R, Thomas D. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay. Prostaglandins Other Lipid Mediat 2022; 162:106660. [PMID: 35714920 DOI: 10.1016/j.prostaglandins.2022.106660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Prostanoids are potent lipid mediators involved in a wide variety of physiological functions like blood pressure regulation or inflammation as well as cardiovascular and malign diseases. Elucidation of their modes of action is mainly carried out in pre-clinical animal models by quantifying prostanoids in tissues of interest. Unfortunately, prostanoids are prone to post-mortem artifact formation and de novo synthesis can already be caused by external stimuli during the euthanasia of animals like prolonged hypercapnia or ischemia. Therefore, this study investigates the suitability and impact of fast cervical dislocation for the determination of prostanoids (6-keto-PGF1α, TXB2, PGF2α, PGD2, PGE2) in seven tissues of mice (spinal cord, brain, sciatic nerve, kidney, liver, lung, and spleen) to minimize time-dependent effects and approximate physiological concentrations. Tissues were dissected in a standardized sequence directly or after 10 min to investigate the influence of dissection delays. The enzyme inhibitor indomethacin (10 µM) in combination with low processing temperatures was employed to preserve prostanoid concentrations during sample preparation. Quantification of prostanoids was performed via LC-MS/MS. This study shows, that prostanoids are differentially susceptible to post-mortem artifact formation which is closely connected to their physiological function and metabolic stability in the respective tissues. Prostanoids in the brain, spinal cord, and kidney that are not involved in the regulatory response post-mortem, i.e. blood flow regulation (6-keto-PGF1α, PGE2, PGF2α) showed high reproducibility even after dissection delay and could be assessed after fast cervical dislocation if prerequisites like standardized pre-analytical workflows with immediate dissection and inhibition of residual enzymatic activity are in place. However, in tissues with high metabolic activity (liver, lung) more stable prostanoid metabolites should be used. Moreover, prostanoids in the spleen were strongly affected by dissection delays and presumably the method of euthanasia itself.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Wilken-Schmitz
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - K Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Baazm M, Behrens V, Beyer C, Nikoubashman O, Zendedel A. Regulation of Inflammasomes by Application of Omega-3 Polyunsaturated Fatty Acids in a Spinal Cord Injury Model. Cells 2021; 10:3147. [PMID: 34831370 PMCID: PMC8618254 DOI: 10.3390/cells10113147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFA n3) ameliorate inflammation in different diseases and potentially improve neurological function after neuronal injury. Following spinal cord injury (SCI), inflammatory events result in caspase-1 mediated activation of interleukin-1 beta (IL-1b) and 18. We aim to evaluate the neuroprotective potency of PUFA n3 in suppressing the formation and activation of inflammasomes following SCI. Male Wistar rats were divided into four groups: control, SCI, SCI+PUFA n3, and SCI+Lipofundin MCT (medium-chain triglyceride; vehicle). PUFA n3 or vehicle was intravenously administered immediately after SCI and every 24 h for the next three days. We analyzed the expression of NLRP3, NLRP1, ASC, caspase-1, IL-1b, and 18 in the spinal cord. The distribution of microglia, oligodendrocytes, and astrocytes was assessed by immunohistochemistry analysis. Behavioral testing showed significantly improved locomotor recovery in PUFA n3-treated animals and the SCI-induced upregulation of inflammasome components was reduced. Histopathological evaluation confirmed the suppression of microgliosis, increased numbers of oligodendrocytes, and the prevention of demyelination by PUFA n3. Our data support the neuroprotective role of PUFA n3 by targeting the NLRP3 inflammasome. These findings provide evidence that PUFA n3 has therapeutic effects which potentially attenuate neuronal damage in SCI and possibly also in other neuronal injuries.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak 3819693345, Iran;
| | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Omid Nikoubashman
- Department of Neuroradiology, University Hospital RWTH, 52074 Aachen, Germany;
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| |
Collapse
|
4
|
Farhat F, Nofal S, Raafat EM, Eissa Ahmed AA. Akt / GSK3β / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology 2021; 196:108654. [PMID: 34119518 DOI: 10.1016/j.neuropharm.2021.108654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates redox homeostasis of the cell through regulation of the antioxidant response element genes transcription. Nrf2 also regulates the antiapoptotic Bcl-2 gene. Nrf2 degradation and nuclear translocation is regulated by upstream kinases Akt and GSK3β. Glutamate excitotoxicity is a process of neuronal cells death due to excessive activation of glutamate receptors. Glutamate excitotoxicity participates in the pathophysiology of several acute and chronic neurological conditions. In addition, glutamate excitotoxicity interrupts the PI3K/Akt prosurvival pathway so GSK3β remains active. Active GSK3β increases Nrf2 degradation, decreases Nrf2 nuclear translocation and increases Nrf2 nuclear export which decreases the ARE genes transcription such as, SOD, GSH synthesis enzyme and HO-1. Also, Bcl-2 transcription decreases. Flurbiprofen is a COX inhibitor. Previous studies showed that it has a neuroprotective effect in neurodegeneration and in focal cerebral ischemia/reperfusion model. In our research we aimed to test the hypothesis that flurbiprofen may have a neuroprotective effect in a rat model of glutamate-induced excitotoxicity and this neuroprotection may occur through modulation of (Akt/GSK3β/Nrf2/HO-1) pathway. Rats were divided into 4 groups; control, MSG (2.5 g/Kg, i.p), low dose FB (5 mg/kg, i.p) and high dose FB (10 mg/kg, i.p). We found that low and high doses FB decreased COX-2, PGE2, NO and MDA and increased SOD and GSH in brain compared to MSG group. High dose was more effective than low dose. Western blotting analysis in hippocampus tissue showed that high dose FB increased p-Akt, p-GSK3β, nuclear Nrf2 and HO-1 and decreased cytosolic Nrf2 level in comparison with MSG group. Immunohistochemical analysis in hippocampus and cerebral cortex showed that high dose FB increased Bcl-2 and decreased Bax compared to MSG group. In addition, FB increased the number of intact neurons in hippocampus areas and cerebral cortex neurons and showed an anxiolytic-like action in OF and EPM tests. These findings suggest that FB has a neuroprotective effect in glutamate-induced excitotoxicity model through reduction of the glutamate excitotoxicity damage and activation of the survival pathway. These may occur due to modulation the survival pathway (Akt/GSK3β/Nrf2/HO-1) and inhibition of COX-2.
