1
|
Zhang T, Ahn K, Emerick B, Modarai SR, Opdenaker LM, Palazzo J, Schleiniger G, Fields JZ, Boman BM. APC mutations in human colon lead to decreased neuroendocrine maturation of ALDH+ stem cells that alters GLP-2 and SST feedback signaling: Clue to a link between WNT and retinoic acid signalling in colon cancer development. PLoS One 2020; 15:e0239601. [PMID: 33112876 PMCID: PMC7592776 DOI: 10.1371/journal.pone.0239601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
APC mutations drive human colorectal cancer (CRC) development. A major contributing factor is colonic stem cell (SC) overpopulation. But, the mechanism has not been fully identified. A possible mechanism is the dysregulation of neuroendocrine cell (NEC) maturation by APC mutations because SCs and NECs both reside together in the colonic crypt SC niche where SCs mature into NECs. So, we hypothesized that sequential inactivation of APC alleles in human colonic crypts leads to progressively delayed maturation of SCs into NECs and overpopulation of SCs. Accordingly, we used quantitative immunohistochemical mapping to measure indices and proportions of SCs and NECs in human colon tissues (normal, adenomatous, malignant), which have different APC-zygosity states. In normal crypts, many cells staining for the colonic SC marker ALDH1 co-stained for chromogranin-A (CGA) and other NEC markers. In contrast, in APC-mutant tissues from familial adenomatous polyposis (FAP) patients, the proportion of ALDH+ SCs progressively increased while NECs markedly decreased. To explain how these cell populations change in FAP tissues, we used mathematical modelling to identify kinetic mechanisms. Computational analyses indicated that APC mutations lead to: 1) decreased maturation of ALDH+ SCs into progenitor NECs (not progenitor NECs into mature NECs); 2) diminished feedback signaling by mature NECs. Biological experiments using human CRC cell lines to test model predictions showed that mature GLP-2R+ and SSTR1+ NECs produce, via their signaling peptides, opposing effects on rates of NEC maturation via feedback regulation of progenitor NECs. However, decrease in this feedback signaling wouldn't explain the delayed maturation because both progenitor and mature NECs are depleted in CRCs. So the mechanism for delayed maturation must explain how APC mutation causes the ALDH+ SCs to remain immature. Given that ALDH is a key component of the retinoic acid (RA) signaling pathway, that other components of the RA pathway are selectively expressed in ALDH+ SCs, and that exogenous RA ligands can induce ALDH+ cancer SCs to mature into NECs, RA signaling must be attenuated in ALDH+ SCs in CRC. Thus, attenuation of RA signaling explains why ALDH+ SCs remain immature in APC mutant tissues. Since APC mutation causes increased WNT signaling in FAP and we found that sequential inactivation of APC in FAP patient tissues leads to progressively delayed maturation of colonic ALDH+ SCs, the hypothesis is developed that human CRC evolves due to an imbalance between WNT and RA signaling.