Collapse
Affiliation(s)
- Fatma Farhat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Eman M Raafat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt.
| |
Collapse
|
5
|
Kopper TJ, Zhang B, Bailey WM, Bethel KE, Gensel JC. The effects of myelin on macrophage activation are phenotypic specific via cPLA 2 in the context of spinal cord injury inflammation. Sci Rep 2021; 11:6341. [PMID: 33737707 PMCID: PMC7973514 DOI: 10.1038/s41598-021-85863-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kara E Bethel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Murphy EJ. Ether lipids and their elusive function in the nervous system: a role for plasmalogens: An Editorial Highlight for 'Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction' on page 569. J Neurochem 2017; 143:463-466. [PMID: 28944460 DOI: 10.1111/jnc.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/27/2022]
Abstract
In this editorial, we highlight the recent work of Dorninger et al. that demonstrates a reduction in plasmalogens in the motor end plate is associated with a reduction in motor end plate function. This reduction in function is illuminated in reduced muscle function in these mice, corresponding with the reduction in acetylcholine release and in its receptor density observed in these mice.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
8
|
Sparvero LJ, Amoscato AA, Fink AB, Anthonymuthu T, New L, Kochanek P, Watkins S, Kagan V, Bayır H. Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J Neurochem 2016; 139:659-675. [PMID: 27591733 PMCID: PMC5323070 DOI: 10.1111/jnc.13840] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) leads to changes in ion fluxes, alterations in mitochondrial function, and increased generation of reactive oxygen species, resulting in secondary tissue damage. Mitochondria play important signaling roles in coordination of multiple metabolic platforms in addition to their well-known role in bioenergetics. Mitochondrial signaling strongly depends on cardiolipin (CL), a mitochondria-specific structurally unusual anionic phospholipid containing four fatty acyl chains. While our previous reports indicated that CL is selectively oxidized and presents itself as a target for the redox therapy following TBI, the topography of changes of CL in the injured brain remained to be defined. Here, we present a matrix-assisted laser desorption/ionization imaging study which reports regio-specific changes in CL, in a controlled cortical impact model of TBI in rats. Matrix-assisted laser desorption/ionization imaging revealed that TBI caused early decreases in CL in the contusional cortex, ipsilateral hippocampus, and thalamus with the most highly unsaturated CL species being most susceptible to loss. Phosphatidylinositol was the only other lipid species that exhibited a significant decrease, albeit to a lesser extent than CL. Signals for other lipids remained unchanged. This is the first study evaluating the spatial distribution of CL loss after acute brain injury. We propose that the CL loss may constitute an upstream mechanism for CL-driven signaling in different brain regions as an early response mechanism and may also underlie the bioenergetic changes that occur in hippocampal, cortical, and thalamic mitochondria after TBI.
Collapse
Affiliation(s)
- L. J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A. B. Fink
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T. Anthonymuthu
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - L.E. New
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P.M. Kochanek
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - V.E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H. Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Figueroa JD, Serrano-Illan M, Licero J, Cordero K, Miranda JD, De Leon M. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury. J Neurotrauma 2016; 33:1436-49. [PMID: 26715431 DOI: 10.1089/neu.2015.4186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord.
Collapse
Affiliation(s)
- Johnny D Figueroa
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Miguel Serrano-Illan
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jenniffer Licero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Kathia Cordero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jorge D Miranda
- 2 Physiology Department, University of Puerto Rico Medical Sciences Campus , San Juan, Puerto Rico
| | - Marino De Leon
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
10
|
Khan M, Shunmugavel A, Dhammu TS, Matsuda F, Singh AK, Singh I. Oral administration of cytosolic PLA2 inhibitor arachidonyl trifluoromethyl ketone ameliorates cauda equina compression injury in rats. J Neuroinflammation 2015; 12:94. [PMID: 25971887 PMCID: PMC4436116 DOI: 10.1186/s12974-015-0311-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2)-derived proinflammatory lipid mediators such as prostaglandin E2 (PGE2), leukotrienes B4 (LTB4), lysophosphatidylcholine (LPC), and free fatty acids (FFA) are implicated in spinal cord injury (SCI) pathologies. Reducing the levels of these injurious bioactive lipid mediators is reported to ameliorate SCI. However, the specific role of the group IVA isoform of PLA2 cytosolic PLA2 (cPLA2) in lumbar spinal canal stenosis (LSS) due to cauda equina compression (CEC) injury is not clear. In this study, we investigated the role of cPLA2 in a rat model of CEC using a non-toxic cPLA2-preferential inhibitor, arachidonyl trifluoromethyl ketone (ATK). METHODS LSS was induced in adult female rats by CEC procedure using silicone blocks within the epidural spaces of L4 to L6 vertebrae. cPLA2 inhibitor ATK (7.5 mg/kg) was administered by oral gavage at 2 h following the CEC. cPLA2-derived injurious lipid mediators and the expression/activity of cPLA2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were assessed. ATK-treated (CEC + ATK) were compared with vehicle-treated (CEC + VEH) animals in terms of myelin levels, pain threshold, and motor function. RESULTS ATK treatment of CEC animals reduced the phosphorylation of cPLA2 (pcPLA2) determined by Western blot, improved locomotor function evaluated by rotarod task, and reduced pain threshold evaluated by mechanical hyperalgesia method. Levels of FFA and LPC, along with PGE2 and LTB4, were reduced in CEC + ATK compared with CEC + VEH group. However, ATK treatment reduced neither the activity/expression of 5-LOX nor the expression of COX-2 in CEC + VEH animals. Increased cPLA2 activity in the spinal cord from CEC + VEH animals correlated well with decreased spinal cord as well as cauda equina fiber myelin levels, which were restored after ATK treatment. CONCLUSION The data indicate that cPLA2 activity plays a significant role in tissue injury and pain after LSS. Reducing the levels of proinflammatory and tissue damaging eicosanoids and the deleterious lipid mediator LPC shows therapeutic potential. ATK inhibits cPLA2 activity, thereby decreasing the levels of injurious lipid mediators, reducing pain, improving functional deficits, and conferring protection against LSS injury. Thus, it shows potential for preclinical evaluation in LSS.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Yan H, Hong P, Jiang M, Li H. MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regen Res 2015; 7:1352-9. [PMID: 25657667 PMCID: PMC4308808 DOI: 10.3969/j.issn.1673-5374.2012.17.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are a class of recently discovered, small non-coding RNAs that have been shown to play essential roles in a vast majority of biological processes. Very little is known about the role of microRNAs during spinal cord injury. This review summarizes the changes in expression levels of microRNAs after spinal cord injury. These aberrant changes suggest that microRNAs play an important role in inflammation, oxidative stress, apoptosis, glial scar formation and axonal regeneration. Given their small size and specificity of action, microRNAs could be potential therapeutics for treating spinal cord injury in the future. There are rapidly developing techniques for manipulating microRNA levels in animals; we review different chemical modification and delivery strategies. These may provide platforms for designing efficient microRNA delivery protocols for use in the clinic.
Collapse
Affiliation(s)
- Hualin Yan
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Peiwei Hong
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei Jiang
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hedong Li
- West China Developmental & Stem Cell Institute, Department of Obstetric & Gynecologic and Pediatric, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
12
|
Park J, Zheng L, Marquis A, Walls M, Duerstock B, Pond A, Vega-Alvarez S, Wang H, Ouyang Z, Shi R. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. J Neurochem 2013; 129:339-49. [PMID: 24286176 DOI: 10.1111/jnc.12628] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in spinal cord injury (SCI), mainly based on in vitro and ex vivo evidence. Here, we demonstrate an increase of acrolein up to 300%; the elevation lasted at least 2 weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health.
Collapse
Affiliation(s)
- Jonghyuck Park
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brose SA, Baker AG, Golovko MY. A fast one-step extraction and UPLC-MS/MS analysis for E2/D 2 series prostaglandins and isoprostanes. Lipids 2013; 48:411-9. [PMID: 23400687 PMCID: PMC3608832 DOI: 10.1007/s11745-013-3767-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022]
Abstract
Prostaglandins (PG) and isoprostanes (iso-PG) may be derived through cyclooxygenase or free radical pathways and are important signaling molecules that are also robust biomarkers of oxidative stress. Their quantification is important for understanding many biological processes where PG, iso-PG, or oxidative stress are involved. One of the common methods for PG and iso-PG quantifications is LC-MS/MS that allows a highly selective, sensitive, simultaneous analysis for prostanoids without derivatization. However, the currently used LC-MS/MS methods require a multi-step extraction and a long (within an hour) LC separation to achieve simultaneous separation and analysis of the major iso-PG. The developed and validated for brain tissue analysis one-step extraction protocol and UPLC-MS/MS method significantly increases the recovery of the PG extraction up to 95 %, and allows for a much faster (within 4 min) major iso-PGE2 and -PGD2 separation with 5 times narrower chromatographic peaks as compared to previously used methods. In addition, it decreases the time and cost of analysis due to the one-step extraction approach performed in disposable centrifuge tubes. All together, this significantly increases the sensitivity, and the time and cost efficiency of the PG and iso-PG analysis.
Collapse
Affiliation(s)
- Stephen A. Brose
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037
| | | | - Mikhail Y. Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037
| |
Collapse
|
14
|
Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX, Priestley JV, Michael-Titus AT. Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 2013; 51:104-12. [DOI: 10.1016/j.nbd.2012.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/23/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022] Open
|
15
|
Figueroa JD, Cordero K, Llán MS, De Leon M. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J Neurotrauma 2013; 30:853-68. [PMID: 23294084 DOI: 10.1089/neu.2012.2718] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Departments of Basic Sciences and Pathology and Human Anatomy, Loma Linda University, Loma Linda, California, USA
| | | | | | | |
Collapse
|
16
|
Hall JCE, Priestley JV, Perry VH, Michael-Titus AT. Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J Neurochem 2012; 121:738-50. [DOI: 10.1111/j.1471-4159.2012.07726.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Guenther C, Windelborn J, Tubon T, Yin J, Mitchell G. Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury. Exp Neurol 2012; 234:513-20. [PMID: 22329943 PMCID: PMC3340613 DOI: 10.1016/j.expneurol.2012.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 01/23/2023]
Abstract
Atypical protein kinase C (aPKC) isoforms are expressed in phrenic motor neurons, a group of motor neurons critical for breathing. Following C2 cervical hemisection (C2HS), spontaneous plasticity occurs in crossed-spinal synaptic pathways to phrenic motor neurons, at least partially restoring inspiratory phrenic activity below the injury. Since aPKCs are necessary for synaptic plasticity in other systems, we tested the hypothesis that C2HS increases aPKC expression and activity in spinal regions associated with the phrenic motor nucleus. C2 laminectomy (sham) or C2HS was performed on adult, male Lewis rats. Ventral spinal segments C3-5 were harvested 1, 3 or 28 days post-surgery, and prepared for aPKC enzyme activity assays and immunoblots. Ventral cervical aPKC activity was elevated 1 and 28, but not 3, days post-C2HS (1 day: 63% vs sham ipsilateral to injury; p<0.05; 28 day: 426% vs sham; p<0.05; no difference in ipsilateral vs contralateral response). Total PKCζ/ι protein expression was unchanged by C2HS, but total and phosphorylated PKMζ (constitutively active PKCζ isoform) increased ipsilateral to injury 28 days post-C2HS (p<0.05). Ipsilateral aPKC activity and expression were strongly correlated (r(2)=0.675, p<0.001). In a distinct group of rats, immunohistochemistry confirmed that aPKCs are expressed in neurons 28 days post-C2HS, including large, presumptive phrenic motor neurons; aPKCs were not detected in adjacent microglia (OX-42 positive cells) or astrocytes (GFAP positive cells). Changes in aPKC expression in the phrenic motor nucleus following C2HS suggests that aPKCs may contribute to functional recovery following cervical spinal injury.