Collapse
Affiliation(s)
- Tao Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Koree Ahn
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Brooks Emerick
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | - Shirin R. Modarai
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Juan Palazzo
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Gilberto Schleiniger
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | | | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
2
|
Slaymi C, Vignal E, Crès G, Roux P, Blangy A, Raynaud P, Fort P. The atypical RhoU/Wrch1 Rho GTPase controls cell proliferation and apoptosis in the gut epithelium. Biol Cell 2019; 111:121-141. [PMID: 30834544 DOI: 10.1111/boc.201800062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The mammalian gut epithelium displays among the highest rates of self-renewal, with a turnover time of less than 5 days. Renewal involves concerted proliferation at the bottom of the crypt, migration and differentiation along the crypt-villus axis and anoïkis/shedding in the luminal epithelium. Renewal is controlled by interplay between signalling pathways, among which canonical and non-canonical Wnt signals play prominent roles. Overall 92% of colon tumours show increased canonical Wnt signalling resulting from mutations, established as major driver steps towards carcinogenesis. RESULTS Here, we examined the physiological role of RhoU/Wrch1 in gut homeostasis. RhoU is an atypical Rho GTPase related to Cdc42/Rac1 and identified as a transcriptional target of non-canonical Wnt signalling. We found that RHOU expression is reduced in human colorectal tumour samples. We show that RhoU is mainly expressed in the differentiated compartment of the gut epithelium. Rhou specific invalidation in the mouse gut elicits cell hyperplasia and is associated in the colon with a highly disorganized luminal epithelium. Hyperplasia affects all cell types in the small intestine and colon and has a higher impact on goblet cells. Hyperplasia is associated with a reduction of apoptosis and an increased proliferation. RhoU knockdown in human DLD-1 colon cancer cells also elicits a higher growth index and reduces cell apoptosis. Last, loss of RhoU function in the mouse gut epithelium or in DLD-1 cells increases RhoA activity and the level of phosphorylated Myosin Light Chain-2, which may functionally link RhoU activity to apoptosis. CONCLUSION RhoU is mostly expressed in the differentiated compartment of the gut. It plays a role in homeostasis as its specific invalidation elicits hyperplasia of all cell types. This mainly results from a reduction of apoptosis, through actomyosin-dependent mechanisms. SIGNIFICANCE RhoU negatively controls cell growth in the intestinal epithelium. Since its expression is sensitive to non-canonical Wnt signals and is reduced in colorectal tumours, downregulating RhoU may thus have an instrumental role in tumour progression.
Collapse
Affiliation(s)
- Chaker Slaymi
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Emmanuel Vignal
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Gaëlle Crès
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Pierre Roux
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Anne Blangy
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Peggy Raynaud
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Philippe Fort
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| |
Collapse
|
3
|
Rodrigues Sartori SS, Peixoto JV, Lopes VDPG, Barbosa AJA, Neves CA, Fonseca CC. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). ANIM BIOL 2018. [DOI: 10.1163/15707563-17000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A complex network of nerve fibers of the enteric nervous system and enteroendocrine cells is known to regulate the gastrointestinal tract. The distribution and frequency of the argyrophil, argentaffin and serotonin immunoreactive endocrine cells and of the submucosal and myenteric nervous ganglia were studied in the small intestine of the capybara Hydrochoerus hydrochaeris, aiming to verify the existence of possible numerical correlations between endocrine cells and nervous ganglia. Fragments of the duodenum, jejunum and ileum of adult animals were collected and processed according to routine histological techniques. To study the nervous ganglia, hematoxylin and eosin staining was used, while specific staining techniques were used to study the argyrophil, argentaffin and serotonin immunoreactive endocrine cells: Grimelius, modified Masson-Fontana and peroxidase anti-peroxidase, respectively. Endocrine cells were more abundant in the area of the crypts and, in relation to their morphology, ‘open type’ endocrine cells prevailed. The population of argyrophil cells was larger than that of argentaffin cells, and these cells were larger than serotonin immunoreactive cells. The frequency of endocrine cells was apparently greater in the duodenum, indicating the importance of this intestinal segment in digestive and absorptive functions. Prominent nervous ganglia were observed in the submucosal and myenteric plexi, and were larger and more frequent in the myenteric plexus. A numerical correlation was found among the endocrine cells (argentaffin and serotonin immunoreactive cells) and the myenteric nervous ganglia, suggesting the presence of physiological interactions among the endocrine and nervous systems for the control of intestinal activities. The findings in this study contribute to the understanding of the digestive processes of this species, which may also help in its conservation and future survival.
Collapse
Affiliation(s)
| | - Juliano Vogas Peixoto
- 2Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Alfredo José Afonso Barbosa
- 3Department of Pathological Anatomy and Legal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Clóvis Andrade Neves
- 4Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudio César Fonseca
- 5Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Wismann P, Barkholt P, Secher T, Vrang N, Hansen HB, Jeppesen PB, Baggio LL, Koehler JA, Drucker DJ, Sandoval DA, Jelsing J. The endogenous preproglucagon system is not essential for gut growth homeostasis in mice. Mol Metab 2017; 6:681-692. [PMID: 28702324 PMCID: PMC5485241 DOI: 10.1016/j.molmet.2017.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. METHODS We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). RESULTS Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r-/- mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. CONCLUSION The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.