Collapse
Affiliation(s)
- C.H. Guenther
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI USA, 53706
| | - J.A. Windelborn
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI USA, 53706
| | - T.C. Tubon
- Department of Genetics, University of Wisconsin, Madison, WI USA, 53706
| | - J.C.P. Yin
- Department of Genetics, University of Wisconsin, Madison, WI USA, 53706
| | - G.S. Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI USA, 53706
| |
Collapse
|
18
|
Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 2011; 164:573-89. [PMID: 21723266 DOI: 10.1016/j.chemphyslip.2011.06.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/17/2022]
Abstract
Plasmalogens are a class of phospholipids carrying a vinyl ether bond in sn-1 and an ester bond in sn-2 position of the glycerol backbone. Although they are widespread in all tissues and represent up to 18% of the total phospholipid mass in humans, their physiological function is still poorly understood. The aim of this review is to give an overview over the current knowledge in plasmalogen biology and pathology with an emphasis on neglected aspects of their involvement in neurological and metabolic diseases. Furthermore a better understanding of plasmalogen biology in health and disease could also lead to the development of better diagnostic and prognostic biomarkers for vascular and metabolic diseases such as obesity and diabetes mellitus, inflammation, neuro-degeneration and cancer.
Collapse
|
19
|
Brose SA, Thuen BT, Golovko MY. LC/MS/MS method for analysis of E₂ series prostaglandins and isoprostanes. J Lipid Res 2011; 52:850-9. [PMID: 21317107 DOI: 10.1194/jlr.d013441] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
15-series prostaglandins (PGE₂s) and isoprostanes (isoPGE₂s) are robust biomarkers of oxidative stress, possess potent biological activity, and may be derived through cyclooxygenase or free radical pathways. Thus, their quantification is critical in understanding many biological processes where PG, isoPG, or oxidative stress are involved. LC/MS/MS methods allow a highly selective, sensitive, simultaneous analysis for prostanoids without derivatization. However, the LC/MS/MS methods currently used do not allow for simultaneous separation of the major brain PGE₂/D₂) and isoPGE₂ without derivatization and multiple HPLC separations. The developed LC/MS/MS method allows for the major brain PGE₂/PGD₂/isoPGE₂ such as PGE₂, entPGE₂, 8-isoPGE₂, 11β-PGE₂, PGD₂, and 15(R)-PGD₂ to be separated and quantified without derivatization. The method was validated by analyzing free and esterified isoPGE₂ in mouse brains fixed with head-focused microwave irradiation before or after global ischemia. Using the developed method, we report for the first time the esterified isoPGE₂ levels in brain tissue under basal conditions and upon global ischemia and demonstrate a nonreleasable pool of esterified isoPG upon ischemia. In addition, we demonstrated that PGE₂s found esterified in the sn-2 position in phospholipids are derived from a free radical nonenzymatic pathway under basal conditions. Our method for brain PG analysis provides a high level of selectivity to detect changes in brain PG and isoPG mass under both basal and pathological conditions.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | | | |
Collapse
|
20
|
Girod M, Shi Y, Cheng JX, Cooks RG. Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal Chem 2010; 83:207-15. [PMID: 21142140 DOI: 10.1021/ac102264z] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Desorption electrospray ionization (DESI) mass spectrometry (MS) is used in an imaging mode to interrogate the lipid profiles of 15 μm thin tissue cross sections of injured rat spinal cord and normal healthy tissue. Increased relative intensities of fatty acids, diacylglycerols, and lysolipids (between +120% and +240%) as well as a small decrease in intensities of lipids (-30%) were visualized in the lesion epicenter and adjacent areas after spinal cord injury. This indicates the hydrolysis of lipids during the demyelination process due to activation of phospholipase A(2) enzyme. In addition, signals corresponding to oxidative degradation products, such as prostaglandin and hydroxyeicosatetraenoic acid, exhibited increased signal intensity by a factor of 2 in the negative ion mode in lesions relative to the normal healthy tissue. Analysis of malondialdehyde, a product of lipid peroxidation and marker of oxidative stress, was accomplished in the ambient environment using reactive DESI mass spectrometry imaging. This was achieved by electrospraying reagent solution containing dinitrophenylhydrazine as high-velocity charged droplets onto the tissue section. The hydrazine reacts selectively and rapidly with the carbonyl groups of malondialdehyde, and signal intensity of twice the intensity was detected in the lesions compared to healthy spinal cord. With a small amount of tissue sample, DESI-MS imaging provides information on the composition and distribution of specific compounds (limited by the occurrence of isomeric lipids with very similar fragmentation patterns) in lesions after spinal cord injury in comparison with normal healthy tissue allowing identification of the extent of the lesion and its repair.
Collapse
Affiliation(s)
- Marion Girod
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
21
|
Lim SN, Huang W, Hall JCE, Ward RE, Priestley JV, Michael-Titus AT. The acute administration of eicosapentaenoic acid is neuroprotective after spinal cord compression injury in rats. Prostaglandins Leukot Essent Fatty Acids 2010; 83:193-201. [PMID: 20833522 DOI: 10.1016/j.plefa.2010.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to investigate the effects of treatment with eicosapentaenoic acid (EPA) after spinal cord compression injury in adult rats. Saline or EPA (250 nmol/kg) was administered intravenously 30 min after compression injury. Locomotor recovery was assessed daily using the BBB open-field locomotor score. One week after injury, animals were sacrificed and the spinal cord tissue containing the compression epicenter, and the adjacent rostral and caudal segments, was immunostained using specific markers for neurons, oligodendrocytes, axonal injury, and macrophages/microglia. Administration of EPA resulted in decreased axonal injury and increased neuronal and oligodendrocyte survival, in the lesion epicenter and adjacent tissue. The behavioural assessment mirrored the neuroprotective effects and showed a significantly improved functional recovery in animals treated with EPA compared to the saline-treated controls over the 7-day period. These observations suggest that EPA has neuroprotective properties when administered after spinal cord trauma.
Collapse
Affiliation(s)
- Siew-Na Lim
- Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Huang W, Bhavsar A, Ward RE, Hall JCE, Priestley JV, Michael-Titus AT. Arachidonyl trifluoromethyl ketone is neuroprotective after spinal cord injury. J Neurotrauma 2010; 26:1429-34. [PMID: 19371144 DOI: 10.1089/neu.2008.0835] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In spinal cord injury (SCI), neuronal and oligodendroglial loss occurs as a result of the initial trauma and the secondary damage that is triggered by excitotoxicity, free radicals, and inflammation. There is evidence that SCI ellicits increased cytosolic phospholipase A(2) (cPLA(2)) activity. The cleavage of phospholipids by cPLA(2) leads to release of fatty acids, and in particular arachidonic acid (AA), the metabolites of which have been associated with increased inflammation and oxidative stress. The aim of our study was to investigate whether the inhibition of cPLA(2) following SCI leads to tissue protection and an improved functional outcome. Adult rats received compression SCI and 30 min after injury they were treated intravenously with either saline or the cPLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) (7.13 mg/kg). The animals were sacrificed at 7 days post-injury and the lesioned tissue was labeled using markers for neurons, oligodendrocytes, and macrophages/activated microglia. We also assessed locomotor recovery using the Basso-Beattie-Bresnahan (BBB) score. The number of surviving neurons and oligodendrocytes was significantly increased in animals treated with the cPLA(2) inhibitor compared to saline controls. The behavioral analysis mirrored the neuroprotective effects and showed that the inhibitor-treated group had better locomotor recovery compared to saline controls. Our results show that AACOCF3 has neuroprotective potential, and support the idea that cPLA(2) is critically involved in acute spinal injury.
Collapse
Affiliation(s)
- Wenlong Huang
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Bailes JE, Mills JD. Docosahexaenoic Acid Reduces Traumatic Axonal Injury in a Rodent Head Injury Model. J Neurotrauma 2010; 27:1617-24. [PMID: 20597639 DOI: 10.1089/neu.2009.1239] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julian E. Bailes
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - James D. Mills
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
24
|
Mills JD, Bailes JE, Sedney CL, Hutchins H, Sears B. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J Neurosurg 2010; 114:77-84. [PMID: 20635852 DOI: 10.3171/2010.5.jns08914] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECT Traumatic brain injury remains the most common cause of death in persons under 45 years of age in the Western world. Recent evidence from animal studies suggests that supplementation with omega-3 fatty acid (O3FA) (particularly eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) improves functional outcomes following focal neural injury. The purpose of this study is to determine the benefits of O3FA supplementation following diffuse axonal injury in rats. METHODS Forty adult male Sprague-Dawley rats were used. Three groups of 10 rats were subjected to an impact acceleration injury and the remaining group underwent a sham-injury procedure (surgery, but no impact injury). Two of the groups subjected to the injury were supplemented with 10 or 40 mg/kg/day of O3FA; the third injured group served as an unsupplemented control group. The sham-injured rats likewise received no O3FA supplementation. Serum fatty acid levels were determined from the isolated plasma phospholipids prior to the injury and at the end of the 30 days of supplementation. After the animals had been killed, immunohistochemical analysis of brainstem white matter tracts was performed to assess the presence of β-amyloid precursor protein (APP), a marker of axonal injury. Immunohistochemical analyses of axonal injury mechanisms-including analysis for caspase-3, a marker of apoptosis; RMO-14, a marker of neurofilament compaction; and cytochrome c, a marker of mitochondrial injury-were performed. RESULTS Dietary supplementation with a fish oil concentrate rich in EPA and DHA for 30 days resulted in significant increases in O3FA serum levels: 11.6% ± 4.9% over initial levels in the 10 mg/kg/day group and 30.7% ± 3.6% in the 40 mg/kg/day group. Immunohistochemical analysis revealed significantly (p < 0.05) decreased numbers of APP-positive axons in animals receiving O3FA supplementation: 7.7 ± 14.4 axons per mm(2) in the 10 mg/kg/day group and 6.2 ± 11.4 axons per mm(2) in the 40 mg/kg/day group, versus 182.2 ± 44.6 axons per mm(2) in unsupplemented animals. Sham-injured animals had 4.1 ± 1.3 APP-positive axons per mm(2). Similarly, immunohistochemical analysis of caspase-3 expression demonstrated significant (p < 0.05) reduction in animals receiving O3FA supplementation, 18.5 ± 28.3 axons per mm(2) in the 10 mg/kg/day group and 13.8 ± 18.9 axons per mm(2) in the 40 mg/kg/day group, versus 129.3 ± 49.1 axons per mm(2) in unsupplemented animals. CONCLUSIONS Dietary supplementation with a fish oil concentrate rich in the O3FAs EPA and DHA increases serum levels of these same fatty acids in a dose-response effect. Omega-3 fatty acid supplementation significantly reduces the number of APP-positive axons at 30 days postinjury to levels similar to those in uninjured animals. Omega-3 fatty acids are safe, affordable, and readily available worldwide to potentially reduce the burden of traumatic brain injury.
Collapse
Affiliation(s)
- James D Mills
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia, USA.