Collapse
Affiliation(s)
| | | | - Thomas Secher
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| | - Niels Vrang
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| | | | | | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Jacqueline A. Koehler
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | | | - Jacob Jelsing
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| |
Collapse
|
5
|
Abstract
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Kihira Y, Burentogtokh A, Itoh M, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T. Hypoxia decreases glucagon-like peptide-1 secretion from the GLUTag cell line. Biol Pharm Bull 2016; 38:514-21. [PMID: 25832631 DOI: 10.1248/bpb.b14-00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone, is secreted from L cells located in the intestinal epithelium. It is known that intestinal oxygen tension is decreased postprandially. In addition, we found that the expression of hypoxia-inducible factor-1α (HIF-1α), which accumulates in cells under hypoxic conditions, was significantly increased in the colons of mice with food intake, indicating that the oxygen concentration is likely reduced in the colon after eating. Therefore, we hypothesized that GLP-1 secretion is affected by oxygen tension. We found that forskolin-stimulated GLP-1 secretion from GLUTag cells, a model of intestinal L cells, is suppressed in hypoxia (1% O2). Forskolin-stimulated elevations of preproglucagon (ppGCG) and proprotein convertase 1/3 (PC1/3) mRNA expression were decreased under hypoxic conditions. The finding that H89, a protein kinase A (PKA) inhibitor, inhibited the forskolin-stimulated increase of ppGCG and PC1/3 indicated that the cAMP-PKA pathway is involved in the hypoxia-induced suppression of the genes. Hypoxia decreased hexokinase 2 mRNA and protein expression and increased lactate dehydrogenase A mRNA and protein expression. Concomitantly, lactate production was increased and ATP production was decreased. Together, the results indicate that hypoxia decreases glucose utilization for ATP production, which probably causes a decrease in cAMP production and in subsequent GLP-1 production. Our findings suggest that the postprandial decrease in oxygen tension in the intestine attenuates GLP-1 secretion.
Collapse
Affiliation(s)
- Yoshitaka Kihira
- Department of Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Duerr CU, Hornef MW. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host-microbial homeostasis. Semin Immunol 2011; 24:25-35. [PMID: 22138188 DOI: 10.1016/j.smim.2011.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Only one single layer of epithelial cells separates the densely colonized and environmentally exposed intestinal lumen from the largely sterile subepithelial tissue. Together with the overlaying mucus and the subepithelial mucosal immune system the epithelium has evolved to maintain homeostasis in the presence of the enteric microbiota. It also contributes to rapid and efficient antimicrobial host defence in the event of infection with pathogenic microorganisms. Both, epithelial antimicrobial host defence and homeostasis rely on signalling pathways induced by innate immune receptors demonstrating the active role of epithelial cells in the host-microbial interplay. The interaction of epithelial cells with professional immune cells illustrates the integrated function within the mucosal tissue. In the present review we focus on structural and functional changes of the intestinal epithelium during the fetal-neonatal transition and infancy and try to delineate its role in the induction and maintenance of host-microbial homeostasis. We also address factors that impair epithelial functions and may lead to disruption of the mucosal barrier, tissue damage and the development of symptomatic disease.
Collapse
Affiliation(s)
- Claudia U Duerr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
8
|
Distribution and Chemical Coding of Intramural Neurons in the Porcine Ileum During Proliferative Enteropathy. J Comp Pathol 2008; 138:23-31. [DOI: 10.1016/j.jcpa.2007.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 09/19/2007] [Indexed: 11/19/2022]
|
9
|
Radford IR, Lobachevsky PN. An enteroendocrine cell-based model for a quiescent intestinal stem cell niche. Cell Prolif 2006; 39:403-14. [PMID: 16987141 PMCID: PMC6496364 DOI: 10.1111/j.1365-2184.2006.00396.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have shown that the kinetics of conversion of intestinal crypt cell populations to a partially or wholly mutant phenotype are consistent with a model in which each crypt contains an infrequently dividing 'deep' stem cell that is the progenitor of several more frequently dividing 'proximate' stem cells. An assumption of our model is that each deep stem cell exists in a growth inhibitory niche. We have used information from the literature to develop a model for a quiescent intestinal stem cell niche. This niche is postulated to be primarily defined by an enteroendocrine cell type that maintains stem cell quiescence by secretion of growth inhibitory peptides such as somatostatin and guanylin/uroguanylin. Consistent with this model, there is evidence that the proteins postulated as defining a growth-inhibitory stem cell niche can act as intestinal tumour suppressors. Confirmation that a growth-inhibitory niche does exist would have important implications for our understanding of intestinal homeostasis and tumorigenesis.