| | | | | | | | | |
Collapse
|
25
|
Liu NK, Xu XM. Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol 2010; 41:197-205. [PMID: 20127525 PMCID: PMC9169014 DOI: 10.1007/s12035-010-8101-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are a diverse family of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor which have been implicated in pathological states of numerous acute and chronic neurological disorders. To date, more than 27 isoforms of PLA(2) have been found in the mammalian system which can be classified into four major categories: secretory PLA(2), cytosolic PLA(2), Ca(2+)-independent PLA(2), and platelet-activating factor acetylhydrolases. Multiple isoforms of PLA(2) are found in the mammalian spinal cord. Under physiological conditions, PLA(2)s are involved in diverse cellular responses, including phospholipid digestion and metabolism, host defense, and signal transduction. However, under pathological situations, increased PLA(2) activity, excessive production of free fatty acids and their metabolites may lead to the loss of membrane integrity, inflammation, oxidative stress, and subsequent neuronal injury. There is emerging evidence that PLA(2) plays a key role in the secondary injury process after traumatic spinal cord injury. This review outlines the current knowledge of the PLA(2) in the spinal cord with an emphasis being placed on the possible roles of PLA(2) in mediating the secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 W. Walnut St., R-2 Building, Room 402, Indianapolis, IN 46202, USA
| | | |
Collapse
|
26
|
Goracci G, Ferrini M, Nardicchi V. Low Molecular Weight Phospholipases A2 in Mammalian Brain and Neural Cells: Roles in Functions and Dysfunctions. Mol Neurobiol 2010; 41:274-89. [DOI: 10.1007/s12035-010-8108-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
|
27
|
Effects of N-acetylcysteine and ebselen on arachidonic acid release from astrocytes and neurons cultured in normoxic or simulated ischemic conditions. Pharmacol Rep 2009; 61:941-6. [DOI: 10.1016/s1734-1140(09)70153-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 09/25/2009] [Indexed: 11/24/2022]
|
28
|
Murphy EJ. Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: an historical perspective. Prostaglandins Other Lipid Mediat 2009; 91:63-7. [PMID: 19660569 DOI: 10.1016/j.prostaglandins.2009.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 11/26/2022]
Abstract
To microwave or not to microwave, that is the question that has confounded the neurochemist as the quest for reducing changes in neurochemicals associated with post-mortem delay has evolved over the years. Rapid changes in brain constituents during the post-mortem delay have been recognized for years as a problem. What is real and what is artifact? What are true basal levels of molecules found in the brain? In the 1920s, neurochemists recognized this issue and determined freezing of the brain was most advantageous for halting rapid breakdown of some molecules and rapid formation of others. By the early 1970s, a number of laboratories noted that freezing the brain in situ or upon removing it from the cranial vault was not sufficient to reduce alterations in brain chemistry. Groups began experimenting with two different techniques to attack this problem, freeze-blowing and head-focused microwave irradiation. My laboratory and others have found that the utilization of head-focused microwave irradiation to halt enzymic alterations in lipids is an essential tool to limit alterations post-mortem. Recently, we and others have demonstrated that this technique is essential in reliably assessing brain eicosanoid levels, without such fixation true basal levels of eicosanoids are impossible to determine and the high concentrations seen in some paradigms may be merely an artifact produced during handling of the brain. Thus, for eicosanoid analysis and other applications in measuring brain lipid levels, head-focused microwave irradiation is an essential tool for the lipid neurochemist.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Room 3700, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
29
|
Golovko MY, Murphy EJ. An improved LC-MS/MS procedure for brain prostanoid analysis using brain fixation with head-focused microwave irradiation and liquid-liquid extraction. J Lipid Res 2008; 49:893-902. [PMID: 18187404 DOI: 10.1194/jlr.d700030-jlr200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-performance liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) allows a highly selective, sensitive, simultaneous analysis for prostanoids (PG) without derivatization. However, high chemical background noise reduces LC-MS/MS selectivity and sensitivity for brain PG analysis. Four common methods using different solvent systems for PG extraction were tested. Although these methods had the same recovery of PG, the modified acetone extraction followed by liquid/liquid purification had the greatest sensitivity. This method combined with hexane/2-propanol extraction permits the simultaneous analysis of other lipid molecules and PG in the same extract. We also determined that PG mass in brain powder stored at -80 degrees C was reduced 2- to 4- fold in 4 weeks; however, PG were stable for long periods (>3 months) in hexane/2-propanol extracts. PG mass was increased significantly when mice were euthanized by decapitation and the brains rapidly flash-frozen rather than euthanized using head-focused microwave irradiation. This reduction is not the result of PG trapping or destruction in microwave-irradiated brains, demonstrating its importance in limiting mass artifacts during brain PG analysis. Our improved procedure for brain PG analysis provides a reliable, rapid means to detect changes in brain PG mass under both basal and pathological conditions and demonstrates the importance of sample preparation in this process.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
30
|
Toborek M, Son KW, Pudelko A, King-Pospisil K, Wylegala E, Malecki A. ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem 2007; 100:279-92. [PMID: 16888810 DOI: 10.1002/jcb.21013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence indicates that agonists of neuronal nicotinic receptors (nAChRs), including nicotine, can induce neuroprotective and anti-apoptotic effects in the CNS. To study these mechanisms, the present study focused on nicotine-mediated modulation of the extracellular regulated kinase 1 and 2 (ERK1/2) pathway in cultured spinal cord neurons. Exposure to nicotine (0.1-10 microM) for as short as 1 min markedly upregulated levels of phosphorylated ERK1/2 (pERK1/2) and increased total ERK1/2 activity. Inhibition studies with mecamylamine and alpha-bungarotoxin revealed that these effects were mediated by the alpha7 nicotinic receptor. In addition, pre-exposure to U0126, a specific inhibitor of the ERK1/2 signaling, prevented nicotine-mediated anti-apoptotic effects. To indicate if treatment with nicotine also can activate ERK1/2 in vivo, a moderate spinal cord injury (SCI) was induced in rats using a weight-drop device and nicotine was injected 2 h post-trauma. Consistent with in vitro data, nicotine increased levels of pERK1/2 in this animal model of spinal cord trauma. Results of the present study indicate that the ERK1/2 pathway is involved in anti-apoptotic effects of nicotine in spinal cord neurons and may be involved in therapeutic effects of nicotine in spinal cord trauma.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
31
|
King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 2006; 26:4672-80. [PMID: 16641248 PMCID: PMC6674074 DOI: 10.1523/jneurosci.5539-05.2006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a cause of major neurological disability, and no satisfactory treatment is currently available. Evidence suggests that polyunsaturated fatty acids (PUFAs) could target some of the pathological mechanisms that underlie damage after SCI. We examined the effects of treatment with PUFAs after lateral spinal cord hemisection in the rat. The omega-3 PUFAs alpha-linolenic acid and docosahexaenoic acid (DHA) injected 30 min after injury induced significantly improved locomotor performance and neuroprotection, including decreased lesion size and apoptosis and increased neuronal and oligodendrocyte survival. Evidence showing a decrease in RNA/DNA oxidation suggests that the neuroprotective effect of omega-3 PUFAs involved a significant antioxidant function. In contrast, animals treated with arachidonic acid, an omega-6 PUFA, had a significantly worse outcome than controls. We confirmed the neuroprotective effect of omega-3 PUFAs by examining the effects of DHA treatment after spinal cord compression injury. Results indicated that DHA administered 30 min after spinal cord compression not only greatly increased survival of neurons but also resulted in significantly better locomotor performance for up to 6 weeks after injury. This report shows a striking difference in efficacy between the effects of treatment with omega-3 and omega-6 PUFAs on the outcome of SCI, with omega-3 PUFAs being neuroprotective and omega-6 PUFAs having a damaging effect. Given the proven clinical safety of omega-3 PUFAs, our observations show that these PUFAs have significant therapeutic potential in SCI. In contrast, the use of preparations enriched in omega-6 PUFAs after injury could worsen outcome after SCI.