Collapse
|
10
|
Abstract
The intestinal epithelium follows the paradigms of stem cell biology established for other self-renewing tissues. With a unique topology, it constitutes a two-dimensional structure folded into valleys and hills: the proliferative crypts and the differentiated villi. Its unprecedented self-renewal rate appears reflected in a high susceptibility to malignant transformation. The molecular mechanisms that control homeostatic self-renewal and those that underlie colorectal cancer are remarkably symmetrical. Here, we discuss the biology of the intestinal epithelium, emphasizing the roles played by Wnt, bone morphogenic protein, and Notch signaling cascades in epithelial self-renewal and cancer.
Collapse
Affiliation(s)
- Freddy Radtke
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin de Boveresses 155, CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
11
|
Suzuki H, Jeong KI, Itoh K, Doi K. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp Mol Pathol 2002; 72:230-5. [PMID: 12009787 DOI: 10.1006/exmp.2002.2433] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported the regional variations in intraepithelial lymphocytes (IELs) in the small intestine of mice. To clarify the effects of intestinal bacteria on the distribution of IELs, regional variations in IELs were examined using germ-free (GF) and specific pathogen-free (SPF) BALB/cA mice. The small intestine was taken and divided equally into three parts (the proximal, middle, and distal parts). IELs were isolated from each part of the intestine, and the total number of IELs in GF mice was about one seventh of that in SPF mice. The decreased number of IELs in GF mice suggests that intestinal bacteria may be essential for local expansion of IELs. On the other hand, similar regional variations in IEL subsets observed in both GF and SPF mice, except for some subsets. The similarity of regional variations in GF and SPF mice indicates that the regional variations in IEL subsets may not fundamentally depend on intestinal bacteria.
Collapse
MESH Headings
- Animals
- Epithelial Cells/cytology
- Epithelial Cells/immunology
- Germ-Free Life
- Intestine, Small/anatomy & histology
- Intestine, Small/cytology
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Lymphocyte Count
- Lymphocytes/cytology
- Lymphocytes/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Specific Pathogen-Free Organisms
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Hodaka Suzuki
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
12
|
Kieffer TJ, Hussain MA, Habener JF. Glucagon and Glucagon‐like Peptide Production and Degradation. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Suzuki H, Jeong KI, Doi K. Regional variations in the distribution of small intestinal intraepithelial lymphocytes in alymphoplasia (aly/aly) mice and heterozygous (aly/+) mice. Immunol Invest 2001; 30:303-12. [PMID: 11777282 DOI: 10.1081/imm-100108165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regional variations in intraepithelial lymphocytes (IELs) in the small intestine were examined in alymphoplasia mutant (aly/aly) mice, which are characterized by the systemic absence of lymph nodes and Peyer's patches, and heterozygous (aly/+) mice. The small intestines were taken from 10 to 12-week-old mice and divided equally into 3 parts (the proximal, middle and distal parts). IELs were isolated from each part of the intestine and analyzed with a flow cytometer. The number of IELs in the distal part was significantly fewer in aly/aly mice compared with aly/+ mice, although the total number of small intestinal IELs were comparable between them. As to the IELs subsets, regional variations in alphabeta T cells and gammadelta T cells were observed in aly/+ mice, but they disappeared in aly/aly mice. However, regional variations in composition of alphabeta T cell subsets were similarly observed in both aly/aly mice and aly/+ mice. This indicates that, although not essential, mesenteric lymph nodes (MLN) and/or Peyer's patches may modify the regional variations in IELs.
Collapse
Affiliation(s)
- H Suzuki
- Department of Veterinary Pathology, Faculty of Agriculture, The University of Tokyo, Japan
| | | | | |
Collapse
|
14
|
Suzuki H, Jeong KI, Okutani T, Doi K. Regional variations in the distribution of small intestinal intraepithelial lymphocytes in three inbred strains of mice. J Vet Med Sci 2000; 62:881-7. [PMID: 10993186 DOI: 10.1292/jvms.62.881] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regional variation in the intraepithelial lymphocytes (IELs) in the small intestine was examined in BALB/c male and female mice and C3H/He and C57BL/6 male mice. The small intestines were taken from 11 to 12-week-old mice and divided equally into 3 parts (the proximal, middle and distal parts). IELs were isolated from each part of the intestine and analyzed with flow cytometer. The number of IELs was highest in the proximal part and lowest in the distal part. The distribution of IEL subsets was markedly different between the proximal and the distal parts, and that in the middle part showed the intermediate pattern. The percentage of alphabeta T cells were higher in the distal part. In alphabeta T cell subset, the percentage of CD8alphaalpha T cells was higher in the proximal part, whereas those of CD4 and CD4CD8alphaalpha double positive T cells were higher in the distal part. In gammadelta T cell subset, no regional variations were found. The regional variations in the number and subsets of IELs showed almost the same patterns between male and female BALB/c mice and similar patterns among three strains of mice. This strongly suggests that the regional variations in the small intestinal IELs are common to mouse species.
Collapse
Affiliation(s)
- H Suzuki
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
16
|
Aiken KD, Kisslinger JA, Roth KA. Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. Dev Dyn 1994; 201:63-70. [PMID: 7803848 DOI: 10.1002/aja.1002010107] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The enteroendocrine cell system of the mammalian gastrointestinal tract is comprised of at least 16 different subpopulations. Each subpopulation shows a characteristic distribution along both the crypt-villus and cephalo-caudal axes. In both the small intestine and colon of adult mice, multilabel immunohistochemistry has demonstrated that two or more neuroendocrine products can be coexpressed in various combinations in single cells along the crypt-villus axis, suggesting that enteroendocrine phenotypes may be actively regulated. Using bromodeoxyuridine (BrdU) incorporation and multilabel immunohistochemistry, we have previously demonstrated an enteroendocrine cell differentiation pathway consisting of two subpopulations of cells in the mouse proximal small intestine--one involving the sequential expression of substance P, serotonin, and secretin in cells migrating out of the crypts into the villi, and a second involving the expression of substance P and serotonin in cells which remain in the crypts. In this report, we use double label immunohistochemistry and BrdU incorporation to define the temporal and spatial interrelationships between gastrin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and gastric inhibitory peptide (GIP) immunoreactive cells in the mouse proximal small intestine. The expression of these products was compared with that of substance P, serotonin, and secretin. Minimal overlap of expression was found in cells immunoreactive for substance P or serotonin with gastrin, CCK, GLP-1, or GIP; however, secretin was found colocalized in villus-associated gastrin, CCK, and GLP-1 containing cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K D Aiken
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
17
|
Taylor RG, Fuller PJ. Humoral regulation of intestinal adaptation. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1994; 8:165-83. [PMID: 8135702 DOI: 10.1016/s0950-351x(05)80230-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After the loss of small bowel through disease or surgery the residual bowel adapts by increasing its functional capacity. This process of adaptation involves dilatation, hypertrophy and mucosal hyperplasia, particularly distal to the area of bowel loss or disease. The response of the residual bowel is mediated by a complex interplay of factors including luminal nutrition, pancreaticobiliary secretions, luminal or local growth factors and also humoral or endocrine factors. The experimental model commonly used to characterize the adaptive response, massive small bowel resection (MSBR), involves 80% resection of the small bowel in the rat. Of the various putative humoral factors, most work has focused on the products of the ileal L cells: enteroglucagon and peptide YY. Plasma levels of both hormones are increased after MSBR and indeed their mRNA levels are also increased