Collapse
Affiliation(s)
- Von R King
- Institute of Cell and Molecular Science, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Pantović R, Draganić P, Eraković V, Blagović B, Milin C, Simonić A. Effect of indomethacin on motor activity and spinal cord free fatty acid content after experimental spinal cord injury in rabbits. Spinal Cord 2005; 43:519-26. [PMID: 15852057 DOI: 10.1038/sj.sc.3101763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Determination of functional and biochemical parameters as well as the effect of specific therapies on these parameters, in the experimental model of neurotrauma in rabbits. OBJECTIVE To assess the effect of indomethacin (0.1-3.0 mg/kg for 9 days), a potent inhibitor of endogenous prostaglandin synthesis, on the motor activity and on the spinal cord tissue concentration of free palmitic, stearic, oleic, arachidonic and docosahexaenoic acids in an experimental model of a spinal cord injury in rabbits. SETTING Faculty of Medicine, University of Rijeka, Croatia. METHODS The animals were randomly divided into nine experimental groups, four sham and/or vehicle-treated and five indomethacin-treated (including one sham-operated and four injured groups). Laminectomy was followed by contusion of the spinal cord, using a modification of the technique of Albin. Motor activity was controlled daily during the course of the next nine postoperation days and scored using Tarlov's system. Spinal cord samples from the impact injury site were taken and frozen in liquid nitrogen. Total lipids were isolated and purified by a modification of the method of Folch. Free fatty acids (FFAs) were separated from the total lipid extract by preparative thin-layer chromatography, converted to the corresponding methyl esters and identified using gas chromatography, using nonadecanoic acid as the internal standard. RESULTS The concentrations of all analysed free fatty acids were increased in the spinal cord after neurotrauma, in comparison to control tissues. Treatment of injured rabbits with indomethacin resulted in a significant decrease in spinal cord FFAs and exerted a positive effect on neurotrauma-induced motor impairment. CONCLUSION These results indicate a mechanism whereby indomethacin protects rabbits from the sequellae of neuronal damage caused by trauma, and suggests that it may be beneficial in the therapy of neurotrauma. SPONSORSHIP This work was supported by the Croatian Ministry of Science and Technology (project 062019).
Collapse
Affiliation(s)
- R Pantović
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
33
|
Doroshenko N, Doroshenko P. Ca2+ influx is not involved in acute cytotoxicity of arachidonic acid. Biochem Pharmacol 2004; 67:903-9. [PMID: 15104243 DOI: 10.1016/j.bcp.2003.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Arachidonic acid (AA; 20:4, n-6) has been implicated in cell damage in the brain under ischemia-reperfusion and other pathological conditions. In our experiments, PC12 cells exposed to >10 microM AA died within 1-2 hr, as assessed by the LDH release assay. Since AA is known to induce Ca2+/cation-permeable conductance in the plasma membrane, we investigated whether Ca2+ influx plays a role in this acute cell death. We found that extracellular Ca2+ was not required for the toxic effect of AA. In fact, the removal of extracellular Ca2+ dramatically accelerated its development: the half-time of the toxic effect of 40 microM AA decreased from 70.1 +/- 0.3 min in the presence of 5 mM Ca2+ to 7.4 +/- 0.3 min in the Ca-free solution. The extent of cell killing depended only weakly on AA concentration and ion composition, remaining within the 70-95% range. The AA-induced acute death was not affected by inhibitors of AA metabolism (nordihydroguaiaretic acid, indomethacin, proadifen), whereas some antioxidants tested (deferoxamine and ellagic acid), but not all (melatonin), partially suppressed it. Also, it was not affected by changes in the extracellular ionic strength or mimicked by an acetylenic analog of AA 5,8,11,14-eicosatetraynoic acid. We conclude that lethal injuries sustained by cells during short exposures to AA were caused by the fatty acid itself and were not mediated by the AA-induced influx of Ca2+/cations. Moreover, direct physical effects of AA on the plasma membrane (changes in membrane fluidity or detergent-like action) were also excluded.
Collapse
Affiliation(s)
- Nina Doroshenko
- Ottawa Health Research Institute, Ottawa, Ont., Canada K1Y 4E9
| | | |
Collapse
|
34
|
Garrido R, King-Pospisil K, Son KW, Hennig B, Toborek M. Nicotine upregulates nerve growth factor expression and prevents apoptosis of cultured spinal cord neurons. Neurosci Res 2004; 47:349-55. [PMID: 14568117 DOI: 10.1016/s0168-0102(03)00222-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Modulation of neurotrophic factor expression may constitute an important part of neuroprotective effects of nicotine. Therefore, the effects of nicotine on expression of nerve growth factor (NGF) and its receptor, tyrosine receptor kinase A (trkA), were studied in cultured spinal cord neurons treated with arachidonic acid. Because injury to spinal cord is associated with elevated levels of arachidonic acid, this cell culture system has been developed in our laboratory as an in vitro model of neuronal injury in spinal cord trauma. Treatment with nicotine markedly upregulated NGF mRNA and protein expression in spinal cord neurons. In addition, a 12h treatment with nicotine increased mRNA levels of trkA. Both nicotine and exogenous NGF inhibited arachidonic acid induced apoptosis of spinal cord neurons. However, the blockage of the trkA receptor prevented nicotine-mediated anti-apoptotic effects. The present results indicate that increased expression of NGF may be an important element of the neuroprotective effects of nicotine in injured spinal cord neurons.