as a result of an increase in the amount of message per L cell. Whilst PYY probably serves as an 'ileal brake' to slow the movement of the luminal contents and hence increase their mucosal contact time, the role of the enteroglucagon is unresolved. The molecular cloning of the proglucagon gene has revealed, firstly, that there are a number of biologically active peptides which derive from the propeptide and, secondly, that tissue-specific differential processing occurs. Most studies do not clearly define which of these products of proglucagon is being measured and is termed as glucagon-like or enteroglucagon immunoreactivity. The insulin-like growth factors (IGF) have a potent mitogenic action on the bowel. Their role after MSBR is likely to be largely paracrine. Though IGF-I mRNA levels do not increase after MSBR, the precipitous and early fall in ileal IGF-binding protein-3 (IGFBP-3) mRNA levels suggests a fall in IGFBP-3 levels may increase local IGF-I bioactivity. Polyamine synthesis is a critical component of the adaptive response, although the stimulus to their dramatic increase in synthesis after MSBR remains to be elucidated. Other humoral factors such as cholecystokinin, neurotensin and bombesin probably have minor indirect roles in the adaptive response. Components of the epidermal growth factor/transforming growth factor alpha response pathway family of growth factors may be involved as paracrine regulators. There is thus strong evidence that humoral factors play an important role in intestinal adaptation; characterization of the nature of the humoral factors and their relationship with other influences such as luminal nutrition and pancreatic biliary secretions may facilitate the development of new therapeutic strategies for the short bowel syndromes.
Collapse
Affiliation(s)
- R G Taylor
- Department of Surgery, Royal Childrens Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
18
|
Duluc I, Jost B, Freund JN. Multiple levels of control of the stage- and region-specific expression of rat intestinal lactase. J Cell Biol 1993; 123:1577-86. [PMID: 8253852 PMCID: PMC2290892 DOI: 10.1083/jcb.123.6.1577] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To elucidate the mechanisms leading to the functional regionalization of the digestive epithelium, lactase expression was analyzed at the protein, mRNA and gene levels, along the intestinal tract at various stages of the rat postnatal development. In the colon of neonates, the transient expression of mRNA and enzyme correlated well with gene transcription. In contrast to the colon, complex patterns were observed in the small intestine. In suckling animals, the mRNA was present at a high level despite the progressive decline of enzyme activity. Crypts were devoid of mRNA and the transcript mainly accumulated in the lower half of the villi. From weaning onwards, a functional regionalization of the epithelium was defined, characterized by the modification of the longitudinal distribution of lactase mRNA. Indeed the transcript remained abundant in the distal duodenum, jejunum and proximal ileum, but decreased in the proximal duodenum and became virtually absent in the distal ileum. Concomitantly, the mRNA and enzyme distribution along the villi changed in the different segments of the small intestine. Patterns similar to those described in sucklings were retained in the adult jejunum. In contrast, mRNA and enzyme could no longer be detected in the distal ileum, while mosaicism appeared in the proximal duodenum. In vitro transcription assays carried out with isolated nuclei suggested that the decay of lactase mRNA in the proximal duodenum at weaning was associated with a decreasing rate of transcription of the gene. However active gene transcription was retained in the nuclei of the adult jejunum and ileum. The loss of mRNA in the adult distal ileum despite the maintenance of active transcription did not result from an intragenic block of pre-RNA elongation, as shown by transcription assays carried out at various positions of the lactase gene. In addition, we looked for the ontogenic decline of lactase protein despite the maintenance of a high amount of mRNA in the jejunum, and it became evident that the fraction of mRNA present in polysomes was constant with age. Taken together, these data indicate that lactase constitutes an unusual marker of development and of functional regionalization of the intestinal tract which exhibits a complex time- and space-specific pattern of gene, mRNA, and protein expression. The distinct patterns occurring in the duodenum, jejunum, ileum, and the colon of pre- and postweaned rats depend on a combination of transcriptional, posttranscriptional, and posttranslational levels of regulation. and are associated with a different mRNA distribution along villi in each intestinal segment.
Collapse
Affiliation(s)
- I Duluc
- Institut National de la Santé et de la Recherche Médicale, Unité 61, Strasbourg, France
| | | | | |
Collapse
|
19
|
Fuller PJ, Beveridge DJ, Taylor RG. Ileal proglucagon gene expression in the rat: characterization in intestinal adaptation using in situ hybridization. Gastroenterology 1993; 104:459-66. [PMID: 8425688 DOI: 10.1016/0016-5085(93)90414-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Proglucagon-derived peptides are potential mediators of the adaptive response of the terminal ileum to massive small bowel resection. Ileal proglucagon messenger RNA (mRNA) levels increase during ileal adaptation. The present study explored the cellular basis of this response. METHODS Sections of control ileum, ileum 4 days after resection, and pancreas were analyzed by in situ hybridization with 35S-labeled complementary RNA (cRNA) probes. RESULTS Both the proglucagon and the peptide YY cRNA probes hybridized to discrete cells in the ileal mucosa, the disposition of which corresponds to that reported for intestinal L cells. Four days after resection there was a marked increase in the intensity of the signal for both probes without an increase in cell number. Insulin and histone H3 probes were used as controls to confirm the specificity of the hybridization seen with the L-cell specific, proglucagon, and peptide YY probes. CONCLUSIONS The increase in proglucagon mRNA levels after massive small bowel resection is caused by an increase in the cellular content. The parallel increase in PYY mRNA levels implies an L cell--rather than a proglucagon gene--specific response.
Collapse
Affiliation(s)
- P J Fuller
- Prince Henry's Institute of Medical Research, Clayton, Australia
| | | | | |
Collapse
|
20
|
Chwalinski S, Potten CS. The decay of autoradiographic grain number over crypt base columnar cells in murine ileum as a measure of their generation time. Cell Prolif 1991; 24:21-31. [PMID: 2009314 DOI: 10.1111/j.1365-2184.1991.tb01508.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The decay in the number of grains over [3H]-thymidine labelled crypt base columnar cells (BCC) in autoradiographs of the ileum of BDF1 mice has been studied. The results revealed that using the conventional grain count halving (GCH) method it is possible to obtain an estimation of the generation time (Tc) of the proliferative BCC cells in the Paneth cell zone (PC-zone) of 18.8 +/- 0.74 h. This lies within the range obtained by the percent labelled mitoses (PLM) method, but is shorter than most values obtained by stathmokinetic methods. The present data show no evidence for a shortening of the cell cycle 3 days after irradiation (8 Gy) which is contrary to some earlier observations. Some reasons for this discrepancy are discussed. The comparatively high labelling index of the BCC allows a larger amount of data to be easily collected, compared with the PLM technique, and correction factors which take into account the complicated shape of the bottom of the crypt are not required.
Collapse
Affiliation(s)
- S Chwalinski
- Department of Pathophysiology, Institute of Rheumatology, Warsaw, Poland
| | | |
Collapse
|
21
|
Evans GS. The distribution of endocrine cells along the mouse small intestine. Bombesin and somatostatin producing cells. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1989; 58:165-72. [PMID: 2575821 DOI: 10.1007/bf02890067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The topographical distribution and incidence of endocrine cells in the crypt and villus epithelium and along the length of the mouse intestine was studied. Cells containing somatostatin and bombesin like reactivity were stained by immunocytochemical techniques using polyclonal antiserum. Most of the somatostatin cells were found in the duodenum, jejunum and ileum, and these cells were generally more frequent on the villus compared to the crypts. This may indicate that the somatostatin cells develop late in the endocrine cell lineage. Bombesin like cells were rare in occurrence, and were only present in measureable numbers in the ileum, where they were observed in the crypt and villi. The application of ELISA assays to determine the specificity of the antisera for these peptides is also discussed.
Collapse
Affiliation(s)
- G S Evans
- Department of Epithelial Biology, Christie Hospital & Holt Radium Institute, Withington, Manchester, England
| |
Collapse
|