Collapse
Affiliation(s)
- Rosario Garrido
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
35
|
Shi R, Luo J, Peasley M. Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea-pig spinal cord. Neuroscience 2003; 115:337-40. [PMID: 12421600 DOI: 10.1016/s0306-4522(02)00457-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have examined the effect of acrolein, an aldehyde product of lipid peroxidation, on axons in isolated guinea-pig spinal cord white matter. We found that 200 microM acrolein, but not 50 microM, induced a time-dependent loss of compound action potential conduction. Such conduction loss was irreversible within 1 h after acrolein perfusion. Parallel anatomical assessment indicates membrane integrity breakdown based on a horseradish peroxidase-exclusion assay. This is the first report to suggest that acrolein inflicts severe axonal damage. Since axonal damage within white matter plays a key role in the pathology of traumatic spinal cord injury, we suggest that acrolein may be a critical factor in mediating secondary functional loss.
Collapse
Affiliation(s)
- R Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, Institute for Applied Neurology, Purdue University, , West Lafayette, IN 47907-1244, USA.
| | | | | |
Collapse
|
36
|
Abstract
Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. All spinal cord injury therapies tested to date in clinical trial were validated in such models. In recent years, the trend has been towards use of rats for spinal cord injury studies. The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury.
Collapse
Affiliation(s)
- Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers State University of New Jersey, 604 Allison Rd., Piscataway, NJ 08854-8082, USA.
| |
Collapse
|
37
|
Hurley SD, Olschowka JA, O'Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 2002; 19:1-15. [PMID: 11852973 DOI: 10.1089/089771502753460196] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenase (COX) is the obligate, rate-limiting enzyme for the conversion of arachidonic acid into prostaglandins. Two COX enzymes have been identified: a constitutively expressed COX-1 and an inducible, highly regulated COX-2. Widely used to treat chronic inflammatory disorders, COX inhibitors have shown promise in attenuating inflammation associated with brain injury. However, the use of COX inhibition in the treatment of brain injury has met with mixed success. This review summarizes our current understanding of COX expression in the central nervous system and the effects of COX inhibitors on brain injury. Three major targets for COX inhibition in the treatment brain injury have been identified. These are the cerebrovasculature, COX-2 expression by vulnerable neurons, and the neuroinflammatory response. Evidence suggests that given the right treatment paradigm, COX inhibition can influence each of these three targets. Drug interactions and general considerations for administrative paradigms are also discussed. Although therapies targeted to specific prostaglandin species, such as PGE2, might prove more ameliorative for brain injury, at the present time non-specific COX inhibitors and COX-2 specific inhibitors are readily available to researchers and clinicians. We believe that COX inhibition will be a useful, ameliorative adjunct in the treatment of most forms of brain injury.
Collapse
Affiliation(s)
- Sean D Hurley
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
38
|
Malecki A, Garrido R, Mattson MP, Hennig B, Toborek M. 4-Hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons. J Neurochem 2000; 74:2278-87. [PMID: 10820187 DOI: 10.1046/j.1471-4159.2000.0742278.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary spinal cord trauma can trigger a cascade of secondary processes leading to delayed and amplified injury to spinal cord neurons. Release of fatty acids, in particular arachidonic acid, from cell membranes is believed to contribute significantly to these events. Mechanisms of fatty acid-induced injury to spinal cord neurons may include lipid peroxidation. One of the major biologically active products of arachidonic acid peroxidation is 4-hydroxynonenal (HNE). The levels of HNE-protein conjugates in cultured spinal cord neurons increased in a dose-dependent manner after a 24-h exposure to arachidonic acid. To study cellular effects of HNE, spinal cord neurons were treated with different doses of HNE, and cellular oxidative stress, intracellular calcium, and cell viability were determined. A 3-h exposure to 10 microM HNE caused approximately 80% increase in oxidative stress and 30% elevation of intracellular calcium. Exposure of spinal cord neurons to HNE caused a dramatic loss of cellular viability, indicated by a dose-dependent decrease in MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-s ulfophenyl)- 2H-tetrazolium, inner salt] conversion. The cytotoxic effect of HNE was diminished by pretreating neurons with ebselen or N-acetylcysteine. These data support the hypothesis that formation of HNE may be responsible, at least in part, for the cytotoxic effects of membrane-released arachidonic acid to spinal cord neurons.
Collapse
Affiliation(s)
- A Malecki
- Department of Surgery, University of Kentucky, Lexington 40536, USA
| | | | | | | | | |
Collapse
|
39
|
Toborek M, Malecki A, Garrido R, Mattson MP, Hennig B, Young B. Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J Neurochem 1999; 73:684-92. [PMID: 10428065 DOI: 10.1046/j.1471-4159.1999.0730684.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 microM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-KB (NF-kappaB), and cell viability. AA treatment increased intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 microM AA. In addition, AA treatment activated NF-kappaB and decreased levels of the inhibitory subunit, IKB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma.
Collapse
Affiliation(s)
- M Toborek
- Department of Surgery, University of Kentucky, Lexington, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lukácová N, Jalc P, Marsala J. Regional changes of membrane phospholipid concentrations in rabbit spinal cord following brief repeated ischemic insults. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 35:61-76. [PMID: 10343971 DOI: 10.1007/bf02815116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in the concentration of membrane-bound phospholipids following single (25-min) spinal cord ischemia and 3 h of reperfusion were determined. These were compared with the changes following brief repeated (8-, 8-, and 9-min) ischemia followed each time by reperfusion for 1 h, or the same periods of ischemia followed by 8 h, 8 h, and 24 h of reperfusion, respectively. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and sphingomyelin (SM) were assayed in regions of the spinal cord of the rabbit, including gray matter, white matter, dorsal horns, intermediate zone, and ventral horns. The brief repeated ischemia with 1-h reperfusions produced more extensive degradation of phospholipids in almost all regions compared with the equivalent time of ischemia (25 min) in a single period. After a lengthy reperfusion after repeated ischemia, the phospholipids were resynthesized with the exception of the phosphatidylinositol in the gray matter. The resynthesis was most pronounced in the dorsal horns and in the white matter.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | |
Collapse
|